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Abstract

This study examines how two visual representations, attack–defense trees and
attack graphs, affects users’ understanding of attack scenarios. We extended the
ATD-WebApp with support for SAND logic and a tree-to-graph conversion, so
that the same attack-defense tree model can be visualized both as a tree and as
an attack graph. Using a counterbalanced online questionnaire with 36 partici-
pants, we compare the two representations on four aspects: goal identification,
path enumeration, interpretation of countermeasures, and overall preference.
In our study, attack-defense trees were more often perceived as clearer for iden-
tifying the attacker’s main goal and for locating where countermeasures act. In
a more complex scenario involving combined OR, AND, and SAND relations,
attack graphs help participants enumerate a more complete set of valid attack
paths than attack-defense trees, even though many participants still preferred
trees overall. These results suggest that attack-defense trees are well suited for
communicating the “big picture” of an attack and the placement of defenses,
whereas attack graphs are better suited for detailed reasoning about how an
attack can unfold along different paths. Tools that allow analysts to switch
between both views can therefore exploit the complementary strengths of trees
and graphs.
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1 Introduction

Systems are increasingly exposed to complex cyberattacks, as computers and
networked devices have become a major source of information [SK20]. To reason
about such attacks and to plan defenses, security analysts often rely on visual
models that capture possible attack steps together with countermeasures. Two
important visual representations are attack trees and attack graphs. Attack
trees represent how an attacker can achieve a goal using a hierarchical structure
of subgoals and basic actions [MO05], whereas attack graphs represent system
states and transitions between them [SHJ+02]. Attack–defense trees extend at-
tack trees by integrating countermeasures directly into the model, making them
useful for representing both attacks and defenses in a single diagram.
These models are used in both research and practice [BSCS19, CGH+19] but
differ substantially in their structure and visualization [LDB18]. Prior work
has shown that each model has strengths in different contexts, yet it is unclear
how their visual representation affects users’ clarity and understanding of attack
scenarios, especially when both models are derived from the same underlying
model.

In this thesis, we took a two-step approach. First, we extend the existing ADT-
WebApp with support for SAND logic and a tree-to-graph conversion, enabling
the same attack–defense tree model to be visualized both as a tree and as an at-
tack graph. This ensures that any differences in user responses can be attributed
to the visual representation rather than to differences in the underlying model.
Second, we conducted a questionnaire study with 36 participants, in which each
scenario was shown in both representations (Tree→Graph or Graph→Tree or-
der). The questionnaire compares how well participants can identify the main
goal, enumerate valid attack paths, interpret countermeasures, and which rep-
resentation they prefer overall.
Together, these two steps allow us to answer the following research question:

How do visual representations (attack–defense trees vs. attack graphs)
affect users’ clarity and understanding of attack scenarios?

The remainder of this thesis is organized as follows. First, we introduce the nec-
essary background on graphs, attack graphs, attack trees, and attack–defense
trees, followed by a discussion of related work. We then describe the implemen-
tation of SAND support and the tree-to-graph conversion in the ADT-WebApp.
After that, we present the design and procedure of the questionnaire study and
report its results. Finally, we discuss the limitations of the study and discuss
what could be explored in future research.

1



2 Background

Graph-based representations are widely used to model system vulnerabilities
and attack scenarios [SHJ+02, KKMS10]. Attack trees (AT) and attack graphs
(AG) are two representations in threat modeling [SDP08, LMG17]. Although
both approaches structure and visualize potential attacks, they differ in how
they represent the relationships between steps, system states, and countermea-
sures.
In this section, we introduce the core concepts that form the basis of our study
and the tree-to-graph conversion: graphs, attack graphs, trees, attack trees, and
attack-defense trees.

2.1 Graphs

A graph G = (V,E) consists of a set of vertices V and a set of edges E, where
each edge connects two vertices [GYA18]. Graphs are widely used to represent
relationships between entities and serve as the foundation for models in com-
puter science, network analysis, and cybersecurity [SHJ+02].

In an undirected graph, edges have no direction, so traversal between con-
nected vertices is possible in both directions. In contrast, a directed graph
uses ordered pairs (u, v) to indicate a one-way connection from vertex u to ver-
tex v; traversal is only possible from u to v unless a separate edge (v, u) also
exists.

1

2 3

4

Figure 1: A graph illustrating a cycle.

A path is a sequence of vertices v0, v1, . . . , vk such that each successive pair is
connected by an edge of the graph; that is, (vi−1, vi) ∈ E for all i = 1, . . . , k. In
a directed graph, each edge must point from vi−1 to vi. A simple path does
not have repeated vertices.
A cycle is a simple path of length ≥ 3 that starts and ends at the same vertex,
with all edges and intermediate vertices distinct. A graph is acyclic if it con-
tains no cycles.
For example, in the graph in Figure 1, the sequence 2→ 3→ 4→ 2 forms a cy-
cle: it starts and ends at the same vertex, with all intermediate vertices distinct.

Directed acyclic graphs (DAGs) are particularly relevant for this research, as
they also represent the structure of attack trees.
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Figure 2 shows an example of a directed graph G = (V,E), where

V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (2, 4), (3, 4)}.

This graph has four vertices and four directed edges. Since it is a directed graph,
traversal is only allowed in the direction indicated by each edge. It is connected
since there is a path between each pair of vertices and it is acyclic because it
contains no cycles.

1

2

3

4

Figure 2: An example of a directed graph.

2.2 Attack graphs

Attack graphs were introduced by Sheyner et al. [SHJ+02] as a way to model
and analyze all possible attack paths through a system. They represent system
states as nodes and attacker actions as directed edges, allowing analysts to trace
how an attacker might progress towards a goal.
Unlike attack trees, which have a hierarchical structure, attack graphs can con-
tain cycles. A cycle can arise when an attacker revisits a previous state or
retries an action under different conditions. This makes them suitable for mod-
eling complex scenarios with multiple routes, dependencies between steps, and
loops in the attack process.

An attack graph is a directed graph in which:

• States (nodes) represent system states that can be reached during an
attack.

• Edges represent transitions between these states, triggered by attacker
actions.

Each path in the attack graph represents a potential sequence of actions an
attacker might follow, progressing from the initial state through intermediate
states towards the target goal.
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s0

s1

action

Figure 3: Minimal attack graph example showing two states and one transition.

To illustrate a basic transition, Figure 3 shows a minimal example with two
states (s0 and s1) connected by a single action performed by an attacker,
adapted from the work of Schiele and Gadyatskaya [SG21].

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

Apply input filtering

Scan for vulnerable service

Deliver exploit payload

Exploit service

Gain access to server

Create
phishing mail

Find victim’s
email address

Steal credentials

Gain access to
server

Find victim’s email address

Create phishing mail

Steal credentials

Figure 4: Attack graph illustrating attack paths to gain access to a server

In the remainder of this section, we use the same example across all represen-
tations. The attacker’s goal is to gain access to a server.
Figure 4 shows this scenario as an attack graph. Starting from an initial state
s0, the graph illustrates all possible paths that can lead to the final state, repre-
senting the attacker’s goal. Multiple paths exist, such as exploiting a vulnerable
service or stealing credentials. The green node represents a defensive action (Ap-
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ply input filtering) that blocks one of the possible paths, forcing the attacker to
pursue alternative routes.

2.3 Trees

In graph theory, a tree is a connected, acyclic, undirected graph T = (V,E),
where for every pair of distinct vertices u, v ∈ V , there exists exactly one path
connecting u and v [Gou12].
Equivalent, a tree with n vertices always has exactly n − 1 edges. This is due
to the fact that a tree is a minimally connected graph, it has enough edges to
ensure connectivity among all vertices without creating any cycles. Adding an
edge would introduce a cycle, while removing an edge would break the graph’s
connectivity.

Trees are commonly used to represent hierarchical relationships and are widely
used in file systems, search algorithms, and network routing [GMSW06].

A rooted tree is a tree in which one distinguished node is designated as the
root. The root serves as the starting point of the tree, inducing a hierarchical
structure that flows from the root to its children. If u and v are joined by an
edge and u is closer to the root than v, then u is the parent of v and v is its
child. From the root node, every node is reachable via a unique path. Rooted
trees are fundamental for representing structured models, such as attack trees.

• Every node except the root node has exactly one parent.

• A node with no children is a leaf.

• The depth of a node is defined as the number of edges from the root to
that node.

• The height of the tree is the maximum depth among all the nodes (the
longest path).

A

B

C D

E

F G

Figure 5: A simple rooted tree with a height 2.

Figure 5 illustrates a simple rooted tree with node A as the root. The root
has two children, nodes B and E, which serve as roots of their subtree. The
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leafs of the tree are the nodes C, D, F , and G. The height of the tree is 2,
corresponding to the length of the longest path from the root to a leaf.
Rooted trees form the structural basis for attack trees, which model how specific
goals can be achieved through a hierarchy of attack steps. This structure will
be further discussed in the next section.

2.4 Attack trees

Attack trees were introduced by Bruce Schneier in 1999 as a structured method
for graphically representing potential attack scenarios[Sch99]. They help ana-
lysts identify, visualize, and analyze strategies that an attacker might use to
compromise a system.
Using a hierarchical tree structure, attack trees break down the main attack
goal into subgoals and individual steps [MO05]. This allows both critical and
less critical attack paths to be represented. The structure enables analysts to
prioritize vulnerabilities, assess threats, and develop effective defense strategies.
By offering a top-down perspective of how an attack can unfold, attack trees
provide valuable insight into system vulnerabilities [BFM04].

An attack tree is a rooted tree model used in cybersecurity to represent dif-
ferent ways in which an attacker can achieve a malicious goal. It is interpreted
bottom–up: an attack instance starts at a leaf node and moves up the tree to-
ward the goal (the root).
Internal nodes in an attack tree represent subgoals or intermediate steps and
define logical relationships (see Figure 6) between their child nodes using logical
operators, such as OR, AND and SAND, where:

• An OR node requires at least one child node to be satisfied to proceed to
the parent node.

• An AND node requires that all child nodes be satisfied to proceed to the
parent node, but the order does not matter.

• A SAND (sequential AND) node requires all child nodes to be satisfied in
a specific order to proceed to the parent node [JKM+15].

Each node in the tree can have child nodes, which represent steps or conditions
that must be fulfilled before the parent node can be executed. This shows the
flow of the attack.

GOAL

A B C

(a) OR

GOAL

A B C

(b) AND

GOAL

A B C

(c) SAND

Figure 6: Logical relationships in attack trees: (a) OR, (b) AND, (c) SAND
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Figure 7 revisit the same scenario as in the attack graph where the goal is to
gain access to a server. The root node, Gain access to server, is connected
via an OR relationship to two subgoals: Exploit service and Steal credentials.
Either subgoal can lead to gaining access to a server. The subgoals and their
corresponding logical structures are explained as follows:

• Exploit service follows a SAND relationship, where one must first Scan
for vulnerable service and then Deliver exploit payload.

• Steal credentials follows a AND relationship, where both Create phishing
mail and Find victim’s email address must be completed, the order does
not matter.

Gain access to server

Exploit service

Scan for vulnerable service Deliver exploit payload

Steal credentials

Create phishing mail Find victim’s email address

Figure 7: Attack Tree illustrating attack paths to gain access to a server

A formal definition of attack trees can be derived from the work of Fila et
al. [FW20], who modeled attack-defense trees based on directed acyclic graphs
(DAGs) using a tuple-based representation.

The original definition of an attack-defense tree of Fila et al. is:

T = (V,E,L, λ, actor, τ)

where:

• (V,E) is a rooted directed acyclic graph representing the structure of the
tree,

• L is a set of labels representing actions or goals,

• λ : V → L is a injective function that assigns labels to nodes,

• actor : V → {a, d} assigns each node to either the attacker (a) or defender
(d),

• τ : V → {AND,OR,SAND,N} defines how each node is refined: AND, OR,
sequential-AND (SAND), or not at all(N).
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To derive a formal model of an attack tree, we adapted the structure by re-
moving the actor component, as it represents defense nodes and only attackers
actions are relevant. This results in the simplified tuple:

An attack tree is a tuple

T = (V,E,L, λ, τ)

In this formulation, all nodes represent actions performed by the attacker. A
node v ∈ V is considered a basic action if and only if it has no children in the
graph.

2.5 Attack-defense tree

Attack-defense trees capture the interaction between potential attacks on a sys-
tem and the corresponding countermeasures that can be employed to counter
them. They were introduced and formally defined by Kordy et al. in 2010
as an extension of the original attack tree model by Schneier[KKMS10]. While
Schneier’s attack trees focus solely on modeling the attacker’s perspective, attack-
defense trees enhance this model by introducing defense nodes, which represent
countermeasures that defenders can employ against specific attack steps. As
a result, attack-defense trees offer a more comprehensive and balanced view of
system security, covering offensive and defensive strategies.

An attack-defense tree is a DAG-based model used in cybersecurity to rep-
resent different strategies that an attacker may use to achieve a malicious goal,
along with possible defense responses.

Figure 8 revisits the previous attack scenario from the attack tree (see Figure 7)
with the addition of a defense component. The green node labeled Apply input
filtering acts as a countermeasure to the attack step Deliver exploit payload.
This defensive action blocks malicious input before it can exploit a vulnerable
service. Since the path Exploit service, the left child of Gain access to server,
is modeled using a SAND (sequential AND) relationship, both steps Scan for
vulnerable service followed by Deliver exploit payload must succeed for the attack
to proceed. If the second step is neutralized, the entire attack path becomes
ineffective, forcing the attacker to explore alternative routes.
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Gain access to server

Exploit service

Scan for vulnerable service Deliver exploit payload

Apply input filtering

Steal credentials

Create phishing mail Find victim’s email address

Figure 8: Attack-defense tree illustrating attack paths to gain access to a server

We previously introduced a formal definition for attack trees by adapting the
model of Fila et al. [FW20] and removing the actor component. We now
take the original definition of the attack-defense tree from their work, which
includes the actor component to distinguish between attacker and defender
nodes. The full definition of an attack-defense tree is:

T = (V,E,L, λ, actor, τ)

where:

• (V,E) is a rooted directed acyclic graph representing the structure of the
tree,

• L is a set of labels representing actions or goals,

• λ : V → L is a injective function that assigns labels to nodes,

• actor : V → {a, d} assigns each node to either the attacker (a) or defender
(d),

• τ : V → {AND,OR,SAND,N} defines how each node is refined: AND, OR,
sequential-AND (SAND), or not at all(N).

The inclusion of the actor function distinguishes attack-defense trees from attack
trees by enabling defensive modeling. The defense nodes represent countermea-
sures that aim to prevent or neutralize specific attack steps.
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3 Related Work

Attack trees and attack graphs are widely used in cybersecurity to model,
demonstrate, and analyze potential attack methods. Attack trees represent at-
tacks in a hierarchical form, where the root node represent the attacker’s main
goal and the leafs represent the initial actions. They have been applied across
various domains such as system and network security [SDP08, RGG24]. Saini et
al. [SDP08] introduced attack trees in an educational context by applying them
to the MyProxy component of the Globus toolkit. Their work demonstrated
how an attack tree can be constructed step by step to identify vulnerabilities
and assess risks, emphasizing its practical value for risk identification. Follow-
ing this approach, Rana et al. [RGG24] proposed a FAIR-modified attack tree
framework to support quantitative risk assessment in organizational networks
by combining the attack tree structure with the FAIR methodology. Together,
these studies show that attack trees are flexible tools that can be extended for
a more detailed analyses, but their overall clarity still depends on how familiar
users are with the model. In this study, we address this issue by examining
how clearly users can understand attack models, both with and without prior
knowledge.

While attack trees describe how an attack can be decomposed into subgoals,
attack graphs go a step further by modeling system states and transitions, pro-
viding a more detailed view of how an attacker can move through a network or
system. They capture complex relationships such as loops, multiple paths, and
dependencies between actions. Attack graphs have been applied in a range of
domains to identify vulnerabilities and guide defensive strategies, evolving from
static network analysis toward more specialized and dynamic systems. Ingols
et al. [ICL+09] applied attack graphs to enterprise networks using the NetSPA
system, showing how they can reveal critical weaknesses and support defense pri-
oritization. Building on this, Lucket et al. [LMG17] used attack graphs to model
vulnerabilities in ambulatory medical devices using Bluetooth, demonstrating
how attack graph can be adapted to specialized and safety-critical environments
by highlighting where sensitive information could be compromised. Extending
this, to an even more dynamic context, Salayma et al. [Sal24] introduced attack
graphs for Internet of Things networks, where systems continuously change as
devices are added or removed. They showed how attack graphs can update in
real time as devices connect and disconnect, making the models both dynamic
and more complex. Together, these studies demonstrate the evolution of attack
graphs from static infrastructure to adaptive systems, but they also highlight
a challenge that as models grow in complexity, they become more difficult for
users to interpret. This evolution is directly relevant to our study, as we exam-
ine how increasing model complexity affects clarity. We address this issue by
analyzing how users understand attack graphs in comparison to attack trees,
both conceptually and structurally.

While the previous works applied each model independently, other research has
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directly compared attack trees and attack graphs to examine how each represen-
tation supports the understanding of cyberattacks. Alhebaishi et al. [AWJS16]
applied both models to threats in cloud data center infrastructures. By con-
structing models of two representative cloud architectures, they showed that
attack trees provide a higher-level overview of threats, while attack graphs re-
veal detailed attack paths within the network. This combination helped cloud
providers understand security risks from different perspectives and guided im-
provements to their defensive strategies. Similarly, Lallie et al. [LDB17] con-
ducted an empirical evaluation comparing attack graphs and fault trees to as-
sess which method better supports the understanding of cyberattack scenarios
by participants. Their results indicated that attack graphs were generally more
effective in aiding perception and comprehension. In a follow-up study, Lallie et
al. [LDB18] examined how participants interpret the visual syntax of attack trees
and attack graphs, finding that analysts and security professionals preferred at-
tack graphs due to their top-down flow, which was considered more intuitive
than the bottom-up structure of attack trees. Building on these findings, the
same authors [LDB20] conducted a broader survey analyzing over 180 attack
trees and attack graphs, highlighting the lack of a standardized visual syntax
for either models and the inconsistencies across representations. Together, these
studies reflect a continued effort to understand how different visualization in-
fluence users’ clarity about attack scenarios. This line of work directly relates
to our study, where we present attack trees and attack graphs side by side
to evaluate how visual representation affects user’s clarity in identifying goals,
paths, and countermeasure, while maintaining a consistent visual style across
both models.

In addition to comparing the two representations, other research has focused
on transforming one model into the other to highlight their complementary
strengths. Pinchinat et al. [PAV14] proposed a synthesis approach in which
attack scenarios are first described as an attack graph and then transformed
into an attack tree. Their goal was to raise the level of abstraction and make
risk analysis easier to perform, since attack trees provide a more structured
and readable overview for experts. Haque and Atkinson[HKA17] took a dif-
ferent approach by presenting an evolutionary method for converting attack
graphs into attack trees. While Pinchinat et al. focused on a model-based ap-
proach, Hague and Atkinson relied on data-driven techniques, analyzing large
volumes of data from intrusion detection systems and network configurations
to automatically generate attack trees that reorganize complex attack paths
into a clearer and more manageable structure. Together, these studies highlight
different approaches for converting attack graphs into trees to improve readabil-
ity. In our work, we examine both directions, tree→ graph and graph → tree,
to asses how each transformation effect users’ understanding of attack scenarios.

Conversely, some research has focused on converting attack trees into attack
graphs. Schiele and Gadyatskaya [SG21] introduced a method that maps the
hierarchical structure of attack trees into the state-based representation of at-
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tack graphs. Their motivation is that attack trees are easier for humans to
construct and reason about, while attack graphs enable deeper analysis of de-
pendencies, cycles, and possible attack paths. We extend their approach in two
ways: (1) by supporting countermeasures within attack-defense trees, and (2)
by conducting a user study. This shifts the focus from transformation to an
evaluation of its effect on human comprehension.

Finally, recent work has used games and gamification to raise awareness of cyber-
security risks. Ng and Hasan [NH25] analyzed 53 cybersecurity games and found
that they can effectively improve user’s cybersecurity awareness. Scholefield and
Shepherd [SS19] took a more focused approach, showing that interactive learn-
ing through gamification can enhance understanding of security threats. Both
studies demonstrate that engaging, visual, and interactive methods can improve
comprehension of complex cybersecurity concepts. Our work takes a different
direction: instead of using games, we compare two visual models to examine
how their representation influences clarity and comprehension.

12



4 Implementation

Our first contribution was the implementation of the conversion of attack-
defense trees to attack graphs. We used the ADT-WebApp as a foundation [Moh23]
and extended it with a transformation algorithm. The extended application was
later used to generate both the visualization and the questionnaire material (see
Section 5).

4.1 ADT-WebApp

The ADT-WebApp1 is a browser-based tool for constructing, visualizing, and
editing attack-defense trees. Users start by defining a root goal and then incre-
mentally add attacker actions and optional countermeasures, connected via OR

and AND relations. Models can be saved and loaded in XML format for reuse
and automated processing. We chose the application as a foundation because it
already provides a graphical interface for modeling attack scenarios, making it
suitable for extension. As shown in Figure 9, the interface of the ADT-WebApp
allows users to define a root goal and iteratively add attack and defense actions
to construct an attack-defense tree.

Figure 9: The ADT-WebApp interface used for modeling attack-defense trees.

4.2 Extension: Tree-to-Graph Conversion

We extended the ADT-WebApp with the functionality to transform attack-
defense trees into attack graphs. In the resulting graphs, system states are rep-
resented as nodes and attacker actions appear as labeled transitions. Counter-
measure nodes act as blockers, preventing further progress along certain paths.

1https://adtweb.app/home.html
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Figure 10 shows an example of an attack-defense tree (left) and its correspond-
ing converted attack graph (right), both generated within the extended ADT-
WebApp.

(a) Attack tree interface showing the root node (target) and child nodes.

(b) Attack graph visualization generated from the tree model.

Figure 10: Interface views of the ADT-WebApp: (a) attack tree, (b) corre-
sponding attack graph.

4.2.1 Path construction

The central part of the conversion process is enumerating all valid root-to-leaf
paths in the tree. The function get paths() traverses the tree recursively and
processes the logical operators.

14



Algorithm 1 get paths(node)

1: if node.switchRole = “yes” then return empty list
2: end if
3: label ← node.label or “(no label)”
4: children ← child nodes with switchRole ̸= “yes”
5: if children is empty then return [[label]]
6: end if
7: refinement ← node.refinement or “disjunctive”
8: child paths ← get paths(child) for each child
9: if refinement = “disjunctive” then // OR

10: result ← [ ]
11: for paths in child paths do
12: for path in paths do
13: Append [label] + path to result
14: end for
15: end forreturn result
16: else if refinement = “conjunctive” then // AND
17: result ← [ ]
18: for combo in product(child paths) do
19: Append [label] + flattened combo to result
20: end forreturn result
21: elsereturn [[label]]
22: end if

The ADT-Webapp only supports only the OR and AND relationships, but not the
sequential AND (SAND) operator. To address this, a Python implementation
was developed based on the same conversion logic as described in Algorithm 1.
This extension enabled trees containing SAND nodes to be correctly converted
into attack graphs. The resulting converted graphs were then used as visualiza-
tions for the questionnaire, ensuring that scenarios containing Sequential AND
dependencies were fully supported during the user study.

Algorithm 2 Sequential AND refinement handling

1: if refinement = “sequential” then ▷ SEQUENTIAL AND node
2: result ← [ ]
3: for combo in product(reverse(child paths)) do
4: flat ← flattened list of steps in combo
5: Append [label] + flat to result
6: end for
7: return result
8: end if

As shown in Algorithm 2, the Sequential AND refinement is handled by reversing
the order of child paths to ensure that the resulting attack paths preserve the
intended sequence of actions. The function returns a set of reversed attack
paths, starting at the attacker’s goal and ending at the initial actions.

15



4.2.2 Graph construction

The paths returned by get paths (see Algorithm 1), from the goal to the leaf,
are passed to createDisjunctiveXMLFromPaths(paths), which generates an
XML structure compatible with the ADT-WebApp (see Algorithm 3). Because
a graph expects execution to flow from initial action to final goal, each path is
reversed during XML construction to restore the correct order.

Algorithm 3 createDisjunctiveXMLFromPaths(paths)

1: root ← new adtree element
2: initialNode ← new node element with refinement = “disjunctive”
3: initialLabel ← new label element with text “(s0)”
4: Append initialLabel to initialNode

5: Append initialNode to root

6: stateCounter ← 0
7: for path in paths do
8: reversedPath ← reversed copy of path
9: currentNode ← initialNode

10: for label in reversedPath do
11: stateCounter ← stateCounter + 1
12: labelText ← label
13: stateText ← “(s” + stateCounter + “)”
14: childNode ← new node element with refinement = “disjunctive”
15: labelElement ← new label element with text = stateText
16: Set edgeLabel attribute of childNode to labelText
17: Append labelElement to childNode

18: Append childNode to currentNode

19: currentNode ← childNode
20: end for
21: end for
22: return serialized XML string of root

As shown in Algorithm 3, this function constructs a new <adtree> with an
initial node (s0) that serves as the common start state. A counter generates
unique state identifiers (s1), (s2), . . . . For each path, we reverse it to obtain
the forward execution order (initial action→ goal). Each step becomes a <node>

with disjunctive refinement; the action label is stored as an edgeLabel on the
child node as the transition from the parent state. Assigning disjunctive re-
finement to all nodes preserves compatibility with the ADT-WebApp structure,
while edge labels indicate the state-to-state transitions.
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5 Methods

In this part of the study, we outline the methodology we use to examine how
users interpret and understand cybersecurity attack scenarios when presented in
two different visual formats: attack-defense trees and attack graphs. Our goal
is to evaluate which representation provides greater clarity and interpretability
for understanding attack logic, countermeasures, and dependencies through a
structured online questionnaire. Here, we want to answer the following research
question:

How do visual representations (attack–defense trees vs. attack graphs)
affect users’ clarity and understanding of attack scenarios?

To make this question more concrete, we focus on three aspects where the two
representations may differ:

• RQ1 (Goal identification): Does one representation make it easier for
users to identify the attacker’s main goal?

• RQ2 (Countermeasures): Does one representation make the placement
and impact of countermeasures clearer?

• RQ3 (Attack paths): Does one representation make it easier for users
to enumerate valid attack paths?

For RQ1, in both representations the attacker’s main goal is highlighted (at
the root of the attack tree and at the terminal state in the attack graph). We
therefore expect goal identification accuracy to be high and similar for both
representations. For RQ2, attack-defense trees attach countermeasures directly
to the actions they defend, so we expect them to provide a clearer view of where
and how defenses apply than attack graphs. For RQ3, attack graphs lay out all
possible attack paths in the graph, whereas in attack-defense trees users need to
reconstruct all valid paths from the logical structure themselves. We therefore
expect attack graphs to lead to more complete path enumeration.

Based on these sub-questions and prior work on evaluating security diagrams
from Lallie et al. [LDB17], we formulate the following hypotheses :

H1: For simple scenarios, there is no substantial difference between attack–defense
trees and attack graphs in correct identification of the attacker’s main goal
(RQ1).

H2: Attack–defense trees will be perceived as clearer for understanding the
placement and effect of countermeasures than attack graphs (RQ2).

H3: In more complex scenarios, attack graphs will lead to a higher number
of correctly enumerated distinct attack paths than attack–defense trees
(RQ3).

Together, these sub-questions and hypotheses guide our analysis of the ques-
tionnaire data and address the main research question.
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5.1 Study Design

We designed a comparative user study using a structured online questionnaire.
The questionnaire contained 26 questions divided across three scenarios and a
final evaluation section. Each scenario was presented in both visual formats to
enable direct comparison between attack-defense trees and attack graphs for the
same underlying model. Our study design follows a similar approach to that
of Lallie et al. [LDB17], who compared attack graphs and fault trees using a
structured, scenario-based questionnaire. As in their study, we used multiple
scenarios and collected both multiple-choice and open-ended responses to eval-
uate user comprehension and perception. We adapted this design to the context
of attack-defense trees and attack graphs, focusing on how users interpret mod-
els before and after seeing the other representation.

To ensure participants did not all view the scenarios in the same sequence,
we created two versions of the questionnaire: one presenting each scenario in
Tree→Graph order and the other in Graph→Tree order. Participants were as-
signed randomly based on the order of participants (i.e., the first respondent
received one version, the next respondent the other, and so on). This ensured
an even split between the two groups. In both version, participants evaluated
each representation independently by answering multiple choice and open ended
questions about attack logic, visibility of goals, valid paths, countermeasures,
and overall clarity. After viewing both representations, they were asked to re-
flect on which format better supported their understanding of the scenario.

A full copy of one questionnaire version, including a short introduction, all the
attack scenarios, and all questions, is provided via zenodo 2.

5.2 Participants

We collected responses from 36 participants. Participants were recruited primar-
ily among computer science students at Leiden University, friends and family
members, and their colleagues. All participation was voluntary.
The questionnaire asked for the participant’s age, general technical background
(including IT or cybersecurity experience), and familiarity with tree and graph
theory. This information is later used to explore whether technical background
or prior familiarity influence comprehension and preferences of one of the rep-
resentation.

5.3 Ethical Considerations

Participation was voluntary and based on informed consent. No direct identi-
fiers (e.g., name, email address) were collected. The questionnaire stored only
task responses plus two non identifying items: age bracket and prior familiarity
with attack trees/attack graphs. The data was used solely to assess how the

2https://zenodo.org/records/17905142
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two representations (attack-defense tree vs attack graph) affect clarity and un-
derstanding of attack scenarios. All responses were stored securely with access
limited to the research team, reported only in a grouped summary form, not
shared with third parties.

5.4 Procedure

Data was collected between 17 June and 11 July 2025. Before starting the ques-
tionnaire, participants were asked to provide background information, including
their age, technical experience in IT or cybersecurity, and familiarity with tree
or graph theory. Afterwards, they received a short recap to the three modeling
approaches used in this study (attack trees, attack-defense trees, and attack
graphs), including a brief explanation of how to interpret logical relations (OR,
AND, SAND) and edges.
This short introduction ensured that all participants, regardless of their prior
knowledge, shared a common baseline understanding of how to interpret the
models. In this way, we aimed to minimize confusion due to unfamiliar notation
and to ensure that differences in responses were more likely to arise from the
visual representation themselves.

The questionnaire then presented three structured scenarios, each focused on
different aspects of model comprehension and gradually increasing in complexity.

• Scenario 1: introducing a simple attack structure to assess basic compre-
hension. Participants were asked to identify the main goal of the attacker,
recognize the logical relationship used (OR), and determine possible attack
paths.

• Scenario 2: introduced countermeasures and combined multiple logical
relations. Participants evaluated how clearly the defenses were represented
and how they influenced the attack paths.

• Scenario 3: integrated all logical relationships (OR, AND, SAND) and
increased structural complexity. Participants were asked to identify all
valid attack paths, recognized reused nodes, and interpreted more complex
dependencies.

After completing all three scenarios, participants filled in a final evaluation sec-
tion in which they compared the two representations overall and rated how
understandable, useful, and informative they found each model.

5.5 Data Analysis

For each scenario and each representation, we derive measures of comprehension
and perception from the questionnaire responses that correspond to RQ1, RQ2,
and RQ3 and hypotheses H1, H2, and H3. Each scenario focuses on different
aspects:
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• Scenario 1 mainly addresses RQ1 and H1 (goal identification).

• Scenario 2 mainly addresses RQ2 and H2 (countermeasures).

• Scenario 3 mainly addresses RQ3 and H3 (attack paths).

• The final evaluation section contributes directly to answering the main
research question by comparing overall perceived clarity and preference
between the two representations.

Goal identification (RQ1, H1). In Scenario 1, participants were asked to
identify the attacker’s main goal. Responses are marked as correct or incorrect.
For each representation, we compute the proportion of correct answers. Because
the main goal is explicitly highlighted in both models, we expect accuracy to be
high and similar for trees and graphs, in line with H1.

Countermeasures (RQ2, H2). In Scenario 2, we analyze how clearly coun-
termeasures and their effects are understood. This is measured using:

• self-reported ratings of how clear the countermeasures are in each repre-
sentation (from “very unclear” to “very clear”);

• preference questions asking in which representation the role of countermea-
sures was easier to understand and which representation provided better
overall understanding of the scenario.

We summarize clarity ratings as distributions of responses per representation
and report counts and percentages for the preference questions. Higher clarity
ratings and stronger preferences for attack-defense trees on countermeasure-
related questions provide evidence for H2.

Attack paths (RQ3, H3). In Scenario 3, participants were asked to enumer-
ate all valid attack paths in multiple choice form. Each response is evaluated
for:

• the number of distinct valid paths listed, and

• whether any invalid paths were included.

For each representation and presentation order, we summarize the distribution
of participants who listed all paths, only some paths, or none correctly. We
also compute the average number of correctly identified distinct paths per rep-
resentation. If participants list more complete sets of paths when working with
attack graphs than with attack-defense trees, this provides evidence for H3.
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Perceived clarity and overall preference (main research question).
Across scenarios, and in the final evaluation section, participants rated each
representation on their understandability, usefulness, and informativeness, and
indicated an overall preference. We analyze these ratings and preferences to
compare the two representations on overall clarity and perceived usefulness.
Together with the hypothesis-driven analyses for RQ1, RQ2, and RQ3, these
results allow us to answer the main research question.
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6 Results

In this section, we analyze how well participants understood and interpreted the
scenarios with attack-defense trees and attack graphs, focusing on: goal iden-
tification (how easily they found the main target), path comprehension (how
accurately they recognized all valid attack paths), countermeasure understand-
ing (how well they located and interpreted defenses), and overall preference
between the two representations.

6.1 Participant Background

Participants varied in age, technical background, and familiarity with tree and
graph theory.

Table 1: Age distribution by experimental order (n=18 per group)

Tree → Graph Graph → Tree

Age n n

18–24 years 6 3
25–34 years 2 2
35–44 years 1 4
45–54 years 3 6
55–64 years 5 3
65+ years 1 0

Total 18 18

Table 1 shows the age distribution per presentation order (Tree→Graph vs.
Graph→Tree). All predefined age ranges were represented. The Tree→Graph
group included one participant aged 65+, whereas the Graph→Tree group did
not. The Tree→Graph group contained more participants aged 18–24, and the
Graph→Tree group had more participants aged 45–54.

Table 2: IT background by experimental order

Group Yes (n) No (n) Total

Tree → Graph 12 6 18
Graph → Tree 13 5 18

Total 25 11 36

Table 2 summarizes the reported IT background. In total, 25 of 36 participants
indicated an IT background (12/18 in Tree→Graph; 13/18 in Graph→Tree).

22



Table 3: Participant familiarity with tree and graph concepts

Familiarity n

Familiar with both 16
Somewhat familiar with trees only 0
Somewhat familiar with graph theory only 3
Heard of both but don’t understand well 8
Not familiar with either 9

Total 36

Table 3 reports familiarity with trees and graphs. 16 participants reported fa-
miliarity with both; 9 reported being unfamiliar with either; 8 had heard of
them both but did not understand them well; and 3 were familiar with graph
theory only. No participants reported being familiar with trees only.
Overall, the sample consisted of a majority of technically experienced partic-
ipants. Most participants reported an IT-related background, but familiarity
with tree and graph theory was more mixed: 16 participants were familiar with
both concepts, while 17 either did not understand them well or were not famil-
iar with them at all. Together with the broad age range in both presentation
orders, this means that the results mainly reflect the views of a technically ori-
ented group, but still include participants with different levels of prior exposure
to tree and graph concepts. This is important to keep in mind when interpreting
how general the findings are.

6.2 Scenario 1 - Goal identification

Scenario 1 examined how easily participants could identify the attacker’s main
goal in each representation, addressing RQ1 and testing H1. Participants viewed
the scenario in one of the two presentation orders (Tree→Graph or (Graph→Tree)
and indicated which representation made it easier to identify the attacker’s main
goal. Figure 11 summarizes the preferences.
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Figure 11: Preferred model for identifying the attacker’s goal.

In the Tree→Graph order, 13 of 18 participants (72%) preferred the attack tree
and 5 of 18 (28%) preferred the attack graph. In Graph→Tree order, 16 of 18
participants (89%) preferred the attack tree, and 2 of 18 (11%) preferred the
attack graph. Thus, in both presentation orders, a clear majority reported that
the tree made it easier to identify the attacker’s main goal.

In addition to these preferences, almost all participants correctly identified the
attacker’s main goal in both simple scenarios and both representations. The
lock scenario was presented using an attack tree, where 35 out of 36 responses
(97%) were correct. The bypass building security scenario was presented using
an attack graph, where 35 out of 36 responses (97%) were also correct. Ac-
curacy was therefore very high and showed no indication either representation
made goal identification more difficult. Note that in Scenario 1 the lock was
always shown as a tree and the building security scenario always as a graph,
so we cannot fully separate the effects of scenario content from the effects of
representation. Within this limitation, the pattern is consistent with H1: for
simple scenarios, both attack-defense trees and attack graphs support correct
goal identification to a similar extent, even though participants clearly preferred
the tree when asked which representation made the goal easier to see.

6.3 Scenario 2 - Countermeasures

Scenario 2 introduced countermeasures and examined how clearly their place-
ment was understood in each representation, addressing RQ2 and testing H2.
Participants were first asked to identify valid first steps toward the sub-goal
Learn Combination (Question 7, see zenodo [Ger25]), and then to rate and
compare the clarity of countermeasures in the tree and the graph.
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Table 4: Accuracy on Question 7 (valid steps to learn Combination)

Correct Incorrect Total

Group n % n % n

Tree → Graph 13 72 5 28 18
Graph → Tree 11 61 7 39 18

Note: Question 7 was answered based on the first representation seen by the participant:

the attack tree in Tree→Graph and the attack graph in Graph→Tree.

Table 4 shows accuracy on Question 7 by initial representation. Participants
who first saw the tree answered 13 out of 18 correctly (72%), whereas partic-
ipants who first saw the graph answered 11 out of 18 correctly (61%). This
suggests a small advantage for the tree on this specific step-identification task,
but the difference is small and Q7 is only an indirect measure of countermeasure
understanding. Our main evidence for RQ2 and H2 therefore comes from the
clarity ratings and preference questions.

Figure 12: Clarity ratings for countermeasure representation.

Participants rated how clear the countermeasures were in each representation on
a scale from “very unclear” to “very clear”. Pooled across presentation orders,
29 of 36 (81%) rated the attack-defense tree as “clear” or “very clear”, whereas
17 out of 36 participants (47%) did so for the attack graph (Figure 12). Thus,
12 more participants rated the tree as better at showing countermeasures, a
difference of 34 percentage points in favor of the tree.
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Table 5: Overall preferred representation in Scenario 2 (n = 36).

Response n %

Prefer tree 27 75
Prefer graph 4 11
Both equally easy 4 11
Both equally difficult 1 3

Finally, participants indicated which representation provided better overall un-
derstanding of Scenario 2. As shown in Table 5, 27 of 36 participants (75%)
preferred the tree, 4 of 36 (11%) preferred the graph, 4 of 36 (11%) rated both
as equally easy, and 1 of 36 (3%) rated both as equally difficult. Only 5 of 36
participants (14%) did not express a clear preference, which indicates that most
participants formed a distinct preference between the two notations, and that
this preference strongly favored the tree.
Taken together, these results address RQ2 by showing that participants con-
sistently perceived countermeasures as clearer in the attack-defense tree than
in the attack graph. Higher clarity ratings for the tree and a strong majority
preference for the tree as providing better overall understanding in Scenario 2
provide clear support for H2.

6.4 Scenario 3 - Path enumeration

Scenario 3 assessed how well participants could enumerate all valid paths in
a more complex setting involving AND, SAND, and OR relations, addressing
RQ3 and testing H3. Participants were first asked to select all valid paths using
only the representation they saw at the start of the scenario. Their performance
by initial representation is summarized in Table 6.

Table 6: Correct identification of all attack paths by initial representation.

Outcome Tree first (n = 18) Graph first (n = 18)

Both correct 3 10
One correct 12 7
None correct 3 1

When the tree was shown first, only 3 of 18 participants listed both required
paths correctly, 12 listed one path, and 3 listed none. When the graph was
shown first, 10 of 18 participants listed both required paths correctly, 7 listed
one path, and 1 listed none. In terms of average performance, participants who
saw the tree first correctly identified on average 1.0 of the 2 valid paths, whereas
those who saw the graph first identified on average 1.5 of the 2 valid paths. This
pattern indicates that, for this more complex scenario, the attack graph helped
participants produce a more complete enumeration of the valid attack paths

26



than the tree, in line with H3.

After viewing both representations, participants were asked which model made
it easier to follow all possible paths. Preferences by presentation order are shown
in Figure 13.

Figure 13: Preferred model for understanding all possible attack paths after
viewing both representations.

When participants first viewed the graph, 13 preferred the tree and 5 preferred
the graph. When they first viewed the tree, 11 preferred the tree and 7 pre-
ferred the graph. Thus, even though the attack graph led to more complete path
enumeration when it was used for the initial task, a majority of participants in
both orders reported that the tree made it easier to follow all possible paths
once they had seen both representations.

Taken together, these results address RQ3: the attack graph supported more
complete enumeration of valid paths in the complex scenario, providing evidence
for H3, but many participants perceived the attack-defense tree as the easier
model to use when identifying which paths are possible.

6.5 Overall preference after all scenarios

At the end of the questionnaire, 29 of 36 participants (81%) indicated an overall
preference for the attack-defense tree and 7 of 36 (19%) for the attack graph
(Table 7).
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Table 7: Overall preferred representation after all scenarios (n = 36).

Representation n

Attack tree 29
Attack graph 7

Overall, this shows a strong preference for the attack-defense tree as the favored
representation in our sample.

Overall preference by IT background is summarized in Table 8. Among partici-
pants with an IT background, 21 of 25 (84%) preferred the tree and 4 (16%) pre-
ferred the graph. Among participants without an IT background, 8 of 11 (73%)
preferred the tree and 3 (27%) preferred the graph. Thus, both groups showed a
clear majority preference for the attack-defense tree, with only a slightly higher
percentage of graph preferences among participants without an IT background.

Table 8: Overall preference by IT background

Group Attack Tree Attack Graph

IT background: Yes 21 4
IT background: No 8 3

We also inspected the overall preference by age group. In every age bracket, the
attack-defense tree was the most frequently preferred representation. For exam-
ple, in the 18–24 and 45–54 age groups, 7 out of 9 participants here preferred
the tree over the graph, and in the 55–64 group 5 out of 8 participants preferred
the tree. In the 25–34 and 35–44 age groups, all participants (4/4 and 5/5)
preferred the tree. Although preferences for the attack graph were somewhat
more common in the 55–64 group, the number of participants per age category
is small and there is no clear trend across age groups. We therefore do not
observe a systematic effect of age on the overall preference.
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7 Discussion

This study examined how two visual representations, attack-defense trees and
attack graphs, affect user’s clarity and understanding of attack scenarios using a
structured questionnaire with two different presentation orders. In this section,
we interpret the results looking at the research question and hypotheses H1–H3,
and discuss what they suggest about when each representation is most useful.

7.1 Goal identification

RQ1 asked whether one representation makes it easier for users to identify the
attacker’s main goal. H1 stated that, for simple scenarios, there would be no
substantial difference between attack-defense trees and attack graphs in cor-
rectly identifying the attacker’s goal.
The results of Scenario 1 support this hypothesis at the level of accuracy. In
both the lock scenario (shown as a tree) and the bypass building security sce-
nario (shown as a graph), 35 out of 36 responses (97%) correctly identified the
attacker’s main goal. This suggests that, at least for simple scenarios where the
main goal is visually highlighted (root of the tree or terminal state in the graph),
the choice of representation has little impact on whether users ultimately find
the correct goal. In other words, as long as the goal is easy to see, both nota-
tions are sufficient for this task.
At the same time, participants clearly preferred the tree when asked which rep-
resentation made the goal easier to see: in both presentation orders, a large
majority selected the attack tree as their preferred representation for goal iden-
tification. Because in Scenario 1 the lock scenario is always a tree and the
building security scenario always a graph, we cannot separate the representa-
tion effects from the content of the scenario. Even so, the results are consistent
with H1: both representations support correct goal identification in simple cases,
but trees are perceived as more intuitive for spotting the main goal.

7.2 Countermeasures

RQ2 asked whether one representation makes the placement and impact of coun-
termeasures clearer. H2 stated that attack-defense trees would be perceived as
clearer for understanding the placement and effect of countermeasures than at-
tack graphs.

Scenario 2 provides several indications that trees are clearer for countermea-
sures. First, Question 7 asked participants to select all valid first steps toward
the sub-goal Learn Combination. Participants who first saw the tree answered
13/18 (72%) correctly, whereas those who first saw the graph answered 11/18
(61%) correctly (Table 4). This suggests a small advantage for the tree on this
step-identification task. However, Q7 mixes reasoning about paths and counter-
measures and was not designed as a direct measure of countermeasure clarity,
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so this difference should be interpreted with caution.

Stronger evidence comes from the clarity ratings and preference questions. When
asked how clear the countermeasures were in each representation, 29 of 36 partic-
ipants (81%) rated the attack-defense tree as “clear” or “very clear”, compared
to 17 of 36 (47%) for the attack graph (Figure 12). In addition, 27 of 36 par-
ticipants (75%) reported that the tree provided better overall understanding of
Scenario 2, while only 4 (11%) preferred the graph and 5 (14%) expressed no
clear preference (Table 5). Together, these findings indicate that most partici-
pants found the tree easier to use for understanding where countermeasures are
placed and how they influence the attack. This is in line with H2 and supports
the idea that visually attaching a defense node directly to the attack step it
mitigates helps readers reason about defenses.

7.3 Path enumeration

RQ3 asked whether one representation makes it easier for users to enumerate
valid attack paths. H3 stated that, in more complex scenarios, attack graphs
would lead to a higher number of correctly enumerated distinct attack paths
than attack-defense trees.

Scenario 3 was designed to test this in a setting with OR, AND and SAND
relations. When participants were asked to enumerate all valid paths using only
the representation they saw first, those who started with the tree performed
noticeably worse than those who started with the graph. As shown in Table 6,
participants who saw the tree first, correctly identified on average 1.0 of the 2
valid paths, whereas those who saw the graph first, identified on average 1.5 of
the 2 valid paths. This difference is in line with H3 and suggests that the attack
graph gives more direct support for listing all valid paths in complex scenarios.

These descriptive results suggest that, for this more complex scenario, the at-
tack graph helped participants produce a more complete list of valid attack
paths than the attack-defense tree, which is consistent with H3. This contrasts
with Scenario 2, where the tree showed a small advantage on the simpler step-
identification task in Question 7. This may indicate that trees are fine for small,
local decisions, whereas graphs are better suited for checking completeness in
complex path structures.
However, reported preferences tell a slightly different story. After seeing both
representations in Scenario 3, a majority of participants in both presentation
orders still reported that the tree made it easier to follow all possible paths
(Figure 13). At the same time, 12 of 36 participants (33%) preferred the graph
in this scenario, which is notably higher than in Scenario 2 (4/36) or in the
overall preference question after all scenarios (7/36). Thus, the graph became
more attractive when the task focused on path enumeration, even though the
tree remained the majority choice.
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This contrast between performance and preference suggests that participants
experience the tree as a more comfortable overall overview, while the graph
provides stronger support for exhaustive path reasoning. In other words, H3 is
supported at the level of performance in the complex scenario, but this is only
partially reflected in participants’ reported preferences.

7.4 Overall preference and participants background

We also examined which representation participants preferred overall. After
completing all scenarios, 29 of 36 participants (81%) indicated an overall pref-
erence for the attack–defense tree and 7 (19%) for the attack graph (Table 7).
This confirms that, in this sample, the tree is generally perceived as the more
intuitive or clearer notation.
We explored whether this preference might be driven by technical experience.
Among participants with an IT background, 21 of 25 (84%) preferred the tree
and 4 (16%) preferred the graph; among participants without an IT background,
8 of 11 (73%) preferred the tree and 3 (27%) preferred the graph (Table 8). Be-
cause participants with an IT background make up roughly two-thirds of the
sample, their responses dominate the overall percentages. However, the non-IT
subgroup also shows a clear majority preference for trees. With the current
small sample, we do not see evidence that non-IT participants systematically
prefer graphs instead, but larger and more balanced samples would be needed
to draw stronger conclusions about the role of technical background.

A similar pattern holds for age. In every age bracket, more participants pre-
ferred the attack-defense tree than the graph, with some variation in how often
the graph was chosen. Given the small number of participants per age category,
no clear trend emerges, and we do not observe a systematic effect of age on
overall representation preference.

Taken together, these findings answer the research question as follows. At-
tack–defense trees are typically clearer for showing the overall structure of an
attack and how countermeasures apply, whereas attack graphs are clearer for
tracing how all permissible attack paths unfold in complex scenarios. This ex-
plains the pattern of preferences: most participants favored trees overall, yet
graphs provided measurable benefits on path enumeration tasks. In practice,
this suggest that the choice of representation should be guided by their goal.
Use the attack-defense tree to communicate the big picture and the placement
of defenses, and switch to an attack graph when completeness over paths and
detailed reasoning about alternative routes is required. Using a tool that allows
users to switch between tree and graph representation could therefore exploit
the strengths of both representation.
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8 Limitations

This work has several limitations that should be considered when interpreting
the results.

First, the study involved a relatively small sample size (n = 36), and most
participants reported an IT background (25 out of 36). This limits the gener-
alizability of the findings, especially to non-technical populations, because the
non IT subgroup is comparatively small (11 versus 25). However, the main
preference pattern was similar in both groups: 84% of participants with an IT
background and 73% without preferred trees overall. This consistency suggests
that the core findings are reasonably robust within this sample, while still need-
ing confirmation in larger and more diverse populations.

Second, the scenarios in the questionnaire were intentionally small and simpli-
fied, and the graph visualizations did not include cycles. In real-world settings,
attack models are often larger, may contain cycles, and use alternative nota-
tions or layouts. These factors could change how users experience complexity
and clarity in practice. Working with small, cycle free examples and a consis-
tent visual style was necessary to focus on the differences between attack-defense
trees and attack graphs themselves, rather than on difference in notation or do-
main. The findings should therefore be seen as a baseline: they show the basic
strengths of each representation under controlled conditions, while the size and
structure of other models may influence how strong these effects are.

Third, the questionnaire measured immediate comprehension of static visualiza-
tions within a single session. Participants did not build the models themselves
or use interactive tools. As a result, the findings mainly reflect first impres-
sions and short-term understanding, rather than how preferences might change
with training or repeated use. However, first impression clarity is important in
practice as well, for example when explaining attack scenarios or deciding which
representation to show in a tool. The results therefore provide a useful starting
point for choosing which representation to use when explaining attack scenarios
or supporting analysis.

Finally, the study used a single tree-to-graph conversion in the ADT-WebApp,
keeping the underlying model constant across representations. This means that
differences in participants’ responses mainly reflect the visual structure of trees
and graphs, rather than the changes to the model. At the same time, it is a
limitation: other conversion strategies or visual styles for attack graphs might
lead to different usability and preference patterns, and could be explored in
future work.

32



9 Conclusion & Future Work

This thesis investigated how two visual representations, attack–defense trees
and attack graphs, affect users’ understanding of attack scenarios. To do so, we
extended the ADT-WebApp with support for SAND logic and a tree-to-graph
conversion, and conducted a questionnaire study with 36 participants compar-
ing goal identification, path enumeration, interpretation of countermeasures,
and overall preference.

The questionnaire results suggest a division of strengths between the two rep-
resentations. In our sample, attack-defense trees were more often experienced
as clearer for communicating the overall structure of an attack and how coun-
termeasures apply. The tree was preferred in both representation orders for
identify the main goal, was rated clearer for countermeasures, and was chosen
as the overall preferred representation by 81% of participants after all scenarios.
Attack graph, in contrast, provided observable benefits on path enumerating
tasks in the more complex scenarios with AND and SAND relations: partici-
pants who first saw the graph were more likely to list all valid paths correctly,
and on average, identified more valid paths than those who first saw the three.
These patterns were similar for participants with and without an IT background,
although the sample was small and skewed towards technically experienced par-
ticipants. This suggests that that difference in preference are more likely related
to the structural and visual properties of the representations than by solely tech-
nical expertise.

Taken together, our findings indicate that, in this study, attack-defense trees
tended to work better for presenting the “big picture” of an attack and the
placement of defenses, whereas attack graphs tended to offer stronger support
for tracing all permissible attack paths in more complex scenarios. This helps ex-
plain the overall pattern: most participants favored trees as the more intuitive
notation, while graphs provided measurable advantages on path enumeration
tasks. In practice, this points to a task dependent choice of representation:
attack-defense trees appear more suitable when the goal is to communicate the
main goal and where defenses act, whereas attack graphs appear more suitable
when completeness over paths and detailed reasoning about alternative route
is required. Tools that support switching between tree and graph views can
exploit the strengths of both representations.

Future work could replicate this study with larger and more diverse participant
samples and more complex models, and could evaluate interactive tooling that
allows users to switch between tree and graph representations while performing
realistic security analysis tasks.
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