
Bachelor Datascience and Artificial
Intelligence

Analyzing DropConnect Retention Rates and the Block

Structure of Parameter Correlation Matrices in Feed-Forward Networks

Justin Meurs

First supervisor:
Evert van Nieuwenburg
Second supervisor:
Björn van Zwol

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 22/01/2026

www.liacs.leidenuniv.nl

Abstract

DropConnect is a stochastic regularization method that improves generalization by randomly
removing weights during training, effectively sampling an ensemble of sparse sub-networks.
While its empirical effectiveness is proven, the mechanisms underlying its robustness are not
defined. Recent theoretical work by Barboza proposed a statistical-mechanical interpretation of
DropConnect, suggesting that robustness to weight removal is linked to parameter correlations
and system-size compression, which can manifest as block-diagonal structures in correlation
matrices.
In this thesis the relationship between DropConnect retention rates and the correlation
structure of network parameters is investigated empirically. Feed-forward networks are trained
on the MNIST and CIFAR-10 dataset, while systematically varying network architectures
and retention rates. The robustness of DropConnect is analyzed using curves estimating
accuracy as a function of retention rate. Ensembles of these architectures are created and
analyzed using principal component analyses and correlation matrices to visualize the effective
dimensionality and correlation structure.
The results confirm earlier findings for MNIST. Accuracy exhibits a pronounced plateau
across a wide range of retention rates, the number of parameters greatly exceeds the effective
dimensionality and stable block-diagonal correlation structures are observed. For CIFAR-10 the
plateau behaviour is less pronounced and block-structure weakens as the ensemble size grows,
indicating a lack of stable system-size compression for the considered architectures. These
findings suggest that block-diagonal correlation structures are not required for DropConnect
to be effective.

2

Contents

1 Introduction 1

2 Definitions 1
2.1 Neural Networks . 2
2.2 Dropout and DropConnect . 2

2.2.1 Dropout . 2
2.2.2 DropConnect . 3

2.3 Parameter ensembles . 4
2.4 Sample Covariance Matrix . 4
2.5 Correlation Matrix . 4
2.6 Eigenvalue Spectrum and PCA . 5

3 Related Work 5
3.1 Regularization in machine learning and deep learning 5
3.2 Stochastic regularization using dropout and DropConnect 6

3.2.1 Dropout . 6
3.2.2 DropConnect . 7

3.3 Statistical Mechanics of DropConnect . 8

4 Methods 10
4.1 Overview of Experimental Design . 10
4.2 Datasets . 11

4.2.1 MNIST . 11
4.2.2 CIFAR-10 . 11

4.3 Neural network architecture . 12
4.4 Training and model ensemble . 13
4.5 Retention rates . 14
4.6 PCA Analysis of the Covariance matrix and Correlation matrix 14

5 Results 15
5.1 MNIST . 15

5.1.1 Accuracy and retention rate . 15
5.1.2 Eigenvalue spectra . 16
5.1.3 Correlation matrices . 16

5.2 CIFAR-10 . 18
5.2.1 Accuracy and retention rates . 18
5.2.2 PCA analysis . 19
5.2.3 Correlation matrices . 19

6 Conclusions and Further Research 21
6.1 Conclusion . 21
6.2 Further Research . 21

References 22

7 Appendix 23
7.1 Code . 23
7.2 Extra eigenvalue spectra . 23
7.3 Extra correlation matrices . 24

1 Introduction

Deep neural networks have emerged as powerful function approximators, achieving state-of-the-art
performance across a wide range of domains, from computer vision to natural language process-
ing [XM19]. Despite their practical successes, many aspects of their internal dynamics remain poorly
understood. Particularly, regularization methods like Dropout and its generalization DropConnect
are known to improve generalization performance and prevent overfitting [LW13] [NS14]. However,
the mechanisms that make them effective are still the subject of research [Bar25] [GG16] [SWL13]
DropConnect works by stochastically removing individual weights during training, effectively sam-
pling from a large ensemble of sparse sub-networks. Recent theoretical research by Barboza [Bar25],
suggests that this process can be interpreted through statistical mechanics. Using this method each
sampled sub-network represents a configuration of a larger ensemble which can be studied using
techniques from statistical mechanics. Within this framework it is suggested that the behaviour of
DropConnect does not only depend on the rate at which the parameters are dropped, but also on
how strongly the remaining parameters inside this network are correlated.
The key result from this approach is the hypothesis that networks showing a block-diagonal param-
eter correlation structure may benefit more from DropConnect. The weight matrices corresponding
to these networks show a natural partitioning into communities of strongly correlated parameters.
Such structure indicates a form of system size compression, where the effective number of indepen-
dent degrees of freedom is smaller than the raw parameter count. This property is predicted to
create robustness to random weight removal and to generate a certain ’plateau’ in test accuracy
scores across a range of DropConnect retention rates.

Previous empirical research, however, has been very limited. The experiments conducted by
Barboza in his master’s thesis were performed on the MNIST dataset. This research revealed
that the effective number of independent degrees of freedom was capped at approximately 100
regardless of the architecture used. The thesis hypotheses that these results suggest that MNIST is
too simple to meaningfully test the hypothesis. To properly test the hypothesis one should turn to
more complex datasets and architectures where richer correlation structures can emerge.
This thesis aims to address this gap. First by validating the hypothesis that MNIST is too simple
by repeating the PCA analysis with a larger number of networks. Then the research is continued by
studying networks trained on more complex datasets such as CIFAR-10 and by systematically vary-
ing network architectures while applying DropConnect to analyze the effect of the block structure
on the robustness of DropConnect. Doing so this research contributes to a better understanding of
the interaction between model architecture, parameter correlation and regularization effectiveness.
This gives the research question: What is the relationship between DropConnect efficacy and
the block-diagonal structure of the parameter correlation matrices across different neural network
architectures and datasets?

2 Definitions

This chapter includes the mathematical and conceptual foundations used in the thesis. The
definitions presented here describe the notation, terminology and objects needed to understand the
related work, research and results.

1

2.1 Neural Networks

Neural networks consist of artificial neurons or neurons, that are connected by edges to other
neurons. The edges model the synapses in the brain and send and receive signals between neurons
if the signal is strong enough. Artificial neural networks very commonly are made up of multiple
layers with varying methods of connection. There exists a simple feed-forward neural network(FFN),
or perceptron, where data flows from input to output without any cycles. There is a multilayer
perceptron(MLP), which the input is passed through at least one hidden layer to the output, using
a non-linear activation function like ReLU for complex patterns. A multilayer perceptron is also a
feed-forward neural network. There also exist convolutional neural networks and recurrent neural
networks, but these are not relevant for this research.
The multilayer perceptron is said to have L hidden layers, L is also said to be the length of the
networks. Each layer l has width Nl where maxL

i=1(Ni) is said to be the width of the network.
Given a certain input vector x ∈ Rd, where d is the input size, the network computes a prediction by
applying a sequence of transformations and nonlinear functions described by the following function
for the forward pass [IGC16]:

h(l) = g(l)(W (l)T l(l−1) + b(l))

where:

h(0) equals input vector x
W (l) ∈ RNl×Nl−1 is the weight matrix for layer l

b(l) ∈ RNl is the bias vector for layer l
g(l) is a nonlinear activation function, like ReLU or sigmoid

Table 1: Table explaining the parameters used in the formula for the forward pass.

With these parameters, the configuration of a network can be described as θ = {W (1), b(1), ...,W (L), b(L)}.
Using this set of weights and biases, the current state of a trained feed-forward neural network can
be saved and loaded.

2.2 Dropout and DropConnect

This subsection will introduce the regularization methods Dropout and DropConnect. Regularization
methods are used to prevent overfitting and improve generalization of neural networks. Both
implementations behave similarly and introduce dynamic sparsity within the models.

2.2.1 Dropout

Dropout a method firstly introduced in [NS14]. In this method each neuron in a layer is indepen-
dently set to zero, with probability 1− p. In 1 a schematic example is given for the deactivation of
a neuron in a fully connected layer. Here p denotes the retention rate, being the probability that a
neuron is kept. Formally, dropout uses a mask vector [NS14]:

R(l) ∼ Bernoulli(p)Nl

This vector is then multiplied as follows:

h(l) = R(l)
⊙

g(l)(W (l)T l(l−1) + b(l))

2

Where
⊙

denotes the Hadamard product of the two matrices. This means that for any layer l,
R(l) is the vector of independent Bernoulli random variables with each have probability p of being
1 [NS14].

Figure 1: Schematic example for the operation of dropout. The red neurons are deactivated in this
training episode.

2.2.2 DropConnect

DropConnect generalizes dropout by dropping individual weights instead of the activations. The
dropping rate here is also defined as 1− p. A schematic example for the operation of DropConnect
can be found in 2. For each layer the mask is calculated as follows [LW13]:

M (l) ∼ Bernoulli(p)Nl−1×Nl

This results in the following formula for the forward pass:

h(l) = g(l)((M (l)
⊙

W (l))T l(l−1) + b(l))

Here
⊙

once again means the Hadamard product of the two matrices. This means that for any
layer l, M (l) is the vector of independent Bernoulli random variable. Note that each training a
different M (l) is generated, meaning the training essentially averages over a number of sub-networks.

3

Figure 2: Schematic example for the operation of DropConnect. The red edges are deactivated
connections in this training.

2.3 Parameter ensembles

Since the training of DropConnect is stochastic, repeated training of a network with identical
architecture, but different seeds produces a family, or ensemble, of models denoted as:

X =

 | | |
θ(1) θ(2) . . . θ(M)

| | |

 ∈ RN×M

Where θ(m) ∈ RN is the flattened parameter vector of the m-th neural network, M is the number of
trained networks and N is the number of parameters in the networks.

2.4 Sample Covariance Matrix

Given matrix X as defined in section 2.3, the sample covariance matrix can be calculated as follows:

C =
1

M
XXT ∈ RN×N

This formula gives us the following properties: C is symmetric and positive semi-definite. From the
formula can also be derived that rank(C) is at most min(N,M). That gives us that, for M < N ,
the covariance matrix has at least N −M zero eigenvalues. The covariance reflects co-adaptation,
that is parameters that constantly move together across independent trainings.

2.5 Correlation Matrix

The correlation matrix normalizes covariance by the variance of each parameter:

Rij =
Cij√
CiiCjj

4

This correlation matrix reveals the underlying structure of the parameter interactions. Block
diagonal patterns correspond to groups of parameters that behave collectively. A block-diagonal
structure would look similar to the following matrix:

R =


B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bk


Where Bi corresponds to a group of strongly correlated parameters. Block structure implies low
dependence between groups of parameters.

2.6 Eigenvalue Spectrum and PCA

The non-zero eigenvalues of C can be computed by computing the singular values of X. The
singular value decomposition is defined as:

X = UΣV T

Where U ∈ R(N×N) is an orthogonal unitary matrix, Σ ∈ R(M×M) is diagonal with singular values
σi and V T is an orthogonal matrix. This gives us:

C ∝ XXT = (UΣV T)(UΣTV T) = UΣΣTUT

Meaning the eigenvalues λi of C can be calculated using the squares of the singular values of X:
λi = σ2

i , fori = 1, 2, . . . , rank(X)

3 Related Work

3.1 Regularization in machine learning and deep learning

When training a large model, many factors have to be taken into account to determine the type and
parameters of the model. A model can be selected based on the performance on the training data
or its generalization capabilities. Another factor to take into account is overfitting and underfitting.
Underfitting happens when the model performs poorly on the training data and test data, while
overfitting happens when the model performs well on the training data but performs poorly on the
test data.
Regularization methods are used and designed to reduce the test error, possibly allowing for
higher training error [IGC16]. Classical regularization methods like L1 and L2 penalties work by
constraining the magnitude of model parameters, reducing variance. L1, or LASSO, works by
adding the absolute value of magnitude of the coefficient to the loss function. This can help shrink
some coefficients to zero, which leads to only selecting the important features. L2 regularization, or
Ridge regression, works by adding the square magnitude of the coefficient as a penalty term to the
loss function.
A comprehensive overview of other regularization methods is given by [TZ22], where the variations
of regularization techniques are described from machine learning to deep learning up to open issues

5

and research trends. This paper provides a thorough description of these techniques, gives their
characteristics and discusses how to use certain regularization methods for specific tasks.
The paper starts by introducing norm-based regularization methods for machine learning tasks.
These include the previously introduced L1 and L2 regularization and further introduces elastic
net. Elastic net can be described as a combination of L1 and L2 where both the absolute norm of
the weights and the squared measure of the weights are added with the help of a hyperparameter
that controls the ratio between the two. These and other norm-based methods work by directly
influencing the structure and variance of the parameters.

For deep-learning tasks several regularization methods are introduced. These can be split in
three applications: the noise of the data, the limited size of the data and the complexity of the
classifiers. A common practice is to apply data augmentation. The motivation behind creating
more data using data augmentation is to remove class imbalance in data, to increase the dataset to
a sufficient size and to obtain more information from the new data. Data augmentation works by
either works by adjusting parameters like rotation, size, orientation and brightness. Another way
is to apply data augmentation techniques to intermediate representations rather than the input
data. Two examples of this technique are to stochastically blend two viable tensors in to one new
tensor. Another option is to add the difference of two tensors to another tensor, using kNN to form
new data points. There exist more complex data augmentation techniques, but those are not very
relevant in this context.
Another way to apply regularization in a neural network is by applying normalization. Batch
normalization incorporates data standardization into the network by normalizing the activations in
batches. Other normalization methods include layer normalization, where inputs are normalized
when crossing the features for each individual sample, rather than batches. Instance normalization
normalizes each channel in a sample and group normalization normalizes over the group of channels
over groups of channels for each sample.
The last group of regularization methods mentioned is the group of dropout and methods using
similar techniques. The first two are dropout and dropconnect, introduced in 2.2.1 and 2.2.2
respectively. Other methods introduced are standout, which drops more confident neurons less
frequently than less confident neurons. Curriculum dropout, which first roughly sorts the training
data from easier to harder and uses a time schedule to increasingly drop more neurons in network.
And finally DropMaps where for a training batch each feature is kept with the retention rate p.
After training the whole feature map is kept and multiplied by p.

3.2 Stochastic regularization using dropout and DropConnect

3.2.1 Dropout

Dropout is one of the most prominent stochastic regularization methods. By randomly deactivating
neurons during training, dropout reduces co-adaptation and prevents memorizing specific pathways,
which might lead to overfitting. Its original introduction in 2012 by Hinton et al [NS12] proved
the effectiveness of using this technique across multiple datasets. Since this introduction several
perspectives have been developed.
The first interpretation is that of Gal et al [GG16]. Bayesian models offer a mathematical framework

6

to reason about model uncertainty, with a higher computational cost than models not capturing this
uncertainty. Other neural networks typically ignore this uncertainty because it is computationally
unfeasible to consider all possibilities in big neural networks. Rather than considering no other
possibilities, Bayesian neural networks consider a range of possibilities instead of committing to
just one set of weights. In [GG16] a framework is presented to cast dropout training in neural
networks as approximate Bayesian inference in deep Gaussian processes. This can be done since
dropout creates many slightly different models, all with the same underlying parameters, showing
similar behaviour to Bayesian networks. This method gives possibilities to study the uncertainty of
dropout using Bayesian tools. This is useful because it turns dropout into a probabilistic model
with theoretical foundation.
Another perspective is described by Wager et al [SWL13]. This interpretation presents dropout
as adaptive regularization rather than simply considering the method as stochastic. From this
standpoint, the dropout regularizer is considered to be closely connected to the L2 regularizer.
By stochastically removing features the effective penalty the network experiences for each feature
during training changes. This means some features get penalized based on how often they are
dropped. Building on this theory, a semi-supervised method is proposed that uses unlabeled data
to estimate how strong the dropout regularizer should be.

3.2.2 DropConnect

DropConnect generalizes dropout by dropping weights instead of neurons. DropConnect was
introduced by Wan et al [LW13] and works as described in 2.2.2. This allows for a larger ensemble
of possible models compared to dropout. Dropout samples from 2Nneurons sub-networks, whereas
DropConnect samples from 2Nweights sub-networks.
As described in 2.2.2 a different mask is applied every forward pass, which corresponds to a different
sub-network with a unique connectivity pattern. As with dropout, this stochastically reduces
co-adaptation of parameters. Forcing the network to learn representations that are robust and
improve generalization.
Wan et al [LW13] demonstrated empirically that DropConnect improves generalization across
several benchmark datasets, including MNIST and CIFAR-10. Often outperforming both standard
training and benchmarks set by dropout when applied to fully connected layers. They further
defined the output of DropConnect as a mixture of models over masks M : o = EM [f(x; θ,M)] =∑

M p(M)f(x; θ,M). In this formula p(M) are the weights, θ are the network parameters and M
is the DropConnect layer mask. This formula states that the predictions are averaged over all
sub-networks generated using training, this theory also mentioned in the dropout paper by Hinton
et al [NS12].
Despite this empirical success, the original DropConnect paper did not provide a detailed theoretical
explanation for why this ensemble averaging leads to improved generalization. Also a further
explanation for choosing the retention value p should be chosen as a function of the network size or
dataset complexity.

7

3.3 Statistical Mechanics of DropConnect

A more principled theoretical framework for understanding DropConnect was recently developed
by Barboza [Bar25], who approached the problem using tools from statistical mechanics. In this
framework, DropConnect is treated as an exact sum over sub-networks, allowing the construction of
a partition function that encodes the statistical weights of all possible connectivity configurations.
This partition function is of the form

Z =
∑
k⃗

[
L∏
l=1

(
Nl

kl

)
pNl−kl(1− p)kl

]
Z(N1−k1,...,NL−kL)

Where L is the number of layers, Nl is the width of layer l, p is the retention rate and k⃗ denotes
how many weights are dropped in each layer. (Z(N1−k1,...,NL−kL) can also be written as ZN⃗−k⃗.This
formulation of the mixture of models over architectures allows for the tools of statistical mechanics
to be applied.
To make analytical progress, the thesis introduces a mean field theory approach to approximate
ZN⃗−k⃗. In this approximation, each sub-network is turned into a Gaussian field characterized by an
inverse propagator Ak⃗. DropConnect is then interpreted as a mixture of these fields, weighted by
the Bernoulli probability of each sub-network configuration. Using this interpretation, expressions
for the propagator and its dependence on p can be derived explicitly.
An important theoretical contribution of the thesis is the analysis of how the partition function
scales with network size. Through scaling analysis it is found that when a sub-network exhibits
subextensive scaling, rather than extensive scaling, the overall dropout partition shows plateau-like
behaviour as a function of the dropout rate. When this is the case, the logarithm of the partition
function scales slower than linearly, indicating that strong correlations reduce the effective dimen-
sionality of the system.

To validate the framework, the DropConnect partition function formalism is applied to a rare case
where an exact partition function is known, deep neural networks with Gaussian priors presented
by B. Hanin and A. Zlokapa [HZ23]. By inserting this exact expression into the DropConnect
sum, the plateau-like behaviour in the partition function as a function of retention probability is
demonstrated as can be seen in 3.

8

Figure 3: The plateau like structure observed when applying the dropout formula to the Hanin-
Zlokapa partition function.

The theoretical predictions are then further tested using numerical experiments on the MNIST
dataset. This is done by applying fully connected feed forward networks with ReLU activations
using DropConnect while systematically varying the network size and retention rate. From these
experiments clear plateau behaviour in test accuracy can be seen as a function of the retention rate,
like in 5a. Furthermore a sharp drop in performance can be seen below a critical retention rate and
an inverse relation between the critical retention probability and network size can be seen in 12b.
These findings are in line with the predicted scaling of the critical retention rate: pcrit ∝ 1

Nc
.

(a) Retention rate vs accuracy (b) Critical retention rate vs network size

Figure 4: Two plots visualizing the critical retention rate. Plot a visualizes the accuracy as a
function of the retention rate. Plot b visualizes the critical retention rate as a function of the
network size.

The thesis proceeds by exploring the hypothesis that DropConnect works best when the network
exhibits strong internal correlations. Using concepts from statistical mechanics, it is argued that

9

correlations reduce the number of independent degrees of freedom. This phenomenon is known
as system size compression. This idea is illustrated using an analogy with spin systems and
block diagonal correlation matrices. If parameters cluster into correlated groups, the effective
configuration space shrinks from exponential to power-law size, enabling the subextensive scaling
required for the plateau behaviour.
This hypothesis is tested by computing correlation matrices of the trained networks and performing
principal component analysis. Surprisingly, the effective dimensionality remained roughly the same
across different architectures with the same number of weights.

(a) Correlation matrix example (b) Eigenvalue PCA analysis

Figure 5: Two examples of the results from the thesis of Barboza [Bar25]

These results suggest that the MNIST dataset is too simple to fully test the correlation structure
hypothesis. Here a diagnostic tool is introduced to detect if a network size greatly exceeds the
size needed for the dataset, that is if the number of parameters greatly exceeds the effective
dimensionality given by PCA analysis.
This is also one of the conclusions drawn in the thesis. The other conclusions are that DropConnect
can be interpreted as an exact ensemble over sub-networks, plateau behaviour arises naturally in
networks featuring subextensive scaling and that the critical retention probability scales inversely
with network size.

4 Methods

4.1 Overview of Experimental Design

The experiments wish to answer the question what the relationship is between the efficacy of
DropConnect and the block-diagonal structure of the parameter correlation matrices across different
architectures. The PCA analysis done by Barboza [Bar25] will be repeated on an ensemble of 1000
instead of 100 networks to validate the hypothesis that MNIST is too small. This is done because
the PCA analysis being capped at 100 features could arise from the fact that 100 networks are

10

being used. Testing this hypothesis with a larger number of networks would give definitive results
on the question if MNIST is too simple. This research will be done in three stages. In the first stage
multiple ensembles of identical neural networks will be trained to construct parameter ensembles.
In the second stage the covariance and correlation matrices of the trained parameters are computed
with the help of PCA and eigenvalue decomposition. Finally these results are analyzed and a
conclusion is drawn based on the complexity found with the PCA analysis and the correlation
structure found.

4.2 Datasets

4.2.1 MNIST

The MNIST dataset is a benchmark dataset of grayscale handwritten numbers from 0-9, used for
testing classification tasks. The MNIST dataset consists of 60000 labeled training samples and
10000 test samples. These samples have a resolution of 28× 28 pixels, resulting in 784 features per
image. The values of these features describe how dark that pixel is. An example of the MNIST
dataset is shown in 6.

Figure 6: Small sample from the MNIST dataset

4.2.2 CIFAR-10

The CIFAR-10 dataset is also a benchmark dataset for classification tasks, but a bit more complicated
than MNIST. The dataset is a subset of the 80 million tiny images dataset, just like CIFAR-100.
The dataset consists of 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck. These classes are completely mutually exclusive, meaning that there is no overlap between
two classes. The images are presented as 32× 32 color images divided across 50000 training images
and 10000 testing images. The dimensionality of this dataset is significantly higher than the MNIST

11

dataset, since CIFAR-10 has 3072 features compared to the 768 features from MNIST. A small
example of images in CIFAR 10 can be seen in 7.

Figure 7: A small example of labeled images from the CIFAR-10 dataset

4.3 Neural network architecture

All experiments will be done on multilayer perceptrons as described in 2.1. This choice aligns
with the theoretical assumptions made by Barboza in [Bar25], since this guarantees compatibility
with the statistical-mechanical treatment of DropConnect. This is done by directly accessing the
flattened weight vectors and avoids obscure correlation structures.
The network implemented features one input layer of size 28× 28 for MNIST and 32× 32× 3 for
CIFAR-10. There are four hidden layers, the first and fourth layer are of size L = 1024 and the
second and third layers have a varying size. A visual representation of the network can be seen in
8. The sizes are varied across different model ensembles to study the architectural bottlenecks on
correlation structure. The values for N1 and N2 and two more values M1 and M2 are selected by
applying the following formula:

LN1 +N1N2 + LN2 = LM1 +M1M2 + LM2

This formula can be adapted by adding L2 to both sides:

(L+N1)(L+N2) = (L+M1)(L+M2)

Then this can be rewritten as:
u1u2 = v1v2

With u1 = (L+N1), u2 = (L+N2), v1 = (L+M1) and v2 = (L+M2). From this a common divisor
k will be considered such that v1 = u1/k, then v2 = u2k satisfies u1u2 = v1v2. With the requirement
that u1, u2, v1, v2 > 1024. So k will be selected that this remains true. The first variables used
are the same as in the thesis by Barboza [Bar25]. These values are N1 = 638, N2 = 400 and
M1 = 176,M2 = 1012. For further research there was another set added. This set had values
N1 = 316, N2 = 891. When applying k = 4

5
to u1 = 1024 + 316 = 1340 and u2 = 1024 + 891 = 1915.

We get v1 =
1340
4/5

= 1340 ∗ 5
4
= 1675 and v2 = 1915 ∗ 4

5
. Both v1 and v2 are > 1024, thus satisfy the

12

constraint. Converting v1 and v2 back to M1 and M2 we get: M1 = v1 − 1024 = 1675− 1024 = 651
and M2 = v2 − 1024 = 1532− 1024 = 508.

Figure 8: A visual representation of the MLP architecture. The input size is 28 × 28 = 784 for
MNIST and 32× 32× 3 = 3072 for CIFAR-10. The size L is set at 1024 and the sizes N1 and N2

are varied. The output size is 10 for both MNIST and CIFAR-10.

DropConnect is applied to all hidden layers, using a custom linear model implementation. In each
custom layer, each individual weight is retained with probability p and set to zero at probability
1− p. Formally, in each the mask, as introduced in 2.2.2, the weights in a layer are multiplied by
a Bernoulli mask. This version reaches the same end results, but not by applying a mask. It is
reached by setting the weights individually. Effectively mirroring the interpretation of DropConnect
as sub-network sampling.

4.4 Training and model ensemble

All models will be using the Adam optimizer for training with a fixed learning rate of 10−3. The
loss function is the standard cross-entropy loss. Models will be trained using mini-batches of size
128 over 100 epochs. No other methods other than DropConnect are used. To limit unnecessary
training early stopping is implemented with a patience of 3. The parameters corresponding to the
highest accuracy are retained.
With this setup a total of 200 independently trained networks are made and stored in .pth files.

13

This is done by repeating the full training sequence and storing the models, giving a collection of
models that can be treated as ensemble for a specific architecture.
Both MNIST and CIFAR-10 are handled within in this code. The code loops over the four
architectures described in 4.3. The models are stored in folders mnist/{N1} {N2} {L} and
cifar 10/{N1} {N2} {L}. The models are stored with files formatted as: {nexperiment} {dropoutrate}.pth.
The retention rate used to produce the ensemble is 1.0, giving a dropout rate of 0.0.

4.5 Retention rates

As described in 2.2.2, dropconnect works by applying a mask where the weights are removed at a
factor of 1− p, where p is the retention rate. To explore the relation between the retention and
the accuracy, p is spread uniformly over [0.02, 1.00] with 50 intervals. This gives a list of equally
spaced p values from 0.02 to 1.00 with 0.02 between each entry.
Using this setup the retention rate is tested systematically across the architectures and datasets.
The p value and its corresponding accuracy are saved in a csv file of the form
acc vs p {N1} {N2} {L} {dataset}.csv, which can be used to create the plots to analyze the
plateau effect and fit a line approximating the point at which the accuracy dropped to 95% of its
original value. The models itself are also saved in the same way as described in 4.4. This is done to
prevent having to train the model again if saving the csv file fails.
From these data points, a scatter plot is made with a smooth curve fitting to the points. Using this
curve, a critical retention rate is defined by the smallest value of p for which the accuracy reaches
at least 95% of the accuracy obtained at the highest retention rates. This provides a measure for
comparing robustness to weight removal across different architectures.

4.6 PCA Analysis of the Covariance matrix and Correlation matrix

The final layer of the models is analyzed using the parameter ensemble method as described in 2.3.
Each column of the matrix is a flattened weight vector of the final layer of a trained network. With
the knowledge that followed from 2.4 and 2.6 that there are at most M − 1 nonzero eigenvalues
for covariance matrix C, we can explain the sudden drop in eigenvalues observed in the thesis by
Barboza [Bar25]. To validate the assumption that MNIST is not complex enough, a new experiment

is done using an ensemble of size 1224, which is very close to 1.2 × N
3
4 which gives 1221 from

10240 weights in the final layer. Due to limited time to conduct this research, it was done only on
the architecture of parameters N1 = 638, N2 = 400, L = 1024. The eigenvalues are computed from
the flattened weight vectors using the definition in 2.6. On all other architectures the PCA analysis
is also conducted, although it may not allow for a conclusive outcome since M is limited.
The correlation matrix is then constructed using the corrcoef function from numpy. This function
normalizes the covariance matrix by the variance of each parameter, giving a measure of linear
dependence between pairs of weights. The numpy function follows the definition given in 2.3.
To reveal the potential block-diagonal structure, also mentioned in 2.3, the correlation matrix
is reordered using hierarchical clustering based on a distance measure which is defined as 1 −
|correlation value|. This reordering groups strongly correlated parameters together, which allows
for easier empirical identification of correlated groups. Then the reordered matrix is down-sampled
using block averaging to preserve larger scale structure while reducing noise.

14

5 Results

5.1 MNIST

5.1.1 Accuracy and retention rate

(a) Accuracy as a function of the retention rate for
N1 = 176, N2 = 1012

(b) Accuracy as a function of the retention rate for
N1 = 638, N2 = 400

(c) Accuracy as a function of the retention rate for
N1 = 316, N2 = 891

(d) Accuracy as a function of the retention rate for
N1 = 651, N2 = 508

Figure 9: Plots of accuracy as a function of the retention rate for various architectures on the
MNIST dataset.

In 9 the accuracy plots can be seen for the different architectures trained on the MNIST dataset.
Here it can be seen that the critical p value varies across different architectures. Also there
is empirical evidence for the plateau effect across all networks and there is rapid performance
degradation from the critical retention rate.

15

5.1.2 Eigenvalue spectra

(a) Eigenvalue spectrum of 638 400 1024 for an en-
semble of 1224 networks on the MNIST dataset

(b) Eigenvalue spectrum of 638 400 1024 for an en-
semble of 1224 networks on the MNIST dataset
without the last entry for readability

Figure 10

Figure 10 shows the eigenvalue spectrum of the covariance matrix for an ensemble of 1224 inde-
pendently trained networks using N1 = 638, N2 = 400, L = 1024 on the MNIST dataset. Other
eigenvalue spectra can be seen in 16 for ensembles featuring 200 networks. With the increased
ensemble size, a rapid decay in the spectrum can be seen, indicating that the effective dimensionality
is in fact too is too low for the number of parameters. This finding is in line with the theory that
the network size is too large for the MNIST dataset, as proposed by Barboza [Bar25].

5.1.3 Correlation matrices

(a) Correlation matrix of architecture 316 891 1024
using 50 networks trained on the MNIST dataset

(b) Zoomed in snapshot of the correlation matrix of
architecture 316 891 1024 using 50 networks trained
on the MNIST dataset

16

(c) Correlation matrix of architecture 316 891 1024
using 200 networks trained on the MNIST dataset

(d) Zoomed in snapshot of the correlation matrix
of architecture 316 891 1024 using 200 networks
trained on the MNIST dataset

Figure 11

In 11 the correlation matrix can be seen for the architecture with N1 = 316, N2 = 891, L = 1024,
trained on the MNIST dataset. More plots can be seen in 17 and 18. In these plots it can be seen
that the block structure persists for both 50 networks and 200 networks. This stability suggests
that parameter co-adaptation is already saturated and does not increase with ensemble size.

17

5.2 CIFAR-10

5.2.1 Accuracy and retention rates

(a) Accuracy as a function of the retention rate for
N1 = 176, N2 = 1012

(b) Accuracy as a function of the retention rate for
N1 = 638, N2 = 400

(c) Accuracy as a function of the retention rate for
N1 = 316, N2 = 891

(d) Accuracy as a function of the retention rate for
N1 = 651, N2 = 508

Figure 12: Plots of accuracy as a function of the retention rate for various architectures on the
CIFAR-10 dataset.

As can be seen in 12, CIFAR-10 exhibits plateau-like behaviour in test accuracy as a function of
the retention rate across all architectures. This effect however, is less pronounced compared to
the MNIST dataset and the performance degradation is more gradual. This suggests that, though
DropConnect remains effective, the robustness to DropConnect is reduced compared to simpler
datasets.

18

5.2.2 PCA analysis

(a) Eigenvalue spectrum of 176 1012 1024 for an
ensemble of 200 networks on the CIFAR-10 dataset

(b) Eigenvalue spectrum of 638 400 1024 for an en-
semble of 200 networks on the CIFAR-10 dataset

Figure 13

Across all architectures, as depicted in 13 and 15, a consistent trend in decay can be seen for the
eigenvalues. When comparing this to the trend found in 16, no concrete differences can be seen for
ensembles featuring 200 networks.

5.2.3 Correlation matrices

(a) Correlation matrix of architecture 316 891 1024
using 20 networks trained on the CIFAR-10 dataset

(b) Zoomed in snapshot of the correlation matrix of
architecture 316 891 1024 using 20 networks trained
on the CIFAR-10 dataset

19

(c) Correlation matrix of architecture 316 891 1024
using 50 networks trained on the CIFAR-10 dataset

(d) Zoomed in snapshot of the correlation matrix of
architecture 316 891 1024 using 50 networks trained
on the CIFAR-10 dataset

(e) Correlation matrix of architecture 316 891 1024
using 200 networks trained on the CIFAR-10 dataset

(f) Zoomed in snapshot of the correlation matrix
of architecture 316 891 1024 using 200 networks
trained on the CIFAR-10 dataset

Figure 14

In 14 the correlation matrix can be seen for the architecture with N1 = 316, N2 = 891, L = 1024
trained on the CIFAR-10 dataset. More plots can be seen in 20 and 21. In these plots a faint block
structure can be seen in the correlation matrices using 20 networks, but these weaken when the
amount of networks is increased as follows from the correlation matrices computed using 50 and
200 networks. This suggest that the block pattern is not persistent as the pattern is not visible
when the ensemble size grows beyond a certain M .
In contrast to MNIST, the lack of block pattern stability observed using CIFAR-10 suggests that
when using these architectures the predicted compression regime is not present. This means that
using these architectures and this dataset, the condition for robust block-diagonal correlation

20

patterns, as predicted by Barboza, is not met.

6 Conclusions and Further Research

6.1 Conclusion

In this thesis the relationship between the effectiveness of DropConnect and the internal correlation
structure of parameters in a network was investigated, following the research and statistical-
mechanical framework introduced by Barboza [Bar25]. Using ensembles of interdependently trained
MLPs with varying architectures, the robustness of DropConnect was analyzed together with the
eigenvalue spectra and correlation matrices of the parameter ensembles.
For the MNIST dataset, the conclusion drawn by Barboza is confirmed. The accuracy-retention
plots exhibit a pronounced plateau for all considered architectures. PCA analysis revealed that
the effective dimensionality is saturated at a far lower value than the number of parameters and
remains invariant across different architectures. Increasing the ensemble size reveals that the
effective dimensionality is intrinsically low, which confirms that the dataset is too simple for the
architectures considered. The correlation matrices show stable correlation structure under increasing
ensemble size. Together, these findings confirm that MNIST is too simple to serve as a decisive test
case for the hypothesis Barboza introduced.
For CIFAR-10 there is empirical evidence for a different correlation structure. While a block-
diagonal structure is observed using smaller ensemble sizes, this phenomenon does not remain
stable when the ensemble size grows. This indicates that the block structure is not a persistent
feature of the learned solutions. Although plateau-like behaviour is produced in the accuracy as a
function of the retention rate, this plateau is less pronounced and performance degradation occurs
more gradually compared to MNIST.
Taken together, these results show evidence that DropConnect does not require strong block-
diagonal correlation structures. However, when such structures do emerge, this coincides with
enhanced robustness to weight removal as a more pronounced plateau and accuracy drop below
pcrit can be seen. For the architectures used, MNIST satisfies this condition whereas CIFAR-10
does not.

6.2 Further Research

There are several directions for future research from this point. Firstly the analysis for CIFAR-10
could be repeated on wider and deeper networks to test whether the block-diagonal correlation
structure only arises when model capacity greatly exceeds dataset complexity. Furthermore the
research could be repeated on other, intermediate, datasets to further clarify how dataset structure,
architecture and correlation structure influence the effectiveness of DropConnect.

21

References

[Bar25] G. Barboza. Generalized statistical mechanics of dropconnect. Master’s thesis, Universiteit
van Amsterdam, 2025.

[GG16] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA,
20–22 Jun 2016. PMLR.

[HZ23] B. Hanin and A. Zlokapa. Bayesian interpolation with deep linear networks. Proceedings
of the National Academy of Sciences, 120(23):e2301345120, 2023.

[IGC16] Y. Bengio I. Goodfellow and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[LW13] S. Zhang Y. Le Cun R. Fergus L. Wan, M. Zeiler. Regularization of neural networks using
dropconnect. Proceedings of the 30th International Conference on Machine Learning,
28:1058–1066, 2013.

[NS12] A. Krizhevsky I. Sutskever R. Salakhutdinov N. Srivastava, G. Hinton. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,
2012.

[NS14] A. Krizhevsky I. Sutskever R. Salakhutdinov N. Srivastava, G. Hinton. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[SWL13] S. Wang S. Wager and Percy Liang. Dropout training as adaptive regularization. Pro-
ceedings of the 27th International Conference on Neural Information Processing Systems,
1:351–329, 2013.

[TZ22] Y. Tian and Y. Zhang. A comprehensive survey on regularization strategies in machine
learning. Information fusion, 80:146–166, 2022.

[XM19] C. Zhou M.A. Helvie H. Chan L.M. Hadjiiski Y. Lu X. Ma, J. Wei. Automated pectoral
muscle identification on mlo-view mammograms: Comparison of deep neural network to
conventional computer vision. Medical Physics (Lancaster), 46(5):2103–2114, 2019.

22

http://www.deeplearningbook.org
http://www.deeplearningbook.org

7 Appendix

7.1 Code

The code used in this thesis can be reached using this link: https://github.com/JustinMeurs/
BachelorThesisProject

7.2 Extra eigenvalue spectra

(a) Eigenvalue spectrum of 316 891 1024 for an en-
semble of 200 networks on the CIFAR-10 dataset

(b) Eigenvalue spectrum of 651 508 1024 for an en-
semble of 200 networks on the CIFAR-10 dataset

Figure 15

(a) Eigenvalue spectrum of 316 891 1024 for an en-
semble of 200 networks on the MNIST dataset

(b) Eigenvalue spectrum of 651 508 1024 for an en-
semble of 200 networks on the MNIST dataset

23

https://github.com/JustinMeurs/BachelorThesisProject
https://github.com/JustinMeurs/BachelorThesisProject

(c) Eigenvalue spectrum of 176 1012 1024 for an
ensemble of 200 networks on the MNIST dataset

(d) Eigenvalue spectrum of 638 400 1024 for an en-
semble of 200 networks on the MNIST dataset

Figure 16

7.3 Extra correlation matrices

(a) Correlation matrix of architecture 176 1012 1024
using 50 networks trained on the MNIST dataset

(b) Zoomed in snapshot of the correlation matrix
of architecture 176 1012 1024 using 50 networks
trained on the MNIST dataset

24

(e) Correlation matrix of architecture 651 508 1024
using 50 networks trained on the MNIST dataset

(f) Zoomed in snapshot of the correlation matrix of
architecture 651 508 1024 using 50 networks trained
on the MNIST dataset

Figure 17

(c) Correlation matrix of architecture 638 400 1024
using 50 networks trained on the MNIST dataset

(d) Zoomed in snapshot of the correlation matrix of
architecture 638 400 1024 using 50 networks trained
on the MNIST dataset

25

(a) Correlation matrix of architecture 176 1012 1024
using 200 networks trained on the MNIST dataset

(b) Zoomed in snapshot of the correlation matrix
of architecture 176 1012 1024 using 200 networks
trained on the MNIST dataset

(c) Correlation matrix of architecture 638 400 1024
using 200 networks trained on the MNIST dataset

(d) Zoomed in snapshot of the correlation matrix
of architecture 638 400 1024 using 200 networks
trained on the CIFAR-10 dataset

26

(e) Correlation matrix of architecture 651 508 1024
using 200 networks trained on the MNIST dataset

(f) Zoomed in snapshot of the correlation matrix
of architecture 651 508 1024 using 200 networks
trained on the MNIST dataset

Figure 18

(a) Correlation matrix of architecture 176 1012 1024
using 20 networks trained on the CIFAR-10 dataset

(b) Zoomed in snapshot of the correlation matrix
of architecture 176 1012 1024 using 20 networks
trained on the CIFAR-10 dataset

(c) Correlation matrix of architecture 638 400 1024
using 20 networks trained on the CIFAR-10 dataset

(d) Zoomed in snapshot of the correlation matrix of
architecture 638 400 1024 using 20 networks trained
on the CIFAR-10 dataset

27

(e) Correlation matrix of architecture 651 508 1024
using 20 networks trained on the CIFAR-10 dataset

(f) Zoomed in snapshot of the correlation matrix of
architecture 651 508 1024 using 20 networks trained
on the CIFAR-10 dataset

Figure 19

(a) Correlation matrix of architecture 176 1012 1024
using 50 networks trained on the CIFAR-10 dataset

(b) Zoomed in snapshot of the correlation matrix
of architecture 176 1012 1024 using 50 networks
trained on the CIFAR-10 dataset

(c) Correlation matrix of architecture 638 400 1024
using 50 networks trained on the CIFAR-10 dataset

(d) Zoomed in snapshot of the correlation matrix of
architecture 638 400 1024 using 50 networks trained
on the CIFAR-10 dataset

28

(e) Correlation matrix of architecture 651 508 1024
using 50 networks trained on the CIFAR-10 dataset

(f) Zoomed in snapshot of the correlation matrix of
architecture 651 508 1024 using 50 networks trained
on the CIFAR-10 dataset

Figure 20

(a) Correlation matrix of architecture 176 1012 1024
using 200 networks trained on the CIFAR-10 dataset

(b) Zoomed in snapshot of the correlation matrix
of architecture 176 1012 1024 using 200 networks
trained on the CIFAR-10 dataset

29

(c) Correlation matrix of architecture 638 400 1024
using 200 networks trained on the CIFAR-10 dataset

(d) Zoomed in snapshot of the correlation matrix
of architecture 638 400 1024 using 200 networks
trained on the CIFAR-10 dataset

(e) Correlation matrix of architecture 651 508 1024
using 200 networks trained on the CIFAR-10 dataset

(f) Zoomed in snapshot of the correlation matrix
of architecture 651 508 1024 using 200 networks
trained on the CIFAR-10 dataset

Figure 21

30

	Introduction
	Definitions
	Neural Networks
	Dropout and DropConnect
	Dropout
	DropConnect

	Parameter ensembles
	Sample Covariance Matrix
	Correlation Matrix
	Eigenvalue Spectrum and PCA

	Related Work
	Regularization in machine learning and deep learning
	Stochastic regularization using dropout and DropConnect
	Dropout
	DropConnect

	Statistical Mechanics of DropConnect

	Methods
	Overview of Experimental Design
	Datasets
	MNIST
	CIFAR-10

	Neural network architecture
	Training and model ensemble
	Retention rates
	PCA Analysis of the Covariance matrix and Correlation matrix

	Results
	MNIST
	Accuracy and retention rate
	Eigenvalue spectra
	Correlation matrices

	CIFAR-10
	Accuracy and retention rates
	PCA analysis
	Correlation matrices

	Conclusions and Further Research
	Conclusion
	Further Research

	References
	Appendix
	Code
	Extra eigenvalue spectra
	Extra correlation matrices

