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Abstract

This thesis explores the application of Reinforcement Learning (RL) in the context of honeypot
detection and deployment in a simulated network. Honeypots are deceptive systems designed to
attract and engage attackers. However, the increasing use of sophisticated detection techniques
presents new challenges. The goal of this thesis is to investigate the interaction between a
Reinforcement Learning attacker and defender in a honeypot network. The attacker attempts
to learn an optimal policy for detecting honeypots in a network, and the defender aims to
find the optimal strategy for disguising these honeypots. Through a series of experiments
in a simulated network environment, this research evaluates the interaction between these
two agents. The findings suggest that RL-based strategies can enhance honeypot detection
techniques, even when faced with an opposing defender agent.
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1 Introduction

Cybersecurity continues to be an important area of research as the frequency and sophistication of
cyberattacks increase. One strategy that has proven to be effective in defending against these threats
is the use of honeypots. Honeypots are deceptive systems designed to attract and engage attackers
by simulating vulnerable targets and diverting the attackers’ attention. However, modern attack
strategies enable more accurate detection of honeypots in computer networks. Techniques such as
fingerprinting and behavioral analysis reduce the effectiveness of conventional static deployment
strategies [MSA+22].

Dynamic and adaptive honeypot deployment strategies are needed to address this challenge. This is
where machine learning, and specifically Reinforcement Learning (RL), can play an important role.
RL allows an agent to make adaptive decisions based on feedback received from an environment.
The ability of an RL-agent to learn from previously made mistakes can be a promising tool in
the context of adaptive honeypot systems. For defenders, RL can help optimize the interaction
behavior of honeypots, making them more difficult to detect. For attackers, RL offers a way to
adaptively identify honeypots by learning from interactions with the network.

Even though RL has been explored in cybersecurity for various applications, there is limited research
on its use for honeypot detection. This thesis aims to fill that gap by investigating how RL can be
used for honeypot detection and defense. The attacker agent will learn how to detect honeypots
using a dynamic policy, while the defender agent will adapt its honeypot interaction tactics to
reduce the likelihood of detection. By studying the interactions between these agents, this research
aims to explore how RL can be used to make honeypot systems more resilient to advanced detection
techniques.

The thesis is structured as follows. Chapter 2 reviews related work and background on honeypots and
Reinforcement Learning. Chapter 3 defines the problem statement and the specific research goals
of this study. Chapter 4 details the research methodology, including the design of the experimental
framework and the models used for both the attacker and defender agents. Chapter 5 describes the
experimental setup, while Chapter 6 presents the experimental results. Chapter 7 discusses the
implications of these results, followed by conclusions and suggestions for future work in Chapter 8.

All code used for the experiments and simulations in this thesis is publicly available1.

1https://github.com/vaal2001/HoneypotAdverserial

1

https://github.com/vaal2001/HoneypotAdverserial


2 Related Work & Background

2.1 Honeypots

Cyber deception is a well-established defense strategy [JJT+24]. Honeypots are among the most
studied and effective cyber defense techniques [ZT21], designed to attract attackers by imitating
legitimate services and wasting their effort [FDFV17]. In essence, a honeypot is a deceptive system
that emulates genuine vulnerabilities, deliberately designed to mislead attackers into believing they
have compromised a legitimate target [FACU21]. In contrast with traditional intrusion detection
systems, a honeypot intentionally presents itself as an interesting service in order to lure attackers,
instead of passively observing real systems for signs of intrusion [JS11].

Honeypots are differentiated by their interaction level with the attacker, generally falling into
low-, medium-, or high-interaction categories, each reflecting the degree of engagement an attacker
can achieve [FACU21]. Low-interaction honeypots emulate only basic services without a full
operating system, making them easy to deploy, low-risk, and resource-efficient, but they yield
limited intelligence about potential attackers and are easier for these attackers to detect [IDSM23].
Conversely, high-interaction honeypots expose genuine system environments to attackers, capturing
comprehensive behavioral and forensic data at the cost of greater operational risk and resource
demand [WSDE09]. Medium-interaction honeypots are designed as a middle ground between
low- and high-interaction systems, providing a higher degree of realism and engagement while
maintaining lower operational risk and complexity [FACU21].

While honeypots are powerful tools for gathering behavioral and forensic data, they face growing
challenges due to the increasing sophistication of detection techniques from the attackers, which
undermine their effectiveness [URLL17]. Advanced attackers are increasingly using honeypot
fingerprinting, a process employed to identify honeypots by detecting signs of emulation or controlled
environments [SPV23]. These signs often reveal that the system is running within a virtual machine
and include, but are not limited to, inconsistent protocol implementations, abnormal network and
system configurations, and unnatural timing patterns [SPV23, FDFV17, JJT+24]. Furthermore,
the absence of typical user activities, such as logins, background processes, or regular network
traffic, may suggest the presence of a honeypot [LWS23]. In response to these challenges, recent
research has focused on developing anti-fingerprinting techniques, such as implementing more
realistic interaction patterns and dynamically adjusting network and system behavior [JJT+24].
These developments highlight the ever-evolving nature of the cyber security field, which continuously
identifies new vulnerabilities and develops corresponding countermeasures [JJT+24].

2.2 Reinforcement Learning

The content in this section is largely based on the foundational concepts of Reinforcement Learning
(RL) as discussed by Sutton and Barto in their book Reinforcement Learning: An Introduction
[SB18]. RL is a branch of machine learning focused on training agents to make decisions by
interacting with an environment. The agent learns by receiving feedback in the form of rewards or
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penalties, depending on the actions it takes, with the aim of maximizing cumulative rewards over
time. Unlike supervised learning, where the model is trained on labeled data, RL relies on trial and
error, where agents continuously adjust their actions based on the outcomes to achieve long-term
goals rather than immediate results.

At the core of RL lies the interaction between the agent and the environment. The agent makes
decisions, selecting actions based on the current state of the environment. The environment reacts
to these actions, providing feedback through rewards or penalties. A state represents a specific
configuration of the environment at a given time, which informs the agent’s decision-making process.
After taking an action based on the current state, the agent receives feedback in the form of a
reward. Positive rewards reinforce actions that move the agent closer to its goal, while negative
rewards discourage actions that lead to undesired outcomes.

One of the central challenges in RL is the exploration vs. exploitation dilemma. Exploration
involves trying new actions to discover potentially better strategies or hidden opportunities, while
exploitation focuses on leveraging known actions that maximize rewards based on the agent’s
current knowledge. Balancing exploration and exploitation is crucial for an agent’s learning process
and long-term performance.

To guide its decision-making, an RL agent relies on a policy, a strategy that defines the action to
take for each possible state. Over time, the agent improves its policy by learning from the feedback
received from the environment. The value function is another key component in RL, which estimates
the expected long-term reward for each state or action. It helps the agent evaluate the desirability
of different states and select actions that will maximize its cumulative reward.

Several RL algorithms are commonly employed to train agents. A key distinction in Reinforcement
Learning algorithms is between on-policy and off-policy methods.

On-policy algorithms are those where the agent learns the value of the policy that it is currently
following. In other words, the agent improves its policy using the actions it is actually taking. One
common on-policy algorithm is Proximal Policy Optimization (PPO), which directly optimizes
the policy by adjusting the probabilities of actions based on the feedback received. PPO ensures
that updates are stable and prevents large, destabilizing changes by employing a clipped objective
function [SWD+17].

On the other hand, Off-policy algorithms learn from actions that are not necessarily being taken by
the agent under its current policy. This means that the agent can learn from past experiences or
actions taken by other agents. One such algorithm is Q-Learning, which learns the value of each
action in a given state. Q-Learning uses this information to derive an optimal policy, but unlike
on-policy methods, it can use experiences gathered from other exploration strategies or even from a
random policy to improve its own decision-making.

Thus, the primary difference lies in the policy the agent uses to collect experiences: on-policy
methods learn from actions taken by the current policy, while off-policy methods learn from actions
taken by different policies, allowing for more flexibility in learning from past experiences.
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2.2.1 Markov Decision Processes and Optimization Objective

Reinforcement Learning problems are commonly formalized as a Markov Decision Process (MDP).
An MDP is defined as a tuple

(S,A, P, R, γ) (1)

where S is the set of states describing the environment, A is the set of actions available to the
agent, P (s′|s, a) defines the transition probability from state s to state s′ after taking action a,
R(s, a) is the reward function, and γ ∈ [0, 1] is the discount factor that determines the importance
of future rewards.

At each timestep t, the agent observes the current state st, selects an action at, receives a reward
r = R(st, at), and transitions to a new state st+1 according to the environment dynamics.

The behavior of an agent is defined by a policy π, which specifies a probability distribution over
actions given a state:

π(a|s) = Pr(at = a|st = s). (2)

In this thesis, stochastic policies are used, meaning actions are sampled from this distribution
rather than selected deterministically.

The objective of the agent is to maximize the expected cumulative discounted reward, also referred
to as the return:

Gt =
∞∑
k=0

γkrt+k. (3)

The state-value function V π(s) represents the expected return obtained when starting from state s
and following policy π:

V π(s) = Eπ [Gt|st = s] (4)

Similarly, the action-value function Qπ(s, a) represents the expected return when taking action a in
state s and subsequently following policy π:

Qπ(s, a) = Eπ [Gt|st = s, at = a] . (5)

The goal of Reinforcement Learning is to find an optimal policy π∗ that maximizes the expected
return over the distribution of initial states:

π∗ = argmax
π

Es0 [V
π(s0)] (6)

In practice, this optimization is performed using approximate methods such as policy gradient
algorithms, which directly adjust the parameters of a policy to increase expected return. In later
sections of this thesis, this objective is optimized using Proximal Policy Optimization (PPO).

2.3 Honeypots & Reinforcement Learning

In recent years, honeypots have become a well-established defense strategy in cybersecurity,
particularly for attracting and deceiving attackers by simulating vulnerable systems [MDR25].
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These deceptive systems are strategically placed within a network to mimic legitimate services and
waste the attackers’ time and resources. However, as attackers become more sophisticated, they are
increasingly able to detect and bypass honeypots, making static placement strategies less effective
[Iye21]. To address these challenges, there has been growing interest in leveraging Reinforcement
Learning (RL) to enhance honeypot deployment and management [GZCLP25].

Reinforcement Learning (RL) has proven to be an effective tool for adaptive decision-making, and
it is now being applied to enhance honeypot deployment and management. For example, Huang
and Zhu [HZ19] used RL to model honeypot engagement using Semi-Markov Decision Processes
(SMDPs). Unlike traditional Markov Decision Processes (MDPs), SMDPs allow for more flexibility
by incorporating variable time durations between state transitions. This characteristic is particularly
useful in scenarios where the time an agent spends in a state (such as engaging with an attacker) is
not fixed but varies depending on the circumstances, like how long the attacker interacts with the
honeypot [HZ19].

In their study, Huang and Zhu [HZ19] focused on key aspects of honeypot engagement, such as
well time and risk-cost trade-offs. Dwell time refers to the amount of time an attacker spends
interacting with a honeypot before discovering it as a decoy or deciding to disengage. By modeling
this factor with RL, the agent can learn to optimize how long it keeps an attacker engaged, delaying
their discovery of the honeypot and maximizing the time they waste interacting with the system.
On the other hand, risk-cost trade-offs capture the balance between the cost of maintaining a
honeypot (e.g., computational resources, risk of detection) and the potential benefits of deceiving
the attacker. The RL model in Huang and Zhu’s approach adapts the honeypot deployment strategy
by weighing these trade-offs, helping to minimize the likelihood of detection while maintaining
effective deception.

Additionally, Guan et al. [GLC+23] explored the use of RL for high-interaction honeypots in the
Internet of Things (IoT) environment, where the RL agent learns to respond dynamically to attacker
behavior. By adapting its responses based on real-time interactions, the RL-based honeypot improves
its ability to deceive attackers, particularly by bypassing reconnaissance tools and providing more
realistic responses that make the honeypot harder to detect. The study demonstrated how RL could
be used to increase the realism of the honeypot, which is critical in environments where attackers
are becoming more sophisticated and equipped with advanced detection mechanisms.

Further research, such as Deep Reinforcement Learning for Building Honeypots against Runtime
DoS Attack [VK22], demonstrates the potential of RL in adapting honeypots to specific attack
vectors, such as Denial of Service (DoS) attacks, by dynamically configuring honeypot settings to
maintain their deceptive nature under attack conditions. Another relevant study by Li et al. [LZW25]
utilizes RL to determine the optimal deployment strategy for multiple types of honeypots, which
may include different interaction levels (e.g., low- vs. high-interaction honeypots) and functional
categories (e.g., network, application, or database honeypots), under resource constraints. This
further demonstrates RL’s utility in managing complex honeypot configurations and adapting them
to a variety of attack scenarios.

These studies highlight how RL can be applied to honeypot deployment by allowing the defender
to adjust the placement and interaction strategies based on ongoing attacker activity. By using RL,
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defenders can optimize their honeypot placement, making the system more adaptive and harder to
detect, thereby increasing its effectiveness.

While the application of RL to honeypot deployment has shown promising results, there is a
notable gap in the literature regarding the use of RL for honeypot detection. The current research
predominantly focuses on improving honeypot effectiveness from the defender’s perspective [Iye21],
but there is limited exploration of how RL can be used by attackers to identify honeypots. Most
traditional detection techniques rely on static, signature-based methods, or simple heuristics like
timing analysis and network behavior analysis [SPV21]. However, these methods can be circumvented
by sophisticated attackers using more dynamic strategies.

There is currently limited research on how attackers could leverage Reinforcement Learning (RL) to
learn and adapt their strategies for detecting honeypots. However, there has been growing interest
in using machine learning and Reinforcement Learning techniques for adversarial purposes, such
as evading detection systems. By training an RL-based attacker, it would be possible to simulate
an evolving adversary capable of identifying honeypots through interaction patterns or subtle
environmental cues, such as virtualization artifacts, protocol inconsistencies, or missing user activity.
These characteristics are often present in honeypots but not in legitimate systems, and RL could
allow attackers to identify these discrepancies dynamically over time. This concept is closely related
to recent work where attackers use adversarial machine learning to adapt to changing defensive
strategies, such as network traffic analysis or intrusion detection systems [LZL+25]. This would
provide a dynamic and evolving challenge for defenders, as attackers would continuously adapt to
new honeypot placement strategies and attempt to evade detection. For instance, Reinforcement
Learning has been used in other security domains to dynamically learn how to bypass detection
systems, making it a promising technique for attackers targeting honeypots as well [QMMF22]. In
this thesis, the above mentioned research gap by developing a framework in which Reinforcement
Learning (RL) is used to train an attacker agent capable of dynamically adapting its strategies to
detect and bypass honeypots is addressed.

3 Problem Statement

Although Reinforcement Learning has been applied to improve defense strategies, there has been
limited exploration of how it can be used by attackers to adaptively identify honeypots. Currently,
honeypot detection techniques remain largely static.

This research aims to explore the interaction between attackers and defenders within a Reinforcement
Learning framework. The central research question of this thesis is:

How effectively can an RL-based attacker detect honeypots, and how can an
RL-based defender adapt deployment strategies to minimize detection?

To address this question, three sub-questions will be explored:

1. How well can an RL-attacker learn to detect honeypots deployed randomly in a network?
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2. How well can an RL-defender adaptively deploy honeypots to evade detection when faced
with conventional detection heuristics such as signature-based or timing analyses?

3. How do interactions between RL-based attacker and defender agents evolve when trained
simultaneously?

By investigating these questions, this research provides insights into the effectiveness of traditional
honeypot strategies in countering emerging threats. The study contributes to the development of
adaptive honeypot systems capable of adjusting to the evolving tactics of attackers in real time.

4 Research Methodology

4.1 Experimental Design Overview

The previous section provided an overview of the research direction. The main research question is
supported by three sub-questions, each corresponding to a single atomic experiment. The results
from these individual experiments contribute to answering the main research question.

The first sub-question, “How effectively can an RL-based attacker learn to detect honeypots deployed
randomly in a network?”, investigates whether a baseline RL-based attacker to identify honeypots
within a network exists. This experiment evaluates the attacker’s ability to distinguish between
real hosts and honeypots by reporting on its classification accuracy.

The second sub-question, “How well can an RL-based defender adaptively deploy honeypots to
evade detection when faced with conventional detection heuristics such as signature-based or timing
analysis?”, seeks to explore the development of a baseline RL-based defender that adaptively evades
traditional detection heuristics. The defensive strategies is evaluated against conventional attack
techniques and their ability to deceive the attacker is examined.

The agents designed in these first two experiments form the basis for the third and final sub-
question: “How do interactions between RL-based attacker and defender agents evolve when trained
simultaneously?” This final experiment focuses on the dynamic interactions between the two agents,
with opposing goals, within a shared environment. The adversarial context provides insights into
how each agent adapts in response to the other. Ultimately, the performances of both agents
exposed to each other’s strategies are compared.

4.2 Environment Specification

The performance of a Reinforcement Learning agent is strongly influenced by the environment
with which it interacts [Res20]. In an ideal situation, the environment is composed of an accu-
rate simulation of a real-life enterprise-level network. However, creating such an environment is
computationally expensive and impractical. Therefore, abstractions must be made to simplify the
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environment, while maintaining enough realism to ensure that the agent can effectively learn and
make decisions.

Previous research in the context of honeypot defenders indicates that there is no perfect abstraction
level for simulating network environments [JJT+24]. The difficulty lies in finding a balance between
computational feasibility and the richness of the environment’s representation. For the purposes
of this study, a graph-based model to represent the network environment is used. This allows the
representation of relationships between devices in the network while maintaining computational
efficiency.

4.2.1 Graph Design

A graph is a data structure that represents relationships between entities [Anu24]. In the context of
a network, the graph consists of nodes, representing devices, and edges, representing the connections
between the devices. This graph is a largely simplified representation of a real-world enterprise-level
network. The nodes in the graph represent either a real device or a honeypot. Using this setup as
the environment, the RL-based attacker agent is tasked to distinguish between the types of devices.
Although the graph structure is an abstraction of the real network, the nodes can still accurately
imitate the behavior of real devices and honeypots. This can be achieved through simulation or
emulation [GKCS23]. Simulation, in the context of honeypots, models the behavior of hosts to
resemble that of real devices. Emulation, on the other hand, executes the actual services and
programs in a containerized environment. In other words, emulation can be used to achieve a higher
level of realism. However, this adds a cost of extra computational complexity. Since the focus of
this thesis is on studying the interactions between the attacker and defender agents, simulation
provides enough realism and is thus preferred.

4.3 Attacker Agent Design

As previously mentioned, the RL-based attacker is tasked to classify nodes in a network as either
real hosts or honeypots. However, initially the agent does not have any knowledge about the
environment. This partially observable environment needs to be explored to gather information
which can be used by the agent to classify the nodes in the graph. The agent can gather information
about the network configuration, the devices present and their behavior. In a real-world scenario,
an attacker can gather this information using various means such as, observing network traffic,
analyzing device responses, detecting exposed endpoints, and identifying inconsistencies in the
nodes’ behavior [MC21].

The attacker’s action space is designed to balance realism, expressive power, and computational
feasibility. In practice, attackers do not immediately classify a system, but instead gather information
in stages before making a decision. The actions listed in Table 1 reflect this staged reconnaissance
process in an abstract but meaningful way.
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ID Action Type Action Description

0 Ping Ping A basic reachability and responsiveness test used to
determine whether a device is present.

1 Probe Syn-scan A discovery action that tests whether network ports are
open by observing how a device responds to connection
initiation attempts, without fully establishing a connec-
tion.

2 Probe Banner grab A probing action that collects service-provided identifi-
cation information by observing the initial message or
metadata a device provides when a service is contacted.

3 Probe OS-probe A probing action that infers the operating system or
platform of a device by analyzing characteristic response
behavior.

4 Probe Service probe A probing action that evaluates the behavior and ca-
pabilities of an exposed service by interacting beyond
initial identification to assess its depth, consistency, and
realism.

5 Classify Classify real This action is used for the agent to classify a device as
a legitimate host.

6 Classify Classify honeypot This action is used for the agent to classify a device as
a honeypot.

7 No-op No-op This action entails doing nothing and waiting for the
next timestep.

Table 1: Attacker agent action space with real-world descriptions

The probing actions (Ping, SYN scan, banner grabbing, OS probing, and service probing) represent
increasingly informative steps in network reconnaissance. They differ in both cost and the amount of
information they provide, allowing the agent to learn when lightweight exploration is sufficient and
when deeper probing is worthwhile. This reflects realistic attacker behavior, where more aggressive
probing can be informative but also riskier.

The two classification actions (classify real host and classify honeypot) explicitly separate information
gathering from decision making. Classification is therefore a deliberate commitment rather than an
automatic outcome of probing, allowing the agent to learn how much evidence is needed before
labeling a host. The asymmetric penalties for misclassifications reflect the higher cost of false
positives in realistic attack scenarios.

The no-op action enables the agent to model deliberate inaction. In a budget-constrained environ-
ment, this allows the attacker to avoid unnecessary probing when additional information is unlikely
to improve the final decision.

The eight actions together form a minimal but complete abstraction of attacker behavior for
this study. Reducing the action space would remove important distinctions between probing and
classification. Expanding it with additional probe types or exploit-specific actions would mainly
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add complexity without providing new insights. The chosen action set therefore reflects a deliberate
trade-off between realism and learning feasibility.

4.4 Defender Agent Design

The RL-based defender agent’s goal is to make it as difficult as possible for an attacker to distinguish
honeypots from real devices. Previous research in honeypot deception has already identified many
techniques a RL-based defender can employ to achieve this goal [JJT+24]. Some of these techniques
include:

• Imitating the imperfections and inconsistencies of real devices,

• Allowing honeypots to initiate connections, rather than only responding,

• Embedding honeypots within real devices to disguise their presence,

• Introducing stochastic jitter in the response times to simulate real-world latency variations.

The defender’s action space is designed to capture the most important ways in which honeypots
can be made harder to distinguish from real devices, while keeping the learning problem feasible.
Rather than allowing arbitrary configuration changes, the defender is restricted to actions that
directly affect properties commonly used by attackers during honeypot fingerprinting. Table 2
outlines the defender’s actions and their effects on the network.

The selected actions focus on timing behavior, service identification, operating system consistency,
artefact leakage, and exposed service surface. These properties are frequently used by attackers to
identify honeypots and are therefore natural targets for defensive adaptation. By adjusting these
parameters, the defender can influence exactly the signals the attacker observes during probing,
without altering the underlying network structure.

Each action controls a distinct aspect of a host’s observable behavior. Timing jitter affects timing-
based detection, banner noise influences service fingerprinting, OS fingerprint adjustments target
platform consistency, artefact probability models virtualization traces, and service count modifies
perceived functionality. This separation ensures that the action space is expressive without being
redundant.

The action space is deliberately limited to incremental modifications of individual host characteristics.
More complex defensive strategies, such as dynamic topology changes, honeypot relocation, or traffic
injection, are not included, as they would significantly increase the complexity of the environment
and obscure the interaction between attacker probing strategies and defender deception. The chosen
actions therefore represent a focused abstraction that preserves the essential dynamics of honeypot
evasion while remaining suitable for reinforcement learning.
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ID Action Description

0 Increasing RTT jitter A defensive technique that increases variability in round-
trip times to disrupt timing consistency and hinder timing-
based fingerprinting.

1 Decreasing RTT jitter A defensive technique that decreases variability in round-
trip times to stabilize response times and hinder timing-
based classification.

2 Increasing banner noise A technique that increases ambiguity in service banners
to reduce the reliability of banner-based fingerprinting.

3 Decreasing banner noise A technique that decreases ambiguity in service banners
to make the honeypot appear more realistic.

4 Increasing artefact probability Increases the likelihood that a host exhibits artificial sys-
tem artifacts indicating a synthetic deployment.

5 Decreasing artefact probability Reduces the likelihood that a host exhibits artifacts that
might suggest it is a honeypot.

6 Service count Adjusts the number of visible network services on a device,
influencing its perceived functionality.

7 OS fingerprint Modifies the observed behavior of the host to more closely
resemble a legitimate operating system.

Table 2: Defender agent action space with real-world descriptions

These actions are aimed at enhancing the realism of honeypots by making their behavior less
predictable and more similar to that of real devices.

4.5 Adversarial Arena Design

Finally, the adversarial arena design corresponds to the third and final experiment, in which the
attacker and defender agents will compete against each other. In the earlier experiments, each
agent interacted with its own isolated environment. However, in the adversarial setting, the two
agents will share the same environment. This causes the strategy of an agent to be influenced by
the actions of the opponent.

In this setting:

• The attacker’s action space will consist of actions that probe and classify devices, influencing
the state of the environment.

• The defender’s action space will focus on modifying the honeypots’ characteristics, directly
affecting the attacker’s ability to identify them.

Additionally the defender no longer receives feedback based on conventional detection heuristics.
Instead, feedback will be based on the success or failure of the attacker’s actions. If the attacker
successfully detects a honeypot, the defender will receive negative feedback, and vice versa.
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5 Experimental Setup

The previous section described on a conceptual level how the environment and agents are designed
and what choices and abstractions are made. This section will explain the technical setup for the
experiments.

5.1 Honeypot Gym Environment Implementation

In this section, the implementation of the Honeypot Gym Environment, a core component of the
experimental setup, is described. For most modern Reinforcement Learning (RL) applications, a
simulated environment is essential for training and evaluating agents. The most commonly used
framework for such simulations is the Gym environment, which provides a standardized interface
for developing RL tasks. [TKT+24]

A Gym environment defines several key components that guide how agents interact with it. These
components are essential for structuring the learning process and ensuring that the agent receives
meaningful feedback. At the core of a Gym environment, the following components are defined
[Wol25]:

• Observation Space: This represents all the information an agent receives about the current
state of the environment. It includes data such as network configurations, the status of devices
(real hosts or honeypots), and any other relevant variables the agent needs to make decisions.

• Action Space: The action space defines all the possible actions the agent can take at any
given time. In the context of our experiment, these actions could involve probing devices,
classifying hosts, or adjusting their configurations (in the case of the defender).

• Reward Function: The reward function provides numerical feedback to the agent based
on the actions it performs. It tells the agent how well its actions contribute to achieving its
objective. The reward function is designed to guide the agent toward its goal, whether that’s
detecting honeypots for the attacker or hiding them for the defender.

• Transition Dynamics: Transition dynamics describe how the environment changes in
response to an agent’s actions. These dynamics are usually unknown to the agent and must be
learned through interaction. For instance, an attacker’s action of scanning a host might reveal
more information about the device’s configuration, altering the state of the environment.

• Episode Termination Conditions: These conditions define when an episode should end.
Termination can occur under various conditions, such as achieving a success criterion or
hitting a time limit. These termination conditions help to structure the training process by
providing clear endpoints for the agent to learn from.

Together, these components form the foundation of the Honeypot Gym Environment. They allow
for the systematic training of the attacker and defender agents. The learning loop follows a cycle
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where the agent observes the current state, takes an action based on its policy, receives feedback in
the form of rewards, and transitions to a new state. This process continues until the episode ends,
either due to the completion of a task or reaching the time limit. [SB18]

5.1.1 Attacker Agent Implementation

In the following subsection the specific implementations of the previously mentioned components
will be described for the attacker agent.

Observation Space The environment provides a strctured, graph based observation that repre-
sents the agent’s current knowledge of the network, individual hosts, and remaining operational
budget. The observation Oatt is composed of 5 components:

Oatt = {X,A,mknown,mclassified, brem} (7)

where where each component has fixed dimensionality based on a maximum network size Nmax.

The first component, the node feature matrix X aggregates all probe outcomes and interaction
history for that host. Each row corresponds to a host in the network and contains 34 different
features. Table 3 gives an overview of the features per node.

Index Description

0 Total number of probes performed
1 Number of observed open ports
2 Number of observed closed ports
3 Mean RTT (running mean)
4 RTT variance accumulator
5 Maximum banner score observed
6 Maximum OS fingerprint score observed
7 Honeypot artefact counter
8 Probe diversity (number of distinct probe types used)
9 Banner–OS inconsistency measure
10-29 Per-probe presence flags (historical encoding)
30 SYN scan performed
31 Banner grab performed
32 OS probe performed
33 Service probe performed

Table 3: Description of features per node of attacker observation space

This representation is history-aware but compact, enabling the policy to reason about uncertainty,
probe sufficiency, and internal consistencies that may indicate honeypot behaviour. Explicit, probe-
completion flags (feature 30-33) are included gate classification actions.
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The next component, the discovered adjacency matrix A, represents the discovered network topology,
not the true topology. An edge exists if and only if the agent has revealed the connection through
probing. Separating discovered from true adjacency enforces partial observability and encourages
strategic exploration of the network structure.

Next, the known host mask mknown, indicates whether the agent has discovered the existence of a
host. Hosts become known via ping actions or by being revealed through neighboring discoveries.
This mask is mainly used to mask the actions of unknown nodes to the agent.

The next component is the classified host mask mclassified. This component masks hosts that have
already been classified as either real or honeypot. Classified hosts are terminal with respect to
further interaction. The masking of actions for already classified hosts has been implemented to
speed up the learning process by enforcing no time is being wasted on investigating nodes that have
already been classified. This also further stimulates initial correct guessing as there is no possibility
to change the classification retroactively.

Finally the last component, the remaining budget brem, provides the fraction of the amount of
timestep still left. This fraction is described as:

brem =
remaining actions

max actions
(8)

Normalizing the remaining budget enables time-aware decision making and encourages efficient
early classification rather than exhaustive probing.

In addition to the core observation, the environment provides an action mask. This mask enforces
environment constraints, such as: preventing classification before sufficient evidence, disabling
actions on already classified hosts, limiting ping to once per host. Although not part of the physical
state, the action mask defines the feasible action set at each timestep and is required for stable
PPO training.

Action Space The attacker agent operates in a discrete, host-parameterized action space. Each
action selects one host and one action type applicable to that host. Formally, the action space is
defined as:

A = {0, 1, . . . , Nmax ·K − 1} (9)

where Nmax is the maximum number of hosts in the network and K = 8 is the number of possible
action types per host. Each action index a ∈ A is decoded into a host-action pair (h, k) as:

h =
⌊ a

K

⌋
(10)

k = a mod K (11)

where h ∈ {0, ..., Nmax − 1} denotes the target host, and k ∈ {0, ..., K − 1} denotes the action type.
As previously described the set of possible actions per host is defined in Table 1. Due to partial
observability and operational constraints, not all actions are valid in every state. An action mask
ma ∈ {0, 1}Nmax·K is provided alongside the observation to indicate the set of legal actions. Invalid
actions include, but are not limited to: interactions with non-existent hosts, actions on already
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classified hosts, classification actions before sufficient probing evidence is collected. The mask is
enforced during policy sampling and prevents the agent from selecting illegal actions. This mask
serves as initial guiding for the agent and helps speeding up the learning process.

Reward Function The reward function is designed to balance information gathering efficiency
with accurate host classification, while reflecting the asymmetric costs associated with misclassifica-
tion in realistic attacker scenarios.

At each timestep t, the agent receives a scalar reward rt ∈ R composed of multiple additive
components:

rt = rstep + rprobe + rintrinsic + rclassification + rtermination (12)

Step cost incurs a small negative cost to discourage unnecessary interactions and promote efficient
probing: rstep = −0.01.

To incentivize exploration, probe actions provide a positive reward depending on their informative-
ness:

rprobe =



0.05, (SYN scan)

0.20, (Banner grab)

0.20, (OS probe)

0.25, (Service probe)

0, otherwise

(13)

These rewards encourage higher-value probes while maintaining a trade-off with the action budget.

Certain probe responses may exhibit honeypot-specific artefacts. When such an artefact is observed,
the agent receives a small intrinsic reward:

rintrinisc =

{
0.1, if a honeypot artefact is detected

0, otherwise
(14)

This signal is intentionally weak to avoid shortcut learning while still providing guidance during
exploration.

Classification actions yield asymmetric rewards, reflecting the higher cost of false positives in
security contexts.

rclassification =


+4, correct classification

−6, real host classified as honeypot

−3, honeypot classified as real

(15)

This structure biases the agent toward caution when labeling real hosts as honeypots.

Some probes may actively trigger honeypot artefacts. When this occurs, an additional penalty
is applied: rartefact = −3.0. This penalty does not terminate the episode but discourages reckless
interaction with deceptive services.
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If the action budget is exhausted before all hosts are classified, a penalty proportional to the number
of remaining unclassified hosts is applied:

rbudget = −2 · U (16)

where U is the number of unclassified hosts. Conversely, if the agent successfully classifies all hosts
before the budget is exhausted, it receives an early termination bonus:

rearly =
remaining actions

max actions
(17)

Transition Dynamics The environment dynamics are determined by a stochastic transition
function that captures noisy probe outcomes, partial network discovery, and budget-constrained
interactions. Given a state st and action at, the environment samples a successor state st+1 according
to:

st+1 ∼ P (st+1|st, at) (18)

The transition function updates the agent’s state along the following dimensions.

Network Discovery The true network topology is fixed for the duration of an episode but initially
unknown to the agent. Discovery actions (e.g. ping) reveal neighboring hosts and edges in the
discovered adjacency matrix. Newly revealed hosts are marked as known, while undiscovered hosts
remain masked. The true topology itself is never revealed directly.

Probe Outcome Stochasticity All probe actions produce noisy observations. Transition dynamics
include stochasticity in: round-trip time (RTT) measurements, banner and OS fingerprint scores,
detection of honeypot-specific artefacts. This noise is sampled from host-specific response models
and prevents deterministic inference from single observations.

Feature Updates Probe outcomes deterministically update the node feature matrix via aggregated
statistics. These features provide a compact summary of the interaction history with each host.

Classification Transitions Classification actions transition a host into a terminal classified state.
Once classified, a host can no longer be probed or reclassified. The assigned label is final and
contributes to the terminal reward.

Budget Dynamics Each action reduces the remaining action budget:

bt+1
rem =

remaining actionst − 1

max actions
(19)

No further actions are permitted when the budget is exhausted, resulting in episode truncation.

Episode Termination Conditions Episodes in the honeypot detection environment are finite
and conclude under two distinct conditions: natural termination and budget-based truncation.
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An episode terminates naturally when the agent has classified all hosts in the network. Formally,
termination occurs when:

Nactual−1∑
h=0

mclassified(h) = Nactual (20)

At natural termination, no further actions are permitted. An early-completion bonus is applied
based on the remaining action budget, rewarding efficient decision making.

If the maximum number of allowed actions is reached before all hosts are classified, the episode is
truncated. Let Tmax denote the action budget. Truncation occurs when: t ≥ Tmax. At truncation,
classification is incomplete. A penalty proportional to the number of remaining unclassified hosts is
applied to the final reward.

When the agent selects an action that is invalid under the current action mask, the environment
does not terminate the episode. Instead, a small penalty is applied and the state remains unchanged
apart from the reduced remaining budget.

This design choice improves training stability and encourages the agent to respect action constraints
without abruptly ending episodes.

5.1.2 Defender Agent Implementation

In the following subsection the specific implementations of the previously mentioned components
will be described for the defender agent.

Observation Space The defender interacts with the same simulated enterprise network as the
attacker, but receives a more compact, fully observed view of the current network state. The
defender is assumed to operate as a privileged controller that already knows which devices are real
and which are honeypots, and can directly observe their current “network signature” parameters.

At each timestep the defender receives an observation

Odef = {X,A, brem} (21)

where X ∈ RNmax×F is the node feature matrix, A ∈ {0, 1}Nmax×Nmax is the padded adjacency
matrix of the underlying network, and brem ∈ [0, 1] encodes the remaining interaction budget.
The environment fixes a maximum network size Nmax. Episodes with fewer than Nmax hosts are
zero-padded in both X and A.

The node feature matrixX aggregates per-host metadata and response parameters into a fixed-length
feature vector for each node. Table 4 gives an overview of the features per node.
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Index Description

0 Honeypot flag
1-4 Device type one-hot encoding
5 RTT mean
6 RTT jitter (RTT standard deviation)
7 Banner noise
8 OS fingerprint score
9 Artefact probability
10 Service count
11 Normalized degree

Table 4: Description of features per node of attacker observation space

The honeypot flag is a binary indicator specifying whether the host is a honeypot or a real device.
This signal is only available to the defender and reflects the conceptual setting where the defender
itself decides which nodes are deployed as honeypots. It allows the policy to learn how to adjust
honeypot signatures, rather than where honeypots are placed.

Each host is assigned a device type from the set {linux web,win desktop, iot sensor, db server}.
The device type one-hot encoding categorical variable enables the policy to condition its decisions on
high-level device semantics (e.g. servers vs. endpoints) without having to infer them from low-level
statistics.

The remaining entries capture the host’s current network-level response characteristics, i.e. exactly
the properties an attacker might use for honeypot fingerprinting. For each host, the following
quantities are included and normalized. The RTT mean (average round-trip time) of responses is
clipped to [1, 200] ms and scaled to [0, 1] by division by 200. The variability in round-trip times is
clipped to [0.5, 40] ms and scaled by division by 40. The banner noise is a value in [0, 1] representing
the amount of randomness or ambiguity in service banners and identification strings. The OS
fingerprint score is a continuous similarity score between the host’s observed behaviour and that of
a genuine operating system, clipped to [0.3, 1.5] and normalized by division by 1.5. Lower values
correspond to synthetic signatures that are more typical of honeypots. The artefact probability is
the probability that the host exhibits obvious virtualisation or deployment artefacts, in [0, 1]. The
service count is the number of externally visible services, clipped to the range [1, 10] and scaled by
division by 10, representing the host’s exposed functional surface. The normalized degree is the
host’s graph degree (number of neighbours) divided by max(1, Nactual − 1), capturing how centrally
the host is embedded in the network topology.

Together, these features provide the defender with a snapshot of the current deception quality of
each host: how realistic its timing behaviour is, how noisy or polished its banners are, how consistent
its OS fingerprint appears, how many artefacts it leaks, how many services it exposes, and how
well it is embedded in the network. This aligns with the conceptual design goals described in the
defender design section, where the defender aims to make honeypots statistically indistinguishable
from real devices by adjusting exactly these parameters.
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The adjacency matrix A encodes the full, true network topology for the episode. Unlike the attacker’s
partially discovered adjacency, the defender receives the complete connectivity structure from the
start of the episode. Each entry Aij = 1 denotes a bidirectional link between hosts i and j, and
entries outside the first Nactual rows and columns are zero-padded. This full-graph view allows the
defender to reason about where honeypots are placed within the topology (e.g. core vs. edge nodes)
and to adjust their signatures in a way that is consistent with their structural role.

Finally, the remaining budget brem (8) is a scalar in [0, 1] that encodes how many steps the defender
may still take in the current episode. This value is broadcast to all nodes and concatenated as
an additional per-node feature in the implementation, enabling the policy to adapt its strategy
based on how much time is left. Early in an episode the agent can afford larger, exploratory
adjustments to host signatures, whereas near the end it is encouraged to make small, targeted
refinements that directly reduce honeypot detectability without increasing the detectability of real
hosts. Conceptually, the defender’s observation is thus a fully observed, graph-structured state
consisting of host metadata, network topology, and a normalized time/budget signal.

Action Space At each timestep the defender can modify the network signature of exactly one
host and one feature. The environment exposes a discrete action space (9) where Nmax is the
maximum number of hosts in the network and K = 8 is the number of action types available per
host. Each action index a ∈ A is decoded into a host-action pair (h (10), k (9)) so that the policy
implicitly chooses which host to modify and which kind of tweak to apply. If h ≥ Nactual (i.e. an
index that falls into the padded part of the observation), the action is ignored.

Each sub-action applies a small, bounded update to one of the parameters in the host’s Response-
Model (RTT statistics, banner noise, OS fingerprint, artefact probability, or service count). Most
updates move the host towards a typical real-host baseline. One sub-action deliberately allows the
defender to make a clearly bad change, so the RL agent must learn to avoid it. For every host i,
the eight actions as described in Table 2 are available.

Each action applies a simple linear interpolation

xnew = (1− α)xcurrent + αxtarget, (22)

for an appropriate parameter x (e.g. RTT standard deviation) and step size α that depends on
whether the host is a honeypot or a real device and on its current value. After every update, all param-
eters are clamped to realistic bounds (e.g. rtt std ∈ [0.5, 40] , rtt mean ∈ [1, 200] , banner noise ∈
[0, 1] , service count ∈ {0, ..., 10}).

This design ensures that: the agent learns gradual, stable modifications instead of extreme jumps,
all updated host profiles remain physically plausible, the defender can iteratively polish honeypot
signatures over multiple timesteps, without changing the underlying network topology itself.

In summary, the discrete action space is structured as Nmax blocks of 8 semantically meaningful
actions. Each block corresponds to one host, and each sub-action to a specific, interpretable change
of that host’s network signature.
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Reward Function The defender is trained to make honeypots harder to detect, while ensuring
that real hosts do not become suspicious in the process. This is implemented via a shaped per-step
reward that is entirely based on a heuristic detectability metric computed for each host.

Before defining the reward, the environment first constructs a per-episode baseline for what a typical
real host looks like. At the beginning of each episode, it collects all REAL hosts and computes
simple statistics over their response parameters and graph structure: RTT standard deviation,
banner noise, OS fingerprint score, artefact probability, service count, node degree in the network
graph.

For each of these features, the environment stores a mean and standard deviation. This defines
the reference distribution for “normal” behaviour in the current episode. Given this baseline, a
detectability score is computed for each host. For each host h, the score: computes z-scores for the
main features (RTT std, banner noise, OS fingerprint, service count, graph degree) relative to the
real-host baseline, clips each z-score into a bounded range, adds extra penalties for too low RTT
jitter and high artefact probability, and combines everything into a weighted sum and clips the
final score to [0, 10]. Higher scores mean more suspicious behaviour compared to typical real hosts.

Then these scores are aggregated into two averages: mean detectability over all honeypots, and
mean detectability over all real hosts. At the start of each episode (before any defender action),
these two values are stored as baselines and updated per step.

At each environment step, after the defender applies an action, the environment recomputes the
mean detectability for honeypots and real hosts and then constructs a scalar reward. This rewards
is computed according to the following formula:

rt = (prev h−mean h)︸ ︷︷ ︸
improvement for honeypots

− 0.3 ·max(0,mean r− baseline detect real)︸ ︷︷ ︸
penalty if real host becomes suspicious

−0.01. (23)

This reward formula is composed of a few different terms. The honeypot improvement term
(prev h−mean h) will give a positive reward, if the average detectability of honeypots decreases
compared to the previous timestep. If honeypots become more detectable, this term is negative and
the defender is penalised.

The real-host penalty term (0.3 ·max(0,mean r− baseline detect real) averages the detectability of
real hosts compared to its episode baseline. If real hosts remain at or below their baseline detectability,
this penalty is zero. If real hosts become more suspicious than in the initial configuration, the
defender is punished in proportion to how much worse they look. The coefficient 0.3 controls how
strongly the reward reacts to this effect.

A small negative reward is applied at every timestep to slightly discourage unnecessarily long
sequences of small, ineffective changes. In combination with the discount factor used by PPO, this
encourages the policy to make efficient improvements early in the episode rather than procrastinating.

This reward design encodes three core objectives for the defender: making honeypots look less
suspicious over time, do not sacrifice the realism of actual production hosts, and act efficiently

In summary, the reward function is a shaped signal that uses a simple heuristic attacker model
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(the detectability score) to approximate how well the defender is camouflaging honeypots, while
explicitly constraining it not to degrade the apparent legitimacy of real hosts.

Transition Dynamics The defender environment implements deterministic transition dynamics
conditioned on a fixed, but randomly initialised, network per episode. At the beginning of each
episode, a new random graph is sampled, hosts are instantiated as either REAL or HONEYPOT
with associated response parameters, and baseline statistics over REAL hosts are computed. Once
this initial configuration is fixed, the evolution of the environment within an episode is fully
determined by the defender’s actions.

Given a state st = {X,A, brem} and an action at, the environment applies the action to exactly one
host and one parameter in its underlying response model. The discrete action index is decoded into
a host index h and a sub-action k. If h ≥ Nactual (i.e. the action targets a padded node), the action
is ignored and the observable state remains unchanged apart from the decreased budget. Otherwise,
the corresponding host’s response parameters are updated according to the chosen sub-action: RTT
jitter, banner noise, artefact probability, service count, or OS fingerprint are nudged towards a
target value using a simple linear interpolation step. Honeypots typically move more aggressively
towards the real-host baseline than REAL hosts, reflecting the intuition that the defender should
mainly “polish” honeypot signatures while only slightly adjusting real devices. After each update,
all parameters are clamped to realistic ranges to ensure that host profiles remain plausible (e.g. RTT
statistics, banner noise, artefact probability and service count all stay within predefined bounds).

The network topology itself does not change during an episode. The adjacency matrix A is fixed at
reset time and only zero-padded for nodes beyond Nactual. As a result, the defender’s actions only
affect the labels and behavioural signatures of individual hosts, not their connectivity. However,
the graph structure still influences the transition dynamics indirectly: node degree is part of the
real-host baseline and of the detectability score, so changing a host’s local parameters can have
different effects depending on its topological position in the graph.

In addition to updating the host parameters, the environment maintains internal statistics that
drive the reward function. After each action, a detectability score is recomputed for every host using
the fixed REAL-host baseline. These scores are then aggregated into mean detectability values for
honeypots and real hosts, which are compared against their previous values and episode baselines
to construct the shaped reward signal. Although these quantities are not exposed directly in the
observation space, they determine how the defender’s choices influence future rewards and thus
implicitly shape the optimal policy.

Finally, the remaining budget brem is updated deterministically at every step. The environment
maintains a step counter and normalises the remaining number of steps by the fixed horizon Tmax,
so that

brem =
Tmax − (t+ 1)

Tmax

. (24)

An episode terminates when the maximum number of steps is reached. There is no separate success
or failure condition in the defender baseline. This yields a finite-horizon Markov decision process in
which the only stochasticity arises from the initial sampling of the network and host profiles at the
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beginning of each episode, while all within-episode transitions are deterministic given the current
state and action.

Episode Termination Conditions Episodes in the defender environment have a fixed, step-
based horizon and do not terminate early based on performance. The environment maintains an
internal step counter t ∈ {0, ..., Tmax}, which is incremented by one after every call to step. An
episode is marked as terminated as soon as the counter reaches the predefined maximum number of
steps (denoted Tmax). Formally,

terminatedt =

{
False, t < Tmax,

True, t ≥ Tmax.
(25)

The truncated flag is never used in the current implementation and is always set to False, so the
only way for an episode to end is by exhausting the step budget.

There are no additional termination conditions based on reward thresholds, detectability metrics,
or the state of the network. Even if honeypots become perfectly indistinguishable from real hosts,
or conversely highly detectable, the episode continues until the maximum number of interaction
steps has been reached. After termination, the training and evaluation scripts treat the episode as
finished (done = terminated or truncated) and call reset to sample a new random network for the
next episode.

5.1.3 Adversarial Arena Implementation

The third and final environment extends the previous single-agent setups into a shared, adversarial
arena where the attacker and defender interact with the same underlying network. Concretely, the
environment exposes a joint Gym interface with two agents: an attacker that probes and classifies
hosts, and a defender that continuously mutates host response profiles to make honeypots harder
to detect. Both agents act at every timestep, and their rewards are coupled in a near zero-sum
fashion.

Formally, the environment maintains a single random network per episode (hosts, honeypot
placements and true adjacency) and two different observation views on this shared state. The
attacker’s view is partially observed and derived from probe outcomes, whereas the defender receives
a privileged, fully observed snapshot of the current host response parameters.

Joint Observation Space The adversarial arena is implemented as a dictionary-valued Gym
environment

O = {Oatt, Odef}, (26)

where Oatt and Odef are separate, structured observations for attacker and defender respectively.

The attacker observation Oatt reuses the design of the single-agent honeypot detection environment
and is defined as

Oatt = {Xatt, Adisc,mknown,mclass, brem,mact}. (27)
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Here Xatt ∈ RNmax×Fatt is the node feature matrix with Fatt = 34 features per host, aggregating
probe counts, running statistics over RTT, banner and OS scores, probe diversity and explicit probe-
completion flags, exactly as described in Section 5.1.1. Adisc ∈ {0, 1}Nmax×Nmax is the discovered
adjacency matrix, which is updated only when the attacker executes discovery actions (e.g. ping).
It never reveals edges that have not been discovered. mknown ∈ {0, 1}Nmax indicates which hosts
are currently known to the attacker, either because they were pinged or discovered as neighbours.
mclass ∈ {0, 1}Nmax marks hosts that have already been classified as real or honeypot and are
therefore terminal from the attacker’s perspective. brem ∈ [0, 1] (8) encodes the shared action budget
as a normalized scalar Finally, mact ∈ {0, 1}Nmax×Katt is an action mask that encodes which attacker
actions are currently legal. It disables actions on non-existent hosts, on already classified hosts, and
prevents certain actions before sufficient evidence is collected (e.g. no classification if banner and
OS probes have not yet been performed).

The defender observation Odef is a fully observed, compressed view of the same underlying network:

Odef = {Xdef, Atrue, brem}. (28)

Here, Xdef ∈ RNmax×Fdef with Fdef = 4 + 1 + 7 encodes, per host: a honeypot flag (1 if honeypot,
0 if real), a one-hot device type indicator (linux web, Windows desktop, IoT sensor, database
server), normalized response-model parameters: RTT mean and standard deviation, banner noise,
OS fingerprint score, artefact probability, service count, and a normalized degree feature derived
from the true graph. Atrue ∈ {0, 1}Nmax×Nmax is the true adjacency matrix of the episode’s network,
padded to Nmax. Unlike the attacker, the defender always sees the full topology. Finally, the
defender receives the same normalized remaining budget brem as the attacker, allowing both policies
to condition their behaviour on how many attacker timesteps remain.

Both observations are static in dimensionality and padded up to the maximum network size Nmax

which allows the use of fixed-size Graph Neural Network policies for both agents.

Joint Action Space The environment maintains two separate discrete action spaces, one per
agent: attacker actions:

Aatt = {0, 1, ..., Nmax ·Katt − 1}, Katt = 8, (29)

and defender actions:

Adef = {0, 1, ..., Nmax ·Kdef − 1}, Kdef = 8. (30)

In both cases, an integer action a is decoded into a host–subaction pair (h (10), k (11)) where h
indexes the host and k the action type for that host.

For each host, the attacker’s action types are identical to those in Table 1: ping, four probe types
(SYN scan, banner grab, OS probe, service probe), two classification actions (classify as real vs
honeypot) and a no-op. The action mask mact is recomputed at every step to enforce constraints
such as: no actions on non-existent hosts, no further interaction with already classified hosts, no
classification before both banner and OS probes have been performed for that host, and ping
allowed at most once per host.
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The defender’s action space matches the eight network-signature modifications defined in Table 2.
For a chosen host, the defender can increase or decrease RTT jitter, increase or decrease banner
noise, adjust artefact probability, nudge the service count, or move the OS fingerprint towards more
realistic values. If the selected host index falls into the padded region (h ≥ Nactual), the action is
ignored and the state remains unchanged except for the decreased budget.

Reward Coupling In the adversarial arena, the attacker’s reward is computed locally based
on its own probes and classifications, and the defender’s reward is defined as the negative of the
attacker’s reward at each step. This yields a strictly competitive, near zero-sum game:

rdef = −ratt (31)

The attacker reward function is a simplified version of the single-agent setup: Every action incurs
a small step cost rstep = −0.01. Probe actions provide small positive rewards, with magnitude
depending on their informativeness: SYN scan gives +0.05, plus an additional +0.1 if a honeypot
artefact is observed, banner grab gives +0.20, plus +0.1 on artefact, OS probe gives +0.20, and
service probe gives +0.25, plus +0.1 on artefact. Ping and no-op actions do not give intrinsic probe
rewards (only the step cost). Classification actions use the asymmetric reward structure from the
single-agent environment: +4 for correctly classifying a real host as real, +4 for correctly classifying
a honeypot as honeypot, −6 for a false positive (real host classified as honeypot), −3 for a false
negative (honeypot classified as real).

Illegal attacker actions (mact(a) = 0) are penalised by a fixed negative reward and leave the state
unchanged except for advancing the budget counter. Unlike the single-agent setting, there is no
additional episode-level penalty for exhausting the budget, and no explicit early-completion bonus:
the trade-off between probing and classifying is handled purely through the per-step rewards and
the finite horizon.

Because the defender’s per-step reward is defined as the negative of the attacker’s, the defender is
directly incentivised to push the network into configurations where the attacker earns low return:
for instance by making honeypots hard to distinguish from real hosts so that misclassifications
become more frequent or probes less informative.

Transition Dynamics and Step Ordering Each episode begins by sampling a new random
network using the shared network generator. As in the previous environments, the generator samples:
the number of hosts Nactual, which hosts are honeypots vs real devices, their device types and initial
response-model parameters, and a connected random graph structure, padded to Nmax.

On top of this base state, the multi-agent environment maintains attacker-side state (probe histories,
discovered adjacency, known/classified masks, budget), and defender-side state (mutable response
models for each host).

At each timestep the environment first processes the defender agent’s action and then attacker
agent’s action. The defender’s action is decoded into (hdef, kdef). If hdef < Nactual, the corresponding
host’s response model is updated according to the selected sub-action: RTT jitter, banner noise,
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artefact probability, service count or OS fingerprint are nudged towards a target value and then
clamped to realistic bounds. These changes immediately affect future probe outcomes for the
attacker, but are not visible directly to the attacker. They can only be inferred through changes in
observed RTT, banners and OS fingerprints.

The attacker’s action is decoded into (hatt, katt). If the action is legal under the current action
mask, the environment executes the corresponding primitives. Ping actions reveal a host’s existence,
update RTT statistics and expose neighbours in the discovered adjacency. Probe actions sample
noisy probe results from the host’s current response model and update the attacker’s node features
(probe counts, maxima, variance accumulators, artefact counters, etc.). Classification actions mark
a host as classified (with an immutable label) and compute the classification reward. No-op actions
leave the environment unchanged except for the budget.The attacker’s action counter is incremented
every step, regardless of which action was taken.

From the perspective of each agent, the resulting process is still Markovian: the defender’s next
observation depends only on the current response models and topology, and the attacker’s next ob-
servation depends only on the current probe features, discovered adjacency and classification/budget
masks.

Episode Termination Episodes in the adversarial arena are finite and end under the attacker’s
constraints, because the attacker is the only agent that consumes the shared budget. If the attacker
has classified all actual hosts in the network, i.e.

Nactual−1∑
h=0

mclass(h) = Nactual, (32)

the episode also terminates early.

There is no separate truncated signal in the current implementation Episodes end only via these
two conditions. After termination, the environment returns final observations for both agents and
the training loop resets the arena with a new random network.

In summary, the adversarial arena provides a compact yet expressive two-player RL testbed in which
an RL-based attacker and defender co-evolve. The attacker operates under partial observability
with a finite probe budget, while the defender continuously reshapes host signatures under full
information. Their tightly coupled rewards turn honeypot detection and deployment into an explicit
competitive game, allowing Experiment 3 to study emergent strategies and adaptation between the
two agents.

5.2 Algorithms

Both the attacker and defender agents are trained using the Proximal Policy Optimization (PPO)
algorithm, an on-policy actor–critic method introduced by Schulman et al. [SWD+17] that combines
clipped policy updates with value function regression and an entropy bonus. PPO is well-suited
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to the honeypot setting because it supports discrete, high-dimensional action spaces, is robust to
stochastic rewards, and provides more stable training compared to earlier policy gradient methods.
While PPO does not explicitly address partial observability, it can be effectively applied in partially
observable environments when combined with history-aware observations, as is the case in this
work.

In addition, both policies are implemented as graph neural network (GNN) architectures that
operate directly on the graph-structured observations produced by the environments. Rather than
treating each host in isolation, the policy reasons over the full network topology and per-host
features, allowing it to capture relational patterns such as centrality, neighbourhood structure, and
consistency of host signatures across the graph. [Z+20]

5.2.1 Proximal Policy Optimization

Both agents are trained with the clipped Proximal Policy Optimization (PPO) algorithm [SWD+17].
PPO maintains two function approximators: a stochastic policy πθ(a | s) (the “actor”) and a
value function Vϕ(s) (the “critic”), parameterised by neural networks with parameters θ and ϕ
respectively. In this work, the actor and critic share a GNN backbone and are optimised jointly.

Training proceeds in repeated cycles of on-policy data collection and policy updates. For each PPO
update, the agent interacts with the environment for a fixed number of timesteps T , producing a
trajectory of states, actions, rewards and value estimates:

{(st, at, rt, Vt)}T−1
t=0 , Vt ≈ Vϕ(st). (33)

From this trajectory, Generalised Advantage Estimation (GAE) is used to compute an advantage
estimate Ât for each timestep:

δt = rt + γVt+1 − Vt, (34)

Ât = δt + γλÂt+1, (35)

where γ is the discount factor and λ is the GAE parameter. The target return for the value function
is then

R̂t = Ât + Vt. (36)

To update the policy, PPO maximises a clipped surrogate objective that limits the size of each
policy update:

LCLIP(θ) = Et

[
min

(
rt(θ) Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
, (37)

where the probability ratio is

rt(θ) =
πθ(at | st)
πθold(at | st)

. (38)

This objective prevents very large policy updates by clipping the ratio rt(θ) to the interval [1−ϵ, 1+ϵ]
when it would otherwise increase the magnitude of the advantage. The clipping parameter ϵ is set
to 0.15 in all experiments.
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The full optimisation objective combines the clipped policy loss, a squared-error value loss and an
entropy bonus to encourage exploration:

L(θ, ϕ) = Et

[
LCLIP(θ)− cV (Vϕ(st)− R̂t)

2 + cH H[πθ(· | st)]
]
, (39)

where cV controls the weight of the value loss and cH the strength of the entropy regularisation. In
the attacker experiments the discount factor is set to γ = 0.98 and λ = 0.92, while in the defender
and multi-agent experiments a slightly more conservative choice γ = 0.99, λ = 0.95 is used to
stabilise training in longer episodes.

Both environments provide an action mask that encodes the set of legal actions per timestep (e.g.
preventing interaction with non-existent or already classified hosts). During training and evaluation,
this mask is enforced by setting the logits of illegal actions to a large negative value, effectively
removing them from the support of the policy distribution. This greatly improves training stability
in the large Nmax ·K action space.

Algorithm 1 summarises the PPO training loop as implemented for both agents.
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Algorithm 1 PPO training for honeypot agents

1: Initialise policy parameters θ and value parameters ϕ
2: Set global timestep counter n← 0
3: while n < Ntotal do ▷ Collect on-policy rollout
4: for t = 0 to T − 1 do
5: Observe state st and action mask mt

6: Sample action at ∼ πθ(· | st,mt)
7: Execute at in the environment
8: Receive reward rt and next state st+1

9: Store (st, at, rt,mt) in buffer
10: n← n+ 1
11: if episode terminated or truncated then
12: Reset environment and continue
13: end if
14: end for ▷ Compute advantages and returns (GAE)
15: Compute value estimates Vt = Vϕ(st) for all stored states

16: Compute Ât and R̂t using GAE and bootstrapped VT

17: Normalise advantages: Ât ← (Ât − µA)/(σA + 10−8) ▷ Multiple epochs of minibatch
optimisation

18: for epoch = 1 to Kepochs do
19: Shuffle rollout indices and split into minibatches B
20: for each minibatch B ∈ B do
21: Compute policy logits with action masking for states in B
22: Evaluate new log-probabilities log πθ(at | st) for t ∈ B
23: Compute probability ratios rt(θ) and LCLIP

24: Compute value loss and entropy bonus
25: Take one gradient step on L(θ, ϕ) with Adam
26: Clip gradients to ℓ2 norm 0.5
27: end for
28: end for
29: Discard buffer and start new rollout
30: end while
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5.2.2 Graph Neural Network

Both the attacker and defender policies are implemented as graph neural networks that operate
directly on the graph-structured observations described in Section 5.1. Instead of learning a separate
embedding for each host in isolation, the network aggregates information over the full adjacency
matrix and per-node feature vectors, allowing the policy to condition each decision on the local
neighbourhood and broader network context. [Z+20]

Input representation. For the attacker, the environment constructs a node feature matrix
X ∈ RNmax×Fatt that encodes aggregated probe statistics for each host (Table 3), together with
a discovered adjacency matrix Adisc ∈ {0, 1}Nmax×Nmax , a known-host mask and a classified-host
mask. The PPO agent internally reconstructs these tensors from the flattened observation and
concatenates the masks and normalised remaining budget as additional per-node features.

For the defender, the environment provides a node feature matrix X ∈ RNmax×Fdef that includes
an explicit honeypot flag, a device-type one-hot encoding and normalised response parameters
(e.g. RTT statistics, banner noise, OS fingerprint score, artefact probability, service count, degree),
together with the full adjacency matrix A ∈ {0, 1}Nmax×Nmax and a scalar remaining-budget signal.
The remaining budget is broadcast to all nodes and concatenated as an extra feature.

Graph convolution layers Both agents use the same simple message-passing layer, denoted
GraphLayer, which can be viewed as a normalised graph convolution with separate linear trans-
formations for self-features and neighbour features. Given node embeddings H ∈ RN×d and an
adjacency matrix A ∈ {0, 1}N×N , the layer first adds self-loops,

Ã = A+ IN , (40)

and row-normalises:

Âij =
Ãij∑

k Ãik + 10−6
. (41)

Neighbour information is then aggregated as

Hneigh = ÂH, (42)

and combined with the original node embeddings through two learned linear projections:

H ′ = LayerNorm
(
ReLU(WselfH +WneighH

neigh)
)
, (43)

where Wself,Wneigh ∈ Rd×d are trainable weight matrices and LayerNorm is applied per node.
Stacking two such layers allows the policy to aggregate information from nodes up to two hops
away in the network.
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Policy and value heads After two graph layers, each node i has a d-dimensional embedding
hi ∈ Rd. The discrete action space is structured as Nmax blocks of K actions, where K = 8 is the
number of action types per host. The policy head is implemented as a shared linear projection

ℓi = Wπhi + bπ ∈ RK , (44)

applied independently to each node. The per-node logits are then reshaped into a single vector
of size Nmax ·K to form the logits of the global categorical policy πθ(a | s). Before constructing
the categorical distribution, the environment-provided action mask is applied by setting the logits
of invalid actions to a large negative constant, ensuring that illegal host–action combinations are
never sampled.

For the value function, node embeddings are first aggregated by a simple mean pooling:

h̄ =
1

N

N∑
i=1

hi, (45)

followed by a linear projection to a scalar:

Vϕ(s) = w⊤
V h̄+ bV . (46)

This global value estimate is used both for the critic loss and for GAE.

Parameter sharing across settings. The same graph-based architecture is used for the single-
agent attacker, the single-agent defender, and the attacker/defender in the adversarial arena. Only
the input dimensionality (attacker vs. defender feature vectors) and the observation flattening
logic differ. The graph layers and action/value heads remain identical. This design choice ensures
that any performance differences between experiments are due to changes in the environment and
training setup, rather than architectural confounds, and highlights the generality of the GNN-based
PPO approach for graph-structured honeypot environments.

5.3 Evaluation Metrics

This section defines the evaluation metrics used to quantify performance in the three experimental
settings: the single-agent attacker, the single-agent defender, and the adversarial arena. Across all
experiments, results are reported as averages over a fixed number of evaluation episodes, where
each episode samples a new random network with variable size Nactual ≤ Nmax. Metrics that depend
on classification outcomes are aggregated over all classification decisions across episodes, ensuring
comparability despite varying episode sizes.

In addition to task-specific metrics, the average episodic return E [
∑

t rt] is also reported, since
all agents are trained with PPO to optimise this objective. However, because shaped rewards can
obscure failure modes (e.g. trading off errors against efficiency), returns are complemented with
explicit, interpretable performance measures.
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5.3.1 Attacker Agent

The attacker’s objective is to correctly classify every host as either REAL or HONEYPOT under
partial observability and a finite probing budget. The environment terminates early when all hosts
are classified, or ends via budget exhaustion when the maximum number of actions Tmax is reached.
In the latter case, a penalty proportional to the number of remaining unclassified hosts is applied.

Classification Metrics Whenever the attacker executes a classification action (classify REAL
or classify HONEYPOT), the predicted label is compared to the true host type and accumulate
a confusion matrix with: TP being correctly classified honeypots, TN correctly classified real
nodes, FP falsely classified honeypots, and FN falsely classified real nodes. From these counts, the
following is computed:

Accuracy =
TP + TN

TP + TN + FP + FN
, (47)

Coverage and Efficiency Since a strict action budget is operated under by the attacker,
the efficiency with which complete classification is achieved is additionally measured through
classification coverage (#classified

Nactual
), budget usage (the number of actions used until termination,

normalised by Tmax), and early termination frequency (fraction of episodes that end because all
hosts are classified rather than because the budget is exhausted).

In this implementation, classification actions are only enabled once sufficient probe evidence has
been collected (banner and OS probe completion flags). This gating makes the “efficiency” metrics
meaningful: finishing early indicates not only fast classification, but also the ability to select
informative probes and stop probing when evidence is sufficient.

5.3.2 Defender Agent

The defender’s objective is to iteratively modify host response signatures such that honeypots
become less detectable, while real hosts do not become more suspicious. The defender is trained
and evaluated using a shaped reward derived from a heuristic detectability score computed relative
to a per-episode baseline estimated from REAL hosts.

Detectability-Bases Metrics [SPV23] For each host h, the environment computes a detectabil-
ity score D(h) ∈ [0, 10] by combining clipped z-scores of key signature features (e.g. RTT jitter,
banner noise, OS fingerprint, service count, graph degree), with additional penalties for unnaturally
low jitter and high artefact probability. Higher values indicate stronger deviation from “typical
real-host” behaviour.

These per-host scores are aggregated into:

D̄honeypot =
1

|H|
∑
h∈H

D(h), (48)
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D̄real =
1

|R|
∑
h∈R

D(h), (49)

where H and R denote honeypot and real host sets respectively.

During evaluation, per episode, the mean of these quantities over timesteps is reported (since the
defender acts multiple times per episode). The mean honeypot detectability averages D̄honeypot

across steps (lower is better), and the mean real-host detectability averages D̄real across steps
(should not increase).

Distributional Indistinguishability (KL) [ZLC+21] To quantify how similar honeypots
become to real hosts at the feature-distribution level, the KL-divergence between REAL and
HONEYPOT distributions over core response parameters (RTT mean/std, banner noise, OS
fingerprint, artefact probability, and graph degree) is computed. In the implementation, each feature
distribution is approximated as a 1D Gaussian and KL is averaged across features. Lower values
indicate that honeypot signatures have become statistically closer to real hosts.

Heuristic Attacker Success Metrics Finally, the defender is evaluated against a fixed heuristic
attacker that classifies hosts using the detectability score threshold τ :

ŷ(h) =

{
HONEYPOT if D(h) ≥ τ,

REAL otherwise.
(50)

From this rule the Attack Success Rate (ASR) and Honeypot Detection Rate (HDR) are computed.
The ASR is the fraction of all hosts correctly classified by the heuristic attacker, and the HDR
is the recall on honeypots, i.e. TP

TP+FN
. In this setting, strong defender performance corresponds

to lower ASR and lower HDR, since honeypots should become harder to identify while real hosts
remain benign.

5.3.3 Adversarial Arena

In the adversarial arena, both agents interact with the same underlying network: the defender
continuously mutates host signatures under full information, while the attacker probes and classifies
under partial observability and a shared finite budget. Episodes terminate when the attacker
exhausts its budget or when all hosts are classified.

Because rewards are coupled in a near zero-sum fashion (the attacker is harmed when the defender
is rewarded), both sides of the interaction must be captured in the evaluation rather than only
single-agent returns. Concretely, the following are reported: Average attacker return and average
defender return over episodes, attacker classification metrics (Accuracy) are computed exactly as in
Section 5.3.1, but now under defender interference, and classification coverage and budget usage,
indicating whether longer probe sequences are forced by the defender or the likelihood of budget
exhaustion is increased.
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This combination of metrics allows for the distinction between (i) defenders that are able to truly
reduce honeypot detectability and cause systematic attacker errors, versus (ii) defenders that mainly
delay the attacker without having its final classification quality changed.

6 Experimental Results

6.1 Attacker Agent Performance

This subsection evaluates the attacker agent in isolation. The attacker is tasked with classifying
network hosts as either REAL or HONEYPOT under partial observability and a finite probing
budget.

Figure 1 illustrates the training progression of the attacker agent. Episodic return (left y-axis)
and classification accuracy (right y-axis) are shown as functions of the training episode. Both
metrics exhibit steady improvement during training and converge to stable values toward the end
of training, indicating that the reward structure is well aligned with the classification objective and
that the learned policy has converged prior to evaluation.
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Figure 1: Training progression of the attacker agent showing episodic return (left y-axis) and
classification accuracy (right y-axis) over training episodes.

Next, performance is evaluated over 1000 independent evaluation rollouts. No learning or policy
updates occur during this phase. The primary metrics are classification accuracy and episodic return.
An aggregate overview of the attacker’s performance is provided in Table 5, while per-episode
behavior is illustrated in Figures 2 and 3.

Across the full evaluation set, the attacker performs a total of 22104 host classifications. Of these,
20257 classifications are correct and 1847 are incorrect, resulting in an overall classification accuracy
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of 91.64%. The attacker achieves a mean episodic return of 84.96, with returns ranging from 6.67
to 183.10. These results indicate that correct classifications generally outweigh probing costs and
misclassification penalties.

Metric Value

Evaluation rollouts 1000
Total classifications 22104
Correct classifications 20257
Incorrect classifications 1847
Overall accuracy 91.64%
Mean episode return 84.96
Standard deviation of return 41.91
Minimum episode return 6.67
Maximum episode return 183.10
Mean classifications per episode 22.10
Mean incorrect classifications per episode 1.85

Table 5: Aggregate attacker performance over 1000 evaluation rollouts

As shown in Table 5, the attacker consistently classifies a substantial number of hosts per episode
while maintaining a low average number of incorrect classifications. The relatively high standard
deviation in episodic return reflects variability in episode length and host composition rather than
instability in the learned policy.
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Figure 2: Per-rollout classification accuracy of the attacker agent over 1000 independent evaluation
rollouts using a fixed trained policy. Each point corresponds to one evaluation episode on a newly
sampled network instance. The ordering of rollouts on the x-axis is arbitrary and does not represent
training progression.

Figure 2 shows that classification accuracy remains consistently high across evaluation rollouts.
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This indicates that the trained policy generalizes well to previously unseen network configurations.
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Figure 3: Relationship between episodic return and the number of incorrect classifications across
evaluation rollouts. Episodes with more misclassifications yield lower returns, reflecting the asym-
metric penalty structure of the attacker reward function.

Figure 3 illustrates the negative correlation between the number of incorrect classifications and
episodic return. Episodes with a higher number of errors tend to produce lower returns, confirming
that misclassifications are effectively discouraged by the reward structure.

Overall, the attacker agent demonstrates robust and stable performance in the single-agent evaluation
setting. With an overall accuracy exceeding 91% and predominantly positive episodic returns, the
attacker provides a strong baseline for subsequent experiments in which it operates against an
adaptive defender.

6.2 Defender Agent Baseline

This experiment evaluates the defender agent in isolation. The defender’s objective is to reduce the
detectability of honeypots under conventional heuristic-based detection methods, while maintaining
realistic behavior for real hosts. This experiment establishes a non-adversarial baseline prior to the
adversarial arena evaluation.

Two defender strategies are compared: a Reinforcement Learning defender trained using Proximal
Policy Optimization (PPO), and a random baseline defender that applies defensive actions uniformly
at random.

Figure 4 illustrates the training progression of the PPO-based defender agent. The figure reports
episodic return (left y-axis) and honeypot detection rate (HDR) (right y-axis) as a function of
the training episode. During the early stages of training, episodic returns are lower and more
variable, reflecting exploratory behavior and ineffective honeypot configuration strategies. As
training progresses, the defender slowly improves its performance, achieving higher returns as it
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learns to deploy honeypots in a manner that reduces heuristic-based detectability while preserving
realistic behavior for real hosts.

When examining the honeypot detection rate (HDR), a pronounced initial decline can be observed
during the early training episodes. This sharp decrease indicates that the defender rapidly learns to
manipulate host characteristics in ways that significantly reduce heuristic-based honeypot detection.
As training continues, the rate of improvement diminishes and the HDR gradually plateaus,
stabilizing at a value slightly below 0.2. The observed plateau suggests that the agent converges
to a strategy that achieves a favorable trade-off between minimizing honeypot detectability and
maintaining realistic behavior across the network.

The policy obtained at the end of training is used for all defender evaluation experiments reported
in this section.
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Figure 4: Training progression of the defender agent showing episodic return (left y-axis) and
honeypot detection rate (right y-axis) over training episodes.

Both strategies are evaluated over 1000 independent evaluation rollouts, with no learning or policy
updates during evaluation. Performance is measured using episodic return, Attacker Success Rate
(ASR), Honeypot Detection Rate (HDR), mean detectability scores for honeypots and real hosts,
and the KL divergence between honeypot and real host behavior distributions. An aggregate
comparison is shown in Table 6, while per-rollout evaluation outcomes are illustrated in Figures 5
and 6.
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Metric PPO Defender Random Defender

Evaluation rollouts 1000 1000
Mean episode return 5.31 -0.75
Mean Attacker Success Rate (ASR) 0.48 0.73
Mean Honeypot Detection Rate (HDR) 0.18 1.00
Mean honeypot detectability 3.89 8.03
Mean real host detectability 2.88 2.90
Mean KL-divergence 11.28 5.93

Table 6: Aggregate defender performance over 1000 evaluation rollouts

Table 6 shows that the PPO-trained defender substantially outperforms the random baseline across
most evaluation metrics. The PPO defender achieves a positive mean episodic return of 5.31,
whereas the random defender yields a negative mean return of -0.75, indicating ineffective honeypot
deployment. The mean attacker success rate is reduced from 0.73 under random deployment to
0.48 when using the PPO defender. Similarly, the honeypot detection rate drops sharply from near-
certain detection (HDR = 1.00) for the random baseline to 0.18 for the PPO defender, indicating
that honeypots deployed by the PPO defender frequently evade heuristic-based detection.
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Figure 5: Per-episode attacker success rate for the PPO defender and random baseline across 1000
evaluation rollouts.

Figure 5 shows the distribution of attacker success rates across evaluation rollouts. For nearly
all episodes, the PPO defender yields substantially lower attacker success rates than the random
baseline, demonstrating the effectiveness of learned defensive strategies under heuristic attack.
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Figure 6: Per-rollout KL-divergence between honeypot and real host behavior distributions for
PPO and random defenders.

Figure 6 reports the per-episode KL-divergence between honeypot and real-host feature distributions.
Lower KL-divergence values indicate greater statistical similarity between honeypots and real hosts.

In contrast to the detectability-based metrics, the PPO defender does not achieve lower KL-
divergence than the random baseline. On average, the PPO defender exhibits a higher KL-divergence
(11.28) compared to the random defender (5.93). This indicates that while the PPO defender is
highly effective at reducing heuristic detectability, it does not explicitly minimise full distributional
similarity between honeypots and real hosts.

This discrepancy is expected given the reward design. The defender is trained to reduce a heuristic
detectability score rather than to optimise KL-divergence directly. As a result, the learned policy
focuses on suppressing the specific fingerprinting features used by heuristic detection methods, even
if residual distributional differences remain across the full feature space.

These results highlight that low attacker success rates do not necessarily imply full statistical indis-
tinguishability, and that heuristic robustness and distributional matching capture complementary
aspects of honeypot deception quality.

Overall, the results demonstrate that Reinforcement Learning enables the defender to learn effective
honeypot deployment strategies that significantly reduce detectability under heuristic-based analysis.
Although honeypot detection is not eliminated entirely, the PPO defender achieves substantial
improvements over random deployment across most evaluation metrics. These results justify the
use of the PPO defender as a baseline for the adversarial arena experiment presented in the next
section.
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6.3 Adversarial Arena Results

This section evaluates the interaction between the RL-based attacker and RL-based defender in
the adversarial arena using fixed, fully trained policies. In this setting, both agents act on the
same network environment and pursue opposing objectives. The attacker aims to classify hosts as
either REAL or HONEYPOT under partial observability and a finite probing budget, while the
defender actively modifies host signatures to reduce detectability. As in the single-agent attacker
experiment, classification accuracy is the primary performance metric, as it directly reflects which
agent dominates the interaction in terms of task outcome.

Evaluation is performed over 1000 independent evaluation rollouts. Each episode is initialized
with a newly sampled random network configuration and terminates when the attacker exhausts
its probing budget or reaches a terminal classification state. No learning or policy updates occur
during evaluation. All reported metrics are computed from environment ground-truth classification
outcomes.

Classification Accuracy Table 7 summarizes the attacker’s classification performance in the
adversarial arena. Across all rollouts, the attacker performs a total of 17818 classifications, achieving
a mean rollout accuracy of 0.77. This represents a substantial degradation compared to the
isolated attacker setting, where accuracy exceeded 0.91, demonstrating that the defender is able to
meaningfully interfere with the attacker’s decision-making process.

Metric Value

Evaluation rollouts 1000
Total classifications 17818
Mean classifications per rollout 17.82
Mean rollout accuracy 0.77
Minimum rollout accuracy 0.33
Maximum rollout accuracy 1.00

Table 7: Aggregate attacker classification performance in the adversarial arena.

Figure 7 shows the per-episode classification accuracy across evaluation rollouts. Accuracy varies
substantially between episodes, ranging from near-perfect performance to episodes with pronounced
misclassification. This variability reflects the stochastic and adversarial nature of the environment,
in which defender actions dynamically alter host signatures and disrupt the attacker’s learned
probing heuristics. The ordering of episodes on the x-axis is arbitrary and does not represent
training progression.
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Figure 7: Per-rollout attacker classification accuracy in the adversarial arena.

Classification Errors To further analyze the source of accuracy degradation, Table 8 reports
the mean number of correct and incorrect classifications per rollout. On average, the attacker makes
approximately 4 incorrect classifications per rollout, indicating that defender-induced ambiguity
does not merely delay decisions, but actively causes systematic misclassification.

Metric (per rollout) Mean

Classified hosts 17.82
Correct classifications 13.72
Incorrect classifications 4.10

Table 8: Mean per-rollout classification outcomes in the adversarial arena.

Episodic Returns Although episodic return is not the primary evaluation metric, it provides
insight into the efficiency and cost structure of the interaction. Table 9 reports attacker and defender
returns. As expected from the zero-sum reward formulation, returns are strictly anti-correlated.

Metric Attacker Defender

Mean episode return 73.73 -73.73
Standard deviation 25.35 25.35
Minimum return 0.74 -145.75
Maximum return 145.75 0.74

Table 9: Episodic returns in the adversarial arena.

Figure 8 visualizes the distribution of attacker returns. The distribution is shifted towards lower
values compared to the isolated attacker baseline, reflecting increased probing costs and misclassifi-
cation penalties induced by the defender’s actions.
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Figure 8: Histogram of attacker cumulative rollout returns in the adversarial arena.

Summary. The adversarial arena results reveal a clear asymmetry between the two agents. While
the defender substantially degrades attacker performance relative to the single-agent baseline, the
attacker retains outcome dominance with respect to its primary objective. A mean classification
accuracy of approximately 75% indicates that the attacker continues to identify honeypots reliably,
performing far above random chance even under active defensive interference.

At the same time, the reduction from over 90% accuracy in the isolated setting to approximately
75% in the adversarial arena demonstrates that the defender meaningfully disrupts the attacker’s
decision process. Rather than neutralising the attacker entirely, the defender increases ambiguity,
variance, and misclassification frequency, thereby raising the cost and uncertainty of successful
detection.

These results suggest that the adversarial interaction does not converge to a balanced equilibrium,
but instead to a regime in which the attacker retains outcome dominance while the defender exerts
significant resistance. From a defensive perspective, this implies that adaptive honeypot deployment
can substantially reduce attacker efficiency, even if it cannot fully prevent successful detection by a
well-trained attacker.

7 Discussion

This thesis investigated the interaction between Reinforcement Learning based attackers and
defenders in the context of honeypot detection and deployment. Three experimental settings were
explored: a single-agent attacker, a single-agent defender baseline, and a fully adversarial arena in
which both agents act simultaneously on a shared environment. This section discusses the main
findings, situates them in the broader research context, and reflects on their implications and
limitations.
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7.1 Interpretation of Results

The experimental results demonstrate that a Reinforcement Learning based attacker can learn
to reliably detect honeypots under partial observability and budget constraints. In the single-
agent setting, the attacker achieves high classification accuracy, indicating that the graph-based
observation and probing strategy provide sufficient detail to distinguish real hosts from honeypots
when no adaptive countermeasures are present.

When introducing an adaptive defender in the adversarial arena, attacker performance is substantially
degraded. Average classification accuracy drops to approximately 75%, compared to over 90% in
the isolated setting. This reduction confirms that an RL-based defender is capable of meaningfully
interfering with the attacker’s decision process by dynamically modifying host signatures and
increasing ambiguity in probe responses. The defender therefore succeeds in its primary objective
of reducing attacker efficiency and reliability.

However, despite this degradation, the attacker remains dominant. An average accuracy well above
random chance (50%) indicates that the attacker still extracts sufficient information to correctly
classify most hosts, even under active defensive interference. This asymmetry suggests that the
adversarial interaction does not converge to a balanced equilibrium in which neither agent has a
clear advantage. Instead, it converges to a regime where the attacker retains dominance over the
final outcome (correct classification).

This distinction between outcome dominance and resistance is critical. From a defensive perspective,
success does not require complete prevention of honeypot detection. Rather, increasing uncertainty,
delaying classification, and forcing attackers to expend additional resources already constitute
meaningful defensive gains. The arena results show that adaptive honeypot deployment can
substantially reduce attacker effectiveness without fully neutralising a well-trained adversary.

7.2 Emergent Adversarial Dynamics

The adversarial arena reveals several qualitative dynamics that are not observable in the single-
agent experiments. First, classification accuracy exhibits higher variance across episodes, suggesting
that the defender’s actions create dynamic conditions that the attacker cannot fully anticipate.
Second, episodic returns indicate that misclassifications are often coupled with inefficient probing
behaviour, implying that the defender not only induces errors but also disrupts the attacker’s
exploration–exploitation balance.

Importantly, the zero-sum reward coupling in the arena directly aligns defender incentives with
attacker failure. This leads to a form of co-adaptation in which the defender learns to exploit
weaknesses in the attacker’s probing and classification strategy, while the attacker attempts to
compensate by probing more conservatively or delaying classification. The resulting interaction
resembles a cat-and-mouse dynamic rather than convergence to a fixed strategy, highlighting the
suitability of multi-agent Reinforcement Learning for studying evolving cyber-security threats.
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7.3 Implications for Honeypot Design

The findings of this thesis suggest that static honeypot configurations are insufficient against
adaptive attackers, but that fully eliminating honeypot detection may also be unrealistic. Instead,
adaptive honeypot deployment should be viewed as a means of increasing attacker uncertainty and
operational cost rather than as a binary success–failure mechanism.

The defender’s ability to significantly reduce attacker accuracy without direct knowledge of the
attacker’s policy supports the use of Reinforcement Learning for autonomous cyber deception. By
continuously adjusting timing behaviour, banners, OS fingerprints, and artefact probabilities, the
defender can maintain honeypots that remain plausibly realistic over time, even in the presence of
learning-based attackers.

At the same time, the persistence of attacker dominance highlights the importance of combining
adaptive honeypots with other defensive measures. Honeypots should therefore be considered one
component in a layered defence strategy rather than a standalone solution.

7.4 Limitations

Several limitations of this work should be acknowledged. First, the environment relies on a simulated
abstraction of network behaviour and honeypot artefacts. While this abstraction is sufficient to
demonstrate proof-of-concept adversarial dynamics, real-world networks exhibit significantly more
complexity, noise, and heterogeneity. As a result, absolute performance values should not be
interpreted as direct indicators of real-world effectiveness.

Second, both agents are trained using fixed reward structures that encode specific assumptions
about attacker and defender objectives. Different reward designs could lead to different strategies,
particularly for the defender. Additionally, both agents use the same PPO-based training framework
and similar network architectures, which may bias the interaction dynamics. Moreover, the PPO
hyperparameters were selected based on commonly used values in the literature and were kept
fixed across all experiments. No systematic hyperparameter tuning was performed. Consequently,
the absolute performance of the agents may be suboptimal, as PPO performance is known to be
sensitive to hyperparameter choices. However, since identical hyperparameter settings were used
throughout, the comparative results and observed trends remain valid.

Finally, the attacker and defender are not co-trained in a fully iterative self-play regime. Each agent
is evaluated against a fixed counterpart, which limits the extent to which long-term co-evolutionary
dynamics can be observed.

7.5 Future Work

Future research could extend this work in several directions. A natural next step is to investigate
iterative self-play, where attacker and defender policies are alternately retrained against each other

43



to study whether more balanced equilibria emerge. Another promising direction is to introduce
multiple attackers or heterogeneous attacker models, reflecting the diversity of real-world adversaries.

Further realism could be achieved by integrating richer network simulations or hybrid simula-
tion–emulation environments, allowing the defender to operate under more realistic constraints.
Finally, exploring alternative learning paradigms, such as population-based training or opponent
modelling, could provide deeper insights into strategic adaptation in adversarial cyber-security
settings.

Future work could also investigate the impact of systematic hyperparameter tuning on convergence
speed and final performance, particularly in the adversarial setting where PPO is sensitive to
parameters such as the learning rate, clipping range, and entropy regularization.

7.6 Summary

In summary, this thesis demonstrates that Reinforcement Learning provides a powerful framework
for modelling both honeypot detection and adaptive honeypot deployment. The adversarial arena
results show that while an RL-based attacker remains capable of detecting honeypots, an RL-
based defender can substantially reduce attacker effectiveness. Rather than producing a balanced
stalemate, the interaction yields a nuanced outcome in which attacker dominance is tempered
by meaningful defensive resistance, offering valuable insights into the design of adaptive cyber
deception systems.

8 Conclusion

This thesis investigates the application of Reinforcement Learning (RL) to honeypot detection
and adaptive honeypot deployment in networked environments. By modeling both attackers and
defenders as learning agents within a graph-based abstraction of an enterprise network, this work
addresses the central research question: How effectively can an RL-based attacker detect honeypots,
and how can an RL-based defender adaptively deploy honeypots to minimize detection?

Three distinct experimental settings were employed to explore the central question and its sub-
questions:

8.1 Sub-Question 1

The first experiment focused on training a single-agent attacker to classify hosts in a network
environment with partial observability and budget constraints. The results demonstrated that the
RL-based attacker could successfully learn to probe and classify devices, achieving high classification
accuracy and stable episodic returns when no adaptive countermeasures were in place. This indicates
that Reinforcement Learning is a promising approach for modeling honeypot detection, as the agent
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was able to adapt its behavior and optimize its probing strategies.

8.2 Sub-Question 2

The second experiment examined the performance of a single-agent defender trained using Rein-
forcement Learning. The defender was evaluated based on conventional detection heuristics, such
as those focused on timing or signature-based analysis. The results revealed that the PPO-trained
defender significantly outperformed a random baseline, effectively reducing the detectability of
honeypots while maintaining realistic behavior for legitimate devices. This experiment supports the
idea that Reinforcement Learning allows for dynamic and adaptive honeypot deployment strategies,
which outperform static configurations. The defender agent learned to adjust the deployment of
honeypots to better evade detection by the attacker, showcasing the adaptability of RL-based
defenders.

8.3 Sub-Question 3

The third experiment involved an adversarial setting in which both the RL-based attacker and
defender interacted within the same environment. In this setup, the attacker’s performance was
significantly impacted compared to when it was trained in isolation. The classification accuracy of
the attacker dropped to approximately 75%, and its episodic returns were reduced, indicating that
the defender’s adaptive deployment strategies successfully disrupted the attacker’s decision-making
process. While the attacker was still able to maintain classification accuracy above random chance,
the interaction revealed that adaptive defense strategies increase uncertainty and the cost for
attackers, forcing them to expend additional resources. These findings highlight that while the
attacker retains a degree of effectiveness, the defender can meaningfully degrade the efficiency of
honeypot detection.

8.4 Answering the Central Research Question

Taken together, these results demonstrate that honeypot detection and deployment can be
framed as an adversarial Reinforcement Learning problem, where both attackers and
defenders can adaptively learn and adjust their strategies. The interactions between the RL-based
attacker and defender do not converge to a trivial equilibrium where one agent completely dominates
the other. Instead, the system exhibits a nuanced dynamic in which attackers remain capable of
detecting honeypots, but defenders can significantly reduce the accuracy and reliability of the
attacker’s decisions.

This suggests that adaptive honeypots should not be viewed as a binary mechanism that either
succeeds or fails. Rather, their value lies in their ability to increase uncertainty, delay correct
decisions, and force attackers to invest more resources into detection, ultimately raising the cost
for the adversary. Thus, the use of adaptive honeypots can be a valuable component of a broader
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cybersecurity strategy, especially when used to introduce additional complexity and unpredictability
into the attacker’s decision-making process.

In conclusion, this thesis contributes a unified experimental framework for studying honeypot
detection and deployment using Reinforcement Learning, demonstrates the feasibility of both
attacker and defender learning agents, and provides empirical evidence that adaptive defense can
meaningfully counter learning-based attackers. These results support the broader view that future
cybersecurity systems must themselves be adaptive, capable of responding to evolving adversaries
rather than relying on static assumptions about attacker behavior.
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