
Opleiding Informatica

Attack Defence Trees in JSON:

Design and Conversion

Steven van Popele

Supervisors:
Nathan Daniel Schiele & Dr. Olga Gadyatskaya

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl January 30, 2026

www.liacs.leidenuniv.nl

Abstract

This thesis aims to improve the usability of attack-defense trees by defining them in a JSON
format instead of the current XML format. Attack-defense trees are used to visualize and
analyze complex security systems. The work in this thesis is part of a larger project focused
building a tool that can create and manipulate attack-defense trees. Specifically, the component
presented makes a bidirectional conversion between the JSON and XML formats possible. The
current standard of attack-defense trees in the XML format lacks flexibility when manipulating
the trees, because it is difficult to traverse and find specific nodes. The sub-goals are to define
the format of an attack-defense tree in JSON and to build the conversion between the defined
JSON format and the XML format. All the code related to this project is available in the
following repository [AIJ].

Contents

1 Introduction 1

2 Background 3
2.1 Attack-Defense Trees . 3
2.2 File Formats for Data Storage . 4

2.2.1 Structure and Syntax of XML . 5
2.2.2 Structure and Syntax of JSON . 5

2.3 Use Cases of XML and JSON . 7

3 Related Work 8

4 Methods 10
4.1 Programming Language for Implementation . 10
4.2 Evaluating the Conversion Algorithm . 10
4.3 Defining Formats . 10

4.3.1 ADTs in XML Format . 11
4.3.2 ADTs in JSON Format . 11
4.3.3 Comparing the Formats . 13

4.4 Defining the Experiments . 13
4.4.1 Comparing Files Sizes . 13
4.4.2 Comparing Performance . 14

5 Implementation 16
5.1 Node Structure . 16
5.2 Functions . 17

5.2.1 build json() . 17
5.2.2 build xml() . 18

6 Results 19
6.1 Comparing JSON to XML . 19
6.2 Performance Comparison of the Conversion Tool and Python Module 23

7 Discussion 30
7.1 Definition of an ADT in JSON . 30
7.2 Evaluating the Formats . 30
7.3 Evaluating the Conversion Algorithm . 31

8 Limitations, Conclusion and Future Work 32
8.1 Limitations . 32
8.2 Conclusion . 32
8.3 Future Work . 33

References 38

9 Appendix 39
A Data Format Examples . 39
B Results of the Experiments . 43

B.1 Results for Data Format Comparison . 43
B.2 Results for Algorithm Evaluation . 45

1 Introduction

In the past twenty years, computer science has changed considerably, especially in how data is struc-
tured, shared, and understood between systems. Although these advances have resulted in positive
outcomes, they have simultaneously led to an increase in cyberattacks [GWM17]. Apart from the
growing frequency of these attacks, their sophistication has also increased [BKS11]. Consequently,
it is crucial that this threat is addressed by making advancements in cybersecurity. To support
the development of these advances, it can be useful to visualize the problems we are addressing.
In recent years, researchers have created and improved the attack-defense tree, to support this
visualization in a systematic manner. The attack-defense tree (ADT) is a tool to visualize and
analyze complex security systems. It visualizes the security system in a way that makes it clear what
the overall goal is of an attack and which steps are necessary to achieve that goal. The improvement
of ADTs, compared to their predecessor, the attack tree (AT), is their ability to also show possible
defenses for individual attack steps [BKS11]. To help spread the use of ADTs and to make the use
of ADTs more intuitive, a tool is being developed to improve the accessibility of ADTs. In this
thesis, we describe a part of that tool. In particular, we provide a thorough description of the data
structures that the tool will provide, and the conversion between these data structures. Specifically,
we discuss the XML and JSON data structures. In this thesis, we explain why this conversion is
necessary. The goal of this thesis is to create a conversion tool that is capable of defining ADTs in
XML and JSON. Additionally, this thesis discusses how the created algorithm for the conversion
tool compares to existing solutions to the same problem.

To achieve our goal, we have defined two research questions.

1. How can we define ADTs in a JSON format?

This question is necessary because there is not yet a standard method for defining ADTs in JSON.
This is the case for XML, as we will cover in a subsequent section. By defining a JSON format for
ADTs, we can make it possible to convert to and from the JSON format. This will improve the
usability of ADTs, as users will be able to use and exchange ADTs in different formats.

2. How can we define a method that bidirectionally converts ADTs between XML and JSON
efficiently?

2.1. How does JSON compare to XML, more specifically, how do the ADT relevant features
of XML and JSON compare?

2.2. How well does the conversion algorithm compare to an existing solution, in terms of
processing speed?

Question 2 addresses the wider goal of this thesis: the conversion tool. In order to further improve
the usability of ADTs, we have to define a method that can perform a bidirectional conversion
between XML and JSON.

Question 2.1, which is a sub question of Question 2, will answer why JSON is used and how it can
be converted to and from XML. To determine if the method performs adequately compared to
existing solutions we will use Question 2.2 as a sub question of Question 2.

1

To answer these questions, there are several sections that discuss all the necessary topics involved.
After this introduction, Section 2 and Section 3 will provide information to help build an understand-
ing of the current state of ADTs and other relevant topics. Section 2 will explain how ADTs work
and what the XML and JSON formats are. Section 3 will be used to talk about research relevant to
this thesis. In Section 4 we explain our approach to the research questions, including information
about the algorithm used to compare the created tool and a description of the experiments. Section
5 describes how we implemented the conversion tool and integrated it into the overarching project
in a technical manner. In Section 6 and Section 7 we will present and analyze the results of the
experiments and answer the research questions. Finally, we will use Section 8 to review the progress
of this project and discuss possible improvements.

2

2 Background

This section provides the foundational concepts on which this thesis is based. The subsections in
this section will describe how ADTs work and the file formats we will use.

2.1 Attack-Defense Trees

The concept of Attack Trees was created by Bruce Schneier in 1999. Schneier described ATs as a
formal and methodical way of describing security systems, based on attacks [Sch99]. In his paper,
Schneier defined ATs and gave examples of what they should look like. The paper offers a broad
overview of several approaches for modeling security systems. To further establish the concept of
ATs, Mauw and Oostdijk published a paper that contains a formal description of ATs that consists
of a framework for constructing ATs [MO06]. This paper defines a foundation for ATs and is used
as the basis for additional research on ATs.

A visualization of an AT is shown in Figure 1. In the figure the attackers goal is to get free lunch.
This goal is split up into three possible sub-goals that can make the main goal happen. The arch
between multiple lines signals that all sub-goals with that arch need to be achieved for the parent
goal to be successful.

Figure 1: Example of an AT [MO06]

In a subsequent paper, Kordy et al. further extended the ATs by giving a formal description of
how defensive measures could be implemented into ATs and thus defining ADTs [BKS11]. The
previously mentioned paper is used as a basis for this paper [MO06]. The paper extends the formal
definition of ATs with the formal definition of ADTs.

The ADT is defined as a rooted tree with labeled nodes that describes measures that an attacker
can take to achieve a certain goal. The tree also contains countermeasures that a defender can
take to counter these actions. Each node is used to describe these measures and countermeasures.
To achieve this, there are multiple types of nodes: the root node, which defines the goal of the
attacker; attack nodes, which show the measures to achieve the goal; defense nodes, which show the
countermeasures to defend against certain attack nodes. Nodes can have multiple children, and the
relationship between parent and child depends on the type of both nodes. For example, when an
attack node has a defense node as a child, the defense node is a countermeasure to the attack node.
The same is applicable for an attack node as a child of a defense node. It is important to note that
a node may have exactly one child of the opposite type. Adding more than one child of the opposite
type would lead to a more complicated tree. If the parent and child are the same type, the child is
considered a sub-goal of the parent. Children can also have parameters. These parameters are used

3

to give more information about the measures and countermeasures. A node can have two kinds of
refinements: a conjunctive and a disjunctive. A conjunctive refinement signals that the actions of
all children of a node must be fulfilled to achieve the parent node. A disjunctive refinement sig-
nals that only one of the actions of the children must be fulfilled to achieve the parent node [BKS11].

A visualization of an ADT is shown in Figure 2. In the figure the attack nodes are visualized as
red circles and the defense nodes as green rectangles. The lines signal a parent-child relationship.
Countermeasures are shown with dotted lines and sub-goals with continuous lines. The refinement
is shown with an arch. An arch means that the refinement is conjunctive and without an arch the
refinement is disjunctive. Parameters could be visualized next to their corresponding branches in
the tree, depending on their specific meaning.

Figure 2: Example of an ADT [BKS11]

2.2 File Formats for Data Storage

An important aspect of this thesis is the conversion between XML and JSON. Both are file formats
that can be used to store data and are mainly used in web development [XMLa][JSO]. Having
different kinds of file formats is useful, because different types of data require different storage
types. Certain types of data can be more efficiently saved in one format compared to others. XML,
for example, usually uses more bytes to represent the same information than JSON, making it
less-storage efficient in many situations [ZUHH15]. How the data will be used is also an important

4

consideration when choosing file formats, since some file formats can be more easily read by humans,
while others are optimized for machines [HRD]. For these reasons, it is important for developers to
choose the right file format based on the type of data they are using and the intended use of the
data. Both formats are text-based, which makes adding parsing functionalities in most programming
languages relatively easy.

2.2.1 Structure and Syntax of XML

XML stands for extensible markup language. It was originally created to support publishing on
computers; however, XML is now commonly used for data exchange on the internet as well [XMLa].
XML can be interpreted by most programming languages [XPM][PSX][LiL].

An XML file is defined by symbols that signal a certain structure. An XML file starts with a line
that declares that the file is an XML file. This line includes the version of XML that is used and
the encoding of the file. In the first listing in Figure 14 we can see an example of this at line 1.
After this line the XML file content begins. The XML file consists of elements defined by tags. Each
element contains a piece of the file’s content. Elements can be nested within other elements, this is
done to provide additional information about the relationship between elements. The manner in
which elements are nested defines that relationship. This relationship can be interpreted in different
ways. An example of a relationship is a child-parent relationship, where the nested elements are
the children of the element in which they are nested. The beginning and ending of an element are
defined by tags. There are two types of tags: start-tags and end-tags. The beginning of a tag is
signaled by a ’<’ symbol and the end of a tag is signaled by a ’>’ symbol. The start-tag of an
element contains the name of the element and its attributes. In the XML in Figure 14 at line 3 we
can see an example of a start-tag. The name of the element in this line is ’book’ and the attributes
are ’id’ and ’genre’. The end-tag of the example element can be found at line 11. The end-tag of
an element consists of the name of the element preceded by a ’/’. Between the start-tag and the
end-tag of an element we can find the content of the element. Content can be text, other elements
or a combination of both [XMLb].

2.2.2 Structure and Syntax of JSON

JSON stands for JavaScript Object Notation. JSON is a file format that was created to be easily
processed by both computers and humans, and therefore is considered to be lightweight [JSO].
The format is based on JavaScript objects, hence the name. Because of this, JSON is highly
functional in JavaScript. Apart from JavaScript, many other programming languages can process
JSON [JED][JJM][LiL]. JSON is gaining popularity in many fields of computer science, which
makes it more attractive for developers to use JSON as a file format and to create functionality
within programming languages to process JSON [TLH18b].

5

JSON can be seen as a combination of an array and a dictionary. JSON changes its behavior
based on different symbols. The dictionary form uses ’{’ to signal the start of a dictionary object,
’}’ to signal the end of a dictionary object and ’:’ to assign values within the dictionaries to the
corresponding keys. JSON uses ’[’ and ’]’ to indicate the starting and closing points of an array
[TLH18b]. A dictionary can have an array as value of a key, as can be seen in the second listing of
Figure 14.

To illustrate the difference between XML and JSON we have put the same data into both structures
and put them side by side. Later on in this thesis we will go into the differences of these two formats.

1 <?xml version="1.0" encoding="UTF -8

"?>

2 <library >

3 <book id="b1" genre="fantasy">

4 <title lang="en">The Adventure

</title >

5 <author >Someone </author >

6 </book >

7
8 <book id="b2" genre="sci -fi">

9 <title lang="en">Journey to the

Stars </title >

10 <author >Someone Else </author >

11 </book >

12 </library >

XML

1 {

2 "library ": {

3 "book": [

4 {

5 "title ": {

6 "lang": "en",

7 "text": "The Adventure"

8 },

9 "author ": "Someone",

10 "id": "b1",

11 "genre ": "fantasy"

12 },

13 {

14 "title ": {

15 "lang": "en",

16 "text": "Journey to the

Stars"

17 },

18 "author ": "Someone Else",

19 "id": "b2",

20 "genre ": "sci -fi"

21 }

22]

23 }

24 }

JSON

Figure 3: Illustration of the same data encoded in XML and JSON.

6

2.3 Use Cases of XML and JSON

Each format offers advantages in different scenarios; we will explore some use cases and identify
which format is most suitable in each of them.

Communication between systems that are not locally connected is done via web APIs. Web
APIs communicate with structured data. Both JSON and XML can be used for this and are
used often. JSON is often chosen over XML, because JavaScript is often used in the front-end
of most projects that use web APIs. A JSON response usually contains less text than XML,
which improves compatibility [WAD]. This also means that JSON files have less bytes than XML
files, which improves transmission efficiency [ZUHH15]. Additionally, XML is often implemented
with the use of a specific, which has a strict format and is thus not universally understandable [SOP].

XML has great functionality for storing documents. It is able to store both the contents of a docu-
ment and the metadata for documents and make a distinction within the format [XMLa][ZUHH15].
In contrast, JSON lacks native mechanisms for this distinction, as it cannot make distinctions
between different types of attributes [JSO].

XML and JSON are useful for configuration files, because of the way that both formats are struc-
tured [B17][Car18]. Configuration files are often used to setup a program and provide it with its
initial values. An advantage of JSON for this is that the values can be easily found and edited by a
human reader [JSO]. XML on the other hand can handle configuration files with metadata more
effectively, as we have seen before.

Many programs make use of log files to record their runtime. Logs in JSON format are structured
so that can be easily parsed by an analysis program and they are readable by humans [JSO]. In
this case XML would be too word heavy and difficult to parse.

7

3 Related Work

In addition to Section 2, this section expands on the research done on ADTs. We discuss research
that is similar to ours and show its connection. The topics will be divided into tooling methods,
JSON structures, comparative studies of XML and JSON and conversion algorithms.

The overarching project that this thesis will be part of is mainly concerned with providing a
visualization tool for ADTs. Currently, ADTool is a widely used application for constructing and
visualizing ADTs. It provides the means for modeling and displaying ADTs. In the ADTool manual,
Kordy et al. write that the goal of ADTool is to provide a graphical and user-friendly way to work
with ADTs, as well as to give users tools to conduct a thorough analysis of their trees [BKS13].
ADTool makes use of XML files to save ADTs. As the field of ADTs and risk assessment has evolved
a new tool was created by Gadyatskaya et al., ADTool 2.0. This tool is significantly more advanced
than its predecessor. This enables the tool to offer multiple new features. In addition to new
features, like scripting, copy-pasting within trees and analyzing large trees, the tool also provides
support for more advanced ADTs and node prioritization. Notably, ADTool 2.0 also supports the
ability to accept XML input files that are not written in the ADTool XML schema [OGTR16].
This last feature can significantly improve the usability of the tool. In this thesis, we use the
created XML format of ADTool to define a JSON version and with it we aim to further enhance
the usability of ADTs. A tool with a similar purpose as the ADTool variants was developed by
Weiser and Delcourt. In their work, they built a tool for modeling ADTs. This tool is also capable
of handling JSON files. However, it is not capable of making conversions to other file formats,
like XML [TWL22]. Our conversion tool aims to add additional usability. While a JSON defini-
tion is given in their work, it lacks the compatibility with XML needed for the tool we are developing.

In the following paragraph, we examine how previous research has approached representing data in
JSON. The research of Weiser and Delcourt contains another important feature, namely, their choice
of using JSON to represent ADTs. They use an altered version of the definition from Kordy et al.
made by Wide l et al.. Wide l et al. extend ADTs by implementing refinement and countermeasures
as individual nodes [BKS11][WWP14][TWL22]. This adds an extra layer of abstraction, which
in turn increases the definition’s complexity. On top of that, the way Weiser and Delcourt treat
nodes makes the use of parameters difficult. In order to improve usability we want to be able
to add parameters and we need a simplified definition. In their paper, Jhawar et al. introduce a
mathematical approach to a sequential conjunctive refinement. This refinement adds the ability
to formally define SAND relationships between nodes [RJRR15]. While this addition extends the
usability of ADTs, it simultaneously introduces complexity and incompatibility with other formats.
The paper by Schiele and Gadyatskaya describes a method for comparing attack trees. To perform
this comparison, the authors define a metric that uses important attributes of the trees [SG25].
Based on the attributes used by the metric, we can deduce what important attributes are that each
node must have. The research done by Lv et al. surveys the ways that data can be saved in JSON.
The paper discusses several approaches to writing JSON objects and retrieving data from them.
Lv et al. make use of recursion, in which a certain structure is repeated within the JSON object
to efficiently retrieve information [TLH18a]. The JSON objects constructed in this thesis will also
employ recursion, as the structure of every node is the same. This will ensure consistency between
nodes, which in turn makes the ADT more traversable and adjustable.

8

There are many ways of storing data and to determine what every format excels in many comparisons
have been made between these formats. We are going to look at a few comparisons between XML
and JSON, to see how these studies have approached these comparisons. In the paper written by
Zunke and D’Souza a comparison is made between XML and JSON. They measure the comparison
of the two formats in features and in performance. They conclude that JSON achieves a better
performance compared to XML. However, because of the structure of XML, there are certain
situations where XML can offer more flexibility in saving data. The structure of XML lets you
describe any kind of data, where JSON is limited to a set number of data types [ZD14]. Due to the
nature of this thesis, we can disregard the visual aspects of the two formats. However, this thesis
benefits from the performance advantages of JSON, as it is the main file format we use. Nurseitov
et al. have done a study to see which data interchange format, XML or JSON, is the better choice.
The study concludes that JSON is significantly faster in use and uses less resources when used
for data transfer. They found this result by doing a combination of experiments, including the
timing of transferring objects and the amount of computer resource utilization. They used different
scenarios using different properties [NNI09]. In the overarching project the ADTs will be transferred
to different systems, so even though data interchange is not directly relevant to this thesis, the
results are positive nonetheless. On top of that, their results also show that JSON performs better
outside of data interchange. We can conclude that processing JSON strains computer resources less
than XML, which is important for modifying data.

Converting XML to JSON and back has been tackled by multiple tools before. These tools might
not fit our use case, but can be used as inspiration or be incorporated. The tools in question will
be covered in this paragraph. The next paper we will discuss focuses on converting XML data to
different data representation. To do this conversion Martens et al. make use of mapping. To convert
the XML data they try to find parts of elements that are recognized by a mapping document. With
the help of this document the elements can be mapped towards the corresponding instances of
the other data form [DVDdW08]. In this paper we can see a situation where XML is not directly
converted to the desired format. Our conversion will mimic this idea by using an intermediary data
structure instead of mapping. Šandrih et al. propose an efficient and unified approach to converting
between XML and JSON. In their paper they created an overview of conversions between XML and
JSON. These conversions are the result of using two different converters [B17]. Their results are not
applicable to our project, because we will mimic a specific ADT format in XML in JSON. Therefore
a custom conversion process will be developed. The JavaScript library xml-js was written to create
a bidirectional tool converting XML to JSON and back. While other libraries did exist, like the
DOM parser and the xml2json parser, their output merges nodes together in a compact manner.
Nashwaan created xml-js to preserve the order of elements from XML in JSON [Agu][Nas][DOMa].
Our conversion tool needs to do both, and preserve order and be compact. The attack sequence
is lost without the order, so we need a tool that can keep this order. However, we also want the
output of this tool to be compact, because this makes the JSON more traversable and thus more
modifiable. The DOM parser does have a useful feature, namely, we can use it for creating XML
objects out of XML strings [DOMa]. In this way, it can be used in our conversion from JSON to
XML to build an XML object. This object can later be used to improve compatibility, by passing it
on to the overarching project, where it can be returned to the user.

9

4 Methods

This section describes the methods used to create and evaluate the conversion tool and to run the
experiments. Important aspects of this section are the algorithm to compare our tool with and how
data structures are used.

4.1 Programming Language for Implementation

A key design decision in this thesis is to write the conversion tool in JavaScript. The motivation
for this choice is that the project that this tool will be part of is written in JavaScript as well.
Writing in JavaScript ensures compatibility with the rest of the project, as there are no extra steps
needed to communicate between different JavaScript files [GLO]. Additionally, JSON is derived
from JavaScript objects, therefore using JavaScript is a natural choice. [JSO].

4.2 Evaluating the Conversion Algorithm

In order to say something about the performance of the conversion algorithm developed for this
thesis, we will need to compare it with another similar algorithm. We will measure the processing
speed of our algorithm and we will compare this speed with the speed of using an algorithm from
an existing Python module. To do this, we have rewritten the JavaScript code in Python. Python
will be used to experiment with, because it is able to read and write files directly from and to the
working directory. This will be used in the experiments conducted in this thesis. Accessing local files
in JavaScript requires the use of extra steps via modules or APIs [RFN][FSA]. The implementation
section will describe how the conversion algorithm works. In this subsection, we will describe the
Python module that is used.

The xmltodict module is used to convert XML to JSON. Python has two datatypes that can be used
to represent a JSON object, these are lists and dictionaries. To convert XML to these two datatypes
xmltodict makes use of an expat based XML parser [Ble]. Expat is a fast XML parser that can
be found in various XML parser implementations across different programming languages [Zha07].
The speed of expat can be attributed to the fact that an XML file is processed in multiple pieces.
This ensures that parts of the XML can be parsed before the complete document is received [Coo].
We will only use the class-internal function xmltodict.parse(). This function does the conversion
and creates dictionary keys for all XML elements. It treats XML elements differently than we will
do. For example, with nested elements of the same type, it creates a list of that type instead of a
dictionary.

4.3 Defining Formats

For the conversion of the ADTs we need to define what the XML and JSON representations of the
ADTs look like.

10

4.3.1 ADTs in XML Format

For XML, we use the definition of ADTs as given in the ADTool manual. We do this to en-
sure that this project is compatible with ADTs designed in the ADTool application. This is an
important design choice, as it ensures that users can use their already existing ADTs in the new tool.

The tree is defined inside an adtree start- and end-tag. The nodes of the tree are represented by
node tags. The start-tag of these node tags include two attributes. These are the refinement and the
role the node has relative to its parent, called ’switchRole’. A node is closed by an end-tag. Every
other component of the node is defined between the start-tag and end-tag of the node tag. The
name of the node is represented by a label tag. The name itself can be found between the start-tag
and end-tag of a label. The parameters of the node are represented by parameter tags. Inside the
parameter start-tag there is a domainId attribute that represents the name of the parameter. The
value of the parameter can be found between the start-tag and end-tag of a parameter [BKS13].
An example of an ADT in XML is shown below. The example is a trimmed down version of the
XML in Figure 13 from the ADTool manual [BKS13]. The full figure can be found in appendix A
In Listing 1, we can see how nodes are nested within the adtree element and within other nodes.
This is shown by the positions of the start- and end-tags of the element. From the example we can
also see that the ’switchRole’ attribute is only present when a node switches role. The same is true
for parameter elements, these only exist when a node has parameters. The parent of the node on
line 12 is the node on line 5. From the ’switchRole’ attribute of this node we learn that it is a
countermeasure for their parent.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <adtree >

3 <node refinement="conjunctive">

4 <label >steal money </label >

5 <node refinement="disjunctive">

6 <label >learn PIN </label >

7 <node refinement="disjunctive">

8 <label >find PIN </label >

9 <parameter domainId="MinTimeSeq1" >100.0</ parameter >

10 <parameter domainId="ProbSucc2" >0.1</parameter >

11 </node >

12 <node refinement="conjunctive" switchRole="yes">

13 <label >security training </label >

14 </node >

15 </node >

16 </node >

17 </adtree >

Listing 1: Example XML ADT

4.3.2 ADTs in JSON Format

For the JSON example we have to convert the XML tags to JSON objects. In the XML definition
there are a few features that we need to implement in the JSON definition. These features are
essential for accurately reproducing the intended ADT.

11

In Listing 2 we show a JSON that shows the definition of all the features of ADTs as they will
be used in this thesis. The root of the JSON is the adtree object. Every node is an object on its
own, within the adtree. In the Listing 2 we can see that every node is denoted by a number. This
number corresponds with the order of the nodes from left to right. The adtree object behaves as a
node and is therefore implemented as one. The adtree and node objects have a label, a refinement,
a role, children and parameters. These all come from the XML definition. The label, refinement
and role are keys with values. The node objects are implemented as children objects of the adtree.
They are put in their corresponding parent. This can be seen on line 6 and line 21 of Listing 2.
The parameters array in a node consists of separate parameter dictionaries with a name and a
value. The names of the parameters are the keys in the dictionary. The adtree object and the child
objects all have the same structure. This consistency is important to make the JSON traversable.
The ADTs that will be created in the tool can vary in size, therefore it is appropriate to design
them with a predictable structure. This consistency allows traversal algorithms to operate without
prior structural knowledge of the tree. The tree can still be used to find specific values or to change
subtrees after being constructed.

1 {

2 "0": {

3 "label": "Bank Account",

4 "refinement ": "0",

5 "switchRole ": "0",

6 "0":{

7 "label ": "ATM",

8 "refinement ": "1",

9 "switchRole ": "0",

10 "parameters ": [

11 "1":{

12 "name": "MinTimeSeq1",

13 "value ": 20.0

14 },

15 "2":{

16 "name": "ProbSucc2",

17 "value ": 0.25

18 }

19]

20 },

21 "1":{

22 "label ": "Online",

23 "refinement ": "0",

24 "switchRole ": "0",

25 "parameters ": []

26 }

27 "parameters ": []

28 }

29 }

Listing 2: Example JSON ADT

12

4.3.3 Comparing the Formats

For our project we must identify the differences between JSON and XML. We will only examine
differences that are relevant to our intended use of the formats. The JSON representation uses more
elements than the XML representation. The extra attributes are represented as elements themselves
in JSON. The XML representation can leave out unused attributes and elements can differ in the
number of attributes present. For JSON this is not the case. We can see that even if a node does not
have children and/or parameters the object for them still exists. This is the same for the switchRole
attribute, even if it has the value ”no” it still has to exist. In XML end-tags repeat the name of the
element that is being closed. These end-tags are equivalent to the ”}” symbol in JSON. Another
important aspect to consider is their functionality within JavaScript. Both JSON and XML can
be used in JavaScript. However, JSON is based on a built-in feature in JavaScript, specifically,
JavaScript objects. This means it can be parsed without the need of external functionalities. For
example, to parse XML we need to use an external parser, like the DOM parser, to use its format
properties [DOMb].

4.4 Defining the Experiments

To help answer the research questions two experiments were conducted. The first experiment focuses
on the difference in file size between XML and JSON. With this experiment we aim to answer
Question 2.1, while the second experiment aims to address Question 2.2. The second experiment
will test the efficiency of our implementation.

4.4.1 Comparing Files Sizes

For the first experiment we are going to compare the file size of multiple ADTs for the XML and
JSON formats. For this we will use ADTs that are vary in height and width. The ADTs take the
form of a perfect m-ary tree, where every internal node has exactly m children and all the leaves
have the same depth [Nyb14]. With height we mean the maximum path length from root to leaf
within the tree and with width we mean the number of child nodes each internal node has. Leaf
nodes have by definition no children [MO06]. The ADTs resulting from this will be labeled according
to their width and height, so an ADT with a width of 4 and a height of 7 will be named 4×7. In
Figure 4 is an illustration that shows how height and width affect the ADT, more specifically what
is controlled with either of them. The width in this figure is 2 and the height is 3.

13

width
h
ei
gh

t

Figure 4: Illustration depicting what is influenced by height and width.

Here width illustrates what the number of children does to the tree, not how the width is defined.
The different heights and widths will ensure that we will have ADTs representing diverse sizes and
therefore have enough results to be able to draw conclusions. The file size will be measured in bytes.
We will do two comparisons; one that shows the file size of ADTs when both width and height
increase by one for each next ADT, and one in which we will compare the file sizes for smaller
ADTs. The first comparison provides a broad overview for if the size difference holds up for a wide
range of ADT sizes. The second comparison will show whether the result of the first comparison is
similar for realistic sizes.

4.4.2 Comparing Performance

To test the efficiency of the algorithm for the conversion from XML to JSON we can run an
experiment that measures the conversion time for a variety of different ADT sizes in seconds. We
have chosen to compare different heights and widths of ADTs. For this experiment we use the same
definition of width and height as the previous experiment. The resulting time of each size depends
on multiple iterations of converting the same tree and taking the average [ŠM14]. To find a suitable
number of repetitions we will do the experiment with six different repetition numbers. Each time
we increase the repetitions, we expect that the variability in the data to decrease. This will cause
the resulting averages to converge to the true value of the process time of the ADTs [Sel15]. We
will also run the same experiment on an implementation using xmltodict, a module from a native
Python library, to assess how efficient our conversion tool is compared to that implementation [Ble].
To ensure that we are only comparing between the two algorithms and not between Python and
JavaScript we will have to rewrite the same code of the conversion tool from JavaScript to Python.
Both implementations will be written in Python and both will be tested using Python. This results
in two sets of data: one set for the conversion tool and one for the Python module. The experiment
will be performed on a system with the following specifications: an Intel Core i5-13600KF CPU, 32
GB of RAM, Windows 11 (version 25H2) and Python 3.9 [DB]. To find the resulting process time
of each ADT for both algorithms we utilize Python’s datetime module [DT].

The ADTs that are generated for this experiment grow exponentially in size. Therefore, we expect
the execution time for these ADTs to also grow exponentially. This means that for some ADTs the
execution time might become unreasonable. To prevent this from happening we will make use of a
threshold. We have chosen to find a threshold for the execution time of ADTs within our data and

14

cut off the execution of the algorithms for ADTs that exceed this threshold. To find the threshold
we will run our conversion algorithm a single time for each ADT. Due to the expected exponential
growth we can find that the execution time will rise steeper the larger the ADTs are. Running the
conversion algorithm a single time for each ADT does not guarantee reliable data, but it does show
a decent enough overview of the growth in execution time. Based on this we can decide for which
level of steepness we can cut off the executions. This will be our threshold. To make sure cutting
off the executions will not result in the loss of necessary data, we need to choose a sufficiently high
threshold to observe growth trends for each algorithm. Furthermore, we will be able to observe if
an algorithm is able to process larger ADTs than the other algorithm by looking for which ADT
size the execution was cut off, this is important as we are comparing two different algorithms. If
the processing time of an ADT exceeds the threshold, we mark it with a ’-’ in the results table.

15

5 Implementation

There are multiple ways to implement the methods described in the previous section. The code base
for this project can be split into various parts. First, the implementation of components responsible
for knitting the code together will be discussed, after that we will examine two parts that are
necessary for the conversion.

The conversion itself is written in a separate file and is called by the responsible function within
the project. This is done to avoid interference with other sub-projects. The code for the conversion
only expects two variables. The first variable is an integer that signals which kind of conversion
needs to be performed: XML to JSON or JSON to XML. The second variable contains the input.
This is either the XML or the JSON that needs to be converted. For both ways of conversion, the
input is expected to be a list of strings. There are two extra methods of receiving input that can
be handled in the tool. One method is to generate an XML, as a list of strings, within the tool.
The other method is to receive the XML from a source outside of the tool. Both these methods
were implemented during the course of this thesis. For the implementation of the tool within the
overarching project we expect a list of strings as input when the tool is called.

The first method of input is useful for running experiments on the tool. For example, in this thesis
we did an experiment to measure the speed of the conversion algorithm. To do this we generated
XMLs of multiple different sizes and ran the conversion tool on these XMLs. This method would
be too costly in terms of time to be used within the tool and changing the output ADT would
not be straightforward. The second method of input was used to test the tool during development.
In JavaScript, it is non-trivial to access local files from the computer. Therefore, the XML had
to be retrieved from an online source, which is a built-in feature of JavaScript. This meant that
we could test the tool without having to manually enter the XML every time or write the XML
within the code of the tool. The downside of using this method is that using online sources means
that all functions that use the data from the source must be asynchronous. This is because the
data is not immediately available, so the functions that use the data must wait for the data to be
received [ASY]. The difficulty with asynchronous functions is that the code runs while a part of the
data being used has not yet been received. Parts of the code that are dependent on that piece of
data must wait for the data to be received. This increases the complexity of the code, making it
more difficult to interpret, maintain, and debug.

5.1 Node Structure

To assist in converting to JSON, the tool uses an intermediate structure. A direct conversion
is hard to achieve, because the location of a node in the tree is not yet known during the cre-
ation of a node. The JSON is built as an object and nodes are added to the JSON ADT as
objects themselves. Saving the information for each node as an intermediate object makes it
possible to add information while building. In the end, all node information is known, this includes
their place in the tree. With this information, the nodes can be added to the tree in the right manner.

16

The node structure is a class containing all the important information that is needed to build the
JSON. In the end all this information is saved in the JSON. The label, refinement, switch role, and
parameters variables come from the XML input. The parent, order label and depth are derived
during the process of creating nodes. These three variables are necessary for finding out the JSON
structure of the ADT. With the parent variable we can determine which nodes are siblings. The
order of a node is derived from the number of previously found siblings. The order label is an
important attribute of the node class. It is used to save the position of a node within the ADT. The
order label of a node consists of a series of numbers and dashes. Every number in an order label
is the order of a parent node, and the last number is the order of the current node. An example
would be 0-0-1, in this example the order label represents the second child of the first child of the
root node.

5.2 Functions

To achieve the conversion we have created two important functions. The build json() function
converts the XML input to JSON, and the build xml() function does the reverse. The first of those
two was created with minimal use of libraries, while the second relies for the creation of an XML
object on a library.

5.2.1 build json()

This function loops through all the lines in the given list of strings. For every line it looks for
significant characters. Characters are significant if they signal the start or end of an XML tag
and if they indicate the role of the tag. It is important to note that not every line of the XML
starts with the same indentation, therefore the first significant character of a line is a ’<’ as this
signals the start of a line. With this in mind it follows that the function will first look for ’<’ when
starting on a new line. After the ’<’, a character follows that determines the role of the current
element. These roles start with one of the following letters: a, n, l, or p. The / signals the end
of an XML element. The function filters out tags with specific prefixes, namely, a, l, and p, as
these are handled differently. The lines that have a tag starting with n are the start of a node element.

The function searches for every node element for the label, the refinement, whether it switches role
and the parameters. The label and parameters can be found on the lines with tags starting with
l, for label, and p, for parameters. The refinement and whether it switches role can be found in
the same line as the node tag. The four features are retrieved by three functions. These work by
iterating over the characters in each line and are written in such a way that they can recognize
when each feature starts and stops. This process relies on the standardized format of the XML
ADTs. After collecting all features of the node, the outcomes are given as arguments to the insert
function. It is important to determine whether the current node is the root node or not, as we do
not have a parent for the root node. On top of that, the depth, which is equal to the indentation,
of the node is also tracked. These properties are necessary track of which node is the parent of
which child.

17

Insert adds all the features of the node into the node structure. All information but the parent
node and the oder label is saved in the same way for every node. The parent of the root is the root
itself. The root node is assigned the order label ’0’. The parent of non-root nodes is dependent on
the depth of the current node compared to the previous node. There are three distinct situations
for this comparison: the current node is deeper than the previous node, less deep, or the same
depth. In the first situation the previous node is the parent node of the current node. The order
label of the new node is the order label of the parent node plus ”-0”, as the current node is the
first child of the parent. If the previous node is deeper than the current node, it means that the
current node is a sibling of the parent of the previous node. The function will loop through the
list of added nodes, from last to first, and searches for nodes with the same depth. The parent of
the current node is equal to the parent of the first node found with the same depth. The function
counts every node that has the same depth and the same parent, this determines the order of the
current node as a child is of its parent. The order label of the first node with the same depth will
be stripped of its last character and will be replaced by the order of the current node to form the
order label of the current node. The last node must have a parent; therefore a previous node with
the same depth must exist. If the current node is the same depth as the last node it means that
the last node is a sibling of the current node. Therefore, we can take the order label of the last
node and increase its last number by one. As the last and current node are siblings they must have
the same parent. It returns the fully populated node to the build json() function. The node is then
saved in a list that contains all nodes.

At the end, the build json() function loops through all the nodes in the list and uses the to json()
function to create the JSON ADT. To create a JSON we have to create an object for every node
and add its information to the new object. In the function we start with an empty JSON object
and for each node we use the order label of the current node to check whethe the parents in the
order label of the node already exist in the JSON object. If an intermediate parent node does not
exist, the function creates a new parent object. After that, an object is created for the current node
and added to its corresponding parent. The JSON ADT is then returned to the project.

5.2.2 build xml()

To build the XML ADT, we first construct a string reflecting the structure of an XML file. After
that we use the DOM parser to parse the string into an XML object. For adding children to a node
we will use a recursive function that adds all features of a child to the string and adds the children
of that child. The XML strings are built as defined in the ADTool manual [BKS13]. Because of the
defined JSON format in Appendix A, we can retrieve every feature of a node by using the defined
keys. These features are placed in the correct position in the XML string.

18

6 Results

In this section, we will cover the comparison in Subsection 4.3.3 and the results for the experiments
described in Subsection 4.4. For the results in this section we will use the same definition of width
and height used in Subsection 4.4. The width of an ADT is defined as the number of children each
node in the tree has and the height of an ADT is defined as the maximum path length from root
to leaf. ADTs will be named using width × height, so an ADT with a width of 5 and a height of 2
will be named 5 × 2.

6.1 Comparing JSON to XML

Referring to Subsection 4.3, we find the differences between the JSON and XML versions of ADTs.
The two examples in Listing 1 and Listing 2 describe the same ADT. Because they need to convey
the same information, we can make a good comparison between the two formats based on their
differences.

Because of the existence of unused attributes in the JSON format, changing their values requires
less effort. If we want to add an element, we can locate the attribute it belongs to and add its data
at that position immediately. In XML we would need to know where this new element should be
placed, or in other words, we need to know what the surrounding elements look like and compare
that to the XML file at hand. Iterating over these XML files is also harder because XML elements
lack a uniform structure, whereas JSON is uniform for the defined format. JSON provides better
support than XML in JavaScript environments. The use of an extra parser makes using XML
complicated compared to the integrated use of JSON. These things mean that writing modular
code for parsing JSON will be easier in JavaScript.

For a human, an end-tag can be argued to be useful [Kha15]. It shows us where an element is closed.
With ’}’ in JSON we know that an element is closed, but it is not necessarily clear which element
this is. For XML this is clearer, as the name of the element is repeated in the end-tag. On the other
hand, we can also argue that the use of end-tags make the representation more complex, as there is
additional text. Another property of both formats is the line count. This count depends on the layout
style. If we take a look at Figure 14 we can see the same data being encoded in both XML and JSON.
The JSON ADT has 24 lines, whereas the XML ADT has 12 lines. The line count of the JSON ADT
is two times the line count of the XML ADT. Initially, this seems to be a negative property of the
JSON format. However, we can also see that JSON breaks down the lines of the XML file in multiple
parts, which can be argued as to make it more readable for humans. The line count is partially the
result of attributes being treated differently in JSON. The refinement and switchRole attributes of
a node are saved in the same manner as the label of a node. Line count does not matter for comput-
ers. Every line of both formats can be put on a single line and a computer can process it just as easily.

A property that does matter for computers is the file size of both formats. Using the ADTs of
varying sizes we can compare the file sizes of the two formats. We will use the ADTs that are
described and generated in subsection 4.4.1 for this. We have established above that the computer
can use files in either format containing all the information on a single line. If we implement this
on the ADTs, we can determine the minimum file size for the ADT in both formats.

19

First, we will examine ADTs that grow by one for both the height and width for every new ADT.
The results of this can be found in Table 2; a corresponding graph is shown below, with the sizes in
bytes. The graph uses a logarithmic scale to improve visibility. The file sizes grow exponentially
and without this scale this growth would not be visible. The x-axis shows the size of an ADT using
width × height.

1×1 2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9
101

102

103

104

105

106

107

108

109

1010

ADT Size

F
il

e
S

iz
e

(B
y
te

s)

Broad File Size Comparison (JSON vs XML)

JSON XML

Figure 5: File size growth for JSON and XML formats over increasing ADT sizes on a logarithmic
scale.

As shown in Figure 5 the file sizes of ADTs in JSON format are consistently smaller than those in
XML format for all tested sizes. For example, using the data in Figure B.1 we can see that an ADT
of size 1×1 is 50% smaller in JSON and an ADT of size 9×9 is nearly 63% smaller in JSON format.

Next, we compare smaller ADTs. Full results can be found in Table 3 and a graph can be found
below. Again we will use a logarithmic scale to improve visibility. We have plotted five different
lines, each representing an increase in height and keeping a consistent width.

20

1×
1
2×

1
2×

2
2×

3
2×

4
2×

5
3×

1
3×

2
3×

3
3×

4
3×

5
4×

1
4×

2
4×

3
4×

4
4×

5
5×

1
5×

2
5×

3
5×

4
5×

5101

102

103

104

105

ADT Size

F
il

e
S

iz
e

(B
y
te

s)

Detailed File Size Comparison (JSON vs XML)

JSON XML

Figure 6: File size comparison for JSON and XML formats across various smaller ADT sizes on a
logarithmic scale.

In Figure 6 we can see that the file size of JSON stays smaller than XML for smaller ADTs. An
interesting detail we can observe is that the difference between XML and JSON seems to grow
roughly logarithmically. This means that in truth the difference between the two lines grows much
more radically. This is also supported by the results in Appendix B.1.

In the following graph the file size ratios of both formats have been plotted. The data can be found
in Table 5. This ratio is determined by dividing the file size of the larger ADT by the file size of
the smaller ADT. With the file size ratio we can gain an understanding of how quickly the file size
grows for bigger trees.

21

1
×

1
to

2
×

2

2
×

2
to

3
×

3

3
×

3
to

4
×

4

4
×

4
to

5
×

5

5
×

5
to

6
×

6

6
×

6
to

7
×

7

7
×

7
to

8
×

8

8
×

8
to

9
×

9

5

10

15

20

Step

G
ro

w
th

File Size Growth Comparison (JSON vs XML)

JSON XML

Figure 7: The growth rate of file sizes of tested ADTs.

This graph shows that the two formats grow at nearly the same rate, with a slightly faster growth
for JSON with larger trees. For the formats we can calculate the order of magnitude to find the
overall growth of both. We do this by dividing the largest file size for each by the smallest for
each [KJMT18]. For XML this is

3.377.822.403 / 75 ≈ 4.5 × 107,

and for JSON this is

2.113.324.966 / 38 ≈ 5.6 × 107.

From these calculations we can conclude that both grow by roughly seven orders of magnitude for
the range we observed them in. This shows that both XML and JSON ADTs scale in a similar
range. Although JSON seems to grow slightly faster for larger ADTs. Due to technical limitations
we are unable to determine the ADT size at which JSON overtakes XML in file size.

22

6.2 Performance Comparison of the Conversion Tool and Python Mod-
ule

This subsection consists of the results for finding the setup properties and the results for the
performance comparison. We will first describe the results concerning the threshold and repetition
number, as described in Subsection 4.4.2. These results come from only using the conversion tool.
Afterwards we will give the resulting execution times for the ADTs described in Subsection 4.4 for
both the conversion tool and the Python module.

In the table below we can find the execution time for a single run of every ADT using the conversion
tool. The executions that will take much longer than would be reasonable have been marked with a
”-”. Results that are notably larger than the previous result in their column and row have been
shaded red. This is done to emphasize a steep rise in execution time. Results have been rounded to
four decimals [Col15].

Width
1 2 3 4 5 6 7 8 9

1 0.0035 0.0154 0.0157 0.0021 0.0057 0.0038 0.0116 0.0014 0.0144
2 0.0109 0.0104 0.0121 0.0095 0.0136 0.0082 0.0111 0.0110 0.0074
3 0.0054 0.0131 0.0068 0.0112 0.0129 0.0126 0.0113 0.0127 0.0047
4 0.0038 0.0123 0.0050 0.0108 0.0079 0.0129 0.0138 0.0130 0.0126

Height 5 0.0145 0.0099 0.0121 0.0153 0.0162 0.0362 0.0865 0.1297 0.2841
6 0.0108 0.0079 0.0186 0.0328 0.1241 0.5205 1.8683 5.7672 15.9185
7 0.0009 0.0105 0.0295 0.2562 2.4173 16.2164 85.1991 383.3982 1364.8383
8 0.0100 0.0128 0.1291 3.4862 57.6046 628.5310 4414.3664 - -
9 0.0074 0.0140 0.8893 55.0767 1570.6664 - - - -

Table 1: Execution time for converting varying ADT sizes using the conversion tool based on a
single run.

We can see a steep rise in execution time in this table. This rise creates a gap in the results between
6 and 15 seconds. We chose a threshold of 8 seconds, which ensures that the threshold is large
enough for results before the steep rise to grow and small enough for results after the steep rise to
not fit in the threshold after doing more repetitions. For the experiments that will follow in the rest
of this section we will cut off the execution of the ADTs at 8 seconds and execution times that take
longer than this threshold will be left out of the results. These ADTs would take an unreasonably
long time to process and are marked with a ’-’. Because the results in this table are based on a
single execution for every tree, we expect that the results in this table are not close to the true
execution time values. Therefore, we cannot draw any further conclusions about the performance
from them.

The results for the repetition experiment are shown in the figure below. The figure consists of four
graphs with increasing numbers of repetitions. It is important to note that on the x-axis shows the
combination of width and height of an ADT. The graphs show the average execution time for the
ADT sizes 3 × 1 to 3 × 5 and 4 × 1 to 4 × 5 using the conversion tool and the corresponding
number of repetitions. In addition to the average execution time, the error bars for each data point
in the graph has also been plotted. The area within ±1 standard deviation for each point has been
shaded to visualize the spread of the results for that point.

23

3×
1

3
×
2

3
×
3

3
×
4

3×
5

4
×
1

4
×
2

4×
3

4×
4

4
×
5

0

0.5

1

1.5

2
·10−2

T
im

e
(s

)

5 repetitions

3×
1

3
×
2

3
×
3

3×
4

3
×
5

4
×
1

4
×
2

4×
3

4
×
4

4
×
5

0

0.5

1

1.5

2
·10−2

50 repetitions

3×
1

3
×
2

3
×
3

3×
4

3×
5

4
×
1

4
×
2

4×
3

4×
4

4
×
5

0

0.5

1

1.5

2
·10−2

ADT Size

T
im

e
(s

)

100 repetitions

3×
1

3
×
2

3
×
3

3×
4

3
×
5

4
×
1

4
×
2

4×
3

4
×
4

4
×
5

0

0.5

1

1.5

2
·10−2

ADT Size

200 repetitions

Figure 8: Average execution time for middle size ADTs using the conversion tool and an increasing
number of repetitions.

From this figure we can conclude two things, namely, the standard deviation gets smaller for
higher numbers of repetitions and the results grow more linearly for higher numbers of repeti-
tions. It is interesting to note that the spread of values seems smaller for 100 repetitions than
for 200 repetitions. A reason for this might be that the longer the experiment runs the more
uncontrolled effects can influence the process, like background processes or garbage collection being
triggered [UR][Mic]. Based on these results we will use 100 repetitions for the experiment that follows.

A sample of the results of the second experiment mentioned in Subsection 4.4.2 are given in this
subsection. The complete results of the experiment will be available in appendix B. The results
for the conversion tool are shown in Table 6, and the results for the Python module are shown
in Table 8. The execution time for smaller trees is too small for the datetime module to notice a
difference in time. To ensure we do not get an execution time of 0.0 seconds, we let the process
sleep for 1 second and subtract 1 second from the execution time afterwards. We do this for every

24

time we convert an ADT to keep it consistent.

The following graphs show the average execution time to convert the ADTs with both algorithms.
For each graph, the x-axis shows the ADT size (width × height) and the y-axis shows the conversion
time in seconds. For the first graphs, the ADTs grow in height for each point in the graph and for
the last graphs they grow in width. Each graph contains two lines: the cyan line depicts the speed
of the conversion tool and the green line depicts the speed of the Python module.

The graphs were separated to improve visualization of processing speeds for all different sizes. The
first graph contains narrow ADTs up to a width of 2 and a height of 9. In addition to the average
execution time, we have also plotted the error bars and shaded the area within ±1 standard deviation.

1
×
1

1×
2

1
×
3

1
×
4

1×
5

1
×
6

1
×
7

1×
8

1×
9

2
×
1

2
×
2

2×
3

2
×
4

2
×
5

2×
6

2
×
7

2
×
8

2×
9

0

0.5

1

1.5

2

·10−2

ADT Size

T
im

e
(s

)

Average Execution Time (Small ADTs)

Conversion Tool Native Python

Figure 9: Average execution time for narrow ADT sizes (1×1 to 2×9) on a linear scale.

For these narrow ADTs we can see in Figure 9 that the conversion tool has a smaller average
execution time than the Python module. Only when the ADTs get more complex with a combination
of a larger width and height the Python module appears to outperform the conversion tool.

The graphs with larger widths contain both small and large trees. The average execution times for
these different trees can be far apart, therefore we will use a logarithmic scale to visualize all data
points within the same graph. The graph below shows ADT size up to a width of 5 and height of 9.

25

3
×
1

3×
2

3
×
3

3×
4

3
×
5

3×
6

3
×
7

3×
8

3
×
9

4×
1

4
×
2

4×
3

4
×
4

4
×
5

4×
6

4
×
7

4×
8

4
×
9

5×
1

5
×
2

5×
3

5
×
4

5×
5

5
×
6

5
×
7

5×
8

5
×
9

10−2

10−1

100

ADT Size

T
im

e
(s

)

Execution Time (Medium ADTs)

Conversion Tool Native Python

Figure 10: Execution Time for medium large ADT Sizes (3 × 1 to 5 × 9) on a logarithmic scale.

From these plots we can see that the difference in speed increases significantly when the ADTs get
larger. At a size of 5×7 the Python module has a roughly 27× faster average execution time than
the conversion tool, as can be found in Appendix B. For smaller ADTs the conversion tool stays
faster in terms of execution time. For an ADT of size 3 × 4, the average execution time of the
Python module is roughly 2× larger than the conversion tool. The missing values for the execution
of larger ADTs using the conversion tool show that the Python module is capable of processing
much larger trees in reasonable time than the conversion tool. However, Figure 10 also shows us
that for ADTs below the height of 4 the conversion tool keeps having a lower average execution time.

The execution time for larger ADTs with the conversion tool is significantly higher than for the
Python module. Yet how extreme this difference really is is not clearly visualized, due to the
graphs using a logarithmic scale. To illustrate this, we can plot a graph with a linear scale and only
showing larger ADT sizes. The following graph shows ADT sizes from a minimum width of 6 and a
minimum height of 1 to a maximum width of 8 and a maximum height of 6.

26

6
×
1

6×
2

6
×
3

6
×
4

6×
5

6
×
6

7
×
1

7×
2

7×
3

7
×
4

7×
5

7×
6

8
×
1

8
×
2

8×
3

8
×
4

8
×
5

8×
6

0

1

2

3

4

5

6

ADT Size

T
im

e
(s

)

Average Execution Time (Large ADTs)

Conversion Tool Native Python

Figure 11: Average execution time for large ADT sizes (6 × 1 to 8 × 7) on a linear scale.

This figure shows that the Python module is fairly quick in processing quite large ADTs. The
conversion tool starts struggling with the largest trees and does not show output with these large
ADTs, because the execution time exceeds the threshold when the height is more than 6. In the full
results we can see that the Python module is able to process even larger trees than the trees that we
show in this graph, while the execution time of the conversion tool does not stay within the threshold.

In the following two tables we will increase the width instead of the height. The labels on the x-axis
still have the same meaning. For the first graph, we will use a linear scale, because the data points
are relatively close to one another.

27

1
×
1

2×
1

3
×
1

4
×
1

5×
1

6
×
1

7
×
1

8×
1

9×
1

1
×
2

2×
2

3×
2

4
×
2

5
×
2

6×
2

7
×
2

8
×
2

9×
2

0.4

0.6

0.8

1

1.2

·10−2

ADT Size

T
im

e
(s

)

Average Execution Time (1 × 1 to 9 × 2)

Conversion Tool Native Python

Figure 12: Average execution time for ADT sizes growing in width instead of height (1 × 1 to 9 ×
2).

For the first two plots for both tools we keep comparing the same ADTs. This is because for a tree
of height 1 the root node has no children, and thus the width has no influence on the size of the tree.
This results in an ADT that contains only one node, the root node. Even though this is the same tree,
both implementations show inconsistent execution times for these single-node trees. For the average
execution times using the conversion tool there appears to be an increase. This is remarkable as the
complexity of the trees does not increase. Although the trees of height 2 are increasing in size their
average execution time using the Python module stays fairly consistent. For the conversion tool there
seems to be a increase in average execution time. These small ADTs have an execution time that is
very small, therefore these executions can be more vulnerable to influences from other processes
on the system. A small interference might create a relatively big change in the resulting execu-
tion time. Especially for the trees of height 1 this can explain the perceived randomness in the results.

To draw conclusions about increasing the width instead of height we need to plot larger trees. Their
executions should be less susceptible to outside interferences, as noise is drowned out by their larger
execution time. For the following plots we will use trees of height 5, 6, and 7 and increment the
width by 1. The graph uses a logarithmic scale, as the results differ substantially.

28

1
×
5

2×
5

3
×
5

4×
5

5
×
5

6×
5

7
×
5

8×
5

9
×
5

1×
6

2
×
6

3×
6

4
×
6

5
×
6

6×
6

7
×
6

8×
6

9
×
6

1×
7

2
×
7

3×
7

4
×
7

5×
7

6
×
7

7
×
7

8×
7

9
×
7

10−2

10−1

100

101

ADT Size

T
im

e
(s

)

Average Execution Time (1 × 5 to 9 × 7)

Conversion Tool Native Python

Figure 13: Average execution time for ADT sizes growing in width instead of height (1× 5 to 9× 7)
on a logarithmic scale.

Compared to the plots in Figure 12, the plots in Figure 13 show more consistent growth. When we
compare the same plots to 10 we can see that the growth in width causes a less steep growth in
average execution time than growth in height. This is especially true for the executions using the
Python module. We can see from the file sizes in XML in Table 4 that incrementing the width
causes a smaller growth in file size than incrementing the height. For example, the size of 4 × 7 is
618974 bytes, the size of 4 × 8 is 2650590 bytes and 5 × 7 is 2226590 bytes. Processing more bytes
costs more time and thus growth in height increases the execution time more than growth in width.
Which in turn causes a steeper line in the graph.

29

7 Discussion

In this section we aim to answer the research questions of this thesis, based on the results found in
Section 6 and the definition in Subsection 4.3.2.

7.1 Definition of an ADT in JSON

In order to ensure compatibility with the XML format established in [BKS13], we have used the
XML tags in their format to create JSON objects. However, our implementation of the JSON
format has introduced several additions. A part of the additions makes the format more compatible
with the overarching project. Another part of the additions is the consistency of JSON, which
makes the format more traversable. Some properties of XML attributes, like label, refinement and
role, are preserved by making use of key/value pairs. Other properties, like parameters and children,
are treated as separate objects, to create a hierarchical relation within the ADT. For children, this
is further improved by a naming convention that directly conveys the order of the nodes, and thus
ensures the ADT is traversable and adjustable. The root is treated as a node for the same reason.
With the predictability and compatibility of our JSON format we will try to reduce the complexity
of using ADTs within the overarching project.

7.2 Evaluating the Formats

Considering the differences discussed in Subsection 6.1, JSON appears to be the more suitable
for our particular problem. Our problem requires that the ADT format can be quickly created
and easily updated. These tasks are performed by the computer, and therefore we want to select
the format that is most accessible for computers. Due to the structure of the format, JSON is the
preferred choice in this context. The file size for JSON is smaller than XML for every file size in the
experiment. Both formats have grown roughly at the same rate. However, in Figure 7 we found that
JSON file sizes have a higher growth rate for larger ADTs. What might happen eventually is that
JSON will overtake XML in size, but this will only happen with much larger ADT sizes. We were
not able to find the exact ADT size, because generating such a large ADT in reasonable time is not
feasible for our setup. Because ADTs are usually not that large, this concern can be considered
negligible. In Subsection 2.1 we saw that ADTs are used for describing security sytems in a formal
and methodical manner. In addition, an ADT should be simple enough to give a graphical overview
of the attack it is modeled after [MO06]. Therefore, we can argue that an ADT of a size that
cannot be visualized is not useful for the purpose it was designed for. On top of that, a computer
has to process the bytes of a file. A logical conclusion would be that fewer bytes mean shorter
processing time. However, this is not guaranteed and is dependent on more variables than just the
file size [FSD]. The format we use is not dependent on the readability of the format for humans,
because the visualization of the ADT for humans is done by the overarching project. Therefore,
although XML can be argue to be more understandable for humans, we can conclude that JSON is
a better choice for handling ADTs than XML, particularly for our use case within the project.

30

7.3 Evaluating the Conversion Algorithm

In Subsection 6.2 we have seen that both algorithms discussed in Subsection 4.2 and Section 5
have advantages in performance. For the conversion tool from Section 5 these are narrow ADTs.
Narrow refers to the width of the ADT, or rather the number of children each node has. From
the results in Figure 9 and Figure 10 we can see that the conversion tool has consistently lower
average execution times for ADTs up to at least a height of 4. ADTs that can be considered large
cause the average execution time for both of the algorithms to grow significantly. It is also for
these ADTs that the conversion tool loses its advantage over the Python module. The difference in
average execution time grows dramatically, as we can see in Figure 11. On top of that, in Figure
13 the growth in average execution time appears to be more stable for the Python module than
for the conversion tool. Especially if we combine the results of both Figure 10 and Figure 13. As
we have stated in Subsection 7.2 above, we are more interested in the results for smaller, more
reasonably sized, ADTs in this project. In these cases the conversion tool clearly outperforms the
Python module in terms of average execution time. In addition to that, in Figure 12 we can see a
fluctuation in average execution time for single node trees and small trees when using the Python
module. This might exist for other tree sizes as well and can lead to inconsistent performance,
while our conversion tool seems to keep a more stable average execution time. These observations
indicate that our conversion tool is a reasonable candidate for our specific use case.

Though there does exist a JavaScript alternative to our tool, our tool may still be preferred [Nas].
The reason for this is that with our tool we can control the output of our algorithm. The output
from xml-js either loses the order of the elements or bloats the output JSON with unnecessary
components. Controlling the output means that we can instantly translate both formats to our
desired format, while a pre-made library does not take our desired format into account. The result
is that we might need to do extra parsing or pruning in order to do modifications.

If the use is scaled to larger ADT sizes, our tool will become obsolete rather quickly. The execution
time grows significantly quickly and the tool loses its value as a capable algorithm. With the full
results in mind we can see that the Python module is able to process ADTs with a very large
number of nodes. Beyond our specific use case we can see that using other conversion solutions
may be a better choice.

31

8 Limitations, Conclusion and Future Work

This section will cover the obstacles that shaped our research, summarize our key findings by
answering our research questions, and talk about possible further research that can be done in
addition to this thesis.

8.1 Limitations

During the development of this thesis, we encountered certain difficulties that have limited the
scope of our work. These limitations came from design choices, as well as hardware specifications.
One notable limitation, for example, is the use of the conversion tool within the overall project.
The need to use JavaScript and compatibility with the overall project may have caused limitations
both in code performance and structure. The hardware limitations have an influence on the way
experiments are run. The ADTs have to be generated and the size of these ADTs depends on the
hardware limitations of the computer that is used to generate the ADTs. In this case the limitations
are purely concerned with time. The larger the ADTs, the longer it takes to generate them. The
hardware might be able to generate bigger ADTs than we used in this thesis, but the time it takes
to generate these ADTs would be unreasonably long to be practical. In addition to generating
ADTs, the processing of these ADTs also depends on the hardware. If the ADTs become too large
conversion processing time may become impractically long and will therefore be cut off by the
threshold. The processing time depends not only on the hardware, but also on the algorithm used.
This is consistent with the performance limitation stated before. These limitations primarily limit
the number of results that can be gathered from the experiments. This can influence the conclusions
drawn from the results. Even though this might be the case, we have seen in Section 6 that more
results will probably show the same trend. With this in mind we can conclude that the limitation
does not significantly affect the results.

8.2 Conclusion

For Question 1 of this thesis we have created a way for ADTs to be defined in the JSON file
format. We did this by taking the XML format and mimicking its features by either using their
JSON counterparts or redefining them into JSON objects. This has led to a JSON definition
of ADTs that is both compatible with the XML format and dynamic in terms of modifiability.
Question 2 was split up into two sub-questions. The overall goal of the question was achieved by
the creation of the conversion tool. In order to evaluate this tool in its usefulness we used the two
sub-questions. Question 2.1 addressed the need for such a tool by asking whether or not JSON is a
suitable file format for ADTs. We did this by measuring the file sizes of different ADTs in both
XML and JSON format and comparing the sizes and growth rate of both. By doing this we could
establish that JSON is indeed a viable option to use with ADTs. ADTs of reasonable sizes were
consistently smaller in JSON than their XML counterparts. Question 2.2 evaluated the efficiency of
our conversion tool by measuring its average execution time for different ADTs and comparing the
results to a conversion tool from a Python library. The result showed that our conversion tool had
a lower average execution time for most of the smaller ADT sizes. This was enough to argue that
our tool had an advantage, because the ADT sizes where the Python library outperformed our tool

32

were unreasonable in size. We also found that our conversion tool was more stable in execution
time for the relevant trees.

8.3 Future Work

Several aspects of this thesis could be expanded upon or even be changed entirely. Design choices
can be altered in order to improve the functionality of the conversion tool and experiments can be
added to further analyze the working of the algorithm. In this thesis we wrote our tool in JavaScript,
and we have seen from the results that there can be better solutions using different algorithms than
the one we came up with. An example would be to try writing a recursive algorithm instead of the
iterative one we used for the conversion tool. Using a different language, like Python, or finding
better functionalities within JavaScript can make the tool run more efficiently. To use Python
or other languages, integration methods need to be found in order to make it fully functional
within the overall project. Otherwise, the JavaScript environment would be unable to process the
results. An important part of this thesis was comparing the algorithm we made to another relevant
implementation. Conducting additional experiments might enable us to draw different conclusions.
In the experiments done in this thesis we did not fill ADTs with more information than children
and labels. An interesting experiment would be to determine the most efficient way to implement
populated ADTs. Experiments can be limited to smaller trees, as visualization in this project is
purely meant for human use and large trees are not easy to understand for humans. In this thesis we
limited ourselves to converting only between XML and JSON; however, there can be more relevant
formats to be converted to and from. The goal of the project around this thesis is to improve the
usability, which means a case could be made for supporting additional conversions.

33

1 <?xml version="1.0" encoding="UTF -8

"?>

2 <adtree >

3 <node refinement="conjunctive">

4 <label >steal money </label >

5 <node refinement="

disjunctive">

6 <label >learn PIN </label

>

7 <node refinement="

disjunctive">

8 <label >find PIN </

label >

9 <parameter domainId

="MinTimeSeq1"

>100.0</

parameter >

10 <parameter domainId

="ProbSucc2"

>0.1</parameter >

11 </node >

12 </node >

13 </node >

14 </adtree >

XML

1 {

2 "0": {

3 "label": "steal money",

4 "refinement ": "1",

5 "switchRole ": "0",

6 "0":{

7 "label ": "learn PIN",

8 "refinement ": "0",

9 "switchRole ": "0",

10 "0":{

11 "label ": " find PIN",

12 "refinement ": "0",

13 "switchRole ": "0",

14 "parameters ": [

15 "1":{

16 "name": "

MinTimeSeq1

",

17 "value ": 100.0

18 },

19 "2":{

20 "name": "

ProbSucc2",

21 "value ": 0.1

22 }

23]

24 },

25 "parameters ": []

26 }

27 }

28 }

JSON

Figure 14: Illustration of the same data encoded in XML and JSON.

34

References

[Agu] C. Aguilar. Simple xml2json parser. Œhttps://github.com/buglabs/

node-xml2json. Accessed: 03-12-2025.

[AIJ] Adts in json. Œhttps://github.com/stevenvp05/ADTs-in-JSON.

[ASY] Asynchronous javascript. ŒŒhttps://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Asynchronous. Accessed: 30-04-2024.

[BKS11] S. Radomirović B. Kordy, S. Mauw and P. Schweitzer. Foundations of attack–defense
trees. Lecture Notes in Computer Science, 2011.

[BKS13] S. Mauw B. Kordy, P. Kordy and P. Schweitzer. Adtool: Security analysis with
attack-defense trees extended version. 2013.

[Ble] M. Blech. xmltodict: Makes working with xml feel like you are working with json.
Œhttps://pypi.org/project/xmltodict/. Accessed: 25-06-2024.

[B17] D. Tošić B. Šandrih and V Filipović. Towards efficient and unified xml/json conversion
- a new conversion. IPSI BgD Transactions on Internet Research (TIR) vol 13, 2017.

[B17] Z. Wilimowska B. Świecicki, L. Borzemski and J. Światek. Information Systems Archi-
tecture and Technology: Proceedings of 38th International Conference on Information
Systems. Springer International Publishing AG, 2017. Accessed: 19-10-2025.

[Car18] P. A. Carter. QL Server Advanced Data Types. Apress Berkeley, 2018. Accessed:
19-10-2025.

[Col15] T. J. Cole. Too many digits: The presentation of numerical data. 2015. Accessed:
02-12-2025.

[Coo] Clark Cooper. Using expat. Œhttps://www.xml.com/pub/1999/09/expat/index.

html. Accessed: 26-06-2024.

[DB] P. Wendler D. Beyer, S. Löwe. Reliable benchmarking: requirements and
solutions. Œhttps://www.sosy-lab.org/research/pub/2019-STTT.Reliable_

Benchmarking_Requirements_and_Solutions.pdf. Accessed: 07-11-2025.

[DOMa] Document object model (dom). https://www.ionos.com/digitalguide/websites/
web-development/an-introduction-to-the-document-object-model-dom/. Ac-
cessed: 19-02-2024.

[DOMb] Domparser. Œhttps://developer.mozilla.org/en-US/docs/Web/API/DOMParser.
Accessed: 28-06-2024.

[DT] datetime — basic date and time types. Œhttps://docs.python.org/3/library/

datetime.html. Accessed: 2-10-2024.

35

‌https://github.com/buglabs/node-xml2json
‌https://github.com/buglabs/node-xml2json
‌https://github.com/stevenvp05/ADTs-in-JSON
‌‌https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous
‌‌https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous
‌https://pypi.org/project/xmltodict/
‌https://www.xml.com/pub/1999/09/expat/index.html
‌https://www.xml.com/pub/1999/09/expat/index.html
‌https://www.sosy-lab.org/research/pub/2019-STTT.Reliable_Benchmarking_Requirements_and_Solutions.pdf
‌https://www.sosy-lab.org/research/pub/2019-STTT.Reliable_Benchmarking_Requirements_and_Solutions.pdf
https://www.ionos.com/digitalguide/websites/web-development/an-introduction-to-the-document-object-model-dom/
https://www.ionos.com/digitalguide/websites/web-development/an-introduction-to-the-document-object-model-dom/
‌https://developer.mozilla.org/en-US/docs/Web/API/DOMParser
‌https://docs.python.org/3/library/datetime.html
‌https://docs.python.org/3/library/datetime.html

[DVDdW08] G. Martens E.Mannens D. Van Deursen, C. Poppe and R. Van de Walle. Xml to
rdf conversion: a generic approach. 2008 International Conference on Automated
Solutions for Cross Media Content and Multi-Channel Distribution, 2008.

[FSA] File system api. Œhttps://developer.mozilla.org/en-US/docs/Web/API/File_

System_API. Accessed: 10-12-2025.

[FSD] File size distribution on unix systems—then and now. Œhttps://www.cs.vu.nl/

~herbertb/papers/filesize_osr2006.pdf. Accessed: 14-07-2025.

[GLO] Standard built-in objects. Œhttps://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects. Accessed: 20-10-2025.

[GWM17] S. Yang G. Werner and K. McConky. Time series forecasting of cyber attack intensity.
Proceedings of the 12th Annual Conference on Cyber and Information Security Research
- CISRC, 2017.

[HRD] Human readability of data files. Œhttps://www.ncbi.nlm.nih.gov/pmc/articles/
PMC11034916/. Accessed: 21-07-2024.

[JED] json — json encoder and decoder. Œhttps://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/JSON. Accessed: 27-06-2024.

[JJM] Json. Œhttps://docs.python.org/3/library/json.html. Accessed: 27-06-2024.

[JSO] Introducing json. Œhttps://www.json.org/json-en.html. Accessed: 02-04-2024.

[Kha15] I. A. Khan. Xml and json translator. 2015. Accessed: 07-11-2025.

[KJMT18] C. M. Jakobson K. J. Metcalf, M. F. Slininger Lee and D. Tullman-Ercek. An estimate
is worth about a thousand experiments: using order-of-magnitude estimates to identify
cellular engineering targets. 2018. Accessed: 01-12-2025.

[LiL] A list of open-source c++ libraries. Œhttps://en.cppreference.com/w/cpp/links/
libs. Accessed: 27-06-2024.

[Mic] Microsoft. Garbage collection and performance. Œhttps://learn.microsoft.

com/en-us/dotnet/standard/garbage-collection/performance. Accessed: 05-
12-2025.

[MO06] S. Mauw and M. Oostdijk. Foundations of attack trees. Information Security and
Cryptology - ICISC 2005, 2006.

[Nas] Y. Nashwaan. xml-js. Œhttps://github.com/nashwaan/xml-js. Accessed: 03-12-
2025.

[NNI09] R. Reynolds N. Nurseitov, M. Paulson and C. Izurieta. Comparison of json and xml
data interchange formats: A case study. 2009.

36

‌https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
‌https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
‌https://www.cs.vu.nl/~herbertb/papers/filesize_osr2006.pdf
‌https://www.cs.vu.nl/~herbertb/papers/filesize_osr2006.pdf
‌https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
‌https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
‌https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034916/
‌https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034916/
‌https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
‌https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
‌https://docs.python.org/3/library/json.html
‌https://www.json.org/json-en.html
‌https://en.cppreference.com/w/cpp/links/libs
‌https://en.cppreference.com/w/cpp/links/libs
‌https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/performance
‌https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/performance
‌https://github.com/nashwaan/xml-js

[Nyb14] M. A. Nyblom. On the average path length of complete m-ary trees. 2014. Accessed:
10-12-2025.

[OGTR16] P. Kordy K. Lounis S. Mauw O. Gadyatskaya, R. Jhawar and R. Trujillo-Rasua.
Attack trees for practical security assessment: Ranking of attack scenarios with adtool
2.0. Quantitative Evaluation of Systems. Lecture Notes in Computer Science, 2016.

[PSX] Parsing and serializing xml. Œhttps://developer.mozilla.org/en-US/docs/Web/
XML/Parsing_and_serializing_XML. Accessed: 26-06-2024.

[RFN] Reading files with node.js. Œhttps://nodejs.org/en/learn/manipulating-files/
reading-files-with-nodejs. Accessed: 10-12-2025.

[RJRR15] S. Mauw S. Radomirović R. Jhawar, B. Kordy and R.Trujillo-Rasua. Attack trees
with sequential conjunction. 2015. Accessed: 18-12-2025.

[Sch99] B. Schneier. Attack trees : Modeling security threats. Dr. Dobb’s Journal, 1999.

[Sel15] K. Seldor. The law of large numbers and its applications. 2015. Accessed: 07-11-2025.

[SG25] N. D. Schiele and O. Gadyatskay. Attack tree distance: a practical examination of
tree difference measurement within cyber security. 2025. Accessed: 18-12-2025.

[ŠM14] A. Šimec and A. Magličić. Comparison of json and xml data formats. 2014. Accessed:
27-10-2025.

[SOP] Simple object access protocol (soap) 1.1. Œwww.w3.org/TR/2000/

NOTE-SOAP-20000508/. Accessed: 15-07-2025.

[TLH18a] P. Yan T. Lv and W. He. Survey on json data modelling. Journal of Physics:
Conference Series, 2018.

[TLH18b] Ping Yan Teng Lv and Weimin He. Survey on json data modelling. Journal of Physics:
Conference Series, 2018. Accessed: 01-05-2024.

[TWL22] F. Delcourt T. Weiser and A. Legay. Graphical user interface for dag-based attack
trees. ”http://hdl.handle.net/2078.1/thesis:35682”, 2022.

[UR] D. Uroz and R. J. Rodŕıguez. Characteristics and detectability of windows auto-start
extensibility points in memory forensics. Œhttps://webdiis.unizar.es/~ricardo/
files/papers/UR-DIIN-19.pdf. Accessed: 05-12-2025.

[WAD] Web api design crafting interfaces that developers love. Œhttps://www.accorsi.net/
docs/api-design-ebook-2012-03.pdf. Accessed: 15-07-2025.

[WWP14] B. Fila W. Wide l, M. Audinot and S. Pinchinat. Formal methods for attack tree-based
security modeling. 2014. Accessed: 18-12-2025.

[XMLa] Extensible markup language (xml). Œhttps://www.w3.org/XML/. Accessed: 12-04-
2024.

37

‌https://developer.mozilla.org/en-US/docs/Web/XML/Parsing_and_serializing_XML
‌https://developer.mozilla.org/en-US/docs/Web/XML/Parsing_and_serializing_XML
‌https://nodejs.org/en/learn/manipulating-files/reading-files-with-nodejs
‌https://nodejs.org/en/learn/manipulating-files/reading-files-with-nodejs
‌www.w3.org/TR/2000/NOTE-SOAP-20000508/
‌www.w3.org/TR/2000/NOTE-SOAP-20000508/
‌https://webdiis.unizar.es/~ricardo/files/papers/UR-DIIN-19.pdf
‌https://webdiis.unizar.es/~ricardo/files/papers/UR-DIIN-19.pdf
‌https://www.accorsi.net/docs/api-design-ebook-2012-03.pdf
‌https://www.accorsi.net/docs/api-design-ebook-2012-03.pdf
‌https://www.w3.org/XML/

[XMLb] Extensible markup language (xml) 1.0 (fifth edition). Œhttps://www.w3.org/TR/

REC-xml/. Accessed: 27-05-2024.

[XPM] Xml processing modules. Œhttps://docs.python.org/3/library/xml.html. Ac-
cessed: 27-06-2024.

[ZD14] S. Zunke and V. D’Souza. Json vs xml: A comparative performance analysis of data
exchange formats. IJCSN International Journal of Computer Science and Network,
3(4):257–261, 2014.

[Zha07] Q. Zhang. Embedding parallel bit stream technology into expat. 2007. Accessed:
03-12-2025.

[ZUHH15] G. F. Khan Z. U. Haq and T. Hussain. A comprehensive analysis of xml and json
web technologies. 2015.

38

‌https://www.w3.org/TR/REC-xml/
‌https://www.w3.org/TR/REC-xml/
‌https://docs.python.org/3/library/xml.html

9 Appendix

A Data Format Examples

The following listing is an example of an JSON ADT.

1 {

2 "adtree ": {

3 "label": "Bank Account",

4 "refinement ": "disjunctive",

5 "switchRole ": "no",

6 "children ": {

7 {

8 "label ": "ATM",

9 "refinement ": "conjunctive",

10 "switchRole ": "no",

11 "children ": {

12 {

13 "label": "Card",

14 "refinement ": "disjunctive",

15 "switchRole ": "no",

16 "children ": {},

17 "parameters ": {

18 {

19 "name": "MinTimeSeq1",

20 "value ": 20.0

21 },

22 {

23 "name": "ProbSucc2",

24 "value ": 0.25

25 }

26 }

27 }

28 {

29 "label": "PIN",

30 "refinement ": "disjunctive",

31 "switchRole ": "no",

32 "children ": {

33 {

34 "label ": "Eavesdrop",

35 "refinement ": "disjunctive",

36 "switchRole ": "no",

37 "children ": {},

38 "parameters ": {

39 {

40 "name": "MinTimeSeq1",

41 "value ": 100.0

42 },

43 {

44 "name": "ProbSucc2",

45 "value ": 0.5

46 }

47 }

39

48 },

49 {

50 "label ": "Find Note",

51 "refinement ": "disjunctive",

52 "switchRole ": "no",

53 "children ": {

54 {

55 "label ": "Memorize",

56 "refinement ": "disjunctive",

57 "switchRole ": "yes",

58 "children ": {

59 {

60 "label": "Force",

61 "refinement ": "disjunctive",

62 "switchRole ": "no",

63 "children ": {},

64 "parameters ": {

65 {

66 "name": "MinTimeSeq1",

67 "value ": 5.0

68 },

69 {

70 "name": "ProbSucc2",

71 "value ": 0.9

72 }

73 }

74 }

75 },

76 "parameters ": {}

77 }

78 },

79 "parameters ": {

80 {

81 "name": "MinTimeSeq1",

82 "value ": 100.0

83 },

84 {

85 "name": "ProbSucc2",

86 "value ": 0.1

87 }

88 }

89 }

90 },

91 "parameters ": {}

92 }

93
94 },

95 "parameters ": {}

96 }

97 {

98 "label ": "Online",

99 "refinement ": "conjunctive",

100 "switchRole ": "no",

101 "children ": {

40

102 {

103 "label": "Password",

104 "refinement ": "disjunctive",

105 "switchRole ": "no",

106 "children ": {

107 {

108 "label ": "Phishing",

109 "refinement ": "disjunctive",

110 "switchRole ": "no",

111 "children ": {},

112 "parameters ": {}

113 },

114 {

115 "label ": "Key Logger",

116 "refinement ": "disjunctive",

117 "switchRole ": "no",

118 "children ": {},

119 "parameters ": {}

120 },

121 {

122 "label ": "2nd Auth Factor",

123 "refinement ": "disjunctive",

124 "switchRole ": "yes",

125 "children ": {

126 {

127 "label ": "Key Fobs",

128 "refinement ": "disjunctive",

129 "switchRole ": "yes",

130 "children ": {},

131 "parameters ": {}

132 },

133 {

134 "label ": "PIN Pad",

135 "refinement ": "disjunctive",

136 "switchRole ": "yes",

137 "children ": {},

138 "parameters ": {}

139 },

140 {

141 "label ": "Malware",

142 "refinement ": "disjunctive",

143 "switchRole ": "no",

144 "children ": {

145 {

146 "label": "Browser",

147 "refinement ": "disjunctive",

148 "switchRole ": "no",

149 "children ": {},

150 "parameters ": {}

151 },

152 {

153 "label": "OS",

154 "refinement ": "disjunctive",

155 "switchRole ": "no",

41

156 "children ": {},

157 "parameters ": {}

158 }

159 },

160 "parameters ": {}

161 }

162 },

163 "parameters ": {}

164 }

165 },

166 "parameters ": {}

167 },

168 {

169 "label": "Username",

170 "refinement ": "disjunctive",

171 "switchRole ": "no",

172 "children ": {},

173 "parameters ": {}

174 }

175 },

176 "parameters ": {}

177 }

178 }

179 }

180 }

Listing 3: Full Example JSON ADT

The listing below shows the complete XML example from figure 13 [BKS13].

1 <?xml version="1.0" encoding="UTF -8"?>

2 <adtree >

3 <node refinement="conjunctive">

4 <label >steal money </label >

5 <node refinement="disjunctive">

6 <label >learn PIN </label >

7 <node refinement="disjunctive">

8 <label >eavesdrop PIN </label >

9 <parameter domainId="MinTimeSeq1" >10.0</ parameter >

10 <parameter domainId="ProbSucc2" >0.5</parameter >

11 </node >

12 <node refinement="disjunctive">

13 <label >find PIN </label >

14 <parameter domainId="MinTimeSeq1" >100.0</ parameter >

15 <parameter domainId="ProbSucc2" >0.1</parameter >

16 </node >

17 <node refinement="conjunctive" switchRole="yes">

18 <label >security training </label >

19 <node refinement="disjunctive">

20 <label >learn rules </label >

21 <parameter domainId="ProbSucc2" >0.7</parameter >

22 </node >

23 <node refinement="disjunctive">

24 <label >adhere to rules </label >

42

25 <parameter domainId="ProbSucc2" >0.3</parameter >

26 <node refinement="disjunctive" switchRole="yes">

27 <label >threaten victim </label > 28 <parameter domainId="

MinTimeSeq1" >5.0</parameter >

28 <parameter domainId="ProbSucc2" >0.9</parameter >

29 </node >

30 </node >

31 </node >

32 </node >

33 <node refinement="disjunctive">

34 <label >get card </label >

35 <parameter domainId="MinTimeSeq1" >20.0</ parameter >

36 <parameter domainId="ProbSucc2" >0.25</ parameter >

37 </node >

38 </node >

39 <domain id="MinTimeSeq1">

40 <class >lu.uni.adtool.domains.predefined.MinTimeSeq </class >

41 <tool >ADTool </tool >

42 </domain >

43 <domain id="ProbSucc2">

44 <class >lu.uni.adtool.domains.predefined.ProbSucc </class >

45 <tool >ADTool </tool >

46 </domain >

47 </adtree >

Listing 4: ADTool figure 13

B Results of the Experiments

B.1 Results for Data Format Comparison

The following tables consist of the results for the file size comparisons.

ADT Size XML JSON
1x1 75 38
2x2 187 97
3x3 765 412
4x4 5067 2825
5x5 48055 27582
6x6 593475 349303
7x7 9013233 5424932
8x8 162293899 99678925
9x9 3377822403 2113324966

Table 2: File sizes for varying ADT sizes incrementing by 1 width and 1 height per row.

43

ADT Size XML JSON
1x1 75 38
2x1 131 67
2x2 187 97
2x3 243 127
2x4 299 157
2x5 355 187
3x1 189 98
3x2 419 223
3x3 765 412
3x4 1227 665
3x5 1805 982
4x1 249 131
4x2 899 491
4x3 2385 1321
4x4 5067 2825
4x5 9305 5207
5x1 311 166
5x2 1891 1059
5x3 7407 4210
5x4 20939 11977
5x5 48055 27582

Table 3: File sizes for varying ADT sizes incrementing by 1 height up to an height of 5 per row for
widths of 1, 2, 3, 4 and 5

Width
Height 1 2 3 4 5 6 7 8 9
1 110 110 110 110 110 110 110 110 110
2 186 262 338 414 490 566 642 718 794
3 270 598 1094 1758 2590 3590 4758 6094 7598
4 362 1334 3578 7646 14090 23462 36314 53198 74666
5 462 2934 11678 33246 76590 153062 276414 462798 730766
6 570 6390 37922 143838 414090 992870 2091570 4001742 7108058
7 686 13814 122486 618974 2226590 6404966 15738854 34410446 68755214
8 810 29686 393674 2650590 11914090 41117030 117858186 294457294 661843370
9 942 63478 1259726 11301342 63476590 262826342 878811918 2509049806 6344010542

Table 4: File sizes for varying ADT sizes in XML.

44

Size step XML JSON
1x1 to 2x2 2.49 2.55
2x2 to 3x3 4.09 4.25
3x3 to 4x4 6.62 6.86
4x4 to 5x5 9.49 9.77
5x5 to 6x6 12.35 12.66
6x6 to 7x7 15.18 15.53
7x7 to 8x8 18.01 18.38
8x8 to 9x9 20.82 21.21

Table 5: File size ratios between varying ADT sizes.

B.2 Results for Algorithm Evaluation

For the following tables the numbers above each column correspond with the width of each tree.
Numbers next to each row correspond to the height of the tree. Time is measured in seconds.
Results are cut off at a threshold of 8 seconds and missing results are marked by a ’-’. The results
have been rounded to four decimals to ensure that the standard deviation of every result has at
least two significant digits [Col15].

Width
1 2 3 4 5 6 7 8 9

1 0.0059 0.0051 0.0046 0.0062 0.0076 0.0103 0.0101 0.0106 0.0107
2 0.0064 0.0061 0.0058 0.0087 0.0076 0.0102 0.0100 0.0106 0.0093
3 0.0051 0.0055 0.0060 0.0079 0.0077 0.0098 0.0099 0.0098 0.0104
4 0.0066 0.0057 0.0049 0.0087 0.0100 0.0116 0.0119 0.0126 0.0140

Height 5 0.0063 0.00591 0.0074 0.0145 0.0163 0.0321 0.0634 0.1326 0.2582
6 0.0068 0.0060 0.0147 0.0320 0.1285 0.5283 1.9529 6.1841 –
7 0.0065 0.0078 0.0300 0.2611 2.5167 – – – –
8 0.0054 0.0132 0.1278 3.7176 – – – – –
9 0.0051 0.0179 0.9349 – – – – – –

Table 6: Average Execution Time for varying ADT sizes using the conversion tool.

Width
1 2 3 4 5 6 7 8 9

1 0.0048 0.0046 0.0040 0.0054 0.0058 0.0041 0.0039 0.0036 0.0038
2 0.0053 0.0048 0.0052 0.0059 0.0058 0.0036 0.0043 0.0040 0.0045
3 0.0042 0.0049 0.0049 0.0057 0.0059 0.0044 0.0045 0.0046 0.0033
4 0.0055 0.0048 0.0042 0.0055 0.0059 0.0031 0.0034 0.0035 0.0041

height 5 0.0054 0.0054 0.0056 0.0042 0.0032 0.0058 0.0050 0.0083 0.0062
6 0.0055 0.0054 0.0046 0.0033 0.0047 0.0079 0.0290 0.1016 –
7 0.0053 0.0055 0.0045 0.0115 0.0379 – – – –
8 0.0045 0.0051 0.0044 0.1185 – – – – –
9 0.0048 0.0031 0.0112 – – – – – –

Table 7: Standard deviation corresponding to varying ADT sizes using the conversion tool.

45

Width
1 2 3 4 5 6 7 8 9

1 0.0102 0.0110 0.0108 0.0103 0.0064 0.0095 0.0080 0.0096 0.0105
2 0.0117 0.0101 0.0099 0.0107 0.0092 0.0101 0.0108 0.0098 0.0099
3 0.0098 0.0104 0.0110 0.0109 0.0101 0.0099 0.0103 0.0102 0.0094
4 0.0106 0.0108 0.0110 0.0108 0.0091 0.0101 0.0107 0.0117 0.0118

Height 5 0.0079 0.0111 0.0110 0.0119 0.0121 0.0128 0.0186 0.0274 0.040
6 0.0101 0.0108 0.0118 0.0129 0.0256 0.0447 0.0896 0.1627 0.2860
7 0.0118 0.0101 0.0130 0.0293 0.0913 0.2448 0.6063 1.3272 2.6914
8 0.0107 0.0113 0.0221 0.1000 0.4512 1.5680 4.4590 – –
9 0.0108 0.0123 0.0470 0.4050 2.3882 – – – –

Table 8: Results for varying ADT sizes using the Python module.

Width
1 2 3 4 5 6 7 8 9

1 0.0040 0.0038 0.0039 0.0046 0.0050 0.0044 0.0050 0.0045 0.0041
2 0.0030 0.0042 0.0046 0.0045 0.0044 0.0045 0.0040 0.0038 0.0038
3 0.0045 0.0044 0.0038 0.0038 0.0040 0.0043 0.0041 0.0040 0.0044
4 0.0042 0.0040 0.0036 0.0040 0.0043 0.0041 0.0038 0.0034 0.0032

Height 5 0.0052 0.0037 0.0035 0.0031 0.0035 0.0032 0.0053 0.0035 0.0051
6 0.0046 0.0038 0.0032 0.0028 0.0046 0.0039 0.0056 0.0067 0.0066
7 0.0033 0.0046 0.0024 0.0033 0.0069 0.0086 0.0148 0.0433 –
8 0.0041 0.0035 0.0058 0.0069 0.0230 0.0714 0.0966 0.0105 –
9 0.0039 0.0030 0.0044 0.0172 0.0752 – – – –

Table 9: Standard deviation corresponding to varying ADT sizes using the Python module.

46

	Introduction
	Background
	Attack-Defense Trees
	File Formats for Data Storage
	Structure and Syntax of XML
	Structure and Syntax of JSON

	Use Cases of XML and JSON

	Related Work
	Methods
	Programming Language for Implementation
	Evaluating the Conversion Algorithm
	Defining Formats
	ADTs in XML Format
	ADTs in JSON Format
	Comparing the Formats

	Defining the Experiments
	Comparing Files Sizes
	Comparing Performance

	Implementation
	Node Structure
	Functions
	build_json()
	build_xml()

	Results
	Comparing JSON to XML
	Performance Comparison of the Conversion Tool and Python Module

	Discussion
	Definition of an ADT in JSON
	Evaluating the Formats
	Evaluating the Conversion Algorithm

	Limitations, Conclusion and Future Work
	Limitations
	Conclusion
	Future Work

	References
	Appendix
	Data Format Examples
	Results of the Experiments
	Results for Data Format Comparison
	Results for Algorithm Evaluation

