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Abstract

Despite solar cells being a sustainable way of generating energy, efficient solar cells remain challeng-
ing because materials must withstand varying weather conditions. Two-dimensional (2D) perovskites
are layered crystal structures with tunable chemical properties. Since 2D perovskites have tunable
properties, they are a good fit for creating solar cells, although determining which 2D perovskites are
most suitable is difficult. As experimentally creating solar cells is too costly, Molecular Dynamics
simulations can be used to analyse 2D perovskites, although running these simulations can be compu-
tationally expensive. Simple Machine Learning models could predict 2D perovskite properties without
requiring all simulations to be performed.

In this thesis, an automated pipeline converts 2D perovskite files to simulation-ready files, after
which MD simulations are performed to generate a dataset to predict properties of the 2D perovskites.
The selected properties are the average potential-energy temperature derivative, and the average
volume per atom. Using Least Squares Linear Regression, LASSO, Ridge and Random Forest models
to predict these targets revealed that the Random Forest model consistently performed the best,
and captured relevant behaviours from the provided data. These results show that simple machine
learning models, especially the Random Forest model, can be used to preselect subsets of 2D perovskite
materials, thereby reducing the number of required simulations.
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1 Introduction

The world’s demand for energy is rising due to the technological advancements [1]. Much of this energy
is produced in a sustainable manner [2]. One such sustainable option is the use of solar cells, which
can convert sunlight into energy. A problem, however, is the efficiency of the solar cells: creating
solar cells with a high efficiency is difficult due to the solar cell panels needing to withstand varying
environmental conditions and temperatures, which is dependent on the climate of the location in
which the solar cells are placed. Therefore, the materials used to build solar cells should both be
efficient as well as resistant. This emphasises the importance of selecting the right type of material
for the construction of solar cells.

One such type of materials useful for constructing solar cells are the perovskites, specifically the
two-dimensional (2D) perovskites. Perovskites are a class of materials identifiable by their specific
crystal structure, which allows for structural variability especially present in 2D perovskites. The
structural variability allows for a wide range of tunable material properties based on the composition
of the material. One of the most relevant of these properties are the optoelectronic properties, which
determine how efficiently a material converts light into energy [3, 4].

Despite the tunability of 2D perovskites, the structural variability also creates a challenge. There
are many different possible 2D perovskite compositions, and determining which exact composition
is the best for a specific use case is not feasible; experimentally creating and testing all of the com-
positions would be too time-consuming and costly. One possible solution would be to explore these
different compositions computationally. Molecular Dynamics (MD) simulations allow for the compu-
tational simulation, and thus exploration, of different chemical compositions and structures. The MD
simulations describe the interactions between atoms over time by simulating a part of the material as
a box of atoms, which allows the behaviour of the material to be studied under varying conditions,
such as different temperatures and pressures [5]. The problem with this approach, however, is that the
simulations can be computationally expensive, making them time-consuming to perform. Therefore,
a different approach is needed to analyse, and generalise, the information that can be gathered from
MD simulations.

Machine learning models allow for the analysis of data, and the generalisation of predictions beyond
the initial data. In the context of MD simulations, machine learning models can provide predictions
of material properties without requiring every material to be simulated. Machine learning models can
therefore be used to learn the relationships between the widely available structural information and
the simulated material properties of the 2D perovskites.

To address these research gaps, this research aims to find an automated approach that combines
the structures of the 2D perovskite materials with the MD simulations to generate a dataset containing
simulated material properties of 2D perovskites. This dataset will then be analysed using machine
learning models, in an attempt to create simple machine learning models that can predict certain
properties of the 2D perovskites.

Manuscript Plan & Research Question

This manuscript first presents the background with regards to 2D perovskite materials and machine
learning models. After this, an automated workflow is introduced, which uses structural information
from the 2D perovskites and converts it into files needed to run the Molecular Dynamics simulations.
The resulting dataset from these simulations contains structural information and material properties
of 2D perovskites, thereby providing a basis for the analysis and construction of the machine learning
models. The dataset is then used to analyse and identify suitable machine learning targets. Finally,
machine learning models are trained on this data in an attempt to address the following research
question: How effective are simple machine learning models in accurately predicting the structural
properties of 2D perovskites directly from structural data?

The goal of this research is not to create machine learning models that can differentiate between all
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unique 2D perovskite materials. Instead, the aim is to identify subsets of materials based on the desired
properties, thereby reducing the amount of materials that require further simulation or experimental
research. Since the Molecular Dynamics simulations are computationally expensive, simple machine
learning models are used to avoid a further increase in computational resources. Moreover, simple
machine learning models can provide better interpretability than complex machine learning models [6].
Interpretability is important in the context of chemistry, as it allows for a better understanding of
how the structural features of the material influence the properties of the 2D perovskites.
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Figure 1: A figure showing a crystal lattice (left) consisting of multiple unit cells (right). Here, a, b
and c indicate the lengths of the edges of the unit cell, and α, β and γ the angles between said edges.
From [7].

2 Background & Theory

This section provides the theoretical background needed to understand the methodology used in this
thesis. The topics presented here focus primarily on the chemical aspects of this research and provide
only the necessary chemical basis needed for the computational approach discussed in the rest of this
thesis. This section first explores basic concepts of materials chemistry, particularly focussing on the
unique tunable properties of 2D perovskites. Next, the section provides an overview on how to run
Molecular Dynamics simulations, which is necessary in understanding the computational analysis of
the 2D perovskites. Finally, this section explains machine learning models relevant to this research,
which will later be used for the analysis of the 2D perovskites.

2.1 Materials

This section explains the 2D perovskites and their properties, and elaborates on why they are the
main focus in this research. First, the section introduces crystal structures and perovskites, after
which this section discusses the 2D perovskites and their unique properties, and finally highlights the
applications of said properties in, for example, producing energy.

2.1.1 Crystal Structures

Crystals in chemistry are defined as solids in which the atoms are arranged in such a way that it
creates a periodic pattern that can be repeated infinitely in three dimensions [8, 9]. The smallest
repeatable unit of said atoms of the material is called a unit cell. The unit cell can be placed in a
crystal lattice for it to be repeated, thus creating the material; this periodic property of crystals makes
it possible to describe an entire crystal based on only a single unit cell. An example of both a unit
cell and crystal lattice can be seen in Figure 1. Note that this figure represents the unit cell, and thus
the lattice, as cubic, meaning all edges are the same length, and all angles between the edges are 90°.
However, this is usually only the case in an ideal situation; in reality the edges are not of equal length
nor are the angles all 90°.

The ordered structure of the crystals makes the chemical properties of materials based on such
crystals predictable. Since crystals are predictable and commonly found in nature, crystal-based
materials are widely researched in both experimental and computational fields to better understand
the behaviour of such materials, and be able to use such knowledge for real-world applications and
technological advancements [10].
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Figure 2: A visual example of a unit cell of a perovskite material (on the left). The blue (A), black (B)
and yellow (X) spheres indicate different ions, where A represents a large cation, B a smaller cation
and X an anion. The extension of this unit cell in a crystal lattice is shown on the right. From [13].

Crystallographic Information Files (CIFs)
Information of the unit cell and crystal lattice of a material is digitally stored in Crystallographic

Information Files (CIFs) [11]. Information that can be found in CIFs includes the number of atoms in
a unit cell, the element of each atom, the position of each atom in the unit cell, as well as the lengths
of the edges and angles of the unit cell and the density; density in this context means the mass of
the unit cell divided by its volume. The edges of the unit cell are measured in angstrom (Å), which
is 10−10 metres. CIFs also contain information describing how atoms are repeated and positioned in
the unit cell, which is necessary to accurately reproduce the crystal based on the unit cell; in the field
of chemistry this is referred to as symmetry.

As mentioned above, the material is a crystal, thus making it periodic. The periodicity means
the unit cell is repeated in the crystal lattice an infinite amount of times. In crystallography, atomic
positions within a unit cell are described using fractional coordinates, which are defined with respect
to the edges of the unit cell [8]. Any repetition of the unit cell can be represented by a difference
of integers of the fractional coordinates along the unit cell edges. This is useful because it makes it
easier to compare between different unit cells of different materials.

2.1.2 Perovskites

Perovskites are a class of materials which can be recognised by their unique repeatable pattern creating
the crystal structure [8]. For perovskites, the formula of this repeatable pattern can be written as
ABX3, where A, B and X are atoms or molecules, and X appears three times more relative to A and
B. An example of this can be seen in Figure 2. Note that this figure might not seem to respect the
ABX3 pattern, but it does considering atoms are shared with the surrounding unit cells (not visible
in the figure). Corner A-atoms contribute 1/8 each, X-atoms on the faces contribute 1/2 each, and
the B atom lies entirely within the unit cell, resulting in the correct composition of ABX3 [12].

Ions are species, like atoms or molecules, with a difference in charge. Species that lose electrons
are called cations, which are positively charged, while the ones that gain electrons are called anions,
which are negatively charged. In Figure 2, A is a large cation, B a small cation, and X an anion.
A balance between the size and charges of these ions allow the structure to remain stable [14]. It is
important to keep in mind, however, that the unit cell displayed in Figure 2 represents an idealised,
perfectly cubic perovskite structure. In reality, the composition of a perovskite material is dependent
on the choice of the A, B and X ions determines the resulting crystal structure, which can deviate
from the ideal cubic structure.

The stability and distortion of the structure is dependent on the size of the ions in the unit cell.
If, for example, the A-ions are small relative to the B- and X-ions, the cavity in which the A-ion sits
will be too big, and thus the B- and X-ions will compensate and move closer to the cavity, thereby
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Figure 3: A visual example of different distortions in a unit cell depending on the size of the A-ion
(the blue sphere). The cell in the middle (cell B) is the ideal structure, while the cell on the left (cell
A) shows the cell tilting inwards due to ion A being small, and the cell on the right (cell C) shows the
cell tilting outwards due to ion A being large. The t here describes the Goldschmidt tolerance factor.
Upscaled; from [12].

tilting the unit cell inwards. On the other hand, if A is larger, the B- and X-ions will be pushed away
from the position of the A-ions, and the structure will tilt outwards. An example of this is shown in
Figure 3.
The extent to which the size of the A-, B- and X-ions cause distortions can be predicted by looking
at the Goldschmidt tolerance factor (t) [12]. The formula for calculating the Goldschmidt tolerance
factor is t = rA+rX√

2(rB+rX)
. In this formula, t indicates the Goldschmidt tolerance factor, while rA, rB

and rX indicate the radii of the A-, B- and X-ions respectively. This formula shows that, if the radius,
and thus the size of A, decreases, t will become smaller, meaning the structure will be tilted inwards,
while a larger A leads to an increase in t, resulting in the structure tilting outwards. A value of t
in-between 0.8 and 1.0 usually indicates a stable perovskite structure [12].

2.1.3 2D Perovskites

When the value of the Goldschmidt tolerance factor t exceeds 1.0, the structure will be tilted outwards
and become unstable. This can result in the A-ions becoming too large and therefore being unable to
fit in the ideal 3D perovskite crystal lattice. Because this ideal lattice is not able to be formed with
the oversized A-ions, the structure stabilises by forming separate layers of BX-slabs, with the large
A-ions in between these layers. The A-ions are now called spacer (cat)ions. When this happens, the
original perovskite structure, which extended in three dimensions, now becomes slab-like, thus only
extending in only two dimensions; these structures are now called 2D perovskites.

2D Perovskite Formula
Rather than the ABX3 formula for 3D perovskites, the general formula representing the crystal

lattice for 2D perovskites is A′
mAn−1BnX3n+1 (m = 1, 2;n = 1, 2, 3, 4 . . .), where A′ indicates the

spacer cations separating the slabs, A the cations inside the BX-layers in the slabs, B and X ions
the framework of the separate layers, n the amount of BX-layers before being separated by spacer
cations, and m the amount of spacer cations in between the BX-layers [3, 4, 12]. In the case of true
2D perovskites, where a single BX-layer is always separated by spacer cations, n = 1, which simplifies
the above formula to A′

mBX4 (m = 1, 2). An example highlighting the difference between a regular
(3D) perovskite, and a true 2D perovskite, meaning n = 1, can be seen in Figure 4. Note that the
spacer ions as seen in Figure 4, are, in the case of 2D perovskites, usually molecules rather than atoms.
This is because, even though the calculated Goldschmidt tolerance factor t for some large A-atoms
might exceed 1.0, this does not guarantee a 2D perovskite being formed, and even if it does, atoms
are usually not sufficiently large to stabilise the 2D structure; hence the typical usage of molecules as
A-ions [16].
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Figure 4: A visual example showing the difference between the ideal structure of a 3D perovskite (on
the left) and the regular structure of a 2D perovskite (on the right). Adjusted from [15].

Inorganic vs. Organic
In the 2D perovskite unit cells, the BX-layers are inorganic, meaning they are not made out of

carbon-hydrogen groups, but rather, for example, metal atoms, allowing for stronger bonds between
the atoms within the inorganic layers, leading to strong, stable and continuous networks. Because
of these strong networks, the electrons within this network can easily be shared across atoms by
moving through the lattice. Therefore, electrons within the inorganic layers can move freely, therefore
giving the inorganic layers (semi)-conducting properties. More information regarding semi-conduction
properties are given in Section 2.1.4.

On the other hand, the spacer A-ions are organic, which means that they are made out of carbon-
hydrogen groups and usually exist in molecules, kept together by relatively weak forces making them
more flexible, rather than exist in strong layers or networks as is with inorganic components [16].
The lack of strong and stable networks means that the electrons are bound to their place within the
molecules. Therefore, with the spacer ions consisting of organic molecules, the electrons within the
spacer molecules are unable to move freely, thus giving the spacer molecules insulating properties [3,
17]. More information regarding insulating properties are given in Section 2.1.4. Note that, since there
is a large variety of organic spacer molecules, many different 2D perovskite structures are possible.

2.1.4 Electronic Structure and Optoelectric Properties of 2D Perovskites

This section introduces important electronic and optoelectric concepts regarding 2D perovskites. The
section explains the importance of the band gap and how the layered 2D perovskite structure gives it
unique and tunable optoelectric properties.

Band gap
In a material, there are varying ranges of energy levels, also called energy bands, which electrons

can occupy. These energy band ranges can be split up in two: low energy bands, which are usually
fully occupied and where the electrons usually sit, and the higher energy bands, which are (usually)
not filled [18]. In the case in which they are partially filled, the electrons can move freely; this is what
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Figure 5: A visual example showing multiple quantum wells caused by a layered structure. The LUMO
refers to the lowest unfilled energy band, while the HOMO refers to the highest filled energy band.
Adjusted from [23].

allows a material to conduct electricity: the free movement of electrons in the upper ranges can carry
an electric current through the material [19].

The gap in between the highest filled energy band and the lowest unfilled energy band is called the
band gap [20]. The size of the band gap influences how well a material can conduct electricity: if the
band gap is very small, electrons can easily jump between the highest filled and lowest unfilled energy
bands, but if the band gap is large, electrons are stuck within the highest filled energy band, unless
they are given a relatively large amount of energy to jump the gap; this is usually done by photons
[21]. Materials with a large band gap are called insulators, and materials with a small band gap are
called semi-conductors.

When a photon with an energy of at least the band gap is absorbed by a material, an electron
can be excited from the highest filled energy band to the lowest unfilled energy band. If an electron
is excited from one band to another, it leaves behind a hole. The excited electron and the left-behind
hole travel through the material, thereby being able to produce an electric current. This demonstrates
the process used by solar cells, and therefore highlights the importance of the size of the band gap in
determining how effectively a material can convert sunlight into electrical energy [19].

Optoelectric Properties
A quantum well is a structure in which electrons, as well as the holes the electrons can occupy, are

confined by surrounding energy barriers [22]. As mentioned in Section 2.1.3, in 2D perovskites, usually
the BX-layers are inorganic, and the spacer ions are organic. The combination of the two creates a
layered structure that behaves like a quantum well. In such a quantum well, electrons, as well as the
holes they can occupy, are confined to the inorganic BX-layers, while the organic spacer ions act as
barriers between those layers, thereby restricting the movement of the electrons and holes. Because
of this confinement, the distance between the conduction and valence band, and thus the band gap, is
dependent on the thickness of the inorganic layers, as well as the size and type of the organic spacer
ions [12]. An example of such a layered structure behaving as quantum well can be seen in Figure 5.

As mentioned in Section 2.1.3, there is a large variety of spacer molecules that can be used to create
2D perovskites. Therefore, the organic spacer molecule barriers can easily be changed, depending on
what kind of electronic and structural properties are desired. This is what makes 2D perovskites espe-
cially interesting: their properties can be slightly adjusted, by changing the organic spacer molecules.
Changing the thickness can be achieved by changing the type of atoms in the BX-layer, although the
types of inorganic atoms which allow for a stable 2D perovskite material are limited [24].
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2.2 Molecular Dynamics Simulations

Chemical materials can be computationally researched using Molecular Dynamics (MD) simulations.
MD simulations model the atoms in the material, and their interactions between one another, based
on mathematical models.

This section first elaborates on the requirements needed to perform MD simulations, after which it
explains the mathematical models used to model the interactions between atoms. Finally this section
expands on the thermodynamic components required during the simulations.

2.2.1 Components of Molecular Dynamics Simulations

To be able to perform Molecular Dynamics simulations, several components are required.
First, MD simulations require a computational representation of the unit cell of the material. This

computational representation should contain all the atoms and their positions, the bonds, angles and
dihedrals (which describe rotations around bonds) of the atoms, as well as the sizes and angles of
the unit cell. The atoms, bonds, angles and dihedrals are split up in groups, or types, to be able
to differentiate between chemically different interactions within the material. For example, a carbon
atom in a linear chain can have different electrical properties than a carbon atom in a ring-structure.

Second, the mathematical models required to describe the interactions between atoms in MD
simulations are called force fields. Specifically, these force fields model the interactions between
bonded atoms, with the use of mathematical formulas describing the forces between pairs of atoms.
Alongside these bonded interactions, non-bonded interactions need to separately be defined, which
describe long-range effects between atoms that are not directly bonded.

Lastly, the MD simulations require a simulation engine that uses the defined force field models
and simulation settings to determine the positions of the atoms at each time step in the simulation,
and thus how the system is supposed to evolve over time. This requires defining the amount of time
steps the simulations should take, the total length of the simulation, as well as how the temperature
and pressure are controlled during the simulation. These components together define how the MD
simulations, with the use of the simulation engine, are supposed to function.

2.2.2 From Unit Cell to Simulation Engine

Performing MD simulations requires a computational representation of the unit cell. However, a single
unit cell by itself is not a chemically accurate representation of a material. The simulation engine
used in this research is LAMMPS [5]. It should be noted that LAMMPS requires the coordinates of
the atoms to be in Cartesian coordinates, while the positions of the atoms as usually defined in the
CIFs are in fractional form.

To construct a realistic simulation box, the simulation engine replicates the unit cell. Replicating
the unit cell increases the number of atoms in the simulation box, which results in an overall larger
system that more closely resembles the crystal lattice of the material; these replications can be done
in all three dimensions. Another way of creating a more realistic simulation box is by using periodic
boundary conditions (PBC). PBC describe how the atoms at the boundaries of the box behave. If
PBC are turned off atoms at the boundaries of the box only interact with atoms inside of the box,
thereby creating a finite system. While, if PBC are turned on, the box is treated as being infinite,
thus allowing the atoms at the boundaries to interact with atoms from neighbouring replicas of the
box.

2.2.3 Force Fields

The simulation engine by itself is not able to model the interactions between atoms; for that, force
fields are needed. Force fields are a collection of mathematical equations describing the interactions
between atoms by defining how atoms influence one another when they are brought closer or moved
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further away in the system. These equations define the potential energy of the system, which then
allows the simulation engine to determine how the atoms in the system evolve over time.

Different Force Field Models
There are different types of force fields models, which all have the same goal, namely modelling the

interactions between atoms. However, between each of the force field models, the definitions of the
mathematical formulas and parameters is different.

Ideally, a force field specific to each unique material is created, since each unique material can have
material-specific chemical interactions between the atoms. However, due to the complexity of creating
force fields, most force fields used for MD simulations are general force fields. General force fields
are force fields created to describe general chemical interactions, while allowing for material-specific
behaviour through the introduction of parameter values specific to the material being simulated.
These general force fields can therefore be optimised for a specific system based on the parameters
that are used.

Well-known general force fields include CHARMM and AMBER [25–28]. These force fields have
been constructed based on biomolecular systems, like systems with proteins, although they can also be
used for simulating non-biomolecular systems. When used for non-biomolecular systems, the general
force fields are typically used to analyse different behaviours between systems, rather than simulating
highly accurate structures and extract exact material-property values.

Non-bonded Interactions
The force fields describe the interactions between bonded atoms. However, the effects of interactions

between non-bonded atoms need to be taken into account as well. To account for these interactions in
MD simulations, Buckingham or Lennard-Jones potentials are typically used. The Buckingham and
Lennard-Jones potentials are mathematical descriptions of how pairs of atoms attract and repel each
other, based on the distance between the two atoms. Both Buckingham and Lennard-Jones potentials
describe non-bonded interactions, although the way these interactions are represented differs. Buck-
ingham potentials are used to describe short-range non-bonded interactions, while the Lennard-Jones
potentials are used for long-range non-bonded interactions. Alongside the short- and long-range inter-
actions, force fields usually also include additional interactions between atoms based on their atomic
charges [29].

2.2.4 Ensembles

Using MD simulations, changes in the material under varying conditions, like changing the temperature
or pressure, can be examined. These settings are defined through the use of ensembles. Ensembles
describe which properties of the system are kept constant during the simulation, while the behaviour
of the other properties can be observed.

Two commonly used ensembles are NVT and NPT ensembles. In NVT ensembles, the number of
atoms (N), the volume (V) and the temperature (T) is kept constant. This is typically used to examine
behaviour of the material at varying pressures, without changing the size of the box. On the other
hand, NPT ensembles keep the number of atoms (N), the pressure (P) and the temperature (T) fixed
during simulations, while allowing the volume of the box to change [5]. Therefore, NPT ensembles
are typically used to examine structural changes of materials at different temperature conditions; the
NPT ensembles are also used in this research.

2.3 Machine Learning Models in Material Science

Supervised learning methods are used in material science to, for example, be able to find new material
compositions, predict properties of materials, and to explore relationships between structural features
and physical properties of materials [30].
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Many material properties, like structural, thermal and energetic properties are represented by
continuous values rather than discrete values. To predict continuous values, regression models can be
used to capture the relationship between the structural features and physical properties of a material.
This allows for the prediction of material properties for both known and new materials, without
requiring experimentally determining such properties, which can be difficult and time-consuming due
to high costs and needing specialised equipment. Regression models try to learn the relationship
between features and targets. There are different types of regression models; some of these models
assume the relationship between the features and the target is linear, while other models attempt to
capture non-linear feature-target relationships. This thesis considers three linear regression models,
as well as one another model, for predicting properties of 2D perovskites.

Linear Regression
Linear regression models make the assumption that the predicted target can be expressed as a linear

combination of the provided input features. The goal is to determine the weights of the features, or
coefficients, such that said weights lead to optimal target predictions, based on the provided data [31].
The following three sections explain the linear regression methods in this research, and how each of
these methods approaches the determination of the coefficients.

Ordinary Least Squares
Ordinary Least Squares (OLS) is a form of linear regression which estimates the weights of the

features, the coefficients, by minimising the sum of the squared differences between the values of the
predicted and true target values [31].

In this approach, the weight of each feature is influenced by how that specific feature contributes
to reducing the prediction error of the model as compared to the other features. However, this means
that when the number of features approach the number of available target data points, the features
are unable to provide the model with enough independent and unique information to consistently
reduce the prediction error [32]. This makes the predicted coefficients highly sensitive to noise, and
thus makes the model unstable and more likely to overfit. Therefore, when using many features, OLS
is often not suitable to learn the feature-target relationship.

LASSO
Another form of linear regression is LASSO (Least Absolute Shrinkage and Selection Operator).

LASSO introduces an L1 regularisation term to help find the optimal coefficients. The L1 regularisa-
tion term penalises large coefficients, and shrinks coefficients which contribute little to the predictions
to zero [32]. Feature selection is already performed by using the L1 regularisation term since shrinking
coefficients to zero essentially removes the features from the model [31]. In contrast to OLS, which can
become unstable when many features are used, LASSO performs well in cases where many, potentially
redundant or strongly correlated, features are used.

Ridge
Ridge is also a form of linear regression using a regularisation term. Rather than LASSO using

an L1 regularisation term, which shrinks coefficients that contribute little to the prediction to zero,
Ridge uses an L2 regularisation term, which shrinks large coefficient values towards zero. Note that,
L2 does not force coefficients to zero, as opposed to the L1 regularisation term LASSO uses [31, 32].
This makes Ridge also suitable in cases where potentially redundant or strongly correlated features
are used, as well as in cases where it is desirable to use all features in the model.

Random Forest
Random Forest is a non-linear regression method based on an ensemble of decision trees. Instead

of using a single model to learn the feature-target relationship, Random Forest uses the predictions
of many different decision trees that are trained on different subsets of the dataset [33]. This allows
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Figure 6: A visual overview of the workflow of this research.

Random Forest models to capture non-linear and more complex relationships between features and
the target. This is also the reason the Random Forest method is usually less sensitive to noise and
overfitting. Therefore, Random Forest is suitable in cases where the data is noisy or the feature-target
relationship is expected to be more complex or non-linear.

3 Creating & Running Simulations

The goal of this research is to create simple ML models that try and predict physical properties of 2D
perovskites. This requires simulated data from different 2D perovskite materials. However, datasets
containing the simulated material properties of 2D perovskites are not easily available. Existing stud-
ies often focus only on a subset of many 2D perovskite materials [34, 35]. The simulation approaches
between studies also vary, so it is not reliable to combine the information regarding simulated 2D
perovskite materials from different papers. Besides, there currently is no widely available technique
that allows for the automatic generation of the files needed to run the simulations for different 2D
perovskites. However, while simulated data is not widely available for 2D perovskites, the Crystallo-
graphic Information Files (CIFs) are.

As described in Section 2.1.1, CIFs describe the type of element and positions of the atoms, as
well as some information about the unit cell itself, like the lengths of the edges. Although these CIFs
are widely available for 2D perovskites, essential information (see Section 2.2.3) required for running
MD simulations, like the typing of atoms and parameterisation, are missing. The CIFs will therefore
be used to extract structural information, to then be able to convert this structural information to
simulation-ready files; this conversion can be done through the use of an automated pipeline, which
we create during this research project. All CIFs used during this research are gathered from the
Cambridge Crystallographic Data Centre (CCDC) [36].

This section describes the creation of the automated pipeline needed to convert CIFs to simulation-
ready files. The section after presents the processing and analyses of the data gathered from the
results of these simulations. An overview of the workflow of this research can be seen in Figure 6.

3.1 Extraction of Structural Information from CIFs

Seeing as the unit cell in the CIFs contain both BX-layers and organic spacer A-molecules, these
components first need to be identified, and separated, before being able to perform force field param-
eterisation. This information can then be used to reconstruct the unit cell in a format that is suitable
for the LAMMPS simulation engine [5]. Since this process is not yet automated, we create a pipeline,
which automatically converts CIFs to simulation-ready files.

Identifying the Atoms
First, the organic spacer molecules, as well as the atoms in the inorganic layers, are identified

and extracted. Seeing as the inorganic atoms are not bonded, but rather exist in an ionic lattice,
the extraction of the inorganic atoms, and their positions, can be done by looking up the inorganic
atoms in the CIF, and copying their information. The organic spacer molecules are more difficult
since a single unit cell can contain several of the same spacer molecules with different symmetry
configurations (see Section 2.1.1). In practice, this means that the same molecule can appear multiple
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Figure 7: A visual representation of periodicity similar to a crystal lattice, where each of the nodes can
resemble atoms in a molecule, and each of the edges bonds between atoms the bonds between the atoms
of the molecule. The dotted red edge highlights the difference in distance between periodic images.
Adjusted from [37].

times in different orientations, like flipped or rotated, within the same unit cell. This is an issue
because each individual spacer molecule needs to be extracted to perform force field parameterisation.

The solution is to construct a heuristic-based graph to determine which atoms belong to which
molecule. The heuristic is based on a cutoff, meaning that two atoms are considered bonded if the
distance between said atoms is below a certain threshold; the cutoff threshold is calculated as the sum
of the bond radii of the two atoms, with an additional tolerance factor of 0.4. This approach is able
to correctly group atoms into their respective spacer molecules and therefore correctly identifies each
molecule.

However, the heuristic is not able to capture the connectivity within each spacer molecule; the
edges within the graph—the bonds between the atoms in the molecules—are therefore incorrect.
Adjusting the heuristic did not fix this seeing as the distances of the atoms within molecules can vary
between all the unique materials. Therefore, each unique spacer molecule within a material can be
determined using this approach, but identifying the connectivity of the atoms using the atomic radii
and average bond lengths is unreliable. Note that this two-step approach is used for clarity; in the
pipeline both steps can be combined into a single step.

Ensuring Complete Molecules within a Unit Cell
After identifying the atoms belonging to each spacer molecule, each of the atoms need to be

parametrised for the force field, which requires the connectivity between these atoms to be inferred.
OpenBabel can easily infer this connectivity by using the coordinates of the atoms [38]. However,
because the CIFs describe periodic crystal structures, it is not guaranteed that all atoms of a sin-
gle spacer molecule are located within the same unit cell. Instead, parts of the molecule might be
wrapped around the edges of the cell. A visual example of this can be seen in Figure 7. Figure 7
shows a periodic lattice. This lattice can be seen as a crystal lattice, where each of the 9 boxes are
replicated unit cells; the CIF contains only one unit cell, the orange cell in the middle for example.
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This lattice contains nodes i, j, k and l, where atoms j, k and l are all connected to node i, but not any
other nodes. This figure demonstrates the periodicity issue: not all of the connected nodes are within
the same cell. In particular, looking at node i in the orange unit cell shows some of its connections
crossing over into the surrounding unit cells. While the true distance between, for example, nodes i
and k is given by the black edge, the CIF only contains the orange cell, and a heuristic-based approach
will only see the longer distance for the node within the orange unit cell, as indicated by the dotted
red line. Therefore, before being able to infer connectivity, the nodes in the cell are all moved based
on the periodic image in which they are closest to a chosen reference node, thus essentially shifting
an entire connected graph to lie within a single unit cell. This reference node can be any node in the
cell, since the distance from a random node to any of the other nodes of the correct graph will always
be shorter than the distance needed for traversing a periodic image to a node belonging to a different
graph.

Therefore, all unique spacer molecules can be identified through a heuristic graph-based approach,
while determining the connectivity of the atoms within each molecule requires accounting for the
periodicity of the crystal lattice of the materials, which is done by shifting all atoms a certain distance
based on a reference atom.

3.2 Force Field Parametrisation

The next step is to parametrise the identified spacer molecules using the AMBER general force field.
This force field is chosen because, as described in Section 2.2.3, a general force field is needed for
handling many different materials without manually tailoring a specific force field to each. Besides,
AMBER comes packaged with additional tools useful for parametrising the atoms [26–28].

First, OpenBabel is used to infer connectivity between the atoms [38], while antechamber and
parmchk2—belonging to the AMBER general force field—are used to parametrise the atoms of the
spacer molecules to reassemble all the spacer molecules and inorganic atoms into a single cell, including
the lattice parameters like the lengths of the edges of the unit cell. The LAMMPS simulation engine
can then use the cell to perform the simulations.

Unit cells can contain spacer molecules with different symmetry configurations, but antechamber
and parmchk2 expect a single molecule. To solve this, a single spacer molecule is first parametrised,
after which its parametrised values are also used for the remaining symmetry configurations, which
is possible since each symmetry configuration represents the same molecular structure and therefore
share identical force field parameters. It is important to note that the automatic determination of the
charges of the spacer molecules can not be automated; these charges are therefore manually provided.

3.3 Non-Bonded Interaction

The last step requires the definition of the Buckingham and Lennard-Jones potentials to model the
interactions between non-bonded atoms, as described in Section 2.2.3. In the case of 2D perovskites—
which are the focus of this research paper—the organic atoms within a single molecule will be described
using the short-range Buckingham potentials, while interactions between the atoms in the inorganic
BX-layer with themselves, as well as with atoms from the organic spacer molecules, are described
using Lennard-Jones potentials.

The Buckingham potentials are automatically generated by tLeap alongside the LAMMPS-compatible
unit cell; this means the short-range organic-organic interactions are automatically defined. This
leaves the long-range organic-inorganic, and inorganic-inorganic interactions to be described using
the Lennard-Jones potentials. The values for these Lennard-Jones potentials can only be accurately
be determined experimentally. Although, not much previous work is available regarding the use of
Lennard-Jones potentials for inorganic-organic systems.
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However, there are some papers, like [34], that experimentally determined the Lennard-Jones
potentials for some inorganic-organic systems. But, this means that all atoms in the system are now
tied to the type of elements used in said paper, since no parameter values are available for any other
type of elements. For example, the paper does not include Lennard-Jones potentials for bromine (Br)
atoms, meaning all CIFs containing bromine can not be used; the only inorganic atoms in said paper
are lead (Pb) and iodine (I). A different paper [35] does report Lennard-Jones potentials for Br and Pb
atoms. However, since the reported Pb parameters differed between the two papers, only the values
from Fridriksson et al. are used to avoid mixing parameters from different sources. Besides that, a
lot of values in said paper are the same across atom types; for example, a carbon atom in a simple
chain and a carbon atom in an aromatic system had the same value for Lennard-Jones potentials in
the paper. Using the same Lennard-Jones potential values for different atom types will likely not
affect the comparison between materials as is done during this research, although it does introduce
the possibility of the simulated material being less chemically accurate.

Nonetheless, due to long-range non-bonded interactions being crucial for the accurate simulation
of organic-inorganic systems, like the 2D perovskites, the values for the Lennard-Jones potentials
from [34] are used. The Lennard-Jones values, together with the already generated Buckingham
values, model the non-bonded interactions of the atoms.

3.4 Conversion to LAMMPS

The parametrised spacer molecules, together with the inorganic atoms and lattice parameters, are used
by tLeap, also belonging to AMBER, for the creation of a single unit cell, appropriate for LAMMPS
simulations. It is important to note that for the parameterisation in antechamber, the overall charge
of the spacer molecules is needed.

After the reassembly of the unit cell containing all spacer molecules, inorganic atoms and lattice
parameters, the cell needs to be converted to a format that can be used by LAMMPS. Since converting
the files from an AMBER-compatible format to a LAMMPS-compatible format is not possible, an
intermediary step is added to first convert AMBER files to InterMol-compatible files, before using
InterMol to write everything to a LAMMPS-compatible file [39]. After the conversion, a simulation-
ready file containing the reassembled unit cell is generated, which can then be used by the LAMMPS
simulation engine to perform simulations.

3.5 Running Molecular Dynamics Simulations

The pipeline as described in the previous sections is able to convert structural information from CIFs to
simulation-ready files. Before the MD simulations can be performed the LAMMPS simulation engine
requires the definition of several settings in order to model how the system changes over time. These
settings include thermodynamic settings, like the chosen ensemble, the duration of the simulation and
the size and periodic boundary conditions of the system. This section highlights which LAMMPS
settings are used for simulating the 2D perovskite materials.

Thermodynamic Settings
Since one of the goals of the simulation is to examine structural changes caused by varying the

temperature, the chosen ensemble for simulating the 2D perovskites is the NPT ensemble, which
keeps the pressure constant, rather than the volume. This way, the change of volume of the box can
be examined under varying temperatures.

The temperatures used in this research range from 200K to 350K, in steps of 10K. This means,
in total 16 NPT simulations are performed per unique material. The temperature range converted
to degrees Celsius would be about -73 to 77 degrees Celsius. Realistically, 2D perovskites would not
endure such extreme temperature, but using such a wide range can allow for temperature-related
effects to be better observable. Seeing as the goal of this research is to identify the behaviour of the
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materials relative to each other, rather than obtaining highly specific structural properties, this is a
suitable approach for this research.

Simulation Boxes & Period Boundary Conditions
For the simulation of 2D perovskite materials, orthogonal simulation boxes with 3 x 3 x 3 replications

of the unit cells are used. Usually, larger simulation boxes are preferred since they more accurately
represent the crystal structures and better capture long-range interactions. Using a 3 x 3 x 3 simulation
box surrounds the central unit cell in all directions, thereby improving the representation of the crystal
structure. Due to the limited available time for this research, as well as the goal of this research being
the identification of subsets of 2D perovskites with certain properties, rather than highly specific
property information, the usage of a 3 x 3 x 3 simulation box is suitable. To further aim for a more
representative crystal structure, periodic boundary conditions are used for the simulations, so that
atoms at the boundaries of the simulation box interact with atoms in neighbouring replications of the
system, rather than being cut off by the edges of the box.

Simulation Duration & Time Steps
The MD simulations evolve over time using fixed time steps. Typically, either one or two fem-

toseconds (10−15 seconds) are chosen for each time step, and seeing as larger time steps may cause
instabilities during the simulations, a time step of one femtosecond is used.

Before the simulations are started, there is an initial equilibration phase where the system relaxes
from its initial state to a more stable state. After this initial equilibration phase finished, the simulation
using the first temperature, namely 200K, is started. The simulations are then performed sequentially
for increasing temperatures, where the final configuration of each temperature run is then used as
the starting configuration for the next run. For each temperature, a simulation of 40 000 time steps
is performed. During each of the different temperature simulations, the first 4 000 time steps are
used as an additional equilibration phase in which the system is provided with extra time to stabilise
per temperature. Therefore, at each temperature, LAMMPS records the properties of the system
every 1 000 timesteps for a total of 40 000 time steps, with the exclusion of the first 4 000 timesteps
corresponding to the equilibration phase.

Recorded Properties
At each 1 000 time steps, in femtoseconds, of the MD simulations, several structurally and physi-

cally relevant properties of the simulated material are recorded by the LAMMPS simulation engine.
LAMMPS outputs the total potential energy of the system, as well as the volume of the simulation box
and the positions of all atoms in the system. Which of these properties are relevant for the machine
learning models is discussed in the next section.

Restarting Simulations
In case of unexpected interruptions, the simulations are manually restarted. Under normal circum-

stances, the box of atoms is initialised and separately equilibrated, after which the equilibration, as
described above, for the 200K run is performed. The following temperature runs then use the final
positions of the 200K run as their starting positions. This works, seeing as structural changes of the
material happen gradually with an increase in temperature, meaning that the previous temperature
run provides a good starting position for the next run.

However, simulations are only allowed to run for up to 24 hours on the supercomputer used in this
research, which means that if simulations take longer, they would be terminated before finishing all
the temperature runs. These are then to be manually restarted to continue from the last temperature
run at which they have stopped. In practice, a complete simulation of a single material over the entire
200K-350K temperature range usually takes between 10 and 20 hours. This means that the box of
atoms might not yet be correctly relaxed at the start of the new temperature run. Despite this, since
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there is an initial equilibration step, as well as the equilibration phase during the first 4 000 timesteps
of each temperature run, this effect is expected to be negligible.

3.6 Assumptions

The previous section explains the approach that this research uses to perform MD simulations. How-
ever, throughout that section, several assumptions are introduced. This is difficult to avoid since
representing materials or molecules with a physical meaning in a computational form requires par-
tially abstracting away from this physical meaning to simplify the system and make it computationally
suitable. The main assumptions relevant to running the MD simulations for the 2D perovskites in
this research paper are summarised and justified in this section.

Charges
All atoms in a material have their own partial charges. These partial charges are influenced by the

type of atoms in the material, the neighbouring environment, and its electronic interactions. Ideally,
these charges are determined through quantum-mechanical calculations. However, in this research, the
charges are approximated through a simplified approach using antechamber [26–28], which is deemed
suitable since small differences in the partial charges will likely not influence the trends and behaviour
of the overall material by much.

Force Field (Parameters)
A general force field is used to run the MD simulations, which requires force field parameters

to be assigned. These parameters are also determined through antechamber, which tries to assign
parameters based on the given molecular structure. However, the usage of a general force field and
the assignment of force field parameters in itself will always be an approximation, since, ideally, a
new force field would be created specialised for each unique structure, and each atom would get its
own uniquely calculated force field parameters. However, the ideal approach is not commonly used
as this is time consuming and not generalisable. Instead, the use of general force fields is standard
practice in material chemistry. This will likely not influence the predictions of the simple ML models
by much, but nonetheless it is important to keep in mind, especially since this would be relevant when
chemically accurate and precise predictions or analyses are needed.

Orthogonal Boxes
The 2D perovskites are simulated using orthogonal boxes. This simplification is required since de-

termining the two directions in which the 2D slab of the perovskite extends is difficult to be determined
programmatically due to the lack of available information in the CIFs. Besides, using orthogonal boxes
also assumes 90◦ angles between all the edges of the box, which is not always the case. About one
quarter of the CIFs used in this research have at least one unit cell angle that deviates by more than 5◦

from 90◦. Although these simplifications reduce the chemical accuracy of the structures, it is assumed
this will not change the performance of the simple ML models by much, seeing as the predictions are
based on relative trends between the materials, rather than precise geometrical features.

Simulation Duration
The simulations are performed over a time of 40 000 time steps, each with a duration of one fem-

tosecond (10−15 seconds). In general, increasing the length of the simulations improves the statistical
reliability of the results of the simulations, as it is more likely to average out noise. It is assumed
40 000 time steps are sufficient for this research because the initial part of each simulation is reserved
for equilibration and not used for training the machine learning models. An increased amount of
time steps could lead to more statistically accurate results, but it has the downside of requiring more
computational power.
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4 Simulated Data & Machine Learning Models

Before any models can be trained to predict properties of 2D perovskites, the first step is to identify
which properties could possibly be predicted using machine learning models. This section therefore
first discusses the different 2D perovskite properties extracted from the MD simulations. These prop-
erties are then analysed to identify which properties are suitable as ML targets, as well as to verify
the target’s contribution to the photoelectric effects in the system. The final section of the section
describes the methodology for constructing and evaluating the ML models for predicting the targets.

4.1 Simulated Data

The simulations produce a range of physical and structural data. As described in Section 3.5, some
simulations were too large to finish their simulations within 24 hours, and therefore had to be man-
ually restarted; this happened for 16 unique materials. At each temperature, LAMMPS recorded
the positions of the atoms every 1000 timesteps, with the exclusion of the first 4000 timesteps corre-
sponding to the equilibration phase. Alongside the positions, LAMMPS also output total potential
energy, the varying lengths of the box due to the changes in volume at different temperatures, the
stress each plane of the box experiences, the short-range structure of the atoms, and the mobility
of the atoms, all recorded at each timestep. However, not all of these properties gathered from the
simulations are suitable as machine learning targets. A proper machine learning target, in this case,
must be dependent on or influenced by the temperature, and must be linked to the structure of the
2D perovskites, since the CIFs contain structural information and the goal of this research is to create
models that can differentiate between subsets of different 2D perovskite structures.

4.2 Target Selection

In an attempt to find behaviour suitable for machine learning, several properties gathered from the
MD simulations are plotted. It should be noted, however, that for these plots, and the extraction of
simulation data in general, all data up until the first 20000 timesteps per temperature run are not
included in the calculation of the targets. This is done to ensure all systems have fully equilibrated,
and no inconsistent or noisy data caused by incomplete relaxation of the system is used.

This section first examines whether there is a pattern to predict by looking at the variability of the
potential targets across simulations to assess whether these calculated average values for each of the
materials contain much noise, and finally it checks how the potential targets behave across different
temperatures.

4.2.1 Average Potential-Energy Temperature Derivative (C
(Û)
p )

The specific heat capacity at a constant pressure (Cp) describes the amount of heat required to raise
the temperature of the material by one degree, at constant pressure, which describes how energy
is distributed within the material [40]. The Cp is usually calculated using terms that introduce
contributions that are not directly linked to bonding or structural information of the system. Since
the goal of this thesis is to predict properties based on the static CIF features, using the standard
definition of Cp is less informative. Instead, the average potential energy (Û) can be used since it is
directly related to the bonding and structural configuration of the material and can immediately be

extracted from the results of the MD simulations. Therefore, the first possible target C
(Û)
p is defined

as the slope of the average potential energy Û with respect to T at constant pressure. This target
focuses on the potential-energy part and does therefore not represent the full specific heat capacity
Cp.

This paragraph first examines whether there is a predictable pattern by looking at the variability
of the average potential-energy temperature derivative across simulations, after which it considers
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Figure 8: A scatter plot showing the aver-
age potential energy per atom at 300K for
all simulations. For further analysis, the two
red-coloured outliers are removed.

Figure 9: A scatter plot showing the average
potential energy per atom at 200K, 300K and
350K for a subset of simulations.

Figure 10: A graph showing the average potential energy per atom at 300K for a subset of materials,
plotted as function of the relative time steps of the simulations. Each line represents a different
simulated 2D perovskite material.

whether these average values are consistent, and finally it checks the slope’s behaviour across different
temperatures.

Average Potential Energy over Temperatures
First, the distribution of the average potential energy per atom values is examined. Figure 8 shows

the values of the average potential-energy, at 300K, ranging from around -120 to around -20, indicating
these average values vary across different materials. If the target is used, the red outliers in Figure 8
will be removed from the dataset.

Figure 9 shows the average potential energy per atom across three different temperatures, namely
200K, 300K and 350K. It is expected for the average potential energy to increase as the temperature
increases, since higher temperatures cause increased atomic vibrations, meaning the system requires a
higher amount of energy. This is indeed visible in Figure 9. Since the potential energy increases from
lower to higher temperatures, the average potential-energy temperature derivatives across materials
likely show similar behaviour, making them comparable and potentially suitable as machine learning
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Figure 11: The average potential energy per
atom (in eV/atom) over the temperature
(in K). Each line represents a different sim-
ulated 2D perovskite material. Here, two out-
liers have been removed.

Figure 12: The average potential energy per
atom (in eV/atom) over the temperature
(in K) for a single simulation.

Figure 13: The single value for the average potential-energy temperature derivative per material. The
two previously identified outliers have already been removed.

targets. Therefore, because the data falls within a similar range and order of magnitude—with the
exception of two outliers—and there seems to be an increasing trend from lower to higher tempera-
tures, this suggests the average potential-energy temperature derivative could be a suitable machine
learning target.

Potential Energy over Time
The average values as seen in Figures 8 and 9 use averaged values. To confirm the stability of

these average values, the averages are plotted against the timesteps of the MD simulations, at a single
temperature; this can be seen in Figure 10. Figure 10 shows the averages of the potential energy per
atom to remain stable over time. Therefore, the data points as shown in Figures 8 and 9 are more
reliable.

Average Potential-Energy Derivatives as Target
Finally, the average potential-energy temperature derivative can be seen in Figures 11 and 12. The
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Figure 14: A scatter plot showing the average volume per atom at 300K for all simulations, except for
the removal of a single outlier. The values are spread out, with a couple of values clustering together
towards the bottom-right of the graph.

target is defined as the derivative of the average potential energy with respect to the temperature,
and is determined by using OLS (see Section 2.3) to fit a line to the average potential energy per atom
Ûatom across the temperature range of 200-350K [41].

Figure 11 shows the average potential energy per atom plotted as function of the temperature for
all materials, including two outliers. These outliers are the same as the outliers as visible in Figure
8, and are therefore removed. As expected from Figures 8 and 9, the slopes of the materials exhibit
clear variability, while also showing an increasing trend with temperature. The increasing trend
with temperature might not be clearly visible since the potential energies of the different structures
vary over a range of temperatures. To clearly indicate this increasing trend, the average potential
energy per atom over the temperature is shown in Figure 12. Looking at Figure 12 shows the slope
for an individual material and confirms that the curves as seen in Figure 11 are indeed non-linear.
The average potential-energy temperature derivative values per material can be seen in Figure 13
to confirm whether the values of the derivatives vary across simulations. Figure 13 shows variation
between the values of the derivatives across different materials.

Therefore, since the average potential-energy temperature slopes show variability and a consistently
increasing trend with temperature, the average potential-energy temperature derivative is a suitable
machine learning target.

4.2.2 Average Volume per Atom (V̂atom)

The second potential target is the average volume, per atom, (V̂atom) of the boxes. The average volume
here is taken per atom, since the volume should be comparable between simulations. This section
first examines whether there is a pattern to predict by looking at the variability of the average volume
per atom across simulations, after which it considers whether these average values are consistent, and
finally it checks how the average volume behaves across different temperatures.

Average Volume per Atom over Temperatures
To first see whether there is any variability between V̂atom across simulations, V̂atom is plotted

against a single temperature. This can be seen in Figure 14. Looking at Figure 14 reveals there is a
variability between the different values. The range and order of magnitude of the data points seem
to also be in a similar range. Therefore, this could be an indication of the average volume per atom
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(a) The regular lines indicate the average volume
per atom, for a single temperature (300K), with
a standard deviation below the threshold of 0.10.
The dashed lines indicate some of the identified
outliers exceeding the standard deviation thresh-
old of 0.10.

(b) Same as Figure 15a, but then zoomed in on
an area containing an outlier.

Figure 15: Graphs showing the accepted averages and identified outliers for the volume per atom at
300K plotted against the relative time steps of (a subset of) the simulations. Each line represents a
different simulated 2D perovskite material. The outliers were filtered based on the standard deviations
of the volume per atom over time exceeding 0.10.

being a target suitable for machine learning models.
When comparing Figures 8 and 14 similar clustering of the data points is seen in the upper right

and lower right corners of the Figures respectively. This is likely due to the numbering of the CIFs,
originating from the CCDC [36], being ordered in a way that similar structures receive a similar
number. Since the scatter plot goes through a sorted list of CIFs, it likely plots CIFs with similar
numbers, and thus possibly similar structures, closer together.

Volume per Atom over Time
Next, it should be confirmed whether the average volume-per-atom values are stable so that they

can be reliably used as a ML target. To confirm whether the values over time fluctuate, making the
averages unreliable, the standard deviation of the volume per atom for all temperatures is determined,
after which the mean of standard deviation is taken over all 16 temperatures to get a single mean
standard deviation value per simulation. With a threshold of 0.10 for the standard deviation, six
outliers are identified. The outliers for a single temperature, namely 300K, can be seen in Figure 15a.
Since the values vary, the values over time in Figure 15a might seem consistent. However, looking at
Figure 15b shows a zoomed-in version of Figure 15a, in which the instability of one of the average
values is better visible. Note that the stability of the average determined by looking at the volume
per atom over time, rather than over temperature, since a fluctuation in temperature does not have
to be an indication of an outlier; a fluctuation could represent the physical behaviour of the box at
said temperature.

Average Volume per Atom per Temperature as Target
Lastly, to ensure V̂atom is a reliable target, V̂atom is plotted against all the temperatures to show

the behaviour of the potential target across different temperatures; this is shown in Figure 16a, which
seem to vary with temperature. Here, it can also be seen that the volume slightly increases the
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(a) All values for the average volume per atom
plotted against the temperature for all 97 mate-
rials; this is without the seven outliers.

(b) Same as Figure 16a, but then zoomed in and
for a subset of materials.

Figure 16: Graphs with the average volume per atom (in Å3/atom) plotted against the temperature
(in K). Each line represents a different simulated 2D perovskite material. The seven outliers as
previously defined have already been removed.

higher the temperature; this is to be expected, due to higher temperatures leading to the system
having more energy, and thus, the atoms being able to, on average, move further away from their
equilibrium positions. Some of the lines in Figure 16a, which is better visible in Figure 16b, show a
sharp increase in volume at a certain temperature. This does not indicate an outlier, but rather the
physical behaviour of the system, like thermal expansion or a phase transition.

Therefore, based on variation in values for the average volume per atom over each temperature and
the stability of the average values, the average volume per atom is a suitable target to predict for ML
models.

4.3 Feature Construction

First, before a model can be trained to predict the targets identified in Section 4.2, features are needed
to train the model.

CIF Information
The goal of this research project is to see if simple machine learning models can be used to predict

2D perovskite properties based on the CIF information. Therefore, information found in the CIFs
are first turned into features. The information from the CIFs that are used as features include the
lattice parameters, namely the lengths of the edges of the unit cell, a, b and c and the angles between
each of the edges, α, β and γ. The size information of the unit cell is also included, namely the
volume of the unit cell, the amount of atoms in a single unit cell (see Section 4.4). The reason the
volume is included in this case, is because the volume of the static structure might be different from
the volume as determined in the simulations, seeing as, as mentioned in Section 3.6, the simulated
boxes are assumed to be orthogonal, which is not always true. Lastly, the 0th, 1st, 2nd and 3rd joint
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degree distributions of the unique spacer molecules are also included as features. It should be noted
that these features are collinear; the lattice parameters, size information and joint degree distributions
contain features correlated features. This in itself is not a problem, but it should be taken into account
when building the ML models and analysing their performance.

Joint Degree Distribution
Ideally, each unique spacer molecule with relevant information like bonds, bond orders, angles,

dihedrals and symmetries would be represented. However, a three-dimensional representation of the
molecule can not be used as a feature for traditional ML models. To still represent the molecules
as features, to a certain extent, joint degree distributions of the molecules are added; in this case,
the zeroth, first, second and third joint degree distributions are added as features. The zeroth joint
degree distribution represents the atom counts, for example ”10 C-atoms; 16 H-atoms”. The first joint
degree distribution represents fragments of two neighbouring atoms, for example ”8 C-H fragments”
or ”3 N-H fragments”. This continues for the second and third joint degree distributions, where an
example of the second and third degree would be ”5 H-C-H fragments” and ”3 H-C-C-H fragments”
respectively. All fragments are counted in such a way that they are only counted once per atom
composing them.

The joint degree distributions are counted with the help of an adjusted version of part of the
pipeline code. Here, OpenBabel is utilised once more to determine connectivity of the spacer molecules.
During determining the connectivity of all spacer molecules of all CIFs, some errors are displayed.
These errors are either about the formatting of the CIFs, or the bond order, both of which are not
utilised in this research, and can therefore be ignored.

4.4 Model Construction and Evaluation

This section first explains which models are used in this research project to predict the 2D perovskite
properties, after which it describes how these models are trained, validated and evaluated.

Model Types
As gathered from Section 4.2, the goal of the model is to try and predict photoelectric-related ma-

terial properties gathered from MD simulations, namely the potential-energy temperature derivative
and the average volume per atom, using structure-based features, like information from the CIFs
and the spacer molecules. The focus of the model should therefore be to capture the relationship
between these static structure-based features and the dynamic material properties. Since these tar-
gets are continuous, rather than categorical, a model is needed that is capable of making continuous
predictions. Besides that, since the features and targets are physically meaningful, the model should
be interpretable. Moreover, due to the small amount of available data, the model should be able to
handle few data points. Finally, the model has to remain stable despite noise that can be introduced
during the MD simulations.

Several model types fit these criteria, namely linear regression and random forest. Both, linear
regression and random forest models are suitable for learning continuous relationships. Linear regres-
sion is useful because it gives interpretable predictions and captures linear trends in the data. Random
forest, on the other hand, is able to capture more complex behaviour, as well as handling non-linear
relationships in the data.

As described in Section 2.3, linear regression is solved using ordinary least squares. In this ap-
proach, the weight of each feature, also called a coefficient, is determined by how that specific feature
influences the model compared to the other features. If the amount of features, which there are in this
case 68 of, approaches the amount of data points, in this case 104, the features do not provide enough
independent information. Consequently, the ordinary least squares method becomes highly sensitive
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to noise, making the model unstable. For this reason it is expected that ordinary least squares linear
regression is not suitable due to the size of the features set, relative to the amount of data.

To still be able to use a form of least squares both the LASSO and Ridge models can be used.
Both these models are forms of linear regression, which penalise the coefficients. LASSO shrinks the
weights of some features to zero, while Ridge shrinks the weights of some features without excluding
them entirely. It is therefore expected that these models will be able to better handle the amount of
features relative to the amount of available data.

Therefore the models that are used to predict the targets are Ordinary Least Squares, LASSO,
Ridge and Random Forest, where it is expected that the Ordinary Least Squares model will not
perform well, but is still included to confirm these assumptions.

Target-Specific Modelling Strategies
The potential-energy temperature derivative target is determined by using all 16 temperatures.

The 16 different temperature runs are used to calculate the slope of the potential energy as function
of the temperature, meaning the predictions of the model are defined per material, rather than per
temperature. Since 104 materials are included in the dataset, this results in a total of 104 data points
for this target.

The average volume per atom, on the other hand, shows a spread between different temperatures
within the same material. Therefore, the average volume per atom will be predicted per temperature,
not per material, as with the potential-energy temperature derivative. This means each average
volume at a certain temperature is its own data point. However, because different temperature runs
per material are strongly correlated, data leakage can occur. To prevent data leakage, the training,
validation and test splits are always made per material, and never per temperature. This ensures that
all temperature runs of the same material are in the same split.

The average volume per atom will be predicted using two different approaches, namely building a
model from scratch, and building a model based on the predictions of another model. One of these
approaches entails training a model from scratch, using the temperature as an additional feature.
Another approach is to first predict the mean average volume per atom per material, thus over all 16
temperature runs, and then using the predictions of that model as an input feature, as well as the
temperature, for the second model. This provides insight as to whether performance is improved when
separately determining the contribution of the material-specific influence on predicting the volume,
before including temperature-related contributions.

Hyperparameter Optimisation & Cross-Fold Validation
Since the performance of the models is dependent on the choice of hyperparameters, a specific

approach to hyperparameter optimisation is used. To find the optimal hyperparameters for the models
trying to predict 2D perovskite properties, GridSearch, a form of hyperparameter optimisation, is used.
GridSearch is used to optimise the α parameter for the LASSO and Ridge models, and the maximum
tree depth, the minimum number of samples per leaf, and the number of considered features at each
split for the Random Forest model. Since LASSO uses both coefficient penalisation as well as feature
selection through shrinking the weights of the features to zero, the model is highly sensitive to the
value of alpha. The search grid for α is therefore on a logarithmic scale, with values starting from
-10, ending at 1, with a total of 40 steps. For Ridge, the search grid for α uses values starting at 0.1,
ending at 200, also using 40 steps. For Random Forest, the maximum tree depth is chosen as either
4, 6 or 8, the minimum number of samples per leaf as either 2, 3 or 5, and the number of considered
features at each split as either 0.3, 0.5 or 0.8. Because Random Forest models are usually less sensitive
to hyperparameters than linear models which penalise coefficients, the hyperparameter optimisation
is expected to not influence the Random Forest model as much as compared to the hyperparameter
optimisation for LASSO and Ridge.
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Table 1: Evaluation metrics for the Ordinary Least Squares, LASSO, Ridge and Random Forest models

predicting the C
(Û)
p . The metrics in this table are computed using the best found hyperparameters in

each of the five folds. The Mean Generalisation Gap column displays the mean of the difference in
validation and test performance over the five outer folds. The Test Set Mean R2 column shows the
average performance of the model across the five outer CV folds, and the Test Set Std. R2 contains
the corresponding standard deviation. In the NRMSE column, the normalised values of the root mean
squared error, belonging to the predictions made by the model, can be found. The NRMSE is calculated
from the test predictions from each of the five folds. Two outliers have been removed prior to training.

Model
Mean Generalisation

Gap
Test Set
Mean R2

Test Set
Std. R2 NRMSE

Ordinary Least Squares -751 -31.6 27.9 1.11

LASSO 0.014 0.219 0.110 0.166

Ridge 0.032 0.215 0.162 0.166

Random Forest -0.016 0.494 0.177 0.134

Because hyperparameter optimisation is used, there needs to be a train, validation, test split of
the data; not doing so would introduce data leakage. To do this, five folds are created which contain
different splits in which there is 4/5 training data, and 1/5 test data; these folds are the outer folds.
The outer folds are split based on the material, such that each of the 16 temperature runs for a single
material always belong to the same split. Then, within each fold, the training data from the outer
fold is split up into, 4/5 inner fold training data, and 1/5 validation data. The model is trained on the
inner fold training data, after which the hyperparameters are optimised using GridSearch, based on
the evaluation of the model on the inner validation split. A model with the hyperparameters giving
the best performance on the validation set is then evaluated on the outer test data, which, at this
point, is new data for the model. This is repeated for each of the five outer folds, in which each inner
fold returns a model with the best hyperparameters based on the inner fold-specific validation split.

5 Results

This section shows how well the combination of the selected targets, described in Section 4.2, con-
structed features, described in Section 4.3, and the potential simple ML models, described in Section
4.4, is able predict to 2D perovskite properties based on features derived from static CIFs.

5.1 Average Potential-Energy Temperature Derivative (C
(Û)
p ) Models

The first target that is predicted is the potential-energy temperature derivative, as described in Section
4.2.1. Since the entire temperature range (200K - 350K) is used to find the derivative, there are as
many data points as uniquely simulated materials, namely 104.

The models used in this research to try and predict the potential-energy temperature derivative are
Ordinary Least Squares, LASSO, Ridge, and Random Forest. To find out which model is the most
accurate in predicting the potential-energy temperature derivative from 2D perovskites, the metrics
and hyperparameter optimisations, as described in Section 4.4, are used. These metrics include the
mean generalisation gap, the outer five-fold Cross Validation mean R2, the corresponding standard
deviation of the R2, and the NRMSE. These results can be found in Table 1.

Table 1 shows the different evaluation metrics for the four models. Higher values of R2 indicate
better predictions made by the model. The mean generalisation gap is used as an indication as to
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Table 2: Comparison table for model performance for Ordinary Least Squares using all features, and
Ordinary Least Squares using a small subset of features. There are only two features in said subset,
namely the atom density, and the 0th degree distribution.

Model
Mean Generalisation

Gap
Test Set
Mean R2

Test Set
Std. R2 NRMSE

Least Squares (All Features) -751 -31.6 27.9 1.11

Least Squares (Two Features) -0.074 0.160 0.094 0.173

how well the model generalises on unseen data. It is calculated by subtracting the outer-fold test
R2 from the inner-fold validation R2, where the model adapts to the validation set by using it for
hyperparameter tuning, while the test set remains unseen by the model. This means a more positive
value indicates the model performing better on the validation data than the unseen data, which could
be a sign of overfitting, whereas a more negative value indicates the model performs better on the test
set than on the validation set, which could be a sign of an unlucky validation split. A value around
zero would mean similar behaviour between the validation and test set, which is the desired outcome.
The mean R2 of the Test Set demonstrates how well the model generalises to the unseen test data
from each of the outer five folds, while the standard deviation of R2 shows how much the test set
performance of the model differs across folds, and thus provides an indication of how consistent the
model is between different train-test splits. The value for R2 is in between −∞ and 1; this is because
the error of the model has no finite lower bound, hence −∞, but the best the model can do is match
the provided data, hence 1. This means a higher value for R2 is desired. Finally, the NRMSE is
included. The NRMSE is used, rather than the RMSE, since the RMSE is dependent on the scale of
the target variable, and thus difficult to interpret. The NRMSE is a value relative to the scale of the
target variable. The higher the value of the NRMSE, the greater the error of the prediction relative
to the target’s scale.

Ordinary Least Squares is included in Table 1. However, as expected and explained in Section
4.4, using Ordinary Least Squares resulted in extreme negative five-fold Cross Validation R2 values
and high NRMSE values. To confirm the expectation of this being due to the amount of features, the
Ordinary Least Squares model was run once more using only 2 out of the 68 features; these results are
shown in Table 2. Looking at Table 2 indicates that the worse performance of Ordinary Least Squares
is due to the amount of features being close to the amount of used data points. The Ordinary Least
Squares model is therefore not further discussed or included in the rest of the analysis, since reducing
the amount of features only for the Ordinary Least Squares model makes it unreliable to compare to
the other three models.

5.1.1 Analysis of Results

First, looking at the generalisation as well as the Test Set Mean and Standard Deviation R2 values,
shows varying results. Both, the LASSO and Ridge models perform similarly. While the generalisation
gap for LASSO is slightly lower than for Ridge, both are close to 0. Although, for both models, the
Test Set R2 values are around 0.22, possibly showing that the captured relationship between the static
CIF features and the target is weak. The standard deviation across the five outer folds is 0.052 higher
for Ridge, as compared to LASSO. The difference could be due to how LASSO and Ridge handle the
coefficients of the features: as explained in Section 4.4, LASSO removes features, while Ridge only
changes the importance of certain features. It is possible certain features behave differently across
folds, and since Ridge does not remove the influence of any features, it could lead to a higher standard
deviation. The overall higher standard deviation for both LASSO and Ridge models could be due to
the small dataset. On the other hand, the Random Forest model seems to perform better with a Test
Set R2 of 0.494 and a generalisation gap of -0.016, meaning the RF model is able to better capture
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Table 3: Normalised mean distance and standard deviation of the predicted potential-energy temper-
ature derivative data points of the LASSO, Ridge and Random Forest models, to the diagonal of the
parity plots. The diagonal indicates the correct predictions.

Model
Normalised Mean
Distance to y = x

Normalised Std.
Distance to y = x

LASSO 0.088 0.078

Ridge 0.089 0.076

Random Forest 0.070 0.064

behaviour in the data and generalises well, although the high standard deviation of 0.177 does suggest
the model being less consistent across folds. The higher standard deviation could be due to the limited
amount of data: the model is more likely to pick up on patterns stemming from noise in the training
data, which the Random Forest tries to include in its splits, thereby capturing noisy patterns. The
NRMSE values across the models are in line with this: LASSO and Ridge have the highest NRMSE,
meaning it exhibits the largest prediction error, while Random Forest has the lowest NRMSE and
thus performs the best. The reason the Random Forest model performs better than both the LASSO
and Ridge models could be due to non-linear trends in the relationship between the features and
the target, which are unable to be captured by forms of linear regression, like LASSO and Ridge.
Alternatively, the relationship between the features and the target might be weak or noisy, or there
might be too many, or redundant, features, which makes it more difficult for linear models to learn the
behaviour of the target. However, the Test Set R2 of the Random Forest model remains on the lower
side, and thus is not able to capture the full behaviour of the target either. This implies that either
the relationship between the feature and target is only partially learnable from the available data, or
that the static CIF features are unable to convey the information required to capture the behaviour of
the target. It should be noted that the hyperparameters of the outer folds sometimes differ between
folds, but this is expected due to the limited size of the dataset. For example, for LASSO all but one
are in the same order of magnitude, namely E-5, while for Ridge the two most extreme values are on
opposite sides of the hyperparameter grid.

5.1.2 Prediction Error Analysis

To get an idea of how close the predicted values are compared to the true values, parity plots are
used. These plots show the true value plotted on the horizontal axis and the predicted value on the
vertical axis, where the ideal behaviour of the model is indicated by the y = x line. Dots lying close
to this line are a sign of accurate predictions. To evaluate the model’s predictive capabilities, the used
parity plots are constructed using test predictions from each of the five outer Cross-Validation folds.
It is important to keep in mind that the test data originates from five different folds, meaning the
predictions are based on five different models with possibly five different sets of hyperparameters.

Figures 17a and 17b show the parity plots for the LASSO and Ridge models predicting the
potential-energy temperature derivative. As expected from the information shown in Table 1, both
LASSO and Ridge make similar predictions, with both of them making predictions closer to the mean,
thereby not capturing the behaviour of the target at both ends of the diagonal. This can be confirmed
by comparing the mean distance of all outer-fold test predictions to the diagonal line. Table 3 shows
the normalised mean distances, as well as the standard deviation, to the diagonal y = x for each of
the three models. Here, it can be seen that, indeed, LASSO and Ridge have higher mean values as
compared to the Random Forest model, although none of the three models entirely collapse towards
the mean. The parity plot for the Ridge model seems to have more spread out predictions as opposed
to the parity plot for the LASSO model, which could be due Ridge not reducing coefficients to zero
like LASSO does; see Section 4.4.
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(a) LASSO parity plot, predicting the C
(Û)
p . (b) Ridge parity plot, predicting the C

(Û)
p .

(c) Random Forest parity plot, predicting the C
(Û)
p .

Figure 17: Parity plots for the LASSO, Ridge and Random Forest models, where the outer-fold pre-

dictions of C
(Û)
p are plotted against the true values of C

(Û)
p . Since five-fold cross-validation is used,

each of the outer-fold test predictions of each of the five folds is shown in this plot, and indicated with
a unique colour and shape. The red-striped line in the middle shows the y = x line, showing correct
predictions. Note, two outliers were removed prior to training.

Figure 17c shows the parity plot for the Random Forest model predicting the potential-energy tem-
perature derivative. The Random Forest model is able to capture more variation in the behaviour of
the target, especially at the extremes of the diagonal—as opposed to the LASSO and Ridge models—
as well as the predictions being less centred around the mean. This confirms the previous explanation
of the Random Forest model being able to capture more of the feature-target relationship, but still
not the complete behaviour of the target, since predictions still deviate from the diagonal.

Although some of the hyperparameters between folds differ, Figure 17 seems to show a consistent
distribution between the data points of each of the five folds, meaning the difference in hyperparam-
eters of the five optimised models likely does not affect their predictive power much.
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(a) Learning curves for LASSO predicting the

C
(Û)
p . The hyperparameter used for this model

is α = 1.19 ∗ 10−5.

(b) Learning curves for Ridge predicting the

C
(Û)
p . The hyperparameter used for this model

is α = 20.8.

(c) Learning curves for Random Forest predict-

ing the C
(Û)
p . The hyperparameters used for the

RF model are a maximum forest depth of 4, a
minimal amount of 2 leaves and a max features
setting of 0.3.

Figure 18: Learning curves for the LASSO, Ridge and Random Forest models predicting the C
(Û)
p ,

displaying the training R2 performance (blue curve) and the corresponding test R2 performance (orange
curve) as a function of the amount of samples the model has been trained on. The train-test split is
performed using five-fold cross-validation. The shaded areas around the curves visualise the standard
deviation across folds. Note, two outliers were removed prior to training.

5.1.3 Learning Behaviour

Figures 18a and 18b visualise the learning curves of the LASSO and Ridge models. The learning
curves are determined by training each of the models several times on increasing subsets of the
available training data, after which the performance on the training and test sets is computed. Note
that per training iteration the size of the training set changes, while the size of the test set remains the
same. These curves can be seen as a separate experiment aiming to provide insight into the learning
behaviour of the models. This means that the data splits used to generate the learning curves are
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different from the ones used in, for example, the parity plots.
Both these models have similar learning curves, although the separation between the learning

curves for the LASSO model is larger than for the Ridge model. For both models, the training
set performance curve starts out high, meaning that at few samples the models are overfitting. At
the same time, the test set performance curves start at negative values, confirming that the model is
overfitting on the training data, and thus poorly generalising on the test data. As the model is trained
on more samples, the training set performance curves decrease, and the test set performance curves
increase, meaning the model becomes more generalisable. The test set performance curves for both
models show an upward trend, meaning it is possible the model would have been able to make better
predictions if more data was available. For both, the LASSO and Ridge models, no clear learning
plateaus are present.

The learning curves for the Random Forest model, as shown in Figure 18c, show different behaviour.
The training set performance curve does not start as high as compared to LASSO and Ridge, meaning
the model does not overfit as much at smaller sample sizes. This is likely due to Random Forest being
able to average predictions over decision trees, thereby improving the ability of the model to generalise
at small sample sizes. The training set performance curve also stays around the same value throughout
the training process, as opposed to the training set performance curves for LASSO and Ridge, which
start out high and then end up lower. This could be, again, because the Random Forest uses multiple
decision trees to average the predictions of the model. The test set performance curve does now start
at around zero, and then continues to increase the more samples the model is trained on. For the
LASSO and Ridge models, the standard deviation of the training split performance curves start out
small, then become larger, and finally become small again, as opposed to the Random Forest model,
which has a consistent small standard deviation for the training split performance curve. As Random
Forest averages its predictions over the decision trees, the standard deviation for the training curve
stays consistent. For LASSO and Ridge this is not the case: first, the sample size is small, leading
to the same performance across folds, then, the sample size increases, meaning the data across folds
becomes more variable, leading to a higher standard deviation, and finally the model is trained on all
training examples, leading to similar data across folds on average. Noticeable in Figure 18c is that the
spread of the test set performance curve increases as the sample size the model is trained on becomes
larger, as opposed to Figures 18a and 18b where the spread of the test set performance curve remains
similar throughout training. This is likely due to a variability in the created Random Forest models
for each of the five folds. Because the predictions are also averaged over the decisions trees in the
Random Forest, the standard deviation becomes larger the larger the sample size. On the other hand,
the LASSO and Ridge models are based on the single α hyperparameter, and are therefore exactly
the same across the five folds, meaning the standard deviation stays more consistent as the sample
size increases. These figures also explain the reason why the Random Forest model has a higher test
R2 than LASSO or Ridge: since the Random Forest model is able to capture non-linear relationships,
as well as better handle noise and co-linear features. The learning curves, and the conclusions drawn
from them, are in line with the analysis of the parity plots.

5.1.4 Feature Importance Analysis

Figures 19a, 19b and 19c show the Feature Importance of the models. Since the features are highly
correlated, permutation-based feature importance is used. For the LASSO and Ridge models, the 3rd
degree distribution of the molecules seems to be the most informative feature group. An explanation
for this could be that the 3rd degree distribution, containing parts of three bonded atoms (like C-C-H)
is the most important since it conveys the most information with regards to the composition of the
spacer molecules. For the Random Forest model, the 2nd and 3rd degree distributions, as well as the
lattice parameters, like the box angles and edges, seem to be important. Across the models, both the
0th and 1st degree distributions of the molecules do not seem to convey information used to learn the
feature-target relationship.

Looking at Figure 19c 2nd degree distribution seems to be an important feature group for the
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(a) LASSO feature importances. (b) Ridge feature importances.

(c) Random Forest feature importances.

Figure 19: Permutation-based feature importance plots for the LASSO, Ridge, and Random Forest

models predicting the C
(Û)
p . Feature importances are determined based on the performance on the

outer-fold test sets, and show the top 20 features ranked from highest to lowest change in the test-set
permutation performance. Each feature is coloured based on the group it belongs to. Note, two outliers
were removed prior to training.

Random Forest model, while it seems to be one of the weaker feature groups for the LASSO and
Ridge models, as seen in Figures 19a and 19b. This could be due to the Random Forest model
being able to capture more complex relationships, like non-linear trends, between the 2nd degree
distributions and the target, whereas the linear models are unable to do this.

Noticeable, however, is that most of the important joint degree distributions contain N-atoms. The
N-atoms in the spacer molecules are usually formally charged and thus have a strong influence on how
atoms locally interact and bond with each other. Besides, for all three models, the lattice parameter
a also appears to be high, as well as c for the LASSO and Random Forest models. As discussed in
Section 3.6, the simulations were ran as boxes, and not as slabs, because the identification of the
directions in which the slab is supposed to expand could not be automated. However, upon manual
inspection, most—but not all—materials seem to expand in the a and c directions. This is likely
the reason these parameters are in the top 20 feature importance: the directions the slab expands in
are influenced most by the temperature, since thermal expansion affects the directions the material
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Table 4: Evaluation metrics for the Ordinary Least Squares, LASSO, Ridge and Random Forest
models for predicting the V̂atom, using temperature as an input feature. Each temperature point (200K
- 350K) for each material is used as a separate data point. All temperature points belonging to the
same material are always kept within the same data split. The metrics in this table are computed
using the best found hyperparameters in each of the five folds. The Mean Generalisation Gap column
displays the mean of the difference in validation and test performance over the five outer folds. The
Test Set Mean R2 column shows the average performance of the model across the five outer CV folds,
and the Test Set Std. R2 contains the corresponding standard deviation. In the NRMSE column, the
normalised values of the root mean squared error, belonging to the predictions made by the model,
can be found. The NRMSE is calculated from the test predictions from each of the five folds. Seven
outliers have been removed prior to training.

Model
Mean Generalisation

Gap
Test Set
Mean R2

Test Set
Std. R2 NRMSE

Ordinary Least Squares -208.2 -0.352 0.736 0.240

LASSO -0.035 0.703 0.0622 0.108

Ridge -0.185 0.635 0.153 0.116

Random Forest 0.003 0.789 0.114 0.095

expands in differently, with the in-plane directions, of the 2D perovskite, usually a or c, being more
sensitive to temperature changes. Manual inspection of the CIFs shows a and c to usually be the
directions in which the slab expands. Therefore, even though the determination of the directions in
which the slab expands was not automated, it is expected to be a and c, which are exactly two of the
model’s top features.

5.2 Average Volume per Atom (V̂atom) Models

The second target that is predicted is the average volume per atom, as described in Section 4.2.2.
Now, each temperature, from 200K to 350K, for each material is used as a unique data point. This
means that there are 104 × 16, which is 1664, unique data points. As mentioned in 4.2, it is important
to keep in mind that each of the 16 temperatures of a single material are strongly correlated, and are
therefore always included in the same split.

This section, elaborates on which of the used model families, namely Ordinary Least Squares, LASSO,
Ridge and Random Forest, most accurately predict the target, which is, in this case, the average
volume per atom.

Table 4 shows the different evaluation metrics for the four models. As expected, the Ordinary
Least Squares model did not perform well, which is likely due to the size of the feature set relative
to the amount of targets, as described in 2.3 and 4.4. Although the models are now trained on 16
times more data, this data is still strongly correlated. Therefore, as expected, the performance of the
Ordinary Least Squares did not improve much, and thus will not be further discussed throughout this
section.

5.2.1 Analysis of Results

Looking at Table 4 shows varying performance between the different models. First, looking at the
mean generalisation gaps between the models, as a measure for how well the per-fold model with the
best hyperparameters based on the validation set performs on the unseen test data. Here, the gap
for the LASSO and Random Forest models are close to zero, meaning the models performs similar on
both the validation and test sets. The generalisation gap for the Ridge model, however, is higher. This
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Table 5: Normalised mean distance and standard deviation of the predicted data points for the average
volume per atom of the LASSO, Ridge and Random Forest models, to the diagonal of the parity plots.
The diagonal indicates the correct predictions.

Model
Normalised Mean
Distance to y = x

Normalised Std.
Distance to y = x

LASSO 0.053 0.055

Ridge 0.051 0.065

Random Forest 0.044 0.060

is a likely indicating of the Ridge model being more sensitive to the chosen hyperparameters during
validation. This could be due to the search grid for the hyperparameters being too small, which could
be made worse due to the strongly correlated features in the dataset.

The Test Set Mean R2 for LASSO and Ridge are different in performance, with LASSO having a
value of 0.703 and Ridge a value of 0.635. The Test Set standard deviation for LASSO is lower than for
Ridge. Since LASSO reduces coefficients to zero, it might reduce the influence of noise introduced by
the correlated features. Since Ridge uses all features, it is possible it has more trouble filtering out the
noise. Table 4 shows that the Random Forest achieves the highest Test Set R2 value, outperforming
both the LASSO and Ridge models. Likely, since Random Forest uses many decision trees to make
its predictions, it is better able to suppress noise, handle collinear and redundant features, and find
non-linear relationships, thus leading to a better overall performance compared to Ridge and LASSO.
The higher standard deviations for all three models are probably due to the smaller dataset, which
allows noise to have a stronger influence on predictions, and thereby hinders the models ability to
better learn the feature-target relationship.

The NRMSE values for all three models confirm this: the NRMSE values are similar, with LASSO
and Ridge having values closer to each other, and the Random Forest model having a lower NRMSE.
Overall, these NRMSE values are high, which, again, could be explained due to the smaller dataset
making it more difficult for the models to learn the relations between the features and the target, as
well as resulting in less variation in volume across data points.

5.2.2 Prediction Error Analysis

The parity plots as shown in Figure 20 visualise how close the predicted values are compared to
the true values. To evaluate the model’s predictive capabilities, the used parity plots are, again,
constructed using test predictions from each of the five outer Cross-Validation folds, where each of
the data points is only used once in the test splits. The parity plots now contain more data points
due to each of the 16 temperature simulations per material are considered to be a unique data point.

Figures 20a and 20b show the parity plots for the LASSO and Ridge models respectively. Ridge
seems to have more accurate predictions than LASSO at higher volumes (from around 22.5), although
it also appears that the predictions of the Ridge model have a wider overall spread compared to
LASSO. Tables 4 and 5 confirm this; the Test Set R2 value for LASSO is higher than that for the
Ridge model, and Ridge has a higher mean generalisation gap, which can be explained by the larger
spread in predictions. Looking at Figure 20c shows the Random Forest model having more accurate
predictions at lower and medium volumes and a lesser spread in the overall predictions. This is in line
with Table 4, indicating the Random Forest model makes the best predictions. It is important to note
that the clusters of volumes specific to some of the materials deviate from the diagonal for all three
of the models. This could be an indicating of the models failing to capture part of the feature-target
relation. It is also possible that structures with an overall higher volume are more difficult to predict,
either due to those being more uncommon in the dataset, or less predictable overall since structures
with a higher volume might be influenced more by longer-range structural effects, that the current
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(a) LASSO parity plot, predicting the V̂atom. (b) Ridge parity plot, predicting the V̂atom.

(c) Random Forest parity plot, predicting the V̂atom.

Figure 20: Parity plots for the LASSO, Ridge and Random Forest models, where the outer-fold (test
set) predictions of V̂atom are plotted against the true values of V̂atom. Since five-fold cross-validation is
used, each of the outer-fold test predictions of each of the five folds is shown in this plot, and indicated
with a unique colour and shape. The red-striped line in the middle shows the y = x line, showing
correct predictions. Note, seven outliers were removed prior to training.

features do not fully describe.

5.2.3 Learning Behaviour

The learning curves for the LASSO, Ridge and Random Forest models can be found in Figure 21.
Looking at Figure 21 shows the blue training R2 curves at the top of the graphs. For the LASSO model,
as can be seen in 21a, the curve starts out high, but then gradually decreases over time. Likely the
model overfits at low sample sizes, but becomes more generalisable once it is trained on a larger variety
of data. The training set curve for the Ridge model, as is visible in 21b, does not start out as high
and displays a smaller decline as the number of training samples increases. Since Ridge does not zero
out coefficients, the Ridge model has a overall high but slightly decreasing training R2 as the sample
size grows. Looking at the test set learning curve for the LASSO model shows severe underfitting at
lower sample sizes. Since the average volume per atom is dependent on structural descriptors, and
LASSO forces the coefficients of many features to zero, it severely underfits at lower sample sizes.
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(a) Learning curves for LASSO predicting the
V̂atom. The hyperparameter used for this model
is α = 0.203.

(b) Learning curves for Ridge predicting the
V̂atom. The hyperparameter used for this model
is α = 200.

(c) Learning curves for Random Forest predict-
ing the V̂atom. The hyperparameters used for the
RF model are a maximum forest depth of 6, a
minimal amount of 2 leaves and a max features
setting of 0.3.

Figure 21: Learning curves for the LASSO, Ridge and Random Forest models predicting the V̂atom,
displaying the training R2 performance (blue curve) and the corresponding test R2 performance (orange
curve) as a function of the amount of samples the model has been trained on. The train-test split is
performed using five-fold cross-validation. The shaded areas around the curves visualise the standard
deviation across folds. Note, two outliers were removed prior to training.

As the number of training samples increases, the model is able to better identify physically relevant
structural features, leading to improved predictive performance. This is also reflected in the standard
deviation of the test curve, which starts out large but gradually becomes smaller. The test curve for
the Ridge model shows similar behaviour, but on a lesser scale: the model initially shows underfitting,
but since Ridge does not force coefficients to zero, the effect is not as severe as for LASSO. For both
the LASSO and Ridge test curves, as the number of training samples increases, the test R2 rises up
until about 400 training samples, after which the test curve, especially for Ridge, appears to reach a
plateau.
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Looking at training set curve for the Random Forest model in Figure 21c shows the training R2

consistently at around 1.0. The high training R2 is likely due to the lack of variation between data
points of the same material, leading to the model memorising the training data and fitting noise,
rather than learning the feature-target relationship. However, the test R2 curve shows a sharp rise
of the R2 at a low sample size. This shows that the Random Forest model is able to learn the main
trends of the behaviour of the target, although it does not fully generalise and is likely limited by
the structural features gathered from the CIFs. This is in line with the parity plot for the Random
Forest, as seen in 20c, which shows the Random Forest model capturing the overall behaviour of the
data well, while also displaying deviations and a large spread in the predictions at higher volumes.

The learning curves show that all three models are likely overfitting on the training data. Although
the predictions of the models appear to have a high testing R2 value, it does seem like all three
models are unable to learn the full relationship between the structural descriptors from the CIFs and
the average volume per atom of the materials, indicated by the plateaus. This is not necessarily a
sign of the models failing, but rather a limitation caused by the limited information captured by the
structural features, and possibly the small size of the dataset as well.

5.2.4 Feature Importance Analysis

Figure 22 shows the permutation-based feature importances for the LASSO, Ridge and Random Forest
models predicting the V̂atom. Figures 22a and 22b show the Size Information feature group being
important, with the Volume and Total Atoms features being the most important for the LASSO and
Ridge models. This is to be expected since the static volume of the unit cell, and the amount of atoms
in a unit cell, directly contribute to the average volume per atom and its behaviour under thermal
expansion. These features likely explain simple changes in the size of the unit cell with temperature.
However, unlike the LASSO and Ridge models, the Random Forest model has the Size Information
as one of the weakest feature groups, as can be seen in Figure 22c; it does not have the Volume or
Total Atoms feature in the top 20 important features as the LASSO and Ridge models. This indicates
the Random Forest model is able to better capture the behaviour of the target through information
conveyed by other features, like the joint degree distributions and lattice parameters, without needing
to depend directly on the size information form the static CIF structure. Noticeable is that the N
Counts feature contributes a lot more compared to any other features. The reason for this could be
because the N-atoms likely convey important information regarding the spacer molecules, since they
usually determine the total charge of the spacer molecule, and therefore strongly influence properties
like the size, geometry, and ordering of the spacer molecules in the material. The random forest is
able to use this seeing as it can discover and use non-linear relationships that cannot be fully captured
by linear models. This is also in line with the feature importances for LASSO and Ridge, since most
of the important joint degree distributions do contain N-atoms.

It is noticeable that the Temperature feature is an overall weak feature for all three models. A
possible explanation is that the behaviour of the average volume per atom is conveyed through other
features, like the Lattice Parameters and Size Information feature groups, rather than temperature
itself as a feature. It is also possible that, due to the limited size of the dataset, the models did
not have enough information to directly learn the behaviour of the target through the Temperature
feature, and thus used other features to learn the behaviour.
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(a) LASSO feature importances. (b) Ridge feature importances.

(c) Random Forest feature importances.

Figure 22: Permutation-based feature importance plots for the LASSO, Ridge, and Random Forest
models predicting the V̂atom. Feature importances are determined based on the performance on the
outer-fold test sets, and show the top 20 features ranked from highest to lowest change in the test-set
permutation performance. Each feature is coloured based on the group it belongs to, as shown in the
legend. Note, seven outliers were removed prior to training.

5.2.5 Investigating Impact of Temperature Information

Based on the results shown in Section 5.2, the Random Forest model is able to best learn the behaviour
of the target, based on the given features. This section therefore only considers the Random Forest
model.

In this section, for the same target, namely the average volume per atom, two different models
are constructed. First, the per-temperature model attempts to predict the target directly using the
temperature as a feature; this is the same model as shown in the previous section. The stacked
per-temperature model builds on this approach by using both the temperature and the predictions
of a per-material focussed model as input features. For clarity, the stacked per-temperature model is
referred to as the stacked model. The performance of the per-material model is not considered since it
predicts the target at a per-material level, and therefore can not be compared to the other two models
predicting on a per-temperature level. The per-material target is calculated by taking the average
of all the average volume per atom values for each of the 16 temperatures. The comparison between
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Table 6: Evaluation metrics for the per-temperature and stacked models Random Forest models pre-
dicting the V̂atom, using temperature as an input feature. Each temperature point (200K - 350K) for
each material is used as a separate data point. All temperature points belonging to the same material
are always kept within the same data split. The metrics in this table are computed using the best found
hyperparameters in each of the five folds. The Mean Generalisation Gap column displays the mean
of the difference in validation and test performance over the five outer folds. The Test Set Mean R2

column shows the average performance of the model across the five outer CV folds, and the Test Set
Std. R2 contains the corresponding standard deviation. In the NRMSE column, the normalised values
of the root mean squared error, belonging to the predictions made by the model, can be found. The
NRMSE is calculated from the test predictions from each of the five folds. Seven outliers have been
removed prior to training.

Model type
Mean Generalisation

Gap
Test Set
Mean R2

Test Set
Std. R2 NRMSE

Random Forest: Per-Temperature -0.062 0.748 0.111 0.105

Random Forest: Stacked 0.112 0.727 0.114 0.109

the per-temperature and stacked temperature models might reveal whether adding information on a
per-material basis improves the models ability to learn the feature-target relationship.

Prediction Error Analysis
Table 6 shows the performance metrics for the per-temperature and stacked Random Forest models

predicting the V̂atom target. First, looking at the Mean generalisation Gap shows the value for the
per-temperature model being negative, but near zero. This indicates the validation performance is
similar to the test performance, meaning the best found hyperparameters generalise well to unseen
data, which is the desired outcome. The stacked model on the other hand has a higher positive value,
indicating the model overfits on the validation set. The Test Set R2 for both the per-temperature
and stacked models, as well as the standard deviation, is similar; the per-temperature model is able
to better learn the behaviour of the target, based on unseen data than the stacked model, although
not by much. The same can be said for the NRMSE, with both models performing similarly.

Prediction Error Analysis
Figure 23 shows the parity plots for the per-temperature and stacked models. Figures 23a and 23b

show similar predictions. The per-temperature model seems to make better predictions towards the
middle of the graph, although the overall spread between the per-temperature and stacked models
looks similar. This is to be expected when looking at Table 6, which displays the Test Set R2 of the
two models to be very similar, with the per-temperature model having a slightly higher value than
the stacked model. The table showing the normalised mean distance, and the standard deviation, to
the diagonal are not shown, since it is clear from Figure 23 the predictions are similar, and thus such
information does not reveal anything new.

Learning Behaviour
The learning curves for the per-temperature and stacked models are not used to measure per-

formance. Since the stacking approach used for the stacked model uses the predictions from the
per-material model, the stacked model has access to the predictions of the per-material model. How-
ever, when creating the learning curve, the amount of training data the stacked model has access to
is varied, while the stacked model still has full access to the predictions from the per-material model,
which can introduce data leakage. Specifically, the per-material predictions used by the stacked model
may have been generated using information outside the training set, allowing information from the
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(a) Random Forest per-temperature model parity
plot, predicting the V̂atom.

(b) Random Forest stacked model parity plot,
predicting the V̂atom.

Figure 23: Parity plots for the per-temperature and stacked Random Forest models, where the outer-
fold predictions of the V̂atom are plotted against the true values of the V̂atom. Since five-fold cross-
validation is used, each of the outer-fold test predictions of each of the five folds is shown in this plot,
and indicated with a unique colour and shape. The red-striped line in the middle shows the y = x line,
showing correct predictions. Note, seven outliers were removed prior to training.

(a) Learning curves for the per-temperature Ran-
dom Forest model predicting the V̂atom.

(b) Learning curves for the stacked Random For-
est model predicting the V̂atom.

Figure 24: Learning curves for the per-temperature and stacked Random Forest models predicting the
V̂atom, displaying the training R2 performance (blue curve) and the corresponding test R2 performance
(orange curve) as a function of the amount of samples the model has been trained on. The train-test
split is performed using five-fold cross-validation. The shaded areas around the curves visualise the
standard deviation across folds. Note, two outliers were removed prior to training.

full dataset to leak into the stacked model during training, thus making it seem the stacked model
performs better. This data leakage effect is observed for the stacked model used in this research,
which cannot be avoided due to limitations of the used packages. For clarity, the learning curves of
both the per-temperature and stacked models can be seen in Figures 24a and 24b. Since the stacked
model outperforming the per-temperature model is not in line with with Table 6 and the parity plots
of the per-temperature and stacked models as shown in Figure 23, the stacked model’s learning curve
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(a) Random Forest feature importances, based on
the per-material model predicting V̂atom.

(b) Random Forest feature importances, based on
the per-temperature model predicting V̂atom.

(c) Random Forest feature importances, based on
the stacked model predicting V̂atom.

Figure 25: Permutation-based feature importance plots the per-temperature and stacked Random Forest
models predicting the V̂atom. Feature importances are determined based on the performance on the
outer-fold test sets, and show the top 20 features ranked from highest to lowest change in the test-set
permutation performance. Each feature is coloured based on the group it belongs to, as shown in the
legend.

is assumed to be the result of data leakage, and is therefore considered unreliable.

Feature Importance
Figure 25 shows the feature importances for the per-material, per-temperature and stacked Random

Forest models, where the feature importance for the stacked model, 25c, has the addition of the Per
Material Prediction feature, as coloured in black. Comparing Figures 25b and 25c shows that the only
important feature for the stacked model are the predictions from the per-material model. Since the
per-material model predicts the per-material V̂atom average of the same target as the stacked model, the
stacked model seems to capture almost no additional information with the addition of the Temperature
feature; this effect is emphasised by the permutation-based approach. It is therefore expected that
the per-material feature importance is similar to the per-temperature feature importance, which can
be confirmed by looking at Figures 25a and 25b. These results show that the stacked approach does
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not improve the ability of the model to learn the behaviour of the target using the temperature, based
on the average V̂atom per material behaviour.

6 Discussion

Section 5 shows that, depending on the target and the model family, the machine learning models are

able to learn part of the behaviour of the targets. The behaviour of the C
(Û)
p was more difficult to

learn for the models than the V̂atom, which is likely due to the volume being more directly related to

the structural features of the material, whereas the C
(Û)
p is not as directly related to any of the features

and also takes into account the thermal behaviour in the material, which is not directly represented
by any of the features.

The C
(Û)
p being more difficult to predict could also be due to the target being the potential-energy

temperature slope: since the target is based on 16 temperature simulations per material, determining
the average value for the potential-energy per temperature introduces noise, and then using those 16

points to find the slope of the C
(Û)
p introduces more noise; this is likely worsened due to the small

dataset.
Predicting the V̂atom does not seem to suffer as much from a limited dataset, although there might

be a stronger relationship between the target and the temperature, which, in this case, was not found.
For the results found in this research, the temperature does not seem to convey much information
that the models use to learn the feature-target relationship. It is therefore likely that, when wanting
to do predictions with regards to the V̂atom, a single simulation at a certain temperature can be ran,
rather than needing all 16 temperatures. If this is the case, more computational power can go towards
extending the duration of the simulation, as well as the size of the unit cell in the simulations, so to

increase the chemical correctness of the simulations. However, for predicting the C
(Û)
p , a temperature

range is still required.

Chemical Relevance
Molecular Dynamics simulations are a useful tool to computationally simulate and examine struc-

tures of materials without having to experimentally create them. However, since this is done com-
putationally rather than using physical samples, it raises the question of whether the simulations of
such a computational approach are able to maintain chemical correctness and accurately represent
the chemically relevant aspects of the structures. This is especially relevant since the decision was
made to run the 2D perovskite simulations in orthogonal simulation boxes, rather than as slabs. It
is therefore important to consider whether the results found during this research, apart from their
machine learning aspect, also make sense from a chemical point of view.

First, the feature importances of the models showed nitrogen (N-) atoms being among the most
important joint degree distributions. The N-atoms in the spacer molecules carry the role of formally
charged atoms, and therefore influence how the atoms interact and bond with each other locally. As a
result, the presence of the nitrogen atoms in the feature importances shows that both, the simulations,
and the machine learning models, capture chemically meaningful interactions.

Furthermore, the lattice parameters also seem to be relevant with regards to the feature impor-
tances, especially the a and c parameters, which correspond to the lengths of the edges of the unit cell.
Due to difficulties in automating the directions along which the 2D perovskite slabs are supposed to
extend, the simulations were performed using orthogonal boxes. It was assumed that this would not
influence the results as much since the unit cell was replicated in all directions, thereby minimising
the influence of the use of orthogonal boxes, rather than slabs, on the behaviour of the simulated
structures. Upon manual inspection, it seems like most of the unit cells of the 2D perovskites should
be extended along the a and c directions. The fact that specifically the a and c lattice parameters are
important for the machine learning models, and not b, therefore indicates that the models were able
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to learn part of the behaviour of two 2D perovskite properties, despite using orthogonal boxes rather
than slabs.

Lastly, the machine learning models appear to have more difficulties with predicting the potential-
energy temperature slope, rather than the average volume per atom. This can be explained by the fact

that the C
(Û)
p was constructed by first averaging the potential energy at each temperature, and then

fitting a line to the data points over 16 temperatures; each of those steps introduces noise, making the
target more difficult to predict. Additionally. the potential-energy temperature derivative describes
the thermal behaviour of the system, which makes it not as much related to the static structural
features gathered from the CIFs as the average volume per atom, and thus more difficult to learn.
Although the models are not able to capture the full behaviour of the potential-energy temperature
derivative, it still appears to capture trends that explain part of the physical behaviour of the system.

All together, these results indicate that the automated pipeline converting structural information
from CIFs to simulation-ready data is not only useful for machine learning, but also chemically
relevant.

The focus of this research was to find out how effective simple machine learning models are in ac-
curately predicting the structural properties of 2D perovskites, directly from the data from CIFs.
As shown throughout this research paper, the machine learning models are able to learn chemically
meaningful relations between the static structural features from the CIFs, and the structural proper-
ties of the 2D perovskites, although the accuracy of the predictions depends on the target. Targets
more closely related to the structural features, like the V̂atom, are easier to predict than targets which

are also related to the thermal properties of the materials, like the C
(Û)
p . These results show that

simple machine learning models are indeed able to predict structural properties of 2D perovskites
to an extent. However, the predictions of these models are held back by limited number of varying
features from the static CIFs; this is emphasised by the existence of several learning curve plateaus.
The goal of this research was, however, not to develop machine learning models that can differentiate
between all unique structures, but rather to create models that are able to find subsets of 2D per-
ovskite materials based on certain desired properties; a task which the models as presented in this
research paper seem to be capable of performing. While the predicted properties used during this
research are not optoelectric properties themselves, the predicted targets are still related to structural
and thermal behaviour of the 2D perovskite materials, and therefore indirectly related to their opto-
electric properties. The targets presented in this research paper therefore allow for the selection of
subsets of 2D perovskite materials which can be used for further optoelectric research.

Limitations & Assumptions
There are, however, also some limitations with regards to the approaches used and results found

during this research.
First, the Molecular Dynamics simulations are based on the CHARMM force field, alongside

parameters taken from previous research. Ideally, force fields would be created specifically for each
unique material, together with the corresponding parameters. However, developing and parametrising
force fields is difficult and time consuming, making such an approach not viable for the scope of this
research. Therefore a general force field is used in this research. Despite the force field not being
specific to each material and using parameters derived from a previous study, the models still seem
to learn trends describing the behaviour of the target, as well as seeming to be chemically consistent.
This indicates that the decision to use a general force field did not prevent the models from learning
chemically relevant trends.

Moreover, finite boxes and a limited simulation time were used during the simulations. The
larger the replications of the unit cell, and the longer the duration of the simulations, the more
computationally expensive the simulations will be. While the smaller size of the simulation box
(3x3x3) as well as the chosen simulation time seem to be good enough for the machine learning
models to find relations in the data, it is possible a larger simulation box and an extended simulation
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time could improve the predictions of the models. It should be noted that, for this research, the
simulations were more computationally expensive due to the inclusion of the 16 temperature ranges.
As shown in this research, it is unlikely all 16 temperatures are needed; reducing the amount of
temperatures would also save on computational costs.

Besides, as mentioned before, the simulations were run using orthogonal boxes, rather than sim-
ulation slabs and including the angles of the boxes in the simulations. Even though the models are
able to learn part of the behaviour of the targets, it is possible that part of the structural behaviour of
the 2D perovskites can not be fully captured by the models. Nonetheless, for both targets the models
seem to be capturing trends describing the behaviour of the targets.

Lastly, another difficulty is the models predicting the potential-energy temperature derivative being
limited in their predictive power due to the lack of features describing the thermal behaviour of the
system. Since CIFs do not contain information that directly describe thermal behaviour, this is a
limitation with regards to the available features in the CIFs, rather than the approach used during
this research. Since this information is not easily obtainable—without first running the simulations—
this limitation is largely unavoidable, but nevertheless hinders the model’s ability to fully learn the
behaviour of the target.

Future Research
Any future research that would be expanding on this work should focus on further improving and

ensuring chemical validity, in both the simulations and the machine learning models.
From a simulation perspective, this can be done by improving the calculation of the charges, using

larger simulation boxes, extending the duration of the simulations, simulating the 2D perovskites as
slabs and including the lattice angles, rather than the simulation boxes being orthogonal, and using
a force field that more accurately simulates organic-inorganic materials. Lastly, computational power
can be saved by performing the simulations over a smaller temperature range, since this research has
shown that the temperature does not meaningfully influence the predictions of the models

From a modelling point of view, the predictive power of the models, especially for C
(Û)
p , could

likely be improved if the thermodynamic and long-range properties of the systems are included in the
features. Besides, a more compact set of features could improve the predictions and generalisability
of the models. Lastly, by training the models on more data by expanding the 2D perovskite dataset,
the predictions of the models could be more accurate.

7 Conclusion

The goal of this research is to find out how effective simple machine learning models are in accurately
predicting the structural properties of 2D perovskites directly from CIFs, with the aim of identifying
subsets of 2D perovskite materials with unique structural properties. Such a goal is useful for focusing
on a select group of 2D perovskite materials relevant for further research, like constructing solar cells
needing to withstand a specific temperature range using 2D perovskites.

To achieve this goal, first an automated pipeline was created to extract and convert structural
information of the 2D perovskite CIFs to simulation-ready files. After this, the Molecular Dynamics
simulations were used to simulate the 2D perovskite materials at varying temperatures. Finally,
machine learning models trained on the structural information from CIFs were used to predict 2D
perovskite properties based on the data gathered from the simulations.

Based on the results found during this research project, the simple machine learning models seem
to be able to capture meaningful trends and learn the behaviour of the target properties to an extent—
especially the Random Forest-based models. Despite the models not learning the full behaviour of
the target, this was not the goal of this research; the goal is to differentiate between subsets of 2D
perovskite materials, which the created machine learning models seem to be capable of. This would
mean that selecting subsets of materials based on certain properties, with the intention to filter out
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irrelevant structures without having to experimentally construct them or run MD simulations for all
materials and further research the subset of materials, seems to be possible.

However, the approach taken in this research required several simplifications. First, during this
research, a general force field is used for the Molecular Dynamics simulations. Besides, the features of
the machine learning models are based on a small dataset containing only static structural information,
most of which are correlated. Despite these limitations the results show that the approach is able to
capture the behaviour of, chemically meaningful, trends, and can identify subsets of 2D perovskites.
This confirms that the used approach is effective for the identification of subsets of relevant materials.
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Appendix

Use of Generative AI

This section describes the ways in which generative AI has been used throughout this research.

First, generative AI was used to upscale some pixelated images [42]. This did not require any prompts;
after the upscaling the images were placed in the manuscript, which is also mentioned in the caption.

Furthermore, GitHub Copilot [43] was also used; no specific model was selected, it was left on
automatic. Copilot was used for debugging code, especially in cases where the errors were not easily
searchable or traceable. This was mostly the case during the creation of the pipeline, which required
the use some lesser known packages, meaning less information or documentation was available. It
should be noted that output from Copilot was never copied and always carefully checked.

Lastly, OpenAI’s GPT-5.2 model [44] was used as an aid in writing the manuscript. For example,
the model was asked for synonyms of certain words in an attempt to avoid repetition throughout the
manuscript. Besides that, it was also used to grammar and spelling check the manuscript, especially
towards finalising the manuscript. As with the Copilot model, GPT-5.2’s outputs were not directly
copied, and were always considered to be possibly incorrect.

It is important to note that generative AI outputs were always carefully checked and never assumed
to be correct. The outputs were also not copied (with the exception of the upscaled images) or made
to seem as if it is original work.
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