Universiteit

: ? Leiden Bachelor DSAI

The Netherlands

Comparing traditional and deep learning-based meta-features for
algorithm selection

Khayri Hamza

Supervisors:
Dr. J.N. van Rijn
Dr. Edesio Alcobaga (Universidade de Sao Paulo, Brazil)

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 20/01/2026



www.liacs.leidenuniv.nl

Abstract

The performance of meta-learning systems for algorithm selection relies on the quality of the
meta-features used. While deep learning—based meta-features have proven effective for an
adjacent meta-learning task, hyperparameter optimisation, there remains scope for further
exploration of their effectiveness for algorithm selection specifically. This thesis evaluates three
meta-feature types—traditional, deep learning, and combined—for algorithm selection. We
developed a tool that systematically leverages OpenML resources to extract datasets and
meta-features, and to obtain deep learning—based dataset representations using Dataset2Vec,
an existing deep learning meta-feature extraction tool, enabling reproducible experiments. The
results indicate that traditional meta-features outperform deep learning—based representations,
while the combined approach shows intermediate performance. These findings suggest that
current deep learning—based meta-features do not yet capture the dataset characteristics most
relevant for algorithm selection.



Contents

1 Introduction 1
2 Background 2
2.1 The Algorithm Selection Problem . . . . . . ... ... ... ... ... ....... 2
2.2 Meta-Learning for Algorithm Selection . . . . . . . ... ... .. ... ... .... 3
2.3 Meta-Features . . . . . . . . . . e 4
2.3.1 Traditional Meta-Features . . . . . . . . . . .. ... ... ... 4

2.3.2  Deep-Learning Feature Extraction . . . . . . .. ... ... ... ... .... D

2.4 OpenML . . . . e )
2.5 PyMFE Library . . . . . . . . . 6

3 Methods 6
3.1 Dataset Collection . . . . . . . . . 7
3.2 Meta-Feature Extraction . . . . . . . . . ..o 7
3.2.1 'Traditional Meta-Features . . . . . . . . .. ... ... ... ... ... ... 7

3.2.2 Deep Learning Meta-Features . . . . . .. .. .. ... ... ... ... . 7

3.2.3 Hybrid Meta-Features . . . . . . . .. ... ... o 7

3.3 Performance Aggregation . . . . . . . ... 7
3.4 Meta-Model Training . . . . . . . . . . . . 8
3.4.1 Meta-Classifier . . . . . . . . . . . .. 8

3.4.2 Meta-Regressor . . . . . .. L 8

3.4.3 Meta-Model Comparison . . . . . . . . . .. .. 8

4 Experimental Setup 8
4.1 Dataset Selection and Preprocessing . . . . . . . . . . ... Lo 8
4.2 Meta-Feature Extraction . . . . . . . . ... L Lo 9
4.2.1 Traditional Meta-Features . . . . . . . .. ... ... ... ... .. ... 9

4.2.2  Deep learning Meta-Features . . . . . . . .. . ... oo 9

4.2.3 Hybrid Meta-Features . . . . . . .. .. ... . Lo 10

4.3 Performance Data Extraction . . . . . . . ... ... .. ... ... ... 10
4.3.1 OpenML Runs . . . . . . . . . 10

4.3.2 Flows . . . . . e 11

4.3.3 Performance Metrics . . . . . . . .. ... 12

4.4 Meta-Classifier Training and Evaluation . . . . .. .. .. ... ... ... ..... 12
4.4.1 Meta-Classifier Architecture . . . . . . . . . . . . . ... .. ... ... 13

4.4.2 Evaluation Protocol . . . . . . . . .. ... 13

4.5 Meta-Regressor Training and Evaluation . . . . . . ... ... ... ... ...... 13
4.5.1 Meta-Regressor Architecture . . . . . . . . . . ... L. 13

4.5.2 Evaluation Protocol . . . . . . . . .. .o 14

4.6 Dataset2Vec Representation Analysis . . . . . . . . .. .. ... L. 14
4.7 Algorithm Subsets . . . . . . . .. 14
4.7.1 Algorithm Structure . . . . . . . . . .. 15

4.7.2 Empirical Performance Distribution . . . . . . . . . ... ... ... ... .. 15



4.8 Configurations and parameters. . . . . . . . . . ... Lo 16

5 Results 16
5.1 Main results across all base learners . . . . . . . . ... o000 16
5.1.1 Meta-classifier results . . . . . . . . . ... 16

5.1.2  Metarregressor results . . . .. ..o 16

5.1.3 Comparison of Meta-classifier and Meta-regressor . . . . . . .. .. .. ... 19

5.2 Dataset2Vec representation analysis . . . . . . . .. ..o oo 20
5.3 Algorithm subsets . . . . . . . . . 22
5.3.1 Algorithm structure . . . . . . . . ... 22

5.3.2 Empirical performance distribution . . . . . . ... ... 24

6 Discussion and future work 25

6.1 Research question 1 — How effective are deep learning extracted meta-features
compared to traditional meta-features for algorithm selection in classification tasks? 25
6.2 Research question 2 — To what extent do Dataset2Vec representations capture

underlying structure relevant for algorithm selection . . . . . . ... ... . ... .. 25

6.3 Research question 3 — How does varying base learners affect the performance of
meta-models trained on different types of meta-features . . . . . . . ... .. ... 26
6.4 Remarks . . . . . . . 26
6.5 Limitations . . . . . . . .. 26
6.6 Future work . . . . . . L 27
7 Conclusion 27

References 28



1 Introduction

Machine learning has influenced how we address various problems. From the potential of self-
driving cars | | to reframing our understanding of sports | | to support clinical detection
[ |, algorithms have become essential to learning from the data around us. With such diverse
applications, no single algorithm can excel at everything | |.For example, algorithms that
excel in image recognition may perform poorly on text classification, while methods optimised for
high-dimensional data may struggle with small sample sizes | |. This reveals the challenge —
how to choose the optimal algorithm systematically without relying on exhaustive trial-and-error
approaches.

Different algorithms perform well on different problems, and selecting a suboptimal algorithm can
lead to mediocre performance, making the choice of algorithm essential for achieving acceptable
results. Rice formalised this challenge into the algorithm selection framework, which treats algorithm
selection as a learning problem that can be addressed through meta-learning methods | ].

Meta-learning addresses the algorithm selection problem framework | | by learning from
multiple problems to determine which problems specific algorithms are suited to, leveraging prior
experience for more efficient and effective generalisation. Meta-learning systems aim to learn the
relationship between problem characteristics and algorithm performance across different tasks.
However, the problem characteristics (meta-features) can be defined by various approaches and
complexities. The quality of meta-features is crucial to determining meta-model effectiveness
[ , |, and there are different ways to create expressive meta-features efficiently.

Different approaches exist for meta-feature extraction, ranging from statistical measures | ],
to landmarkers | |, to deep learning—based dataset representations, such as those produced
by Dataset2Vec | ]. While traditional meta-features have been proven to be effective, there
remains scope for developing meta-features better suited to algorithm selection. Deep learning
approaches have the potential to capture complex dataset relationships and have shown promising
results for hyperparameter optimisation; however, the effect on algorithm selection, an adjacent
meta-learning task, remains understudied.

This study addresses the following research question:

e How effective are deep learning extracted meta-features compared to traditional meta-features
for algorithm selection in classification tasks?

The key research question is guided by the sub-research questions:

e To what extent do Dataset2Vec representations capture underlying structure relevant for
algorithm selection?

e How does varying base learners affect the performance of meta-models trained on different
types of meta-features?

This study leverages the extensive OpenML platform | ] to access the rich dataset repository
and contributions of the broader machine learning community | ]. We developed a tool
to systematically extract traditional meta-features and Dataset2Vec representations to construct
meta-learning systems for algorithm selection, to conduct experiments in order to evaluate the



performance to answer the research questions. We further investigate how well deep learning
meta-features capture dataset characteristics and examine how changes in the algorithm space
affect meta-model performance.

Our contributions are the following;:

e Systematically comparing meta-models trained on three different sets of meta-features —
traditional meta-features, deep learning extracted meta-features, and a combined set of
meta-features. We perform this evaluation on 2 benchmark suites across various subsets of
algorithms

e Leveraging the existing infrastructure of the OpenML platform that can be scaled up across
a diverse set of problems and tasks

Together, these contributions provide a reproducible framework and further insights into designing
accessible and efficient meta-learning systems for algorithm selection.

2 Background

This section establishes the following core concepts that will be addressed throughout the study:

The algorithm selection problem, meta-learning for algorithm selection, meta-features, OpenML,
and PyMFE.

2.1 The Algorithm Selection Problem

feature extraction

Problem Space Feature Space

(F)

X f(x)

for all a'<a, p(a, x)>p(a’, X)

selection algorithm
S

Performance
Space

Algorithm Space
(A)
a(x)=S(f(x))

Figure 1: The algorithm selection framework, formalising the mapping from problem instances and
their features to an algorithm space defined by expected performance. Taken from | |, p. 18

Different algorithms excel under different conditions; no single method dominates universally
across tasks | |. For example, decision trees might perform well on tabular datasets with
clear hierarchical splits, whereas support vector machines historically succeed on high-dimensional



text data. Similarly, k-nearest neighbours have been speculated to be competitive on small, low-
dimensional problems but scale poorly as datasets grow | , , ]. This variability
defines the algorithm selection problem: the challenge of choosing the best-performing algorithm
for a specific problem instance.

Rice (1976) formalised this challenge through his framework | ] (Figure 1), which describes the
algorithm selection problem in terms of four spaces:

e the problem space (P), which contains all possible problem instances;

e the feature space (F'), which represents descriptive characteristics of problems (e.g., number
of features, class entropy, correlations);

e the algorithm space (A), which enumerates the available algorithms; and

e the performance space (II), which evaluates outcomes using a metric such as accuracy or
runtime.

In practice, researchers often approach dataset-level algorithm selection by testing a range of
candidate algorithms on the same dataset and choosing the one with the highest validation
performance. This trial-and-error approach of conventional algorithm selection is computationally
expensive as the number of datasets and algorithms increases, and it does not exploit structural
similarities between problems | : ].

These limitations motivate the development of meta-learning systems that learn from prior experi-
ence. Instead of retraining every algorithm for each new task, such systems extract features from
datasets (e.g., number of classes or skewness) and construct a meta-model that predicts which
algorithm will perform best. In this way, meta-learning reduces computational costs and provides
effective decision support to practitioners, enabling the technology to scale beyond exhaustive
search.

2.2 Meta-Learning for Algorithm Selection

Meta-learning addresses algorithm selection by learning from prior experiences across different
problems | ].

A meta-learning system for algorithm selection (Figure 2) consists of two processes — a learning
subsystem and a meta-model | ]. The learning subsystem generates meta-data by training ML
algorithms (base learners) on a set of early encountered problems and collecting their performances.
In parallel, descriptive characteristics (meta-features) of each dataset are extracted. Together, these
produce meta-data pairs connecting meta-features to base learner performances. The meta-model
is then trained on the meta-data to learn the relationship between dataset characteristics and
algorithm choice.

Meta-features, while broadly defined as dataset properties, are a crucial component of meta-learning
systems | |. They have to effectively characterise a dataset to ensure clear mapping to
algorithm performance. Hence, the quality of meta-features is paramount to the effectiveness of
meta-learning for algorithm selection.



— . . )
_ Instances of the
Algorithms (A) — problem (P)
- J
Performance
Featureset (F
i eature set (F)

)’ &

=

Automatic
algorithm selection

Figure 2: Pipeline of a meta-learning system for algorithm selection, illustrating the learning
subsystem and the resulting meta-model. Taken from Carvalho et al. [CG1L23]) p. 2.

2.3

Meta-Features

Meta-features are descriptors that capture properties of datasets beyond individual instances
[RGST19]. This allows consistent comparison across datasets, enabling meta-learning systems to
learn across problems.

2.3.1 Traditional Meta-Features

Traditional meta-features are hand-crafted descriptors of datasets. They are widely used in meta-
learning for algorithm selection and can be categorised into the following:

Simple — Basic dataset descriptors such as number of instances, number of features, or
proportion of missing values [Aha92, MSTO4].

Statistical — Capture distributional properties of features, such as mean, variance, skewness,
or correlation.

Model-Based — Characterise datasets using parameters or diagnostics derived from simple
models trained on the data (e.g., decision tree depth, number of rules) [HI01].

Information-Theoretic — Measure information content (e.g., class entropy, mutual informa-
tion between features and labels, or noise levels).

Landmarking — Use the performance of fast, inexpensive “landmarker” algorithms (e.g.,
1-NN, Naive Bayes) as indicators of dataset properties [PBGC00, BGCOO].

Complexity — Quantify structural difficulty of the learning task, such as feature overlap
between classes or linear separability [Smi0g].



Traditional meta-features can be extracted through the OpenML API when computed and available
or directly from datasets using the PyMFE library. Using traditional meta-features involves manual
engineering across tasks | ]. This limits the scalability of the traditional meta-feature
approach to larger sets of problems | ].

2.3.2 Deep-Learning Feature Extraction

Deep learning approaches for meta-feature extraction learn representations directly from the data
[ |. They compress the complex relationships between features and target into a vector
representation, creating unique 'fingerprints’ of each dataset.

Dataset2Vec builds on this idea by representing tasks as hierarchical sets of predictor-target pairs.
The pairs are passed through a DeepSet architecture | |. Dataset2Vec uses the auxiliary
task of dataset similarity to train. In doing so, it develops representations that can capture what
makes datasets unique and comparable.

Dataset2Vec meets the following desiderata that are essential to an effective meta-feature extraction
method | ):

e Schema Agnosticism - extracting meta-features for datasets with varying schema
e Expressivity - extracting meta-features for meta-tasks of varying complexity

e Scalability - extracting meta-features quickly for new datasets without requiring training on
new tasks

e Correlation - meta-features should correlate well with meta-targets

Dataset2Vec fulfils the desired criteria for a descriptive meta-feature extractor and displays positive
results in the meta-learning task of hyperparameter optimisation. However, its suitability for
a different meta-learning task, like algorithm selection, remains unexplored. Hyper-parameter
optimisation is a more nuanced description within single algorithm paradigms, whereas algorithm
selection distinguishes between fundamentally different algorithm approaches. This thesis evaluates
whether the representations created by Dataset2Vec are relevant and effective for algorithm selection.

2.4 OpenML
OpenML is an open platform designed to make machine learning research transparent and repro-
ducible | , |. It functions as a dataset repository enriched with meta-features, as

well as a collaborative environment for sharing experiments.
Key functionalities include:

e Rich datasets and meta-features — diverse datasets and computed meta-features support
large-scale meta-learning | ].

e Benchmark Suites — Curated collections of tasks for consistent and reproducible comparison
of algorithms | .

e Runs — enables reuse and comparison of other experiments, building directly on the work of
others.



e Accessible infrastructure — APIs and integrated libraries make it possible to use in experiments
[ J

While OpenML provides extensive resources, meta-feature coverage varies across datasets | ],
and the platform requires manual curation to construct meta-learning pipelines for algorithm selec-
tion. Nevertheless, OpenML’s scale and collaborative infrastructure make it a valuable foundation
for systematic meta-learning research.

2.5 PyMFE Library

The Python Meta-Feature Extractor (PyMFE) is an open-source library developed to standardise
and systematise meta-feature extraction for meta-learning research | |. PyMFE addresses
the reproducibility challenges in meta-learning by providing a comprehensive framework that
implements over 90 characterisation measures across six meta-feature categories: simple, statistical,
information-theoretic, model-based, landmarking, and complexity measures.

The library follows the formal meta-feature definition proposed by Rivolli et al. | |: f(D) =
o(m(D, hy), hy), where m is a characterisation measure that computes descriptive values from
the dataset D, o is a summarisation function that aggregates these values (e.g., mean, standard
deviation), and h,,, h, are hyperparameters. For example, computing feature correlations (m) and
taking their mean (o) yields a single meta-feature describing average feature correlation.

PyMFE provides a sklearn-inspired interface with two primary methods: £it () computes necessary
data transformations and pre-computations, while extract () applies characterisation measures
followed by summarisation to return the final meta-features. The library supports flexible meta-
feature selection, allowing users to extract individual measures, entire categories, or custom
combinations.

The implementation emphasises reproducibility through comprehensive unit testing (over 90% code
coverage), adherence to Python coding standards, and extensive documentation. PyMFE leverages
robust scientific computing libraries, including NumPy, scikit-learn, and SciPy, to ensure reliable
computations.

3 Methods

This section describes the development of a meta-learning tool for algorithm selection. The tool
consists of four main components: a dataset collection module that interfaces with OpenML to
retrieve benchmark tasks, a meta-feature extraction pipeline that generates multiple types of
meta-features, a performance aggregation system that processes algorithm execution results, and a
meta-model training system that learns algorithm selection relationships.

1

LOur full code is available here: https://github.com/khayhamz31/algoselectionpipeline


https://github.com/khayhamz31/algoselectionpipeline

3.1 Dataset Collection

The dataset collection module provides a systematic interface to OpenML benchmark suites
[ , |. The module retrieves datasets from curated collections and applies prepro-
cessing transformations to ensure consistent formatting across different data sources.

The preprocessing pipeline handles common data quality issues, including missing values, mixed
data types, and inconsistent encodings | ]. This standardisation enables reliable meta-feature
extraction and ensures datasets are in a suitable format for downstream analysis components.

3.2 Meta-Feature Extraction

The meta-feature extraction pipeline generates three types of dataset representations to enable
systematic comparison of different characterisation approaches.

3.2.1 Traditional Meta-Features

The traditional meta-features component extracts pre-computed traditional meta-features through
the OpenML APT | |. The component implements systematic missing value handling
procedures to ensure complete feature vectors while assessing feature reliability based on data
availability patterns.

3.2.2 Deep Learning Meta-Features

The deep learning component implements Dataset2Vec to generate fixed-dimensional vector repre-
sentations for each dataset | |. The component processes datasets through the pre-trained
model to produce dense vector representations that capture complex dataset characteristics.

3.2.3 Hybrid Meta-Features

The hybrid component combines traditional and deep learning representations through vector
concatenation. This approach enables evaluation of whether different meta-feature types provide
complementary information for algorithm selection.

3.3 Performance Aggregation

The performance aggregation component processes OpenML execution records to determine optimal
algorithms for each dataset | ]. OpenML maintains extensive records of algorithm executions
across multiple datasets, providing empirical performance data without requiring independent
computational resources.

The component addresses the complexity of OpenML’s flow system, which bundles core algorithms
with preprocessing steps and hyperparameter configurations | ]. The aggregation pro-
cess maps these detailed implementations back to core algorithmic approaches while handling
performance measurements per underlying dataset combination.



The system generates ground-truth algorithm performance rankings that serve as targets for meta-
learning, enabling the tool to learn which algorithms perform optimally under different dataset
conditions.

3.4 Meta-Model Training

The meta-model training stage learns the relationship between dataset characteristics and algorithm
performance from the constructed meta-data. Although the same meta-data underlie each approach,
the training procedure differs depending on how algorithm performances are represented and which
type of predictive model is used. The distinction lies in whether the meta-model predicts a discrete
algorithm choice or a full vector of performance values.

3.4.1 Meta-Classifier

In the meta-classifier framework, the performance matrix is reduced to a single label per dataset
by selecting the best-performing algorithm. The meta-features serve as input features and the
best algorithm acts as the target. A supervised classifier is then trained to map meta-features to
algorithm labels, producing a model capable of predicting the most suitable algorithm for unseen
datasets without exhaustive benchmarking.

3.4.2 Meta-Regressor

The meta-regressor framework retains the full performance vector for each dataset rather than
collapsing it to a single label. The meta-features are used to predict the continuous performance
values of all candidate algorithms through multi-output regression. The resulting regressor predicts
the performance of each algorithm, and the recommended algorithm can be inferred by selecting
the maximum.

3.4.3 Meta-Model Comparison

The two approaches offer complementary perspectives. The meta-classifier focuses on learning
decision boundaries between algorithms, evaluating whether the meta-features contain enough
information to identify the single best choice. In contrast, the meta-regressor assesses whether the
same meta-features capture finer-grained performance differences across algorithms. Comparing
the two reveals whether the available representations support both coarse algorithm selection and
detailed performance modelling.

4 Experimental Setup

This section describes the implementation of the tool and design choices for dataset selection,
preprocessing, meta-feature extraction, performance aggregation, and evaluation.

4.1 Dataset Selection and Preprocessing

OpenML contains 24157 datasets, with 6279 of them verified. It is a rich resource that provides
dataset information | , |. There are 118 benchmark suites, which are curated

8



collections of tasks, that allow for standardised, reproducible, and consistent comparisons | ].
We selected the following benchmark suites for this study:

e OpenML-CC18 (id=99) — Provides a curated collection of 72 medium-sized datasets that
are practical to use, standardised and valid. It already serves as a widely adopted benchmark
that enables reproducible comparisons across studies | .

e OpenML100-friendly (id=225) - A filtered version of OpenML-100 that contains 54 tasks.
All the datasets in the task have no missing values and only numerical features | ]. It
enables broad algorithm comparison without specialised preprocessing, while maintaining
diverse datasets.

We selected these benchmark suites as two of the three active benchmark suites on OpenML,
and they both contain classification tasks. These suites provide complementary perspectives -
OpenML-CC18 represents diverse real-world classification tasks while OpenML100-friendly enables
controlled comparison without preprocessing complexity, together testing meta-feature effectiveness
across different dataset conditions.

4.2 Meta-Feature Extraction

We produced three representations: traditional meta-features, Dataset2Vec representations, and
a hybrid concatenation of both types of meta-features. This produced 3 distinct feature matrices
that served as alternative inputs for training and evaluating meta-model performance.

4.2.1 Traditional Meta-Features

OpenML provides pre-computed traditional meta-features for datasets and can be accessed using
the OpenML API | : ]. We systematically downloaded them and organised for the
meta-model to be trained.

We applied the following preprocessing steps:

e Identifying and reporting overall missing values across all meta-features, to monitor data
completeness and guide subsequent imputation choices,

e Removing meta-features that are empty across all datasets, since they provide no information
for training,

e Assessing feature reliability by categorising meta-features according to missingness percentage,
to distinguish consistently reliable features from those with sporadic availability.

e Imputing missing values in the remaining meta-features using KNN imputation (k = 5),
which preserves local structure and leverages similarities between datasets.

4.2.2 Deep learning Meta-Features

We applied Dataset2Vec to each dataset in the benchmark suites to generate deep-learning meta-
features [ , |. Dataset2Vec processes a dataset as a set of feature-instance pairs
and outputs a fixed-length representation that captures higher-order patterns such as feature



interactions and distributional structure, which are not easily represented by traditional statistical
descriptors.

Before generating deep-learning meta-features with Dataset2Vec, we preprocessed each dataset to
ensure compatibility with the model. We used the OpenML API to download and store datasets
systematically.

Each dataset undergoes the following preprocessing steps:
e Separate features and targets with no column headers for meta-feature extraction
e Remove features with more than 70% missing values to ensure sufficient data quality
e Remove samples with more than 50% missing values
e Impute categorical features with the most frequent value

e Impute numerical features with KNN (k = 5), or median imputation if too few samples are
available to preserve data structure

e Scale numerical features to [0,1] using Min-Max scaling
e Encode categorical features using one-hot encoding
e Label-encode the target variable into integer classes

For each dataset, we extracted a 32-dimensional representation from the pre-trained Dataset2Vec
model and consolidated the results into a feature matrix consistent with the traditional meta-
features. This alignment ensured that both traditional and deep-learning representations could
serve as interchangeable inputs for meta-model training and direct performance comparison.

4.2.3 Hybrid Meta-Features

We combined traditional and deep learning meta-features through vector concatenation to assess
whether these different representation types provide complementary information for algorithm
selection. This hybrid approach enables direct evaluation of whether learned representations enhance
the discriminative power of established statistical descriptors or whether the approaches capture
overlapping dataset characteristics.

4.3 Performance Data Extraction

As outlined in Section 3.3, we aggregated algorithm evaluation metrics across tasks in both
benchmark suites to determine base learner performance. This required extracting and processing
run-level information from OpenML.

4.3.1 OpenML Runs

In OpenML, runs represent individual executions of algorithms and processes on a specific problem.
They link a task, which consists of the dataset, problem, and evaluation, with a flow, which consists
of an implementation of an algorithm and pipeline | ; |. Researchers execute runs
locally and upload the task, flow and resulting performance metrics to the OpenML platform. This

10



makes runs a valuable resource, as many algorithm configurations and executions are accessible
without needing to individually run.

4.3.2 Flows

Flows represent specific configurations of algorithms, which can include preprocessing methods
(e.g. imputation methods and encoding methods) and hyperparameter configurations [LBNA 703,
ITKO00, BKO1]. While this level of detail is necessary for transparency and reproducibility, it
complicates the experiment of algorithm selection that focuses on the core algorithm and not its
entire implementation.

Benchmark Suite 99 - Algorithm Usage Analysis

Global Share of Runs Average Share per Dataset

0.25

o
N
o

0.15

o
=
o

Average Proportion

Proportion of Total Runs

Algorithm Algorithm
(a) OpenML-CC18

Benchmark Suite 225 - Runs and Flow Analysis

Global Share of Runs Average Share per Dataset

Proportion of Total Runs
Average Proportion

Algorithm Algorithm

(b) OpenML100-friendly

Figure 3: Distribution of core algorithms across two benchmark suites, OpenML-CC18 and
OpenML100-friendly.

Preliminary analysis of all the runs across benchmark suite OpenML-CC18 and OpenML100-friendly
(Fig. 3) shows that the most common and well-represented core algorithms are: Support Vector
Machine, Random Forest, Decision Tree, XGBoost, and Linear Models (such as logistic regression
and permutations of it) [C'VO5, BreOl, Quigt, CG16]. The algorithms are both methodologically

11



diverse and have sufficient coverage across datasets in both benchmark suites. Hence, we selected
these five algorithms as the set of base learners for this thesis.

We created a static mapping of OpenML flows to five base learner categories through a one-time
offline annotation process. We leveraged a large language model to assist with semantic classification,
handling the diverse naming conventions in the metadata and filtering out hyperparameters irrelevant
to algorithm selection. After manual review, this mapping was stored as a lookup table and used
consistently across all experiments, ensuring the pipeline itself has no dependency on external
services.

4.3.3 Performance Metrics

We chose accuracy as the performance measure because it is widely used, easy to interpret, and
well-suited for classification tasks. It provides a consistent baseline across datasets. Formally,
accuracy is defined as:

N
1
Accuracy = i Z (g = i) » (1)
=1

where N is the number of instances, y; is the true class label, g; is the predicted class label, and
1(-) is the indicator function that equals 1 if the prediction is correct and 0 otherwise.

OpenML-CC18 OpenML100-friendly
Processing Step % Removed Runs Removed % Removed Runs Removed
Filtering core algorithms 22.0 832,306 18.0 647,440
Sampling runs 99.5 2,617,612 99.4 2,936,050

Table 1: Global reduction in run data at each processing step.

We only focus on the runs that belong to the current base learner set; we filtered out runs
corresponding to other algorithms (Table 1). Even after the initial filtering, the number of runs
is still very large, making it computationally expensive to extract all evaluation metrics from the
OpenML API. To reduce while maintaining diversity, we sample 50 runs each per dataset-algorithm
pair (Table 1). From the 50 runs, we selected the median of the top 10 highest-performing runs.
This approach ensures good performance while accounting for variance and outliers that could skew
results from a single best run.

4.4 Meta-Classifier Training and Evaluation

With the meta-features extracted, we trained and evaluated supervised meta-classifiers to compare
how effective traditional, deep, and hybrid meta-features support algorithm selection.

12



4.4.1 Meta-Classifier Architecture

The meta-classifier learns the relationship between meta-features and the best-performing base
learner. We adopted a supervised learning approach, with meta-features as inputs and the encoded
best learner as the classification target.

In the context of the meta-learning task of algorithm selection, the classifier learns the decision
boundaries that separate regions of the meta-feature space where different algorithms are optimal.
The meta-features should contain sufficient discriminative power to determine the optimal algorithm.

We selected the random forest classifier as the meta-classifier due to its balance between computa-
tional efficiency and modelling sophistication | |. Random forests can train quickly, handle
heterogeneous feature spaces, capture non-linear relationships, and provide feature importance
estimates, while remaining relatively robust to overfitting.

4.4.2 FEvaluation Protocol

For each benchmark suite, we computed a majority-class baseline by selecting the base learner
most frequently optimal across datasets | |. This baseline provides a reference point against
which meta-model performance is evaluated.

We assessed predictive performance using Leave-One-Out Cross-Validation (LOO-CV) across the
datasets in each benchmark suite | ]. Each dataset was iteratively held out as a test case while
the others were used for training, ensuring evaluation reflects generalisation to unseen datasets —
the central objective in algorithm selection. LOO-CV is particularly suitable when the number of
datasets is limited, as with our benchmark suites.

To account for model variance, we repeated training and evaluation for 10 independent runs with
different random seeds. We report results as median accuracy and standard deviation, capturing
both central tendency and variability. This enables robust comparison of meta-models trained with
different meta-feature representations.

4.5 Meta-Regressor Training and Evaluation

With the meta-features extracted, we trained and evaluated supervised meta-regressors to compare
how effective traditional, deep, and hybrid meta-features support algorithm selection.

4.5.1 Meta-Regressor Architecture

The meta-regressors learns the relationship between meta-features and the performances of all the
base learners. We adopted a supervised learning approach, with meta-features as inputs and base
learner performances as the target.

In comparison to the meta-classifier, the meta-regressor models the algorithm selection problem
by predicting continuous base learner performance. This approach captures the competitiveness
between algorithms, representing more nuanced performance that reducing to discrete labels as
the meta-classifier does is unable to. The most suitable algorithm is then chosen by selecting the
algorithm with the highest predicted performance.

13



4.5.2 FEvaluation Protocol

We evaluated the meta-regressor using Leave-One-Out Cross-Validation (LOO-CV) across datasets
[ ]. In each repetition, the regressor was trained on all but one dataset and used to predict the
algorithm performances for the held-out dataset to generalise across datasets.

To provide a baseline to compare the performance of the regressor, we computed a mean-predictor,
which predicts the average performance of each algorithm across the training datasets. This provides
a simple baseline for assessing whether the meta-regressor captures meaningful performance
variation.

Model quality was quantified using standard regression metrics—Mean Absolute Error (MAE),
Mean Squared Error (MSE), and coefficient of determination (R?)—evaluated over the predicted
and actual algorithm performance matrices. To capture variability due to model stochasticity, the
full LOO-CV process was repeated for 10 runs with different random seeds, and we report the
aggregated mean and standard deviation for each metric.

4.6 Dataset2Vec Representation Analysis

Before evaluating Dataset2Vec as a meta-feature representation for algorithm selection, we examine
whether the representations produced by Dataset2Vec capture meaningful aspects of dataset
structure. In particular, we consider whether the embeddings distinguish between datasets with
similar characteristics and those that differ, providing an initial validation of their suitability as
meta-features.

We assessed the quality of the Dataset2Vec representations using a benchmark consisting of 2000
synthetic datasets comprising circles, blobs and moons, each produced with randomised noise
levels, transformations and sample sizes. This ensures that there are distinct differences within each
geometric family for Dataset2Vec to process.

We visualised the representation space using t-SNE to assess whether datasets from the same
geometric family cluster together. To quantify this structure, we computed cosine distances between
all dataset pairs and compared intra-class distances (within the same family) to inter-class distances
(between different families). The inter/intra distance ratio measures separability: values above 1
indicate that Dataset2Vec maps similar datasets closer together than dissimilar ones.

This analysis evaluates whether the learned representations reflect the underlying dataset structure
relevant for downstream meta-learning tasks.

4.7 Algorithm Subsets

To analyse algorithm selection behaviour under different experimental conditions, we evaluate
meta-models on restricted subsets of algorithms rather than only on the full set of base learners.
The subset analysis is operationalised along two complementary dimensions: algorithm structure
and empirical performance distribution.

14



4.7.1 Algorithm Structure

Algorithms often share common inductive biases, making them harder to distinguish. To test
whether meta-features capture such fine-grained structural differences, we defined three structural
subsets:

Tree Algorithms {Decision Tree, Random Forest, XGBoost}: We tested whether meta-models
could discriminate within tree-based methods, from simple decision trees to ensemble bagging and
boosting, evaluating whether meta-features reflect increasing algorithmic sophistication within one
family:.

Ensemble Algorithms {Random Forest, XGBoost}: We tested whether meta-features distinguish
ensemble methods that rely on different aggregation strategies — parallel bagging versus sequential
boosting — despite both building multiple models.

Non-Ensemble Algorithms {Decision Tree, SVM, Linear Models}: We tested whether meta-
features could separate single model paradigms with fundamentally different learning assumptions,
providing a baseline of maximum algorithmic diversity.

4.7.2 Empirical Performance Distribution

Beyond structural design, algorithm strength can also be assessed empirically by how well algorithms
perform across datasets. As a preliminary analysis, we summarise the average accuracy of the
algorithms across the benchmark suites. This summary guides the selection of algorithm pairs for
comparison.

Benchmark Suite Algorithm Average Accuracy
Random Forest 0.864 £ 0.146
Support Vector Machine 0.860 £ 0.161

OpenML-CC18 (99) Linear Models 0.824 + 0.164
XGBoost 0.811 +0.184
Decision Tree 0.799 £0.155
Random Forest 0.879 £0.107
Support Vector Machine 0.877£0.116

OpenML100-friendly (225) Linear Models 0.825 +£0.177
Decision Tree 0.806 £ 0.143
XGBoost 0.765 £ 0.238

Table 2: Average aggregated accuracy per algorithm across benchmark suites OpenML-CC18 (ID
99) and OpenML100-friendly (ID 225). Algorithms are ranked by descending average accuracy
within each suite.

Based on the average accuracy rankings in Table 2, we define three comparative settings to analyse
algorithm selection under different empirical performance regimes.

1. Strong vs. strong: This setting compares the two highest-ranked algorithms within a benchmark
suite. It represents a scenario in which both algorithms perform well on average, and selection

15



depends on distinguishing subtle dataset characteristics that favour one strong performer over
another.

2. Weak vs. weak: This setting compares the two lowest-ranked algorithms within a benchmark
suite. It reflects situations where neither algorithm performs particularly well on average, testing
whether the meta-model can identify the comparatively better option among weaker candidates.

3. Strong vs. weak: This setting compares the highest-ranked algorithm with the lowest-ranked
algorithm within a benchmark suite. It represents a clear performance contrast, testing whether
the meta-model can consistently identify the stronger algorithm while accounting for occasional
exceptions.

4.8 Configurations and parameters

Table 3 consolidates all the configurations and parameters in the methodology into a single table
for reference.

5 Results

In this section, we present the results of our experiment by addressing the research questions
through a comparison of meta-learning approaches that rely on traditional, deep learning and
hybrid meta-feature representations, as well as further analysis of Dataset2Vec.

5.1 Main results across all base learners

This section presents the results of the main experiment, which evaluates the relative effectiveness
of each meta-feature type for algorithm selection across the full set of base learners.

5.1.1 Meta-classifier results
This section reports the performance of the meta-classifier for each meta-feature representation.

Figure 4 and Table 4 establish a consistent performance ranking across both benchmark suites.
Traditional meta-features achieve the highest accuracy, followed by the hybrid approach, and
Dataset2Vec performs the poorest. Notably, for the OpenML-CC18 benchmark suite, it performs
worse than the baseline, and for the OpenML100-friendly benchmark suite it barely exceeds the
baseline, indicating minimal learning. This performance gap is consistent, and the low standard
deviations indicate that the differences are stable across experimental results.

5.1.2 Meta-regressor results

In this section, we evaluate the meta-regressor purely as a regression model, assessing its ability to
predict base-learner performance using continuous regression metrics.

Table 5 reveals a consistent performance hierarchy across both benchmark suites when predict-
ing algorithm performance. Traditional meta-features demonstrate the best predictive accuracy,
achieving the lowest MAE (0.0720 for OpenML-CC18; 0.0562 for OpenML100-friendly) and highest

16



Table 3: Consolidated overview of configurations and parameters used in the methodology.

Component

Configuration / Parameters

Benchmark Suites

Dataset Preprocessing (Dataset2Vec)

Meta-Features
Meta-Targets

Base Learners
Run Filtering

Performance Aggregation
Meta-Classifier Model
Meta-Regressor Model
Baseline

Evaluation

Algorithm Subsets

Representation Analysis

Results Reporting

OpenML-CC18 (72 datasets); OpenML100-friendly (54 datasets)
Applied only for Dataset2Vec input construction: remove features
>70% missing; remove samples >50% missing; KNN imputation
(k = 5) or median imputation; Min—-Max scaling; one-hot encoding
for categorical features; label-encoding for targets

Traditional (OpenML qualities, KNN-imputed); Dataset2Vec;
Hybrid (concatenation of traditional + D2V)

Best algorithm by accuracy (classification); accuracy vector over
algorithms (regression)

SVM, Random Forest, Decision Tree, XGBoost, Linear Models
Only runs corresponding to the selected base learners were re-
tained (Table 1); 50 sampled runs per dataset—algorithm pair
Median of top 10 accuracies per dataset—algorithm pair
Random Forest Classifier

Random Forest Regressor (multi-output)

Majority-class baseline (meta-classification); mean-predictor base-
line (meta-regression)

Leave-One-Out cross-validation across datasets (10 random-seed
repetitions)

Structure-based: Tree Family {DT, RF, XGB}; Ensemble {RF,
XGB}; Non-Ensemble {DT, SVM, Linear}. Empirical perfor-
mance distribution-based: Strong vs. Strong, Strong vs. Weak,
Weak vs. Weak, derived from empirical win rates (Table 2).
t-SNE visualisation of Dataset2Vec embeddings; quantitative
evaluation of separability using intra-/inter-class cosine distances
Median accuracy (classifier) and median MAE/MSE/R? (regres-
sor) with standard deviations across 10 repetitions

R? values (0.511 and 0.691, respectively). The hybrid approach provides marginal gains over
traditional features on OpenML100-friendly (R? = 0.719 vs. 0.691), but offers no advantage on
OpenML-CC18. Dataset2Vec embeddings consistently underperform, yielding substantially higher
prediction errors and poor variance explanation. Particularly concerning is Dataset2Vec’s negative
R? on OpenML-CC18 (—0.222 4+ 0.008), indicating predictions worse than a naive mean baseline,
while on OpenML100-friendly it achieves only minimal positive R? (0.140), suggesting limited
learning of algorithm performance patterns. The low standard deviations across all metrics (< 0.001
for MAE and MSE) indicate these performance differences are robust and stable across repeated

evaluations.

17



OpenML benchmark suite 99 OpenML benchmark suite 225

Accuracy
° ° °
= G &
& 3 I

— = Majority class classifie (37.50%) | — = Majority class classifie (42.59%)

0.259

Trad\t‘lunal Hyk‘)rid

Meta-Feature Type

Traditional Hybrid Dataset2Vec

Meta-Feature Type

Dataset2Vec

Figure 4: Distribution of meta-classifier performance across all base learners for the benchmark
suites OpenML-CC18 (id=99) and OpenML100-friendly (id=225). The red dashed line indicates
the baseline (majority class classifier). Results are shown for Dataset2Vec, traditional, and hybrid
meta-feature representations.

Meta-Feature Type OpenML-CC18 (id=99) OpenML100-friendly (id=225)

Meta-classifier accuracy Meta-classifier accuracy

Traditional 0.528 +0.023 0.630 £ 0.017
Hybrid 0.479 +0.029 0.593 £ 0.021
Dataset2Vec 0.312 £ 0.022 0.500 £ 0.013
Majority-class baseline 0.375 £ 0.000 0.444 £ 0.000

Table 4: Meta-classifier performance for algorithm selection across the OpenML-CC18 and
OpenML100-friendly benchmark suites. Reported values correspond to median accuracy with
standard deviation over all base learners for traditional, Dataset2Vec, and hybrid meta-feature
representations. The majority class classifier is included as a baseline.

Benchmark suite Feature set MAE MSE R?
Dataset2Vec 0.1316 £ 0.0007 0.0326 &= 0.0002 —0.222 4 0.008

OpenML-CC18 (id=99) Traditional 0.0720 £ 0.0006 0.0131 +0.0001 0.511 £ 0.005
Hybrid 0.0729 £ 0.0006 0.0133 +0.0001  0.504 £ 0.005
Dataset2Vec 0.1140 4+ 0.0006 0.0242 £+ 0.0003  0.140 4+ 0.010

OpenML100-friendly (id=225) Traditional 0.0562 £ 0.0006 0.0087 & 0.0002  0.691 =+ 0.006
Hybrid 0.0551 £ 0.0003 0.0079 & 0.0001  0.719 £ 0.005

Table 5: Meta-regressor performance across OpenML benchmark suites. Results are reported as
mean + standard deviation over repeated leave-one-out evaluations. Lower MAE and MSE indicate

better performance, while a higher R? is preferable.

18



5.1.3 Comparison of Meta-classifier and Meta-regressor

In this section, we evaluate the meta-regressor in terms of algorithm-selection accuracy by converting
its continuous performance predictions into discrete algorithm choices.

OpenML benchmark suite 99 OpenML benchmark suite 225

_____________________________________

—
Sl S | [

== Majority class classifier (37.50%) == Majority class classifier (42.59%)

Datasétzvec Tracliéional HyBrid Datasétzvec Trad\éional HyBrid
Meta-Feature Type Meta-Feature Type

Figure 5: Distribution of meta-regressor performance across all base learners for the benchmark
suites OpenML-CC18 (id=99) and OpenML100-friendly (id=225). For each dataset, the base learner
with the highest predicted performance is selected. The red dashed line indicates the majority class
classifier as the baseline. Results are shown for Dataset2Vec, traditional, and hybrid meta-feature
representations.

Meta-Feature Type OpenML-CC18 (id=99) OpenML100-friendly (id=225)

Meta-regressor accuracy Meta-regressor accuracy
Traditional 0.461 4+ 0.023 0.472 4+ 0.028
Hybrid 0.439 +0.041 0.494 4+ 0.031
Dataset2Vec 0.315 £ 0.040 0.422 £ 0.030
Majority-class baseline 0.375 £ 0.000 0.444 £ 0.000

Table 6: Meta-regressor performance for algorithm selection across the OpenML-CC18 and
OpenML100-friendly benchmark suites. Reported values correspond to median accuracy with
standard deviation for traditional, Dataset2Vec, and hybrid meta-feature representations. The
majority class classifier is included as a baseline.

Figure 4 and Table 4 show that the meta-classifier consistently achieves higher algorithm-selection
accuracy than the meta-regressor across both benchmark suites. For OpenML-CC18, traditional and
hybrid meta-features perform well under direct meta-classification, while Dataset2Vec remains below
the majority-class baseline. In contrast, the corresponding meta-regressor results in Figure 5 and
Table 6 exhibit uniformly lower median accuracy and higher variance, despite preserving the same rel-
ative ranking of meta-feature representations. A similar pattern is observed for OpenML100-friendly

19



t-SNE projection of synthetic Dataset2Vec embeddings

60 +

@ blobs

circles

@ moons
40
201
0 -
_20 |
_40 .

T T
—40 -20 0 20 40

Figure 6: t-SNE projection of Dataset2Vec embeddings for synthetic toy datasets. Each point
represents a dataset generated from one of three underlying geometric families, coloured by dataset
type. The visualisation illustrates how Dataset2Vec representations organise datasets with similar
geometric properties in the learned embedding space.

(id=225), where the meta-classifier substantially outperforms the meta-regressor, particularly for tra-
ditional meta-features. Overall, these results indicate that directly learning the algorithm-selection
decision via meta-classification is more effective than regression-based selection.

5.2 Dataset2Vec representation analysis

Figure 6 shows that the Dataset2Vec embeddings capture a decent degree of structure among the
synthetic datasets. Blob datasets are largely separated from the other groups, while circles and
moons exhibit partial overlap, which is expected given their similar geometric characteristics. This
qualitative pattern is consistent with the cosine distance statistics in Table 7. Intra-class distances
are lowest for circles and moons, but the inter-class distance between these two groups is also small
(0.0046+0.0069), indicating limited but coherent separation. Blobs show larger intra-class variability
and greater separation from the other dataset types, reflecting their more heterogeneous structure.
Overall, these results suggest that Dataset2Vec provides some dataset structure, capturing broad
similarities and differences between dataset types, while not enforcing perfectly distinct clusters.

Figure 7 shows t-SNE projections of synthetic datasets represented using hand-crafted information-
theoretic and statistical PyMFE meta-features, which serve as the traditional baselines for compar-
ison. In both cases, dataset types are more clearly separated than under Dataset2Vec, with visibly
distinct clusters emerging in the embedding space.

20



Distance type Groups

Cosine similarity

Intra-class

Blobs
Circles
Moons

0.0240 £ 0.0540
0.0047 £ 0.0068
0.0036 £ 0.0058

Inter-class

Blobs vs Circles
Blobs vs Moons
Circles vs Moons

0.0249 £ 0.0248
0.0291 £ 0.0232
0.0046 £ 0.0069

Table 7: Intra- and inter-class cosine distance statistics for Dataset2Vec representations of synthetic
toy datasets, computed in the t-SNE projection space. Lower intra-class distances indicate tighter
clustering of datasets with the same geometric structure, while higher inter-class distances indicate
stronger separation between different dataset types.

t-SNE projection of synthetic_info-theory meta-features

t-SNE projection of synthetic_statistical meta-features

40

20

,o-
2
o g

Dataset type 60 o
® blobs
o circles

40 4

—-204

Dataset type
® blobs
o circles
® moons

—20 —20 0 20

60

Figure 7: t-SNE projections of PyMFE information-theoretic and statistical meta-feature represen-
tations for synthetic datasets. Each point corresponds to a dataset, coloured by dataset type. This
visualisation illustrates how traditional meta-features extracted using PyMFE organise datasets
with similar geometric properties in the learned embedding space.

21



Representation Avg. intra-class distance Avg. inter-class distance Inter/Intra ratio

Dataset2Vec 0.0108 0.0195 1.81
Information-theoretic 0.0311 0.1754 5.65
Statistical 0.1032 0.3685 3.57

Table 8: t-SNE-based separability comparison between Dataset2Vec and PyMFE meta-feature
representations on synthetic datasets. Lower intra-class distances indicate tighter clustering of
datasets with similar structure, while higher inter-class distances and inter/intra ratios indicate
stronger separation between different dataset types.

Table 8 quantifies this difference in separability. Information-theoretic meta-features achieve a
significantly higher average inter-class distance and the largest inter/intra ratio (5.65), indicating
strong global separation between dataset types despite less compact intra-class structure. Statistical
meta-features produce both large inter-class distances and visually compact clusters (Figure 7),
resulting in a similarly strong inter/intra ratio (3.57).

Taken together, Figures 6 and 7, with Tables 7 and 8, show that while Dataset2Vec learns a partial
representation of dataset structure, traditional PyMFE meta-features provide more discriminative
embeddings on these synthetic benchmarks. This contrast highlights the role of traditional meta-
features as strong baselines when assessing the expressiveness of learned dataset representations.

5.3 Algorithm subsets

In this section, we shifted the paradigm of the meta-learning task of algorithm selection by changing
the set of base learners that the meta-model chooses from as defined in Section 4.7.

5.3.1 Algorithm structure

This section examines meta-model performance for algorithm selection when base learners are
grouped according to their foundational methodological structure.

Figure 8 shows that across all structurally defined algorithm subsets, none of the meta-feature
representations outperform the majority class classifier on either benchmark suite. Dataset2Vec
meta-features consistently perform the worst, while traditional and hybrid meta-features yield similar
performance, remaining close to but below the baseline. In the tree-based and ensemble subsets,
high majority-class accuracies reflect severe class imbalance, with Random Forest dominating
performance and limiting the meta-models’ ability to learn when Decision Tree or XGBoost should
be selected. Although meta-model performance is slightly higher in benchmark suite 225, this is
likely due to larger performance gaps between algorithms, which provide a clearer discriminative
signal despite increased imbalance. In the non-ensemble subset, the more balanced distribution of
winners across tree-based, kernel-based, and linear methods results in a lower baseline; however, this
increased algorithmic diversity still does not translate into meta-models surpassing the majority-
class classifier, indicating that structural diversity alone does not improve algorithm selection
performance.

22



Tree Family (DT, RF, XGB)

OpenML benchmark suite 99 OpenML benchmark suite 225
1 """"""""'""? """"""""
| S—

0.8
9
B o7 T R T N N T T N N L T T N T N T N T m T N e s T T TR T
¢ —
3
o1
< o

0.6

o
[ m——]
0.5 B
— = Majority class classifier (70.83%) — = Majority class classifier (88.89%)
Dataset2Vec Traditional Hybrid Dataset2Vec Traditional Hybrid
Meta-feature type Meta-feature type
Ensembles (RF, XGB)
1o OpenML benchmark suite 99 OpenML benchmark suite 225
T —7 777
0.9 S
0.8

Accuracy

—— Majority class classifier (75.00%) —— Maijority class classifier (94.44%)
0.5
Dataset2Vec Traditional Hybrid Dataset2Vec Traditional Hybrid
Meta-feature type Meta-feature type
Non-Ensemble (DT, SVM, Linear)
OpenML benchmark suite 99 OpenML benchmark suite 225
0.75
o
[ L R e B e e s |

Accuracy
°
Y
3

== Majority class classifier (68.06%) == Majority class classifier (70.37%)

Dataset2Vec Traditional Hybrid Dataset2Vec Traditional Hybrid
Meta-feature type Meta-feature type

Figure 8: Meta-classifier performance across structure-based algorithm subsets. Boxplots show
accuracy distributions for Dataset2Vec, traditional, and hybrid meta-feature representations on
OpenML benchmark suites 99 and 225. Dashed red lines indicate the majority class classifier within
each subset.

23



5.3.2 Empirical performance distribution

This section examines meta-model performance for algorithm selection when base learners are

grouped according to their empirical algorithm performance across the benchmark suites.

Strong vs Strong

OpenML benchmark suite 99

OpenML benchmark suite 225

0.80

0.75

0.70

o

0.65 0.

Accuracy

0.60

0.55

—— Majority class classifier (55.56%)

== Majority class classifier (53.70%)

Dataset2Vec

Traditional
Meta-feature type

Hybrid

Dataset2Vec

Weak vs Weak

OpenML benchmark suite 99

Traditional
Meta-feature type

Hybrid

OpenML benchmark suite 225

0.75

0.70

Accuracy

0.60

== Majority class classifier (68.06%)

-

|_

== Majority class classifier (55.56%)

Dataset2Vec

Traditional
Meta-feature type

Hybrid

Dataset2Vec

Strong vs Weak

OpenML benchmark suite 99

Traditional
Meta-feature type

Hybrid

OpenML benchmark suite 225

0.95

0.94

0.93

0.92

Accuracy

091

0.90

0.88

== Majority class classifier (94.44%)

== Majority class classifier (94.44%)

Dataset2Vec

Traditional
Meta-feature type

Hybrid

Dataset2Vec

Traditional
Meta-feature type

Hybrid

Figure 9: Meta-classifier performance across performance-based algorithm subsets. Boxplots show
accuracy distributions for Dataset2Vec, traditional, and hybrid meta-feature representations on
OpenML benchmark suites 99 and 225. Dashed red lines indicate the majority class classifier within
each subset.

24



Figure 9 demonstrates that meta-model performance for algorithm selection strongly depends on
the competitive balance between candidate base learners. When selecting between competitive
algorithm pairs (strong vs. strong and weak vs. weak), all meta-feature types exceed or closely
track the majority-class baseline. Traditional and hybrid meta-features benefit most under this
condition, while Dataset2Vec exhibits weaker but still positive performance. In contrast, when
selecting between non-competitive algorithm pairs, none of the meta-feature types outperform the
baseline, indicating that the meta-model cannot improve upon the dominance of a single algorithm.
Across all settings, traditional and hybrid meta-features consistently outperform Dataset2Vec
meta-features. Overall, these results show that algorithm selection becomes effective primarily
under competitive conditions, while dominance effects limit performance regardless of meta-feature
representation.

6 Discussion and future work

This section interprets the experimental findings in relation to the research questions, as well as
discussing limitations of the experiment and avenues for future research.

6.1 Research question 1 — How effective are deep learning extracted
meta-features compared to traditional meta-features for algorithm
selection in classification tasks?

Addressing the main research question — traditional meta-features outperform deep learning
based extracted meta-features, using Dataset2Vec, consistently for algorithm selection. Traditional
meta-features perform comparably to the hybrid meta-features, suggesting that Dataset2Vec does
not add a substantial complementary signal to help the meta-model for algorithm selection. This is
supported by consistent trends in the meta-classifier and meta-regressor, where Dataset2Vec not
only underperforms the other meta-feature types but also fails to consistently exceed the baseline
algorithm selection. The overall better meta-classifier performance compared to the meta-regressor
suggests that algorithm selection is more effectively modelled as a classification task.

6.2 Research question 2 — To what extent do Dataset2Vec representa-
tions capture underlying structure relevant for algorithm selection

Dataset2Vec captures partial dataset structure, but not necessarily structure relevant for algo-
rithm selection. The t-SNE projection on synthetic datasets indicates that Dataset2Vec creates
representations that distinguish between some dataset types (e.g., blobs), while failing to separate
geometrically similar categories (e.g., circles and moons). Traditional meta-features extracted
using PyMFE achieve stronger separation, suggesting that Dataset2Vec representations are less
informative for algorithm selection.

25



6.3 Research question 3 — How does varying base learners affect the
performance of meta-models trained on different types of meta-
features

Performance of meta-models for algorithm selection varies significantly when the algorithm paradigm
is changed — they exhibit reduced performance under algorithm foundation comparisons and
improved performance under competitive performance comparisons. When comparing tree family,
ensemble, and non-ensemble methods, all sets of meta-features underperform the baseline, at
best performing close to the baseline. This indicates that meta-features in general have a limited
ability to distinguish between different methodologically based comparisons. In balanced settings,
all meta-feature types outperform the baseline. It suggests that class imbalance and algorithm
dominance limit meta-learning effectiveness.

6.4 Remarks

Dataset2Vec demonstrates effectiveness in hyper-parameter optimisation [ |, but shows
limited effectiveness in algorithm selection, highlighting fundamental differences between the two
meta-learning tasks.

In hyper-parameter optimisation, Dataset2Vec serves as an auxiliary signal to identify similar
datasets and uses their hyper-parameter configurations as a warm start for further optimisation.
In algorithm selection, Dataset2Vec representations serve as the primary discriminative basis for
prediction, with no subsequent optimisation to correct for imperfect meta-features. This task
requires more precision, as the smaller search space leaves no space for approximate guidance.

At its core, Dataset2Vec uses the auxiliary task of dataset similarity to construct the vector
representations. This approach is well-suited for hyper-parameter optimisation, where similar
datasets in a fixed algorithm space generally share the same optimal hyper-parameter configurations.
In contrast, algorithm selection cannot rely on this assumption: similar datasets in the Dataset2Vec
embedding space can require different optimal algorithms. Algorithm selection can depend on
specific discriminative characteristics that do not correlate with dataset similarity. Dataset2Vec
compressing a whole dataset into a vector representation aggregates these characteristics. Traditional
meta-features, in comparison, explicitly preserve those characteristics. This mismatch between the
auxiliary task of Dataset2Vec and the algorithm selection suggests that its limited performance
may stem from objective misalignment rather than an inherent limitation of deep learning—based
meta-features. Fine-tuning Dataset2Vec directly on an algorithm selection objective would therefore
be a necessary next step to assess its true potential in this setting.

6.5 Limitations

Several limitations contextualise these findings. First, the evaluation focuses on five algorithms (SVM,
Random Forest, Decision Tree, XGBoost, Linear Models) and tabular classification tasks; findings
may not generalise to larger algorithm portfolios, modern approaches (neural networks, AutoML), or
other problem domains (computer vision, NLP, time-series). Second, this study uses the pre-trained
Dataset2Vec model without retraining or fine-tuning on the algorithm selection task, which may limit
the effectiveness of Dataset2Vec representations for discriminative algorithm selection. Alternative

26



training procedures or pre-training data may yield different results. Third, the 126 datasets across
two benchmark suites (OpenML-CC18 and OpenML100-friendly) represent a relatively small
number of meta-learning instances, limiting meta-model complexity and reliability. Despite these
limitations, consistent patterns across experimental conditions and systematic evaluation across
algorithm subsets support the findings’ validity.

6.6 Future work

The findings of this thesis suggest avenues for future research:

Improved deep learning approach. Implementing deep learning meta-feature extraction trained
directly on an algorithm selection objective instead of dataset similarity would test whether the
limitation is Dataset2Vec-specific or fundamental to deep learning. For example, representations
could be trained to predict base learner performance rankings, allowing the meta-model to learn
algorithm-discriminative signals directly.

Feature importance analysis. Systematic analysis of which meta-features most strongly predict
algorithm performance would reveal essential discriminative properties. Feature importance analysis,
ablation studies, and correlation analysis would identify what traditional meta-features capture
that Dataset2Vec misses.

Discriminative feature engineering. Informed by importance analysis, developing novel meta-
features targeting algorithm-discriminative properties would improve both approaches. This includes
identifying new properties, creating composite features, and investigating domain-specific charac-
terisations.

7 Conclusion

In this thesis, we built a tool that leverages OpenML to construct a meta-learning system for algo-
rithm selection and use it to compare models trained on traditional, Dataset2Vec, and a combination
of both types of meta-features. We found that Dataset2Vec meta-features underperform traditional
approaches across both benchmark suites, performing close to the baseline. Dataset2Vec captures
partial dataset structure, as evidenced by weak but coherent clustering in t-SNE projections of
synthetic data, but shows weaker discriminative power than traditional meta-features and proves
insufficient for algorithm selection. Furthermore, while traditional meta-features generally perform
best, the effectiveness ranking varies across algorithm subsets. Algorithm subset analysis demon-
strated that meta-learning effectiveness depends critically on both algorithmic relationships and
competition patterns. Meta-features excel at distinguishing between diverse algorithmic paradigms
but struggle with subtle variations within algorithm families, and prove most valuable in balanced
competition scenarios while providing minimal value when one algorithm clearly dominates. We
conclude that meta-feature effectiveness depends not on descriptive power but on alignment with
the specific meta-learning task. Task-specific relevance must be prioritised over general dataset
characterisation in meta-feature design.

27



References

[Aha92]

[ASR+20]

[BCD+25]

[BCF+21]

[BGCO0]

[Bis06]

[BKO1]

[Bre01]
[BVRSV22

[CG16]

[CGL23]

[CV95]

[Fuj25]

David W Aha. Generalizing from case studies: A case study. In Proceedings of the
Ninth International Workshop on Machine Learning, 1992.

Edesio Alcobaca, Felipe Siqueira, Adriano Rivolli, Luis P. F. Garcia, Jefferson T.
Oliva, and André C. P. L. F. de Carvalho. MFE: Towards reproducible meta-feature
extraction. Journal of Machine Learning Research, 21(111), 2020.

Bernd Bischl, Giuseppe Casalicchio, Taniya Das, Matthias Feurer, Sebastian Fischer,
Pieter Gijsbers, Subhaditya Mukherjee, Andreas C Miiller, Laszl6 Németh, Luis Oala,
Lennart Purucker, Sahithya Ravi, Jan N van Rijn, Prabhant Singh, Joaquin Vanschoren,
Jos van der Velde, and Marcel Wever. OpenML: Insights from 10 years and more than
a thousand papers. Patterns, 6(7):101317, 2025.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter,
Michel Lang, Rafael Gomes Mantovani, Jan N van Rijn, and Joaquin Vanschoren.
OpenML benchmarking suites. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurlPS Datasets and Benchmarks
2021, 2021.

Hilan Bensusan and Christophe G. Giraud-Carrier. Discovering Task Neighbourhoods
through Landmark learning performances. In Principles of Data Mining and Knowledge
Discovery, 4th European Conference (PKDD 2000). Springer, 2000.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New
York, NY, 1 edition, 2006.

Hilan Bensusan and Alexandros Kalousis. Estimating the predictive accuracy of a
classifier. In European Conference on Machine Learning (ECML), volume 2167 of
Lecture Notes in Computer Science, pages 25—36. Springer, 2001.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Pavel Brazdil, Jan N. van Rijn, Carlos Soares, and Joaquin Vanschoren. Metalearning:
Applications to Automated Machine Learning and Data Mining. Cognitive Technologies.
Springer Cham, 2 edition, 2022.

Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 785-794. ACM, 2016.

Nathan Carvalho, André Gongalves, and Ana Lorena. Collecting meta-data from
the OpenML public repository. In Anais do XX Encontro Nacional de Inteligéncia
Artificial e Computacional, pages 610-624, Porto Alegre, RS, Brasil, 2023. SBC.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, 1995.

Keisuke Fujii. Machine Learning in Sports: Open Approach for Next Play Analytics.
Springer Singapore, 1 edition, 2025.

28



[GCO8]
(GLH15]

[HKO1]

[JSTG21]

[Koh95]

[KTKO00]

[LBNA*03]

[MSTO4]

[PBGCO0]

[PKP22

[Quil6|
[RGST19]

[Ric76]

[Smi08]

Christophe Giraud-Carrier.  Metalearning: A tutorial, 2008. Obtained from
[https://www.icmla-conference.org/icmla08 /slides2.pdf].

Salvador Garcia, Julidan Luengo, and Francisco Herrera. Data Preprocessing in Data
Mining. Intelligent Systems Reference Library. Springer Cham, 1 edition, 2015.

Melanie Hilario and Alexandros Kalousis. Fusion of meta-knowledge and meta-data for
case-based model selection. In Furopean Conference on Principles of Data Mining and
Knowledge Discovery (PKDD), volume 2168 of Lecture Notes in Computer Science,
pages 180-191. Springer, 2001.

Hadi S. Jomaa, Lars Schmidt-Thieme, and Josif Grabocka. Dataset2vec: Learning
dataset meta-features. Data Mining and Knowledge Discovery, 35(3):964-985, 2021.

Ron Kohavi. A study of crossvalidation and bootstrap for accuracy estimation and
model selection. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1137-1143, 1995.

Christian Kopf, Charles Taylor, and Jorg Keller. Meta-analysis: From data charac-
terization for meta-learning to meta-regression. In Pavel Brazdil and Amilcar Jorge,
editors, Proceedings of the PKDD 2000 Workshop on Data Mining, Decision Support,
Meta-Learning and ILP: Forum for Practical Problem Presentation and Prospective
Solutions, pages 15-26, 2000.

Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and Yoav
Shoham. A portfolio approach to algorithm selection. In Georg Gottlob and Toby Walsh,
editors, Proceedings of the Fighteenth International Joint Conference on Artificial
Intelligence (IJCAI 2003), page 1542. Morgan Kaufmann, 2003.

Donald Michie, David J. Spiegelhalter, and Charles C. Taylor. Machine Learning,
Neural and Statistical Classification. Ellis Horwood, 1994.

Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. Meta-learning

by landmarking various learning algorithms. In Proceedings of the 17th International
Conference on Machine Learning (ICML), pages 743-750, 2000.

Someswari Perla, Naga Nimesh K, and Srinidhi Potta. Implementation of autonomous
cars using machine learning. In 2022 International Conference on Edge Computing
and Applications (ICECAA), pages 1444-1451, 2022.

J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

Adriano Rivolli, Luis P. F. Garcia, Carlos Soares, Joaquin Vanschoren, and André C.
P. L. F. de Carvalho. Characterizing classification datasets: a study of meta-features
for meta-learning, 2019.

John R Rice. The algorithm selection problem. Advances in Computers, 15:65-118,
1976.

Kate Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Comput. Surv., 41(1):6:1-6:25, 2008.

29



[Sto74]

[Van18§]
[VvRBT13]

[ZKR+17]

[ZSW23]

Mervyn Stone. Crossvalidatory choice and assessment of statistical predictions. Journal
of the Royal Statistical Society: Series B, 36(2):111-147, 1974.

Joaquin Vanschoren. Meta-learning: A survey, 2018.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML:
networked science in machine learning. ACM SIGKDD FExplorations Newsletter,
15(2):49-60, 2013.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poéczos, Ruslan
Salakhutdinov, and Alexander J. Smola. Deep sets. In Advances in Neural Information
Processing Systems 30 (NeurIPS 2017), pages 3391-3401, 2017.

B. Zhang, H. Shi, and H. Wang. Machine learning and ai in cancer prognosis, prediction,
and treatment selection: A critical approach. Journal of Multidisciplinary Healthcare,
16:1779-1791, 2023. Published 2023.

30



	Introduction
	Background
	The Algorithm Selection Problem
	Meta-Learning for Algorithm Selection
	Meta-Features
	Traditional Meta-Features
	Deep-Learning Feature Extraction

	OpenML
	PyMFE Library

	Methods
	Dataset Collection
	Meta-Feature Extraction
	Traditional Meta-Features
	Deep Learning Meta-Features
	Hybrid Meta-Features

	Performance Aggregation
	Meta-Model Training
	Meta-Classifier
	Meta-Regressor
	Meta-Model Comparison


	Experimental Setup
	Dataset Selection and Preprocessing
	Meta-Feature Extraction
	Traditional Meta-Features
	Deep learning Meta-Features
	Hybrid Meta-Features

	Performance Data Extraction
	OpenML Runs
	Flows
	Performance Metrics

	Meta-Classifier Training and Evaluation
	Meta-Classifier Architecture
	Evaluation Protocol

	Meta-Regressor Training and Evaluation
	Meta-Regressor Architecture
	Evaluation Protocol

	Dataset2Vec Representation Analysis
	Algorithm Subsets
	Algorithm Structure
	Empirical Performance Distribution

	Configurations and parameters

	Results
	Main results across all base learners
	Meta-classifier results
	Meta-regressor results
	Comparison of Meta-classifier and Meta-regressor

	Dataset2Vec representation analysis
	Algorithm subsets
	Algorithm structure
	Empirical performance distribution


	Discussion and future work
	Research question 1 – How effective are deep learning extracted meta-features compared to traditional meta-features for algorithm selection in classification tasks?
	Research question 2 – To what extent do Dataset2Vec representations capture underlying structure relevant for algorithm selection
	Research question 3 – How does varying base learners affect the performance of meta-models trained on different types of meta-features
	Remarks
	Limitations
	Future work

	Conclusion
	References

