
Opleiding Informatica

Efficiency of Stigmergic Communication Protocols

in Multi-Agent Maze Searches

Ebenezer Fosu

Supervisors:
Mike Preuss

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 15/1/2026

www.liacs.leidenuniv.nl

Abstract

Efficient exploration of unknown environments remains a point of interest for researchers.
Because of the increased availability of inexpensive hardware, we can use multiple robots to
perform this tedious work for us. In the case that network is limited, robots must use other
modes of communication to share information. This thesis aims to evaluate the efficiency of the
Multi-Robot Depth-First Search (MR-DFS) algorithm, which uses a stigmergic approach, in
non-perfect maze searches using two different maze generation types. Specifically, we compare
the performance of MR-DFS robots to other known maze solver robots in mazes generated
using the Depth-First Search (DFS) and Prim algorithms. We find that in large mazes the
MR-DFS significantly reduces the time to explore a maze compared to other known graph
exploring methods.

2

Contents

1 Introduction 1
1.1 Problem Formulation . 1
1.2 Thesis overview . 2

2 Related Work 2

3 Methodology 3
3.1 Mazes . 3

3.1.1 Definition . 3
3.1.2 Generation . 3

3.2 Agents . 5
3.3 Metrics . 7

4 Implementation 7

5 Experiments 8
5.1 Experiment 1 . 9
5.2 Experiment 2 . 10
5.3 Experiment 3 . 10
5.4 Experiment 4 . 11
5.5 Experiment 5 . 12
5.6 Experiment 6 . 13

6 Conclusions 15

7 Further Research 15

References 16

1 Introduction

For a long time humans have been interested in how we can effectively explore unknown environ-
ments. This abstract problem can be applied to various useful situations, ranging from autonomous
cleaning appliances mapping the layout of your house to robots exploring intricate cave systems.
With the rising availability of cheap robots, this field has become increasingly more interesting.
Research of this problem has been done under various conditions, changing variables such as
obstacle density, communication constraints, and collaboration methods between robots. The latter
two conditions will be focused on in this thesis, which focuses on a specific communication method
between agents in maze searches. The challenge of navigating unknown spaces becomes more
difficult when robots need to consider communicating effectively with each other. There are many
different ways in which robots can do so: When there is a network available, robots can send new
information over this network to other robots. When network is limited, this information could be
broadcasted up to a certain range.

The communication method of interest in this thesis is a stigmergic approach: Robots leave infor-
mation in the form of markings or traces inside of the maze that can be perceived by other robots.
This information influences each robot’s decision-making and can lead to more efficient exploration
of the environment. The first known stigmergic maze solving algorithm, the Trémaux algorithm [1],
is still popular today and utilizes edge markings to store information in the maze. It is however not
particularly compatible with multiple robots. Brass et. al. [2] provide an algorithm that adapts the
Trémaux algorithm into an algorithm that works for multiple robots. In this thesis we investigate
the efficiency of their proposed Multi-Robot Depth-First Search (MR-DFS) algorithm in general
graphs, which is a branch that was missing in their research. By doing so, we wish to provide more
insights on the extent to which MR-DFS robots can be useful in search or exploration problems
where decentralized communication methods are necessary.

1.1 Problem Formulation

The main research question of this thesis is:
How efficient are stigmergic communication protocols in multi-agent coordinated
non-perfect maze searches?

To further investigate this problem, the research question has been divided into multiple sub-
questions, namely:

SQ1: How can we generate solvable non-perfect mazes?

SQ2: How can an autonomous agent optimally solve a maze?

SQ3: How can the selected agents effectively communicate by making use of unique stigmergic
communication protocols?

1

1.2 Thesis overview

The structure of this thesis is as follows: Section 2 describes the state of the art research findings
about robot exploration, eventually focusing more on cooperative exploration and the use of
decentralized communication protocols. In section 3, the approach for this thesis will be discussed
and elaborated on. Section 4 will contain useful information about the implementation of the
software that has been written to aid in performing the experiments. Section 5 describes the
experiment setup and the results. Section 6 summarizes the thesis.

2 Related Work

Previous research on the exploration of unknown environments using robots has happened under
various conditions. The earliest approaches usually assumed a single robot that has to efficiently
explore an a priori (partially) unknown area until it has been covered fully [3]. Well-known strategies
such as Depth-First search (DFS), Breadth-First Search (BFS) and their variants have been widely
analyzed because of their efficiency in tree and graph structures. With the high availability of
low-cost hardware, the problem of exploration can be parallelized using multiple robots. However,
this introduces the need for effective communication between robots to reduce overhead and redun-
dant exploration. Such methods in which robots can communicate have been widely researched [4] [5].

When robots are able to communicate with each other with no constraints, we say that the com-
munication is centralized. Centralized protocols have been widely studied in research concerning
optimal routing [6], where efficient use of globally available information is key. This communication
method can be highly effective, but it relies on the assumption that there no constraints such as a
limited communication range or the complete absence of a network. This introduces the necessity
to explore communication methods with limited capabilities. When there are such constraints on
the communication between the robots, such as a distance range [7] or a line-of-sight protocol
[8], we call it decentralized. An unmentioned decentralized approach is one where communication
happens through the environment, which we refer to as stigmergic communication. In such sys-
tems, robots leave markings or other forms of information in the environment, which in turn can
be observed by other robots, enabling communication without explicit inter-robot message exchange.

Although stigmergic approaches have been employed in more environments with little spatial
constraints [9], our focus lies on stigmergic methods in more spatially constrained environments,
namely mazes. Since mazes can be seen as trees or graphs (dependent on whether there are cycles
present), there is a large overlap in research in optimal multi-robot maze-solving and tree or graph
exploration. One of the earliest stigmergic methods was applied to single-agent maze-solving. The
Trémaux algorithm [1], uses markings in passages to provide information to its future self, which
allows it to explore mazes with loops, a task that is usually challenging for autonomous agents with
no memory. Other research has provided valuable insights in multi-robot tree exploration [10] [2]
and graph exploration alike [11] [2]. In particular, [2] provides a useful algorithm that combines
DFS and the stigmergic property of the Trémaux algorithm to facilitate efficient communication
between robots in both tree and graph-like environments. The study shows a promising analysis on
the algorithm for trees, but it does not provide a similar analysis for general graphs.

2

This thesis builds upon these previously mentioned studies by evaluating the efficiency of the
algorithm provided in [2] for general graphs using simulations.

3 Methodology

To address the various sub-questions that arose from Section 1, it is important that there is a
clear understanding of all the components underlying the proposed approach. As the end goal is to
simulate and evaluate stigmergic communication in mazes, we must understand the underlying
choices made for this simulation. The definition of efficiency in the context of this thesis, the
generation of solvable non-perfect mazes and the mechanisms of the agents are all addressed in this
section.

3.1 Mazes

3.1.1 Definition

In the context of this thesis, we define a maze as a connected, undirected graph with two distinct
nodes, namely Start and End, where the Start node is always found on the outer wall. The goal is
to reach the end node while beginning from the start node. The degree of each vertex in the graph
is at least 1 and at most 4. In other words, each node in the graph is connected to at least one other
node and at most four other nodes in the graph. The graph can be depicted as a two-dimensional
grid of cells with walls and open spaces: These open spaces are the connected nodes of the graph.
The mazes used in this thesis are non-perfect, meaning that there can be more than one possible
path from the start node to the end node. This can also be described as the fact that there are
loops present in the maze that can be used as shortcuts. Figure 1 shows a visualization of the
aforementioned description.

Figure 1: Example of a maze with a Start and End node and its corresponding graph

3.1.2 Generation

Both algorithms used to generate mazes in this thesis generate a minimal spanning tree that is later
transformed into a non-perfect maze. In other words, they generate a perfect maze, one without

3

loops, after which certain walls are systematically removed to create a non-perfect maze.

The Depth-First Search algorithm uses depth-first traversal to create a perfect maze in the
following fashion: The algorithm begins by choosing a random cell as the starting point. Then
it randomly chooses a wall of the current cell and opens a passage to an adjacent unvisited cell.
This then becomes the current cell. It repeats this step until all adjacent cells of the current cell
have been visited. When this happens, the algorithm backs up to the previous visited cell and
repeats the second step. At some point, the algorithm backtracks all the way to the beginning, after
which it finishes with a minimal spanning tree. Because of the depth-first traversal mechanism,
the algorithm opens up paths as deep as possible before backtracking and opening up new paths,
resulting in long corridors with relatively few branches. An example of a maze generated using the
Depth-First Search algorithm can be found in Figure 2

Prim’s algorithm is originally used to create minimal spanning trees for weighted connected trees.
When considering which neighboring cell to visit, it chooses the neighbor with the lowest weight.
Since in the context of this thesis the graphs are unweighted, which means that all edges are
equal in length, the algorithm is slightly adapted to suit the needs of maze generation. Instead
of assigning an explicit random weight to every possible edge, we keep track of all neighboring
unvisited nodes and choose a corresponding edge randomly at each step. Randomly sampling the
edges is probabilistically equivalent to assigning random weights to the edges before the algorithm
starts. It is also computationally less expensive, as it avoids storing information that is only used
once during the algorithm. The modified Prim’s algorithm works as follows: The algorithm starts
by choosing a random cell as the starting point. It also keeps track of all neighboring nodes that
are still unexplored. It then randomly selects an unexplored neighbor and opens up the path to the
nearest visited node. The updated unexplored neighbors are added to the set of old neighbors and
the algorithm continues until all cells are visited. This frontier-based selection results in a minimal
spanning tree with a high amount of branches, because the maze expands at different places both
simultaneously and randomly. An example of a maze generated using Prim’s algorithm can be
found in Figure 2

Figure 2: Example of mazes generated with DFS (left) and Prim’s (right) algorithm

Since all nodes are reachable, the start and end nodes can be selected by opening up any segment
of the outer walls that have a neighboring open cell. To increase the chances of a greater solution

4

path length, the start and end node are always selected in opposite walls.

As mentioned earlier, the described algorithms create perfect mazes. To transform these into
non-perfect mazes, we need to systematically remove walls to create loops, which can potentially
create new solution paths. The mechanism for adding loops is explained further in Section 4.

3.2 Agents

There are various ways an autonomous agent can solve an unexplored maze. The wall following
algorithm implies that the agent keeps its left or right ’hand’ on the corresponding wall at all times
and follows it until it reaches the end [12]. If there are loops present in the maze or if the exit is not
connected to the component that contains the entrance, the wall follower will make a full return
to the entrance. In the case that the maze is simply connected, which means that all walls are
connected, (and thus the entrance and exit are contained by the same component,) this algorithm
always finds the exit. For perfect mazes, this algorithm essentially performs a depth-first search,
ensuring that all reachable nodes are eventually visited at least once.

Another useful, more efficient algorithm that allows an autonomous agent to solve a maze was
designed by Charles Pierre Trémaux. The Trémaux algorithm [12] [1] uses markings at junctions to
denote whether an agent has traversed a passage before: Whenever the agent enters or leaves a
junction, the corresponding access point is marked. When the agent is in a junction, which is any
node with two or more neighboring open spaces or a dead end, it uses the first applicable rule of a
set of rules to decide where to go next.

1. If only the entrance you just came from is marked, pick an arbitrary unmarked entrance, if
any.

2. If all entrances are marked, go back through the entrance you just came from, unless it is
marked twice. This rule will apply whenever you reach a dead end.

3. Pick any entrance with the fewest marks (zero if possible, else one)

This set of rules ensures that a double marked passage is never taken, allowing the agent to treat
a loop in the maze as a dead end. The rules ensure that the Trémaux algorithm can solve both
perfect and non-perfect mazes. When the agent reaches the exit, a path back to the entrance can be
constructed by following all the singly marked passages. However, this algorithm does not guarantee
the shortest possible path.

In the context of this thesis, we are interested in multi-agent maze solving algorithms. Wall follower
agents can find an exit individually but cannot really benefit from the advantages that collabo-
ration can offer. The Trémaux algorithm gives more possibility for collaboration because of the
markings in the environment. However, the algorithm was designed with a single agent in mind. A
naive approach to solve this design issue would be to simply allow multiple agents to read each
other’s markings. Without modifications to the algorithm however, there are some issues that arise.
The agents may traverse the same edges before they are properly updated, leading to redundant
exploration. There is also no rule set for situations where multiple agents simultaneously traverse an

5

edge, which can lead to unexpected behavior. In short, even with multiple ”collaborative” Trémaux
agents, collaboration is not optimized.

Brass et al. [2] propose a maze algorithm that adapts the concept of the Trémaux algorithm to
optimize the collaboration potential between the agents. The pseudo-code for this Multi-robot
DFS (MR-DFS) algorithm can be found in Figure 3. Similarly to the Trémaux algorithm, the
MR-DFS prioritizes choosing edges that have not been fully explored yet. Additionally, it makes
a distinction between original entrances to the vertices and completed edges, similar to how the
Trémaux algorithm has single and double markings respectively. The performance of the MR-DFS
algorithm is of interest in this thesis. Brass et al. performed experiments on a different version
of the algorithm that works for trees, delivering promising results: For a small amount of robots
(N=2 or N=3), the exploration time is very close to the upper bound. Additionally, when the
number of robots increases, the time steps needed to solve the maze decreases. The paper does not
provide analysis results for the algorithm that works for general graphs. In the rest of this thesis,
experiments will be conducted using simulations to get a better understanding of the efficiency of
the MR-DFS algorithm for general graphs. This will be done by first interpreting the results of the
aforementioned algorithms and the MR-DFS algorithm and then by comparing them.

Figure 3: Pseudocode for the MR-DFS algorithm for general graphs

6

3.3 Metrics

To compare the different algorithms to each other, we need to select fair and quantifiable metrics to
measure performance. The first metric is the exploration time Te: All the robots synchronously
move at each time step. For this reason, Te also denotes the distance traveled by each robot. This
is useful for the second metric, which is the solution ratio rs. This metric effectively compares
the total distance traveled to the shortest path from the entrance to the exit, which is calculated
beforehand. Important to note is that we are not reconstructing the final path taken for this metric.
We are simply calculating the ratio of distance traveled to the optimal distance. These two metrics
will provide us valuable insights in how efficient the robots solve the maze.

4 Implementation

The methods described in Section 3 have been implemented in a Python project. This project
connects all the earlier mentioned components and facilitates the simulations. To generate perfect
mazes, the mazelib [13] library was used. This library contains a generator method for both the DFS
and Prim algorithm, namely the BacktrackingGenerator and the Prims generators respectively.

After the maze has been generated, a custom function systematically removes walls from the maze
to create loops and potentially introduce shortcuts. This function checks for every wall cell in
the maze whether it is in a section of consecutive walls. In this case, one of the walls may be
removed to provide access to the maze component behind the wall section. There are parameters
that determine the minimum length of the consecutive wall for the wall cells to be considered
candidates for removal. The result is a set of candidate cells that may be removed. The function
then sequentially removes candidates based on a provided percentage parameter. When a candidate
is removed, nearing candidates are removed from the set to avoid an invalid maze configuration.
The result is a non-perfect solvable maze that was generated with either the DFS or Prim algorithm.
All the aforementioned parameters have been tuned through trial and error during preliminary
testing. An example of how the artificial loops have the potential to create shortcuts can be viewed
in Figure 4. The light gray square is the one that is removed to potentially create new loops. We
can see that the removal of the square in Variation A causes the maze to have a shorter optimal
path, while the removal of the square in Variation B does not change the optimal path of the maze.

7

Figure 4: Illustration that shows shortcut potential

The pygame [14] library was used to visualize the simulations during both the development and
experiment phase. The library facilitates easy visualization of the maze by allowing us to create
visible cells for each cell in the maze. Furthermore, the simulation loop can be elegantly displayed
when combined with the agent movement logic. Not only does this show a clear representation of
agent behavior and decision-making during the simulation, but it also of great while troubleshooting
issues or unexpected agent behavior.

The Agent class is a custom class that houses all the logic behind agent movement and communica-
tion protocols. The agent is designed in such a manner that it can only look in front of them using
the probe_front() function. This means that if they want to see what is around them, they must
first turn and then use the probing function to obtain the data about its surroundings. The class
holds methods for all the maze solving algorithms used in this thesis: hug_left/hug_right, dfs
and mrdfs. These methods all make use of some logic to determine where to move to during the
current time step. At the end of the time step, the move_forward() method moves the agent in
the desired direction.

Combining these libraries, methods and the Agent class gives us a suitable environment to run
simulations in: The maze can be set up using the respective setup_maze() method, which generates
the non-perfect maze, its entrance and exit and the shortest solution. After this, the agents are
initialized using the respective setup_agents() method, which creates the Agent objects, configures
the necessary fields and sets their position to the maze entrance. Hereafter the simulation loop is
ran until the agents find the exit is found, after which the program terminates.

5 Experiments

Now that there is an understanding of the simulation environment, the focus shifts to the experiments.
To be able to draw conclusions about the efficiency of MR-DFS in non-perfect mazes, experiments
have been done to compare its metrics against other known maze solving algorithms. This section

8

goes over the setup and results of each of the experiments. In each of the experiments, we are
interested in the performance of the concerned agents in different environments. For this reason,
we run the comparisons in six different environments, varying in both size and generation type,
unless mentioned otherwise. The sizes used in the experiments are 10x10, 10x30 and 35x35 to
measure performance in small, narrow and large mazes respectively. As mentioned earlier in the
thesis, the entrance of the maze is always on the outer wall. The location of the exit differs for
each experiment and is therefore specified in the respective subsection. When the exit is on the
outer wall, it is always found on the wall opposite of the wall that houses the entrance. When the
entrance is inside of the maze, we use a custom function that finds the most central dead end in
the maze using Euclidean distances. It is important to note that all the results of the experiments
are median values to take outliers into account.

5.1 Experiment 1

In the first experiment, we compare 2 Wall Follower agents to 2 MR-DFS agents. Important to
note is that in this experiment, one of the wall followers hugs the left wall while the other hugs the
right wall. The exit of the maze is found in the outer wall. The results of the first experiment can
be found in Figure 5.

Time to explore

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

2 WALL FOLLOWERS 99 299 631 147 370 1280
2 MR-DFS 99 411 1163 134 384 1092

Ratio of solution

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

2 WALL FOLLOWERS 1.39 1.80 2.71 3.78 3.94 10.51
2 MR-DFS 1.73 2.35 5.03 3.53 4.14 9.69

Figure 5: Experiment 1 results

From the results we can see that the wall followers and MR-DFS robots perform quite similarly,
especially on smaller mazes. On the larger DFS mazes, the wall followers outperform the DFS by
a large margin. Visualization shows that the outer exit works in the favor of the wall followers,
because they are more inclined to trace the outer walls compared to the MR-DFS robot, which
often end up exploring towards the center of the maze. In small mazes, this slight advantage is
negligible, but it is apparent that the wall followers can make great use of this design advantage

9

in larger mazes. This experiment can not be performed with the exit inside of the maze. Wall
followers can not reach all cells in a non-perfect maze, so there can be cases where the wall followers
loop back to the entrance without finding the exit. Regardless, it is interesting to see how a naive
approach to solving mazes can still outperform a more complex algorithm when the playing field
is leveled. Another, somewhat trivial, thing we can take away from this experiment is that the
ratio of solution rs grows as the maze size grows, which can be accredited to the fact that it is
probabilistically more likely for the agents to take wrong turns in larger mazes.

5.2 Experiment 2

In the second experiment, we compare one regular DFS robot to two MR-DFS robots. We want to
examine whether the introduction of an additional collaborative robot provides significant difference
in performance compared to a single robot. The exit of the maze is found on the outer wall. The
results of the experiment can be found in Figure 6.

Time to explore

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

1 DFS 205 586 2088 197 507 2257
2 MR-DFS 142 359 1329 129 403 1293

Ratio of solution

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

1 DFS 3.71 3.13 9.35 5.21 5.79 17.69
2 MR-DFS 1.96 2.19 6.45 3.34 4.65 9.51

Figure 6: Experiment 2 results

We can see from the results that the introduction of another robot provides a substantial difference
in performance, even in smaller mazes. The collaboration that is introduced by the MR-DFS
protocol allows for parallelization of the workload, which increases the efficiency of the maze walk.

5.3 Experiment 3

This experiment has a nearly identical setup to Experiment 2. The only difference is that in this
experiment, the exit is found inside of the maze. This decreases the average optimal solution length.
We are interested in whether the ratio of solution rs changes accordingly. To reiterate the setup, we
are again comparing 1 DFS robot to 2 MR-DFS robots. The results of the experiment are found in

10

Figure 7.

Time to explore

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

1 DFS 270 501 3229 206 443 2807
2 MR-DFS 123 424 1689 125 407 1596

Ratio of solution

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

1 DFS 3.93 6.36 18.07 8.64 8.02 36.04
2 MR-DFS 1.99 4.28 10.71 6.22 6.65 20.27

Figure 7: Experiment 3 results

When we compare the result of experiments 2 and 3, in particular the ratio of solution, it is
interesting to note that the ratio does not decrease when the exit is moved to the center of the
maze. Conversely, the ratio increases when the exit is located at the center, which disproves our
earlier hypothesis. This could be due to multiple reasons. A potential reason could be that when
the exit is inside of the maze, it is found in a dead end, usually after a large amount of branches. If
the robot skips the passage on the final junction to the exit, it must reach another dead end until
it backtracks to the previous dead end. The slightly higher branching factor inside of the maze may
mean that the robot has to explore many different areas before backtracking to the junction where
the exit is located, which increases the exploration time and ratio of solution. In the case that the
exit is on the outer wall, the robot may have an easier time finding the exit. This is because the
passages next to the outer wall are usually straighter compared to passages inside of the maze. This
is due to the generation algorithm being bounded by the dimension constraints, which does not
allow it to make a turn outside of the provided space. Whether this is the actual reason why the
results differ from the expectations is unknown.

5.4 Experiment 4

In the fourth experiment, we compare the performance of two DFS robots to that of two MR-DFS
robots. We are interested in seeing whether the collaborative aspect of the MR-DFS algorithm
truly influences the performance of the robots when we compare it to two similar, non-collaborative
robots. The exit can again be found in a dead end located near the center of the maze. The results
of this experiment can be found in Figure 8.

11

Time to explore

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

2 DFS 105 364 1904 118 308 1522
2 MR-DFS 116 262 1335 131 327 1160

Ratio of solution

DFS PRIM
10x10 10x30 35x35 10x10 10x30 35x35

2 DFS 1.78 3.99 13.50 4.58 6.41 18.39
2 MR-DFS 2.21 2.57 7.98 4.67 6.74 12.11

Figure 8: Experiment 4 results

By analyzing the results, we can see that in small mazes, the difference in performance between
non-collaborative DFS and MR-DFS robots is not significant. When the maze gets larger, we
observe that both the time to explore and the ratio of the solution goes down significantly. We can
deduce that the advantages of MR-DFS are utilized best when the maze gets larger, which is where
non collaborative DFS robots tend to perform worse.

5.5 Experiment 5

In this experiment, we compare four DFS robots to two MR-DFS robots. We are interested in
investigating whether the benefits of MR-DFS can outperform the numerical advantage of the
non-collaborative DFS robots. Because we have seen that the advantages of MR-DFS are more
apparent in large mazes, we run this experiment using only the 35x35 maze size. This experiment
utilizes mazes that have exits on the outer opposite wall. The results of this experiment can be
found in Figure 9.

12

Time to explore

DFS PRIM
4 DFS 1551 1232
2 MR-DFS 1430 1444

Ratio of solution

DFS PRIM
4 DFS 7.21 9.39
2 MR-DFS 6.45 10.31

Figure 9: Experiment 5 results

Observing the results show us that there is a slight difference in performance for the different sets
of robots. The set of four DFS robots outperform the two MR-DFS robots in mazes generated
with the DFS algorithm, and the opposite is true for mazes generated with Prim’s algorithm. We
can argue that the performance is partly based on the structure of the maze: Mazes generated
with Prim’s algorithm generally have more junctions, which means that the chance to have to
backtrack is higher compared to mazes generated with DFS. The number advantage of the first set
of agents can explore these types of mazes better, because the agents have a higher exploration
throughput. Conversely, in DFS mazes there is a smaller amount of junctions, so there is generally
a lower chance to have to backtrack when taking the wrong passage. MR-DFS robots can make
better use of this maze property, because their exploration of unvisited areas of the maze is more
coordinated and less redundant compared to regular group of DFS robots. It is unclear whether
this explanation is responsible for the observed results. However, it is a likely contributing cause.
In any case, two MR-DFS robots perform similar to 4 regular DFS robots, which is a great feat.

5.6 Experiment 6

We have seen in the previous experiments that the gain from the collaborative MR-DFS robots can
be utilized best in larger mazes. The last point of interest is whether there is an optimal amount of
robots for maximizing performance. In this experiment, we will deploy different numbers of robots
in mazes of size 35x35 with the exit at the center of the maze and evaluate their performance. The
results of this experiment are presented in Figure 10.

13

(a) Graph showing Te for various robot quantities

(b) Graph showing rs for various robot quantities

Figure 10: Graphs showing the results of Experiment 6

The results show that adding more robots certainly affects performance: An increase in the amount
of robots lowers both Te and rs for each increment. However, the gains in performance start to
noticeably become less after n = 4 robots. Beyond that, the improvement becomes marginal. This
can imply that adding more than 4 robots increases the risk of redundant exploration.

14

6 Conclusions

In this thesis, we analyzed the efficiency of the MR-DFS algorithm in multi-agent non-perfect maze
searches. We explored methods for both generating solvable non-perfect mazes and solving mazes
optimally as an autonomous agent. Decisions were made for quantifiable, fair metrics to evaluate
the performance of the robots during the simulation. Experiments have been conducted to compare
the performance of various non-stigmergic and stigmergic robots. Using the methodology developed
in Section 3, we were able to answer the sub-questions posed in Section 1.1, which where:

SQ1: How can we generate solvable non-perfect mazes?

SQ2: How can an autonomous agent optimally solve a maze?

SQ3: How can the selected agents effectively communicate by making use of unique stigmergic
communication protocols?

The conducted experiments have shown that the MR-DFS robots outperform regular DFS robots in
larger mazes. In small mazes, the difference between two different pairs of agents is not significant.
Sometimes the MR-DFS robots are even outperformed by naive maze solving solutions such as
wall followers. Experiment 5 has also shown that increasing the robot count beyond n = 2 provides
additional performance gain, although marginal when n exceeds 4. We can conclude that utilizing
MR-DFS robots in large non-perfect mazes is a more efficient approach compared to more common
non-complex approaches such as wall followers and DFS robots.

7 Further Research

There are some improvements that can be made in further research. Brass [2] concludes the paper
with the idea that the most important step towards practical applications of MR-DFS robots is to
reconsider the robot movement mechanics. In his paper and in this thesis, we have assumed that
robots can only move once per timestep and that all robots do so synchronously. In real life however,
movement is asynchronous and the speed which the robots travel with may also change during a
maze search. Examples would be when a robot can accelerate if it finds itself in a long, straight
passage and when a robot needs to slow down if there are a lot of corners in its passage. Furthermore,
there were some parameters that have been decided on during preliminary testing. Experiments
could be ran to investigate the influence of loop quantity on robot performance. Another approach
would be comparing stigmergic communication protocols to gossip protocols, which can provide
even more insight for decision making around decentralized communication methods.

15

References

[1] Jean Pelletier-Thibert. Public conference. 2010.

[2] Peter Brass, Flavio Cabrera-Mora, and Jizhong Xiao. Multi-Robot Tree and Graph Exploration.
IEEE Transactions on Robotics, 2011.

[3] Yongguo Mei, Yung-Hsiang Lu, C.S.G. Lee, and Y.C. Hu. Energy-efficient mobile robot
exploration. In Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006., pages 505–511, 2006.

[4] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot Systems: A Classification Focused on
Coordination. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics),
34(5):2015–2028, October 2004.

[5] Francesco Amigoni, Jacopo Banfi, and Nicola Basilico. Multirobot Exploration of
Communication-Restricted Environments: A Survey. IEEE Intelligent Systems, 32(6):48–
57, November 2017.

[6] Bojan Crnkóvic, Stefan Iv́ıc, and Mila Zovko. Fast algorithm for centralized multi-agent maze
exploration. arXiv eprints, https://arxiv.org/abs/2310.02121, 2025.

[7] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli. The sensor-based random graph method
for cooperative robot exploration. IEEE-ASME T Mech, 14(2):163, 2009.

[8] Ethan Stump, Nathan Michael, Vijay Kumar, and Volkan Isler. Visibility-based deployment
of robot formations for communication maintenance. In 2011 IEEE International Conference
on Robotics and Automation, pages 4498–4505, 2011.

[9] Tüze Kuyucu, Ivan Tanev, and Katsunori Shimohara. Superadditive effect of multi-robot
coordination in the exploration of unknown environments via stigmergy. Neurocomputing,
148:83–90, 2015.

[10] Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree
exploration. In Mart́ın Farach-Colton, editor, LATIN 2004: Theoretical Informatics, pages
141–151, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[11] Romain Cosson. Ariadne and Theseus: Exploration and Rendezvous with Two Mobile Agents
in an Unknown Graph, July 2024. arXiv:2403.07748 [cs].

[12] HandWiki. Maze Solving Algorithm. https://encyclopedia.pub/entry/33079, 2022.

[13] John Science. Mazelib Github. https://github.com/john-science/mazelib, 2024.

[14] Pygame Website. https://www.pygame.org/news, 2024.

16

https://encyclopedia.pub/entry/33079
https://github.com/john-science/mazelib
https://www.pygame.org/news
skape

this is not complete

	Introduction
	Problem Formulation
	Thesis overview

	Related Work
	Methodology
	Mazes
	Definition
	Generation

	Agents
	Metrics

	Implementation
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6

	Conclusions
	Further Research
	References

