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Abstract

In this thesis, methods are explored to use model embeddings to assist in predicting response
times for a picture naming task. We are interested in producing meaningful model representa-
tions. If this succeeds, we are interested whether these model representations can be improved
by using a model which is more aligned to human cognition. Three models will be assessed for
this task. These are a multilingual CLIP VLM model, a multilingual transformer model, and
a multilingual ELMo model. The latter being a model aligning to human cognition to evaluate
if these embeddings will be more meaningful than that of the other models. We use the cosine
distance, surprisal and spearman correlation to evaluate the models and compare them with
each other using linear mixed models and the Bayesian Information Criterion (BIC) score.
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1 Introduction

Human behavior is more complex than it may seem, as simple actions like talking can be broken
down into many smaller tasks, such as formulating sentences, using the right grammar, producing
the right vocal tones and choosing the right words. Understanding these smaller tasks can help
provide a better understanding and explanation of our behavior. This is what the field of cognitive
psychology aims to achieve. This can be studied by collecting behavioral data from experiments on
language tasks.

Language tasks can be subdivided into two main categories: Firstly, language comprehension, which
is about understanding the language. Mainly studied using reading and listening tasks as it deals
with lexical access, parsing and semantic interpretation. Tasks that are studied in this category are
reading or listening tasks.

Language production tasks regard to the output of language. Conceptualization, formulation and
syntactic planning are main cognitive processes involved with production tasks. An important
task to study language production is picture naming. This can be evaluated by performing an
experiment in which participants will have to name pictures out loud. In this thesis, data from
such an experiment will be studied. This experiment has been performed in Dutch, with a total of
39 participants.

For language tasks humans predict words that follow each other [PG07]. When the predicted words
fall within the context of the current event, this is known as facilitation comprehension. Interference
comprehension is the opposite, which triggers an error or delayed response.

An efficient way to understand and explain processes like that of human behavior, is by using (large)
language models. Many concepts within the field of Artificial Intelligence (AI) are based on human
biology and psychology. Our mental working memory system which lets us temporarily hold and
manipulate information has inspired multiple architectures in AI, think of (self) attention, scaling
and the Long Short Term Memory (LSTM). The latter being a type of Recurrent Neural Network
(RNN) which sequentially processes information through different types of gates. Predictive models
in the field of AI, such as LSTMs, can be trained to try and perform a human task and accurately
predict trends or sequential data. Large language models (LLMs) have proven to be an efficient
method for assisting in natural language processing tasks [NKQ+25].

In this thesis we will be using multilingual models, as the experiment was performed in Dutch, to
assess and compute the data of the experiment to provide us meaningful embeddings. We will use
the CLIP Visual Language Model, as this model is parallel to the recognition task in humans. A
setup using the multilingual Roberta transformer is also used as this is the state-of-the-art method
to handle and interpret text. And finally an ELMo model is used, because this model aligns to
human cognition since information is processed sequentially. Therefore, only the embeddings from
the forward layers are used for the latter model.

Since this thesis takes a leap into psychology, some terms unfamiliar for those who have no back-
ground in this field will be explained so that it can be understood why certain choices were made
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for the methodology in this thesis.

Representations describe how a concept is conceptualized in a system. For example, a mental
representation of a car could be a simple outline of wheels with a rectangular shape above the
wheels. While models can represent the car by means of embeddings. In this thesis models will
represent ’their idea’ of sentences and labels using embeddings, these embeddings will be used to
predict response times.

As mentioned before, a closer look will be take at a picture naming task in this thesis. In this task
participants were presented with different sentences followed by a work that would either fit the
context or not. When a participant is presented with stimuli that negatively affects the context of
the prior stimuli, this is known as interference. When the opposite is the case and the presented
stimuli positively affects the prior stimuli, we speak of facilitation. Both interference and facilitation
are studied using either response times (RTs) or error rate. Interference in cognitive psychology
can have negative effects on a participants response time, while facilitation can improve it as was
studied by J. Neely et al. [Nee77].

Since language tasks involve predictions, the context of the task is important, as the agent will
continue to predict the succeeding stimulus. When a stimulus adheres to the previously established
context, the stimulus-context pair is congruent. If the opposite is the case, the pair is incongruent.
A stimulus can only be congruent or incongruent when the prior context is constraining, meaning
that only stimuli from certain categories would fit the context presented. It could also be the case
that the established context is not constraining. In these cases, the stimulus-context pair is neutral.
E. Wilcox and J. Gauthier explored the use of deep transformer models and LSTMs on a language
comprehension task [WGH+20]. Suprisals were used, measuring how uncertain the model is about
its prediction, as a means of representation to predict human reading time. They found that all
transformer models outperformed the RNN models and that there is a linear relation between
word-level surprisal and human reading time. L. Salicchi and A. Lenci [SL21] compared different
word embedding models to predict human reading patterns, they used the best cosine distance and
surprisal metrics from each model to outperform baseline methods, showing how these metrics can
be a good measure to optimize for predictions.

1.1 Thesis overview

In this thesis, different approaches using different models will be used to provide embeddings to
help predict human RTs.

The main research question is:
Can we use model-based representations to predict human response times in a language
production task?

That is, given the data from a language production task, is it possible for a model to provide
meaningful embeddings, in which a clear distinction can be found regarding congruency. Following
this question we are also interested in:
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SQ1: Can we improve these embeddings by using models more aligned with human cognition?

To answer the secondary question, we will compare the models with each other. In our case we will
be comparing an LSTM setup vs a transformer and a CLIP vs a non-CLIP setup. We do think that
the human aligned model will improve the embeddings, since it is more aligned and thus processes
the information sequentially in a similar way to humans.

In a recent study by Zheng et al. (in prep) an EEG experiment has been conducted in which
participants were asked to read words on a screen that were followed by a picture. The participants
were required to only name the picture as fast and accurate as possible. These pictures could fall
within the context of the sentence (congruent) or not (incongruent), or be neutral for sentences
which do not constrain the picture to be in a certain context, leading to a diversity in response
times (RT) by the participants. The data from this experiment will be used in this thesis. The full
experiment will be discussed in Chapter 2.1

In this thesis I will first provide a background on research that has been conducted using LLMs
on language tasks and explain terminology that is used to understand the psychological concepts
better in chapter 2. In chapter 3 I will dive in the methodology, explaining how I will tackle the
presented problem by taking a closer look at the models and the metrics that I will be using to
help predict response times. In chapter 4 I will present my results and compare these results to
those of the participants of the language production task mentioned before. In Chapter 5 I will
discuss my work, its limitations, and what further work can be done.
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2 Previous studies and task

In this chapter, the task that will be studied will be explained in detail and relevant studies will
be brought up to understand what the current state of language production tasks and predicting
response times is. In 2.2 studies using LLMs are inspected in which ways to evaluate their data are
brought up, this will clarify choices for our evaluation methods. Finally in 2.3 prior studies will be
addressed to provide context on the current state of the work done on language tasks using LLMs.

2.1 The task

The language production task that will be taken a closer look at in this thesis is a contextualized
picture naming task. Data were collected from 39 participants in the Sylvius lab in Leiden.
Participants were required to be native Dutch speakers, since the experiment mandates them to
read dutch words and name pictures in dutch out loud. Furthermore, participants were between the
ages of 18 and 26, right-handed and had normal or corrected-to-normal vision. Participants’ EEG
were recorded using a BioSemi 64-channel system, following 10-20 electrode placement system so
that neural activity could be measured while performing the task.

2.1.1 The Experiment

During the experiment, participants would first be shown a fixation mark (‘+’) for 500 ms. Following
the fixation mark, dutch words would be shown one by one for a duration of 500 ms on a screen.
Between each word an empty slide would be shown. A total of 4-6 words were shown on the screen,
after which the pre-picture interval (‘...’) would be shown for 800 ms. Following the interval, the
picture was shown until the participant named the picture or ran out of time. The particpants were
instructed to name the pictures as fast as possible.

In total there are 60 target pictures used, each occurred once in one of the three conditions. So in
total there are 180 trials per subject.

After certain sentence-picture pairs, a question regarding the context was asked, a probe, to ensure
that the participant would pay attention to the context of the sentence rather than ignoring the
words and only naming the picture as fast as possible. An example of the probe is present in the
top right of figure 1.
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Figure 1: An illustration of the picture-naming task. The black slides on the diagonal show the
timeline of an example sentence. On the bottom left three different examples for each congruency
category are displayed. In the top right, an example probe is displayed. Note that the actual stimuli
in the experiment were in Dutch.

The sentence-picture pairs that were shown to participants can be clustered in three different
categories based on congruency. Figure 1 showcases examples of these categories. The context for
the congruent and incongruent pairs is identical and leads to a clear prediction, while for the neutral
class this is not the case.

2.1.2 Data

In this thesis, I will use the data collected in the contextualized picture naming task. The analysis
will focus on the naming RTs. The crucial variables include the presented sentences, pictures,
response times, congruency class and the final expected word.

2.2 On cognitive modeling of language processing

The brain implicitly makes predictions to assist in language processing. M. Heilbron, K. Armeni et
al. [HAS+22] concluded that neural responses to speech are ”modulated by continuous linguistic
predictions”. The brain is predicting upcoming language and whenever a violation is perceived, an
error response was observed in the EEG and MEG data of participants listening to audiobooks.
Providing proof that prediction by the brain is continuous and probabilistic, they used a GPT-2
model to calculate the surprisal:
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S(xt) = −log2P (xt|context) (1)

The surprisal indicates how unexpected the next word is given the previous context. There is a
negative correlation between the suprisal and the logarithmic probability, since for a high probability
that the next word is for example ’car’ the surprisal is low.

Stefan L. et al. [FOGV15] found that the amplitude of the N400 wave was strongly correlated to
the surprisal not the entropy and that this relationship was linear. Besides, two models were used
to correlate brain data with. These were an RNN and N-gram model. The results showed that the
RNN fitted the brain data better than the N-gram model.

L. Wang et al. [WKJ18] used MEG in combination with Representational similarity analysis
(RSA) to show that the brain activates signals for a expected word before the word pops up on
screen. RSA is a powerful framework which compares relationships with each other and visualizes
this by means of a Representational Dissimilarity Matrix (RDM). The study showed that neural
patterns were more similar when different contexts predicted the same words, than when they pre-
dicted different words. They also found that the brain predicts specific concepts instead of categories.

These studies all used LLMs and provided metrics that can be used to validate and visualize model
representations, such as by using the surprisal or RDMs.

2.3 Prior studies using LLMs to predict RTs

Studies has been conducted on language comprehension tasks using LLMs to predict RTs of
participants. E. Wilcox, J. Gauthier et al. [WGH+20] studied the relation between surprisal and
human reading times using N-gram models and transformer models. They found a linear relation
between the surprisal of a model and human reading times. The main founding of the paper was
that to predict human reading times this is mainly based on the models capacity to predict future
words.

T. Kuribayasi et al. [KOBI22] found that by limiting the context window of a model, instead of
letting the model perceive the entire history improved the model’s ability to predict human reading
times, supporting memory based theories. This was mostly helpful in the cases were memory
retrieval is costly for humans.

D. Merkx, S. Frank et al. [MF21] studied the architecture of human language processing. Their hy-
potheses were that humans process language sequentially, aligning with how RNNs process, and also
retrieve past information, aligning with transformers. They trained both transformers and RNNs on
the same data to predict surprisal estimates. The results showed that transformer models outperform
the RNN models in both predicting human reading times and predicting the N400 wave. Trans-
former models were able to capture interference effects better than the RNN models, since the RNN
models only forget context over time, while transformer models can forget due to a change in context.
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These studies all used LLMs to predict response times. Their results indicated that these are valid
models to use to capture patterns from the data, with the Transformer models outperforming the
RNN models. Additionally, the surprisal showed to be a meaningful metric to interpret the relation
between human response and transformer models.
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3 Methodology

In order to answer the research questions, different models will be set up, validated, and acquired
embeddings from. First, these models will be examined to establish an understanding about them,
taking a closer look at how they work. Secondly, the models need to be validated, to check if
meaningful embeddings can be provided rather than random outputs.

First, a setup using the Contrastive Learning Image Pre-training model (CLIP) will be used to
acquire model representations. We chose to use this model because it is parallel to the behavioral
task of recognition. CLIP has proven to be a powerful tool for aligning images and text, both of
which are used for the production task. Another setup using a transformer will also be studied. We
are also interested in finding if the task effect is in place, meaning that the behavior of the model is
driven by the constraints or semantics of the task, this should apply to all models. I will explain
the CLIP architecture and the hyperparameter choices which were made, in the following sections.

3.1 CLIP

3.1.1 CLIP Architecture

A. Radford et al., 2021 [RKH+21] introduced CLIP. CLIP consists of two encoders, an image
encoder and a text encoder. For this thesis, paired multilingual encoders will be used, since these
are able to handle Dutch data. These encoders are trained on the WebImageText (WIT) dataset,
created by the authors themselves, which contains over 400 million text-image pairs in English.
Later, datasets such as LAION-5B [SBV+22] were created by the community. This data set contains
over 5 billion pairs and is multilingual.

There are two types of image encoders that can be chosen to assist in tasks. The ResNet encoders and
the Vision Transformer (ViT) encoders. The ResNet encoders processes images using convolutions,
which allows it to handle translation invariance and capture textures and edges in images highly
detailed. ResNet encoders are slower to train and additionally have a worse global understanding,
since relationships between distant objects are harder to understand. This is due to the convolutions
looking at small local neighborhoods.

The ViT encoders on the other hand, processes the image in patches which it will flatten and feed
into a Transformer. The Transformer uses Self-Attention [VSP+17] to form relations between each
patch. The Self-Attention mechanism reads everything simultaneously and calculates relationships
between each element using three small neural networks known as the Query(Q), Key(K) and
Value(V ). For each element the Q will be compared against all K elements calculating a score:

Score = Q ·KT (2)

The V of each matching element will be taken and weighted by the score to create a better
representation of the current element. By using a Class Token (CLS), data from all other patches
are collected as the image data passes through the network. ViT encoders are much more computa-
tionally efficient than ResNet encoders, allowing massive models to be trained. ViT encoders are
also able to capture global context easily. By increasing the image resolution, the number of patches
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increases quadratic, making a model slower while ResNet encoders handle image size more linearly.

Different text encoders can be used. The original paper [RKH+21] used a transformer encoder,
while a encoder-only [JYX+21] or encoder-decoder architecture [CBW+23] can also be used. In
section 3.1.2 the choice of text encoder for this research and its architecture will be clarified.

Both the image and text encoder will work in parallel and first encode and apply L2-normalization
to the input projecting to a vector space of the same size, for example 512 which is used in this
thesis. This is one of the smaller dimension spaces and we have chosen to use this since the sentences
and labels, which are the one word image descriptions, that are used are short (4-6 words) and
describe simple objects (think of a cow, or book or newspaper). Figure 2 shows this process. In this
thesis, the CLIP model is only used for inference, however during training of the model, contrastive
learning is applied, minimizing the distance between the pairs (maximizing similarity) on the
diagonal and maximizing the distance for the other pairs.

Figure 2: Visualization [RKH+21] of the CLIP joint image and text encoder setup. The diagonal
displays the matching pairs for which the distance should be minimized using contrastive loss. The
distance for the remaining pairs should be maximized

In this thesis contrastive learning is not used, since we do not train the model, however the cosine
similarity and the loss functions do play an important part as these metrics are also used in our
evaluation. A brief description of the contrastive learning concept follows.

given N image-text pairs with image features: I1, I2, ..., IN and text features: T1, T2, ..., TN CLIP
aims to maximize similarity between Ii and Ti and minimize similarity between Ii and Tj where
j ̸= i. The similarity between each pair is calculated using the cosine distance:
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S = I · T T · eτ (3)

in equation 3, I represents the image embedding matrix, T the text embedding matrix and τ the
learned temperature value to sharpen or flatten the softmax distribution in the loss function.

Two cross-entropy losses are calculated: Image-to-Text loss LI→T and Text-to-Image loss LT→I :

LI→T = − 1

N

N∑
i=1

log
exp (Si,i)∑N
j=1 exp (Si,j)

(4)

LT→I = − 1

N

N∑
i=1

log
exp (Sj,j)∑N
j=1 exp (Si,j)

(5)

With total loss:

L =
1

2
(LI→T + LT→I) (6)

This loss function 6 ensures that matching pairs will have a high cosine similarity and non-matching
pairs will have a low cosine similarity.

3.1.2 Application

For this thesis no model will be trained. Instead, a model will be selected to use for inference,
therefore; the choices for the image and text encoders are the most important. Since the language
task was carried out using dutch image-sentence pairs, the text and image encoders should be able
to support the dutch language. Since the sentences are at most 6 words long and the images contain
simple concepts or objects, not many features have to be extracted from them. A simple model
would suffice. Therefore, only multilingual encoders with output in a 512-dimensional space were
mainly considered for this task.

The following image encoders were considered: The image encoder of the multilingual ViT base
model[RG19]. The original ViT-32 encoder [DBK+21], lastly an attempt was made with the ViT-H
image encoder [DBK+21], which outputs embeddings in a 1024 dimensional space. By applying a
linear layer, the projection dimension can be reduced from 1024 to 512 to align with the text encoder.

Regarding the text encoders, the following were considered: The text encoder of the multilingual
ViT base model[RG19], Roberta [CERS22] and the laion text encoder[CBW+23][SBV+22].

The ViT multilingual model was trained using multilingual knowledge distillation [RG20]. The
image encoder remained unchanged, using the original Clip-ViT-B-32 image encoder. The ViT-32
model was trained on the WIT dataset [RKH+21]. And the ViT-H model was trained on the
LAION-2B dataset [SBV+22].

The latter multilingual ViT CLIP model has its own pair of image and text encoder and we will
therefore validate this pairing. Furthermore the base ViT-32 image and text encoder pair is validated
as well, since this model is also trained on a multilingual dataset and is not large, being able to
handle shorter data as is applicable for our data. The combination of the ViT-H image encoder
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and Laion text encoder is examined as well, as these were trained together and since they output
to a higher dimension, possibly this model would be able to distinguish different semantic groups
better. Lastly, we chose to pair the multilingual ViT text encoder with the original ViT base image
encoder since these individual encoders showed the best results in validation as discussed in the
next section. To check if the individual encoders would deliver meaningful results, as validation step,
Representational Dissimilarity Matrixes (RDMs) were used to analyze how different the embeddings
from each encoder were in comparison with each other.

An RDM is a square matrix in which each row and also each column represents a different stimulus,
in our case a different label or image. Each cell contains the dissimilarity value of the corresponding
row-column pairing. The value is represented using a color, in our case the more yellow the cell,
the closer the vectors are in the dimensional space, the more similar they are.

3.1.3 Validation encoders

First, for each image and text encoder, each output embedding was compared to all other output
embeddings provided by the same encoder, to understand if relations between these text-text pairs
or image-image pairs can be extracted and correlation values would not be too high or too low.
We will do this by feeding the encoders all 60 labels to check if the diagonal will contain the most
similar values. Besides, both image and text inputs were semantically categorized as shown in table
1, such that it was easier to check for semantic relations between groups. This should be represented
in the RDM by each member of a category having higher similarity with the other members of the
same category. If the models were to capture context and semantics this would be visible through
squares indicating a higher correlation along the diagonal. The diagonal itself should consist of only
the value 1, since the embedding of each input is paired with itself. RDMs are used to visualize the
correlation of the outputs by the encoders.

Semantic category Range
(parts of) Animals 000-010

Nature 011-020
Food 021-025
Tools 026-044

Literature 045-047
Objects 048-059

Table 1: Semantic categorization of label elements and image elements input to the encoders for
the validation process

Secondly, for our chosen image-text encoder pairings, we will inspect the chosen pairs by checking
their image-sentence pair RDM and specifically looking at whether the highest value is on the
diagonal (matching image-label pair) and if semantic categorization can be seen along the diagonal
based on the ordering we did.

The images used for this validation process were the images used in the production task. The labels
are a single word describing the depiction. For each encoder, 60 inputs were embedded in the order
displayed in table 1. The following RDMs were produced for this process:
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(a) CLIP ViT-B-32 Multilingual image encoder (b) ViT-B-32 image encoder

(c) ViT-H-14 image encoder (d) LAION-2B text encoder

Figure 3: Comparison of Model RDMs (Part 1 of 2) showing 3 image encoders and 1 text encoder
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(e) M-CLIP XLM-R Large text encoder (f) multilingual text encoder

Figure 3: Comparison of Model RDMs (Part 2 of 2) showing the remaining 2 text encoders.

Comparing the RDMs of each image encoder with one another, for figure 3b the correlations look
best, since correlations between semantic groups can be observed along the diagonal as brighter
squares, while low correlation for other word pairing is perceived. For the encoder in figure 3a,
there are strong correlations between pairs that semantically have no strong correlations as can
be seen by the amount of squares not along the diagonal. The image encoder in figure 3c depicts
some semantic correlation along the diagonal, however the image embeddings are not as clearly
distinguishable as in figure 3b.

The results for the text encoders show that for figure 3d some semantic grouping around the
diagonal can be found, however no strong correlations. Figure 3e shows strong correlations, however
also for pairs not relevant. Figure 3f shows very strong correlations all around, making it less viable.

Based on these results, the pairings to be tested will be the following: the multilingual image and
text encoder since these have been trained together. The original ViT-32 image encoder has the
best results, and therefore will be paired with the Roberta transformer and the multilingual text
encoder. Finally, the ViT-H encoder and laion text encoder are paired since these output both
to a higher dimension and might have better distinctions between semantic groupings, these too
have been trained together as well. The validation of the encoders was necessary to see if different
encoders from different pairs could work together, since it could be the case that only one out of
the two encoders would interpret the data meaningfully.
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3.1.4 Validation pairs

Setting up different image-sentence encoder pairs using the same images and labels as used previously
to check the similarity by embeddings for each encoder. This validation is needed, since eventhough
individual text or image encoders can perform well, their embeddings might have been overfit to
the training data. By performing this validation, we get to see whether new data pairs can also
show meaningful results. The following results were observed, note that for each row in the RDMs
the highest value is highlighted with a white dot:
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(a) (b)

(c) (d)

Figure 4: Text-image encoder RDMs

Firstly, an indication of a good pairing and meaningful results would be that most of the white
dots will be visible on the diagonal, as the model correctly predicts which label matches to which
image the most. The results shown in figure 4a show a clean diagonal except for one image that is
correlated with a number of labels. After removing this image from the data, these labels would
correlate to two other images. Repeating this process these labels would then continue to correlate
with other images, this indicates that this setup would wrongly predict many image-text pairs and
would be unreliable. Figure 4b still shows too many mismatches all over the place while in figure 4c
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a clear diagonal can be seen and have provided the best results by any pair. Figure 4d have similar
results but more mismatches than in figure 4c. Therefore the image-text encoder pair from figure
4c will be used to provide the embeddings for the image-sentence pairs.

3.2 Cognitively aligned model

Since we are also interested whether a model more aligned to human cognition can improve these
embeddings, such a model will be explored as well. Since humans process information sequentially,
as do RNNs, we will use this model type. First, a closer look at the Long Short-Term Memory
(LSTM) network will be taken, since this model has much in common with how humans process
information, mainly its sequential approach is of interest here. We will specifically look at ELMO
which can be used to explore this problem.

3.2.1 LSTM

Examining the architecture of the LSTM, clear inspiration and foundations from human cognition
can be identified. The LSTM processes information based on the prior seen context, which resembles
working memory in humans. Figure 5 illustrates the architecture of an LSTM.

Figure 5: The architecture of a single cell part of a LSTM network [Ing21]

In figure 5 depicted by Ct−1 and Ct is the cell-state at timestep t, which is a data pathway through
the entire sequence, mimicking working memory. The forget gate is depicted as ft. The σ describes
the sigmoid activation with outputs between 0 and 1. The forget gate is in control of how much
information contained by the cell state passes through to the long-term memory onto the next
state, based on the current input xt and hidden state ht−1, and thus is in control of how much
information is remembered. This aligns with inhibition in human cognition.

The input gate it determines how much of the new information C̃t is stored in the long term
memory or cell-state Ct and mimics selective attention in humans. C̃t is encapsulated by a tanh
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function with outputs between -1 and 1 as the new information could contradict the already stored
information. The output gate ot decides what output should be revealed to the next layer based on
the current state.

3.2.2 ELMO

For this thesis, the ELMoForManyLangs [CLW+18] was chosen as model to align with human
cognition. This model is a bidirectional language model. A clear representation of its architecture
is shown in figure 6. After feeding the model text as input, word vectors will first be computed
by the character-CNN. These vectors will then be fed to the bi-directional LSTM. Since we
are interested in the unidirectional processing feature of an LSTM, the text will only be fed
into the forward layers, which processes the sentence in-order. The backward layers will be dis-
carded, such that these embeddings will not be used. The first forward layer will capture syntax,
aligning to the cognitive task of parsing and structure building. The second layer captures semantics.

Figure 6: Architecture of ELMo[PNI+18] [DCLT19]. ELMo uses trained left-to-right and right-to-left
LSTMs combining the vectors at the end. This thesis will only use both forward LSTMs and discard
the backward LSTM layers embeddings for the output.

3.2.3 Validation

To ensure that only the forward layers are used, this will have to be validated. In our CLIP model
we validated that the usage of the encoders would be meaningful by first checking for embedding
dissimilarities using RDMs and semantically grouped labels after which we assembled the image
and text encoder pairs. The validation process for ELMo looks different that that of the CLIP
model, as the main concern is that the embeddings of words w remain the same even in two
sentences x, y where every word up until n is equal. This means that for sentence x with word
order x1, x2, x3, ...xn, xn+1, ..xn+i and sentence y with word order y1, y2, y3, ...yn, yn+1, ..yn+i where
the words up until index n have constraint xi = yi, the embeddings up until that point should be
the same for both sentences. An example would be that the embedding for the sentence ”Dit is een
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voorbeeldzin” and ”Dit is een voorbeeldzin met meer tekst” would have the same embeddings for
the part of ”Dit is een voorbeeldzin”. Examples of sentences used to validate this model is shown
in table 2. No history should be tracked and therefore will not change the value of the embeddings.
The ELMo model has an implemented function which allows the embeddings after each layer to be
observed, and since the forward and backward layers embed the input separately, the output of the
second forward layer can easily be extracted. The model was tested using five sentences. For each
of these sentences the embeddings showed to be equal.

Sentence 1 Sentence 2
This is an example sentence This is an example sentence with extra text,

The cat sits on the mat The cat sits on the mat and stares outside.
The weather is nice The weather is nice and sunny.

Table 2: Example sentences used to validate the ELMo embeddings. The full sentence in colum
‘Sentence 1’ is used to compare against the part in ‘Sentence 2’ which is similar. The sentences used
for validation are in Dutch. Note that no final dot is present in the sentences in the first column, as
this will change an embedding of a sentence.

3.2.4 ELMo setup

The ELMo model will be used in a setup which does not include the CLIP encoders. In this setup,
the ELMo model will embed both sentences and labels. Afterwards, the cosine distance between
these embeddings will be calculated; this step mirrors that of the CLIP setup. The ELMo model
can substitute a text encoder in the CLIP setup, however since this pair has not been trained
together, the cosine similarity and surprisal outputs will likely be meaningless.

3.3 Prediction

The models mentioned in the previous sections will run the sentence-pairs and output a cosine
distance, this will be used to input to our statistical model which will in turn predict the RTs
correlating to those distances. The model setups are (1) the CLIP setup with a transformer text
encoder and image encoder outputting text and image embeddings, (2) the transformer text encoder
which will output embeddings for both the sentence and label pairs and finally, (3) the ELMo
model which will output sentence and label embeddings. After the corresponding cosine distances
have been calculated, these will be used as input in a linear mixed model, the linear mixed effects
regression (lmer) model.

3.3.1 Statistical testing

Lmer models are an established standard, as these models tend to grasp the structure of the data
better than standard regression. Besides, an lmer model prevents the ‘Simpson’s Paradox’ from
occuring, in which a model can be tricked by a group average. The lmer model will show the relation
between fixed effects and account for variance by the random effects, like the condition or participant.
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Three lmer models will be setup where each model uses the cosine distance of the corresponding
LLM setup. Each of these lmer model will use this cosine distance as fixed effect. The random
effects that will be added to the equation are the participant and the label of the image that was
presented. The general equation is presented below, in equation 7. The cosine distance is the only
fixed effect since it is assumed that if the cosine distance changes, so will the reaction time. The
random effects present the variation in the model that we want to control for. There is a variation
in each participant that can not be controlled for. For example, the participant could have had a
rough night before participating in the experiment, which could have resulted in slower RTs. The
final word could also cause variation since some words might be easier for a participant to name
than others. As an example: “Cow” might be easier to name than “Miter”.

log(namingRT ) ∼ demean(cosine distance) + (1|subject) + (1|target picture) (7)
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4 Results

After having established how the experiment has been set up, the findings of our experiments are
highlighted in this section. First we will take a closer look at the cosine distances that are between
the sentence and target picture for each model. The cosine distance is a good indicator of how
semantically close the embeddings are from each other. Secondly we will take a look at the surprisals
that can be calculated for the transformer and ELMo embeddings as this is a probabilistic method
which computes preferability for a target label. We will also consider the spearman correlation as
this is a ranked based statistical method measuring the strength of a relation. Finally, we will dive
into the linear mixed model results as these will show us correlation and whether this is by random
chance or significant.

4.1 Model embeddings

As mentioned before, the models each deliver embeddings with which cosine distances can be
computed. By plotting the cosine distance of each sentence-image or sentence-label pair per
condition, a clear indication can be established whether the model is able to distinguish these
classes correctly, meaning that the relation of the difference in cosine distance between classes is
similar to the differences in response times per condition by the participants of the experiment.
In the experiment, on average the highest response times are recorded in the incongruent class,
followed by the neutral class and finally the lowest response times in the congruent class. Expected
is to see the inverse relation for the cosine similarity, as a higher cosine similarity indicates that the
words are close to each other in the vector space and thus semantically are closer to each other
requiring a shorter response time.
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(a) (b)

(c) (d)

Figure 7: Raincloud for each sentence-image or sentence-label pair graphed per condition (congruent,
incongruent or neutral), scattered items, box-plot and distribution which are visible in this plot

From figure 7 we can observe that the relation for the CLIP model in 8b is inverse to that of the
participants in the experiment as shown in 8a. The transformer model, Roberta, was unable to
distinguish the difference in 7c, this is due to anisotropy, where the vectors output by the model
have no meaning in comparison to each other and are pointing in the same direction. This is likely
due to the model not being trained using the cosine distance. The cosine distances embedded by
the ELMo model in 7d show that neutral embeddings are perceived as least similar, whilst this
should have been for the incongruent case.

4.2 Surprisals

To take a leap back to our background study, the surprisal as described in 1, has been a viable
method to assist in predicting mean response times. Using the surprisal we can calculate the
unexpectedness of finding the provided target. Since CLIP is using images as targets, calculating a
surprisal would be very costly as many images would have to be embedded, since a full ’vocabulary’
has to be used to calculate the surprisal. The surprisal of the transformer model can be calculated
by appending all sentences with a mask token and using that token as a way to substitute all
different words from the vocabulary used during training. The ELMo surprisal uses a constrained
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vocabulary. Since most libraries use transfer learning, the ’head’ of the model is gone, meaning that
the true full vocabulary can not be accessed. Therefore the vocabulary used in this thesis is used.
A fair comparison between the models is therefore also not possible.

(a) (b)

Figure 8: The surprisal raincloud plot per condition. (a) shows the surprisal of the Roberta
transformer on a full vocabulary (b) shows the suprisal of the ELMo on our constrained vocabulary.

From the surprisals we can conclude that the upward trend is visible along the conditions indicating
that the models can distinguish the different conditions correctly as higher surprisal scores are
expected for incongruent pairs over other pairs.

4.3 Spearman correlation

For each of the models, a spearman correlation value was computed vs the average human RT. The
spearman correlation (ρ) tests for a monotonic relation, by assigning each data point a rank after
which each of these are compared to each other. The spearman correlation cares about the trend
more than the specific values. When running the spearman correlation test for our models we get
the values as shown in table 3.

Model Spearman correlation (ρ) p-value
CLIP -0.5222054 2.2e-16

Transformer 0.07187465 0.3373
ELMo -0.3373376 4.17e-06

Table 3: Spearman Correlations and corresponding p-values for each model vs average human
response time

From this table it can be deduced that each model has a negative relation with the human response
times except for the transformer model. Since the p-values for each correlation are lower than 0.05,
for each case the relation is statistically significant again with an exception for the transformer
model as the p-value is very high. Only for the CLIP model the absolute value is bigger than 0.5,
meaning that the relation between the CLIP cosine similarity and human response times is strong.
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The absolute value of the spearman correlation of the ELMo model is bigger than 0.3 meaning that
there is a moderate relation.

4.4 Scatter plots

Using lmer models, each model output will be fit to the data of human response times, to
understand if a clear relation between the two outputs can be established. For each lmer model we
set up the equation as shown in equation 7. In each case demean(cos sim) represents the Z-score
standardization for which the cosine similarity scores for each model is first centered and then scaled
using the standard deviation. This step is needed, since it makes the output easier to interpret, as
we are able to understand how much of a jump the data makes every standard deviation unit from
the mean. Following this translation, the following regression models were created, as shown in
figures 9, 10 and 11.

Figure 9: Scatter plot of CLIP cosine similarity vs Average RT
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Figure 10: Scatter plot of Transformer cosine similarity vs Average RT

Figure 11: Scatter plot of ELMo cosine similarity vs Average RT

From these regression models, no clear correlation can be found as the points are dispersed. The
CLIP model in figure 9 still showed the best correlation and negative trend and the points show
a meaningful trend with some variance along the trend line. The Transformer model showed to
provide useless results as the points are scrambled all over the place and the trend line looks to be
a random guess. The ELMo model correlation shows a negative trend as well, however with a wider
variance than that of the CLIP model.
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4.5 Model comparison

Model comparison was performed using Bayesion Information Criterion (BIC). BIC is a relative
metric, distinguishing different models. The model BIC value is determined using the goodness of
fit and penalty for complexity measures. A lower value is preferred. Table 4 shows the BIC values
for each model based. Note that the models are based on equation 7.

Model BIC
CLIP 1920.939

Transformer 2198.951
ELMo 2084.349

Table 4: BIC values for the different models based on the lmer equation

From the table clearly can be deduced that the CLIP model is most preferred.

The linear mixed effect models show us the direction and trend of each model based on its random
and fixed effects. We focus on the fixed effects, cosine similarity for the CLIP model and ELMo
model, surprisal for the Transformer, as these provided better model indications. The lmers gave us
the following outputs:

Model Intercept Slope t-value
CLIP -3.627e-01 -6.655e-02 -17.05

Transformer -0.362859 0.073391 13.41
ELMo -0.36261 -0.05079 -11.04

Table 5: lmer model fixed effects. CLIP model based on cosine similarity. Transformer and ELMo
model based on surprisal.

From the table we can conclude that for each model the intercept is negative. For the cosine
similarity this is expected. For the surprisal this is not expected, as the relation between the
conditions and congruency classes have a similar trend to that of the mean RT of the participants.
For the transformer model a positive trend was expected as the surprisal was used in the lmer.
Therefore, the model embeddings are inaccurate. For each model the t-value is either bigger than 2
or smaller than negative 2 indicating these results are not obtained by random chance.
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5 Discussion

In this study, we explored whether LMs can help predict response time behavior depending on
different pairs of congruence. The pair would consist of a sentence and a label or image. This pair
can either be congruent, incongruent or neutral. Three different model setups have been evaluated to
address this problem, a CLIP model, transformer model and ELMo (LSTM based) model. The last
setup is an approach for which the model architecture aligns to human cognition, by sequentially
processing data, to get an insight whether such a setup would improve model embeddings. The
first setup is a CLIP model using the Roberta text encoder and the ViT-B-32 image encoder. The
second setup used in this research is a transformer setup using the Roberta text encoder to encode
the sentence and corresponding label. The final setup uses the first two forward layers of the ELMo
model to encode the sentence and paired label.

To evaluate our results we compared the cosine similarity between each model using the BIC metric.
This metric showed that the CLIP model was most preferred over the other models. Besides, our
lmers showed that the CLIP model has a strong inverse trend in comparison to the mean RT of each
participant. The transformer model was unable to distinguish the classes and had no meaningful
results. Our human aligned model, the ELMo model, did find a slight negative relation between
its surprisal and average RT of each participant. The raincloud plots depicting the distribution of
cosine distance per condition showed that the CLIP model performed best in distinguishing each
congruency class. The ELMo model performed worst at this task, indicating that the similarity
between incongruent sentence-label pairs is higher than that of neutral pairs. This does answer
the question whether the human-aligned model embeddings can improve our predictions, which it
does not. When performing regression, our results showed that no real correlation can be found for
this or any of the other models. Even though a negative trend could be found, the data points are
dispersed showing unreliability. The spearman correlation did indicate that the CLIP model and
the human RTs have a strong relation not based on random chance. Although for the other two
models the correlations were weak and moderate. We can conclude that model embeddings can
be used to predict response times, however our LSTM model aligning to human cognition did not
improve these embeddings.

There is room for a lot of improvement in this thesis. Firstly, a better VLM can be chosen for this
task. CLIP was one of the first VLMs that was created, however nowadays there exist better models
already, such as the gemini model. Secondly, a better transformer can be used for comparison. In
this thesis the same transformer was used in the clip setup and as separate model. The results
for the transformer model showed to be lacking, however these models are known to have a good
semantic understanding because of the self-attention mechanism. Thirdly, beforehand it could have
been known already that an LSTM will not outperform a transformer or CLIP model, however
since this was of interest to the study, this approach had to be evaluated. For the CLIP model,
hyperparameters such as the output dimensionality can be optimized as well. In this thesis, a 512
output dimensionality has been a set parameter, this can be scaled up or down as well in order to
improve our results even more.

The field of AI is ever changing, and better models do show up from time to time. This thesis tried
to answer the question if model-based representations can be used to human response times in a
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language production task. Although the results in this thesis did not show a strong correlation
between the model representations and the average human RT, not every option is explored. CLIP
has shown to be a good choice for a vision language model (VLM). However there are better
VLMs such as Gemini [TG23] or InternVL[CWW+23]. Besides, in this thesis the models are not
trained, rather existing models are used to infer on new data. Another way to improve the model
representations would be to train the model first on this data, however this would be an expensive
task possibly taking up a lot of time and resources.

Although the results did not indicate a good relation between the model representation and average
human response time, the standard of the CLIP model used does provide a good baseline from
which improvements can be made.
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Appendix

The code that was used in this thesis can be found here: https://github.com/rajeevnathie/thesis
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