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Abstract

Drones are becoming increasingly important in various areas due to their mobility, compact
size, and ability of autonomous task execution, making reliable distance sensing and navigation
essential. This work presents a quantitative analysis on hyperparameters to determine the
key configuration for optimal accuracy of the nano-quadcopter Crazyflie 2.1, emphasizing the
Crazyflie Python API and Multi-ranger deck. This is achieved through identifying and tuning
hyperparameters that affect accuracy.

The quantitative approach consists of controlled flights, during which the sensor readings
from each individual drone flight were collected, along with manually measured reference
distances, and stored into multiple .csv datasets.

From the results, a 95.16% and a 95.95% route precision accuracy were achieved for
complex and simple routes, respectively. Meanwhile, minimal sensor deviation of 2.43% and
1.32% is achieved in distance sensing.
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1 Introduction

In the last decade, multidisciplinary fields, such as the construction industry, have experienced
an increase in the dependence on drone technology. As stated by Choi et al. | |, it is a
crucial aspect to optimize the workflow, improve the coordination, and mitigate the risks regarding
dangerous aspects of the construction. Utilization of drones is relevant in 3D modeling of the
buildings, and it contributes to precise mapping | ]. In these fields, particularly the route
and sensor accuracy play a crucial role. Whether the drone can steadily fly around a building and
log precise distances has an immense impact on the result of the building’s 3D scan. Besides the
importance of the drone utilization in various fields, it is important to consider the category of
drone used in the mentioned tasks. The Crazyflie 2.1 is a nano-quadcopter that provides low cost
and reduced size, introducing flexibility both in maneuvering and replacibility | ].

This work explores the limitations of such a drone and its modules. Although some studies have
examined the accuracy | I ], few have brought up the quantitative analysis of the Crazyflie
API, where accuracy was broadly examined by having the drone perform precise maneuvering and
sensor reading. In order to address this gap, this work investigates the control reliability of the
translation from API control commands to real-world flight behavior.

e How accurate is the Crazyflie API in controlling the drone’s behavior during the
execution of predefined maneuvers?

To that end, an investigation into the drone’s hyperparameters will be conducted, resulting in
the following sub-question:

e Which hyperparameters most significantly affect the Crazyflie’s accuracy when
following a predefined route?

By looking into various hyperparameter configurations, it will become clear what really affects
and even bottlenecks the Crazyflie’s accuracy in the execution of predefined routes, and therefore
the limitations of the Crazyflie Platform will become clear.

1.1 Thesis overview

This work, under the supervision of Dr. M.F.T. Miiller-Brockhausen & Dr. M. Preuss at The Leiden
Institute of Advanced Computer Science (LTACS), will elaborate on the refined process of this work
in the next chapters. Section 2 addresses the related work in the field of drones. Section 3 discusses
the system of methods used for the experiment. Section 3.6 explains the used formulas involved in
metric computation. Section 4 elaborates on the process of data collection and metric computation.
Section 5 discusses the findings, and section 6 clarifies why the found results exhibit a particular
structure. Section 7 talks about the encountered limitations, and section 8 looks into the future for
possible further work.

2 Related Work

Recent studies have explored and examined various aspects of the Crazyflie 2.1 platform, including
obstacle detection as well as pattern and gesture recognition. Chadehumbe et al. (2020) | ]
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have investigated drone obstacle detection and avoidance in combination with the shortest-path
navigation. Their work resulted in Flow deck! showing the best performance. However, the study
solely focused on flight control improvement rather than accuracy assessment. The authors used
the Multi-ranger deck?® for measurement correction, a component also employed in this work.

In another study by vanHorn et al. (2024) | ], the field of machine learning for wind
pattern recognition is examined, where IMU (Inertial Measurement Unit) is utilized. The study
resulted in a successful wind pattern recognition. Similarly, Zauli et al. | | offer an insight
into the limitation of the IMU sensor by looking at its capabilities of frequency detection. The
vibration measurements were used in addressing a pseudo-aging infrastructure. This resulted in less
than one percent deviation from the reference sensors. However, these studies focused primarily
on the IMU sensor readings, whereas this work replaced it with the distance readings from the
Multi-ranger deck.

In the most recent study, Tsie-A-Foeng (2025) | | introduced hand gesture and voice
recognition by integrating the MediaPipe & Hand Landmarks library with the KNN classifier and
the VOSK speech recognition toolkit coupled with techniques such as cosine similarity, respectively.
The results showed successful recognition in both approaches but primarily focused on the accuracy
in the context of hand gesture recognition rather than quantitative accuracy.

Although these studies provided a valuable insight into how the Crazyflie performs with various
positioning systems, showing the possible applications in the field of machine learning, few studies
examine the drone’s movement precision, and no concrete data on the accuracy is available solely
under the influence of the Multi-ranger deck. In all other instances, assistance from modules such
as the loco position deck is incorporated, with the example of Multi Agent RL by Felten F. | ],
additionally utilizing the lower-level commander, whereas this study employs high-level commander
instructions. In case accuracy is mentioned, it is either treated as a secondary result or examined
from a different application-specific perspective. In contrast to these works, explicit quantification of
the drone’s positional and sensor accuracy is applied, varying the hyperparameters. The assessment
is carried out for defining the key configuration with the most influence on the measurement and
movement precision of the CrazyFlie 2.1.

3 Methodology

3.1 Tools and materials

For the dataset collection, the experiment has been provided with a Crazyflie 2.1 drone [Bita]. This
choice was on account of the drone itself being small and therefore portable. In the matter of a
breakdown, numerous replacements are available. The attachments used for it are the Multi-ranger
deck [Bitd], 250 mAh LiPo battery, Crazyradio PA (2.0), micro-USB cable, and Flow deck v2 [Bitc].
For the collection of the reference measurements, a smartphone camera was sufficient (HD, 30 FPS).

All software operated on a Linux system, Ubuntu 22.04.5 LTS. The Crazyflie API ran on Visual
Studio Code. The custom scripts made for data processing were accuracy. py, sensor_deviation.py
and minmax.py.

L Attachable VL53L1x ToF sensor enables movement measurement in relation to the ground [Bitc]
2Enables the Crazyflie to detect object distances relative to itself [3itd]



3.2 Software setup

For initiating Crazyflie’s takeoff from the ground, it is essential to access all the necessary functional-
ities, available in the Crazyflie API, cflib | |. Consequently, the establishment of communication
between Crazyflie and the cflib must first be configured. The hardware setup followed instructions
from the manufacturer.

The software is implemented in Python. With cflib, the CrazyRadio PA is connected to
the computer via a Uniform Resource Identifier (URI), which defines the channel and bitrate.
Consequently, Crazyflie’s identification is performed. The configuration and initialization of the
communication system is carried out via the SyncCrazyflie interface. Upon the establishment
of connection, the drone is able to track the obstacle distance measurements for each individual
direction (range.left, range.right, range.front, and range.back).

3.3 Variable selection

During the orientation phase, the identification of variables with the greatest influence on per-
formance was required. The choice comprised the following variables: STOP_DIST, ASCEND, DUR,
BRAKE DUR, STEP, LOG_PERIOD, LOG_MARGIN. The first selected variable was the STEP DUR. It was
reasonable to assume that movement speed has a direct impact on accuracy, with the increase
likely reducing stabilization and movement precision. Longer durations introduce stabilization time
after each step, while shorter durations introduce motion deviation on account of increased speed.
Therefore, it was selected as the first factor of influence.

The second parameter of interest initially considered was STEP, as a larger STEP might decrease
the accuracy due to increased flight distance and greater difficulty in fetching accurate packages
with the Multi-ranger deck. However, the choice was made to observe the influence of LOG_PERIOD
instead, as the selected factor directly impacts the frequency of package logging and therefore the
amount of present disturbance in distance measurement. Considering LOG_PERIOD, the performance
of the Multi-ranger deck is taken into account, rather than only API-controlled movement via
cflib-calls.

3.4 Constants

Several parameters were kept constant throughout the whole process of data collection. STEP is
the single step length in meters along a specific trajectory, fixed at 0.4. The particular value was
chosen, allowing the drone to fly a sufficient distance, with the Multi-ranger deck having a constant
possibility of obstacle detection within its effective range. ASCEND is defined as the altitude in
meters the drone should ascend to, preparatory to executing the passed route. The specific height
was chosen due to a significant requirement in battery power for reaching a higher altitude, while a
lower altitude increases the risk of ground collision. STOP_DIST is a threshold within which the drone
should terminate its trajectory, kept at 0.3 meters. BRAKE_DUR is the braking time in seconds upon
encountering an obstacle within STOP_DIST threshold, kept at 0.5 for a smooth speed reduction.
After step completion, LOG_.MARGIN of 1 second is used as extra time for package logging after
moving up to the next trajectory. This compensates for forward drift during trajectory switch,
which can cause inaccurate distance logging.



3.5 Experiment design

The implementation was set up out of a set of scripts, later merging into a single program, with
the purpose of logging the relevant flight data of the drone during route execution. The predefined
route is decomposed into individual components, executing each individual direction sequentially.

When following a trajectory, the drone collects the traveled distance from the Multi-ranger
deck sensors. The readings are collected for evaluation of Crazyflie’s internal component accuracy
in a controlled indoor environment when depending on obstacle distances.

The results are written into a .csv file in the form of Step,Direction,StartDist,TaperStart,
FlownDist,TaperStop,0Obstacle. Step represents the index of the current trajectory, TaperStart
and TaperStop imply manually measured distances from the video, and Obstacle represents the
presence of an obstacle within the STOP_DIST threshold in the form of a boolean flag. The data
of each individual flight is labeled with a number, referring to a recording of a particular route
execution.

The systematic approach ensures the collection of all the necessary sensor data for each
individual run.

3.6 Metrics

After the dataset completion, Python scripting is applied for automation of data processing. The
main calculated metrics are the movement accuracy and sensor deviation of the Multi-ranger
deck, derived from the collected data. The majority of the code of each individual script follows
an identical structure, differing solely on the computation logic for the selected metric, which is
summed up in several formulas.

3.6.1 Sensor deviation

For quantification of sensor deviation, first the real_accuracy () is computed, derived from
division of taper_est () and expected (6), represented by:

_ min(3,0)
~ max(8,0)
where the expected implies the distance expected to be flown and taper_est is defined as the

physically measured flown distance. Afterwards, the difference (9) between the sensor precision ()
and the real accuracy is taken, specified as:

x 100 (1)

0 = abs(n - 7). (2)

All the differences are summed up and divided by the corresponding amount of entries, for
single, double, and triple direction, being 8, 16, and 24, respectively.

3.6.2 Accuracy

The accuracy is resembled in a similar way, where we first compute the accuracy (formula 1)
which subsequently is added to the average avg. Likewise, the avg is divided by the corresponding
amount of entries for obtaining the result.



3.7 Mitigation of measurement bias

Several precautions were taken for measurement bias minimization during the data collection process.
First of all, the obstacle material is kept constant throughout the whole process of data collection.
Preliminary results exhibited a slight variety in sensor readings by the Multi-ranger deck when
partly changing the reflective properties of the material. This might result in non-representative
data, as the sensor deviation might be the result of reflection from inconsistency in material pick.

Moreover, a substantial number of flights should be excluded, not meeting the conditions of
a successful performance. Though no track of total flight number was kept, a rough estimate of
successful flights would be 10%. The tight route passage restricts the drone from deviating from the
trajectory, where even a small divergence may result in a crash or biased readings. For example,
a slight angle change from the pre-defined trajectory may be present, exceeding no more than 5
percent. If not meeting the condition, the sensor readings become unsuitable for the dataset, as
they now introduce inflated distance readings. In case of a crash, any unsuccessful flight implies
incomplete data collection.

Furthermore, for bias mitigation related to the flight performance, the battery was kept at a
full charge across all flights. A lower battery percentage may reduce flight stability, increasing the
likelihood of a crash or introducing additional swaying.

Lastly, the amount of lighting is strictly controlled. The Multi-ranger deck sensors perform
optimally in an environment with diffused lighting. Therefore, direct sunlight is kept minimal,
preventing floor reflection, as it can increase hover instability or invalidate sensor readings (32.77

4 Experiments

4.1 Data collection
4.1.1 Tested variables and conditions

A quantitative type of research was conducted to evaluate hyperparameter influence. This design
was chosen to obtain measurable data on comparison in flight accuracy and sensor deviation. The
chosen independent variables used for the influence of the drone behavior are LOG_PERIOD, which
represents the package logging frequency of the Multi-ranger deck, and DUR which represents the
single step duration (see section 3.3). The reasoning behind the choice is to investigate whether
varying them has any effect on the sensor logging behavior and the movement precision during
flying. The dependent variables are accuracy and sensor deviation.

The LOG_PERIOD was interchanged between 50 and 70 ms, and the DUR value was set to 2.5,
1.5 and 0.5 s. Each unique combination of DUR and LOG_PERIOD was used in 24 flights across 3
different route complexities, 8 flights for one complexity each. A few flights would cause outliers to
have a larger influence on the whole dataset, while doing too many repetitions becomes impractical
when taking the timeline into account. A total of 6 unique configurations were tested, resulting
in a total of 144 flights. This way, sufficient repetition was ensured to mitigate the effect of any
outlier while keeping the total workload manageable.

To ensure a controlled environment, natural lighting is used, and obstacle surfaces were static
and indoor. This work does not capture any external factors like sun reflection or wind turbulence



for the purpose of bias mitigation (see section 3.7) and to see how different combinations of
STEP_DUR and LOG_PERIOD exclusively would influence the performance of Multi-ranger Deck and
flight precision.

4.1.2 Procedure

The collection of the data consists of several steps, including three routes of increasing complexity.
For each subsequent route, an additional direction is added to the previous one for the increase of
complexity. This enables the systematical assessment of how route complexity influences movement
precision and sensor deviation.

After every flight, the collected data is stored into a .csv file. For obtaining reference values, the
data gathering implied recording every individual run with a camera while the drone collected the
sensor readings along its trajectory, using a smartphone camera (see Section 3.1). The measurement
of the reference values is done stepwise, only measuring the distance upon a full velocity stop,
completing a full step. To ensure consistency, each measurement is taken exactly at the position
of the corresponding sensor, which is 1.5 cm away from the center of the drone. (see Figure 1).
Afterwards, the dataset is finalized by incorporating manually measured reference values from the
corresponding recording.

Following completion of data collection, automated data processing is applied, exporting the
results into a .txt file. The text files contain computed sensor deviation (see Section 3.6.1) and
movement precision (see Section 3.6.2).
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Figure 1: Measurement of reference distance

4.2 Metric extraction

The data processing involves calculation of accuracy, average- and minimum-maximum sensor
deviation, previously explained in section 3.6. The data used for these calculations consists of the
collected sensor readings and reference measurements stored across multiple .csv datasets.

The accuracy presents how close the traveled drone distance is to the expected distance. Sensor
deviation is expressed as the deviation from the manually measured distances, while minimum-
maximum implies the same deviation but taking into account the boundary values.



No data cleaning was required, as the dataset already had a fixed structure. Only invalid
or incomplete readings had to be excluded from the data, as they could not be utilized for the
objectives of this work.

Data visualization was performed using bar graphs (e.g., Figure 2), proving to be the most
efficient way of representing accuracy, sensor deviation, and min/max values. This approach
fitted the research design, as it enabled direct comparison between individual hyperparameter
configurations, making recognition of emerging patterns trivial.

5 Results

5.1 Accuracy

Figure 2 illustrates the Crazyflie’s accuracy in traveled distance under varying STEP_DUR values for
all three route complexities. A specific pattern can be noted. With a shorter STEP_DUR the deviation
from the trajectory becomes greater, decreasing the precision in movement. This specifically stands
out for more complex routes.

For single and double direction, the trajectory accuracy is at its peak for STEP_DUR equiv-
alent to 1.5. When comparing STEP_DUR of 2.5 and 0.5, with a shorter duration, the drone deviates
more from its trajectory. In contrast, a continuous decrease in movement precision is present for
triple direction, with a decreasing STEP_DUR.

Overall, the results suggest an optimal STEP_DUR of 1.5 seconds for trivial routes, pointing out
the balance between stability and precision. Meanwhile, complex routes exhibit a high sensitivity
to STEP_DUR and show an optimal accuracy with the longest duration.
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Figure 2: Accuracy based on travelled distance

5.2 Sensor deviation

Figure 3 introduces the sensor deviation from the manually measured reference distances, recorded
at a LOG_PERIOD of 50 ms. Each color represents a specific route complexity, corresponding with



the colors from figure 2. The results from the left graph (average deviation) indicate that with the
decreasing STEP_DUR the sensor deviation increases for each individual route. While the increase
for single direction remains minimal, the most intricate combination (triple direction with
shortest STEP_DUR) introduces measurement error, exhibiting an amplification in the sensor deviation
with the additional complexity.

For the minimum and maximum sensor deviation shown in the right graph, a similar pattern
can be observed. With the increasing difficulty, represented by the complexity of the path and a
decreasing STEP_DUR, the spread between minimum and maximum deviation increases with it. This
indicates a decrease in stabilization for shorter STEP_DUR, especially with complicated routes.

In general, with a LOG_PERIOD of 50 ms, both STEP_DUR and the path difficulty increase have a
strong influence on the Multi-ranger deck’s ability to log accurate packages, providing considerably
less reliable results for shorter durations.
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Figure 3: Sensor deviation from real perception (50 ms)

Figure 4 illustrates similar graphs, using the LOG_PERIOD of 70 ms. In contrast to the LOG_PERIOD
of 50 ms, sensor deviation remains at its minimum for all durations and routes combined. Remarkably,
the deviation becomes independent of route complexity, with triple direction no longer having
an amplifying effect on the sensor deviation.

The same trend now also holds for the minimum and maximum deviation, which remains
approximately the same for every combination of route and STEP_DUR. This indicates the increase
of LOG_PERIOD to 70 ms having a stabilizing effect on the sensor accuracy of the Crazyflie.

Altogether, the results show that an alteration in LOG_PERIOD has a major influence on the
sensor readings. The Multi-ranger deck operates most stable at a LOG_PERIOD of 70 ms, introducing
minimal sensor deviation.
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Figure 4: Sensor deviation from real perception (70 ms)

6 Conclusions

The goal of this study was the investigation of factors with the strongest influence on the accuracy of
the Crazyflie. Using various configurations, the results demonstrated that STEP_DUR and LOG_PERIOD
proved to be primary elements of influence on Crazyflie’s movement precision and sensor deviation.

The results provide solid quantitative insight about accuracy and sensor deviation. For the API
accuracy, trivial routes achieved the best performance of 95.95% at moderately short step durations
of 1.5 s, due to the reduced time interval available for hover. For these routes stabilization time
is redundant, solely causing an increased chance for route deviation and therefore an accuracy
decrease. Meanwhile, for the complex flights, a 95.16% accuracy in movement was achieved under
slow durations of 2.5 s due to requiring more stabilization during the alternation in trajectory to
execute the route.

The sensor deviation primarily experienced an influence from STEP_DUR on the condition that
the LOG_PERIOD was not optimal. It would only increase with the shorter durations and increasing
route complexity due to the amount of shaking, reaching an average deviation of 22.46% and an
outlier of 57.75%. This relates to the excessive data logging and lack of stabilization time, which
results in a higher chance of incorrect distance interpretation. With longer logging intervals of 70
ms, the amount of excessive package overflowing is reduced, lowering the chance of fetching a stale
package, leading to less sensor deviation. Hence, STEP_DUR exhibits a negligible influence on the
sensor accuracy, which results in an average peak of 3.1% deviation for the highest complexity
route, a reduction of 19.3%.

Overall, the work provides a sufficient insight into how various hyperparameter configurations
affect the drone behavior with respect to accuracy in trajectory execution and sensor logging,
demonstrating the best performance of 96.2%.



7 Discussion

During evaluation of multiple hyperparameter configurations, the drone was tested under various
conditions to deduce determinants affecting the accuracy. Despite the significant findings, multiple
factors ranging from hardware limitations to environmental obstacles had a considerable influence
on data collection, posing challenges for mitigation.

Regarding the hardware, three Crazyflie units became unusable during the early stages of data
collection. The breakdowns ranged from a broken motor mount to an unstable battery connection
preventing the Crazyflie from taking off. Only with the fourth unit did the data collection proceed
without major interruptions.

With respect to environmental limitations, lighting conditions could occasionally introduce
reflection on the floor, influencing the Flow-deck’s behavior. Consequently, a periodic drift away
from the intended trajectory or rotation by 5-20 degrees during the takeoff would occur. The
sensors of the Multi-ranger deck were also sensitive to the direct sunlight, reducing the maximum
measurable distance, resulting in an invalid read (32.77 m). Despite having incorporated optimal
circumstances—such as properly functioning parts, a battery level above 85%, and a stable
environment—the unit obtained a flight completion of roughly 7-8 out of 10 flights. An earlier unit
demonstrated a success rate of 0 out of 10 flights due to an unstable battery connection.

These limitations may have introduced minor instability during the data collection phase and,
therefore, potentially have influenced the Crazyflie precision in movement and sensor accuracy.

8 Further research

To expand on this work, further research could investigate how hyperparameters influence drone
behavior under various environmental conditions. In this work, the drone was tested under controlled
conditions, such as lighting and obstacles held constant. These factors can serve as variables to
assess the Crazyflie’s Multi-ranger deck performance across various lighting and reflective surfaces.

Furthermore, this work can be extended by introducing additional layers of environmental
complexity, such as simulated wind turbulence. The detection and avoidance of wind turbulence
was previously implemented by van Horn et al. | |. By integrating the approach of van Horn,
the precision in path following under the influence of varying wind patterns can quantitatively be
investigated, assessing the Crazyflie’s true ability of environmental adaptation.

Finally, the Crazyflie’s behavior during the braking phase upon entering STOP_DIST could be
examined. Tadevosyan et al. have researched drone swarms racing in dynamic environments, with
time-based obstacle positions | |. The dynamic environment adaptation can be combined
with our work, for looking further into the Crazyflie’s response to static versus dynamic obstacles,
enabling quantitative examination of braking accuracy during the STOP_DIST phase.
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