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Abstract

Hydraulic head forecasting in dikes is essential for calculating the probability of
failure of a flood defense mechanism, as sudden peaks or prolonged extreme values
in groundwater levels could induce direct or indirect processes that may compro-
mise stability. Forecasting these time series in a short-horizon setting is challenging
due to nonlinear hydrological dynamics and site-specific subsurface heterogeneity.
Automated Machine Learning (AutoML) offers a way to automate algorithm and
hyperparameter selection, but its potential for hydraulic head forecasting in dikes
has not yet been systematically investigated. In this thesis, we evaluate AutoGluon-
TimeSeries (AG-TS) against classical models and alternative AutoML frameworks
across three settings: local univariate, global univariate, and global multivariate.
To improve global models, we propose Bayesian Optimization for Selective Pool-
ing (BOSP), which adaptively identifies informative subsets of series, and we extend
the framework with a peak-aware covariate augmentation (BOSP+Peak) designed
to improve performance during hydraulic head peaks. Using over four years of
data from 51 piezometers across 10 Dutch dikes, we show that AG-TS outperforms
baselines in the local setting reducing the average error by 7%, achieving the lowest
error on 67% of all time series. BOSP achieves significant improvements in global
univariate forecasting by reducing the average error by 16% and improving upon
the baseline in 90% of all time series. BOSP+Peak reduces the average error during
peak events by 18% and outperforms the baseline in 75% of all cases while preserv-
ing overall performance outside peak periods. Together, these results demonstrate
that AutoML, when combined with domain-specific extensions, provides a scalable
and effective approach to hydraulic head forecasting in dikes, with clear potential
for risk assessments of dikes in an operational setting.
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Chapter 1

Introduction

Despite efforts by countries worldwide to limit global warming to 1.5–2.0 °C, sea lev-
els keep rising and longer periods of extreme weather occur more frequently. These
changing conditions create an environment where flooding is expected to be one of
the most damaging consequences of climate change [1]. In the Netherlands, flood-
ing is not only a threat from the sea, but also a significant threat further inland, as
26% of the country’s land mass lies below sea level and an estimated 29% is at risk of
flooding [2]. This risk is particularly high in polders, which are low-lying areas sur-
rounded by dikes and equipped with internal drainage systems [3]. These polders
are dependent on the dikes surrounding them for protection against flooding. The
Netherlands maintains over 17.700 km of dikes in total [4].

Water body

Filter

Phreatic line

Polder
Filter

P1
P2

P3

P4
P5

FIGURE 1.1: Schematization of a cross-sectional profile of a dike. P1-
P5 are the piezometers, which measure the hydraulic head at their
locations, allowing an approximation of the phreatic line. Illustration

by the author.

An important indicator for dike safety is dike stability. Dike stability is mainly im-
pacted by changes in water pressures - the hydraulic head changes - impacting the
subsurface balance. High groundwater levels in dikes could induce direct or indi-
rect processes that may compromise dike stability, causing a breach in the worst-
case scenario. The hydraulic head (groundwater level) within the dike is measured
by piezometers placed at multiple depths and locations. From these measurements,
the phreatic line (the highest internal water level) can be inferred [5]. Sudden rises,
anomalous patterns, or prolonged extremes in hydraulic head may indicate damag-
ing processes such as slope instability or internal erosion, which could cause shear
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of the dike body, and are therefore important indicators [6]. Modern monitoring
systems collect daily time series across many sites; the key challenge is turning this
data into short-horizon forecasts that support operational decisions such as targeted
inspection and taking precautionary emergency measures [7].

Forecasting hydraulic head levels is difficult because of the complex temporal pat-
terns inherent to these time series, influenced by precipitation, evaporation, seasonal
variation, and upward seepage from deeper soil layers [8]. Numerous studies have
examined forecasting methods for hydraulic head data, albeit primarily in wells [9],
[10]. While the literature on wells provides important insights into the domain of
hydraulic head forecasting, dikes differ in boundary conditions, layered structure,
and responsiveness to rainfall. As hydraulic head time series from dikes are col-
lected using a comparable setup (several piezometers in a cross-sectional profile of
the dike), their time series may contain informative patterns beyond the target se-
ries itself. Some of these patterns are direct, such as multiple piezometers at the same
site responding similarly to rainfall, while others are more subtle, such as compara-
ble recharge dynamics observed in dike sections in other geographical locations. An
effective forecasting approach should therefore be able to capture site-specific behav-
ior while also learning from related series. This motivates evaluating models trained
only on the target series alongside models trained on multiple series In this work,
we methodologically distinguish two modeling dimensions: First, local models are
trained per site, while global models share parameters across sites. Second, univariate
indicates a single target series, whereas multivariate denotes joint prediction of mul-
tiple targets [11]. Local models can suffer from limited per-site data; global models
exploit cross-site regularities but risk negative transfer when sites behave differently.

Beyond the local–global and univariate-multivariate distinctions in modeling ap-
proach, selecting an appropriate forecasting algorithm type remains a challenge as
well. Many approaches are available for time series forecasting, ranging from tra-
ditional methods such as ARIMA and exponential smoothing to more recent tech-
niques including Long Short-Term Memory (LSTM) networks, Convolutional Neu-
ral Networks (CNNs), and Transformers [12]. Most studies on hydraulic head fore-
casting, however, focus on a single model class, often a neural network [13], [14], and
manually tune its architecture and hyperparameters for a specific dataset. While this
can result in good performance within that study, the results are mainly relevant to
the chosen model and optimization procedure. As a consequence, the literature has
produced a wide variety of potentially strong but highly heterogeneous solutions.
The solutions found are difficult to compare across studies and rarely generalize
to other sites or datasets, limiting their practical transferability [15]. Selecting an
appropriate forecasting method therefore continues to require substantial domain
expertise and effort, with no guarantee that a model optimized in one setting will be
effective elsewhere.

Automated Machine Learning (AutoML) offers a way to automate algorithm and
hyperparameter selection, and can potentially find high-performing configurations
more efficiently. By automating model selection and hyperparameter optimization ,
an AutoML framework could provide a unified and generalizable approach to fore-
casting hydraulic head time series across different sites and applications. Among
currently available frameworks, AutoGluon-TimeSeries (AG-TS) has recently been
shown to be state of the art on a large variety of domains [16], [17]. AG-TS shifts
the AutoML focus away from extensive hyperparameter optimization (HPO), and
instead relies on robust default configurations and strong model ensembling. While
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AutoML has thus far shown promising results in other domains like finance [18],
production engineering [19] and energy demand [20], its effectiveness for hydraulic
head forecasting in dikes has not been systematically evaluated. Additionally, high
risk in dike stability comes from sharp peaks in the hydraulic head of a dike, which
are under-represented in training data and therefore under-predicted by standard
models.

In this thesis, we investigate the use of AutoML for short-horizon forecasting in hy-
draulic head time series in dikes. We evaluate local univariate, global univariate, and
global multivariate strategies. We introduce a Bayesian-optimization method to se-
lect informative subsets of series for global modeling and we develop a peak-aware
augmentation method that supplies future peak indicators to improve performance
during surge events.

Our main contributions are as follows:

• We evaluate AG-TS on hydraulic head time series under three modeling sce-
narios: local univariate, global univariate, and global multivariate.

• For global univariate modeling, we introduce a Bayesian optimization approach
to automatically select related time series for training.

• We propose a method to improve forecasting of sudden peaks by forecasting
peak probability and including these probabilities as future covariates.

The remainder of this thesis is organized as follows. Chapter 2 introduces the fun-
damental definitions and formalizes the forecasting problem studied in this work.
Chapter 3 reviews related literature on time series forecasting, hydraulic head data
and AutoML. Chapter 4 presents the proposed methods and their implementation
details. The experimental setup and dataset are presented in Chapter 5, and the re-
sults are reported in Chapter 6. Finally, Chapter 7 concludes the thesis and outlines
directions for future research.
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Chapter 2

Problem statement

This chapter will introduce concepts and definitions used in this work. We first de-
scribe preliminary concepts and notation, before formalising the forecasting problem
in the context of hydraulic head data.

2.1 Preliminaries

A time series is a sequence of data points, or observations, collected at consecutive
and uniform time intervals. We consider real-valued time series with a constant,
daily sampling rate. We denote the time series consisting of hydraulic head mea-
surements from piezometer i as zi = [zi,1, . . . , zi,ℓi ] ∈ Rℓi where ℓi denotes the length
of that series. Each site contains multiple piezometers, indexed by i , placed on a
different location of the dike in a cross-sectional profile. Exogenous covariates (e.g.,
precipitation, evaporation) are collected as X with the convention that X·,t+1:t+H are
known in advance at forecast origin t, where we assume perfect foresight for evalua-
tion.

A forecasting model f at origin t maps past targets and covariates to future targets
over horizon H: f : (ZS,1:t, XS,1:t+H) 7→ ẑ·,t+1:t+H, where Si ⊆ {1, ..., N} specifies
the modeling context. We distinguish: (i) local univariate (S = {i}, one model per
piezometer), (ii) global univariate (Si ⊆ {1, ..., N}, a single model trained across Si but
predicting one target i at a time), and (iii) global multivariate Si contains all piezome-
ters at the same site, and forecasts are produced jointly for every series in Si.

The forecasting function f is obtained from a learning algorithm A, trained on histor-
ical observations Dtrain and evaluated on unseen data Dtest. For a given time series
zi,1:ℓ, we define Dtest as the actual values in the forecast horizon(s) of length H. With
n backtesting windows, the evaluation set consists of the final p = n ·H points of the
series, i.e., Dtest = zi,ℓ−p+1:ℓ. The training set is the preceding part, Dtrain = zi,1:ℓ−p,
used by A to fit the forecasting map. Performance is quantified by a loss function
L(A, Dtrain, Dtest), which measures the discrepancy between predictions and actual
observations.

A forecasting function can be built from many algorithms A(j) ∈ A, with each al-
gorithm adapting internal parameters during training on Dtrain. In contrast, hyper-
parameters λ ∈ Λ(j), such as model depth or regularization strength, must be set
externally and have a large impact on the performance of the algorithm. The joint
task of choosing both the algorithm and its hyperparameters is known as combined
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algorithm selection and hyperparameter optimization (CASH):

A∗λ∗ ∈ arg min
A(j)∈A,λ∈Λ(j)

L(A(j)
λ , Dtrain, Dval) (2.1)

with Dval being a subset of Dtrain as designated validation set that is inaccessible to
the model during training, and providing as an estimate of the performance of the
algorithm. AutoML frameworks automate this process.

The hydraulic head is the top of the water column within a piezometer, referenced to
the Dutch sea level (NAP). The observed values in a time series in this work rep-
resent the hydraulic head at a given date, measured in centimeters. Concretely, the
hydraulic head zi,t represents the water level at piezometer i for timestep t. A higher
hydraulic head implies greater water pressure within the dike caused by internal or
external stressors. Rapid surges in zi,t are known as peaks. Peaks are local maxima
in the time series exceeding a certain baseline by a minimum rise, and are separated
by a minimum distance. Forecasting accuracy at extreme values is particularly im-
portant, as these surges are critical for dike safety assessments.

2.2 Problem statement

The forecasting problem addressed in this thesis is to predict future hydraulic head
values measured by piezometers in dikes. Each piezometer i produces a univariate
time series zi,1:ℓ = [zi,1, . . . , zi,ℓ] of length ℓ, with daily observations indexed by t. Let
Z = {zj}N

j=1 denote the collection of all time series and X the associated covariates.

At each forecast origin t, the objective is to predict the next H steps zi,t+1:t+H given
historical observations and covariates for the specified target using a subset Si as
modeling context. The target series may either be a single series i or the site-level
stack containing i. This includes local models (using only i), global univariate mod-
els (pool across multiple series j but forecast only for target i), and global multivari-
ate models (jointly forecast all models at a site).

Formally, we aim to learn a forecasting function Ψ that produces a predictive distri-
bution

p(zi,t+1:t+h | ZSi ,1:t, XSi ,1:t+H; θi, Φ) (2.2)

where X1:t+H are covariates, θi are parameters specific to series i, and Φ are the learn-
able parameters of the algorithm. The optimal function is defined as the configura-
tion of Ψ that minimizes the expected loss

Ψ∗ = arg min
Ψ

Et[L(zi,t+1:t+H, ẑi,t+1:t+H)] , (2.3)

where L is a loss function measuring the discrepancy between predicted and ob-
served values over rolling backtest windows.
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Chapter 3

Related work

This chapter discusses the current state of the literature regarding the three main
topics in this work. First, we review the general time series forecasting literature,
exploring classical approaches as well as state of the art techniques and algorithms.
Second, we investigate the literature on hydraulic head forecasting in both dikes and
wells. Third, we discuss AutoML for time series forecasting with an emphasis on the
AutoGluon-TimeSeries framework.

3.1 Time series forecasting

Time series forecasting occurs in many domains, from economics to energy and cli-
mate science. Traditional forecasting methods relied on local models, which train a
separate model for each time series. Well-known approaches include ARIMA [21]
and exponential smoothing [11]. In a local univariate model, each series is treated
as an independent regression task, and patterns learned for one series are not trans-
ferred to another. In contrast, global models fit a single model across multiple time
series, sharing parameters and learned representations across the group. This global
approach enables the discovery of cross-series patterns, potentially improving per-
formance when appropriate strategies are used to select time series on which the
models are trained [22], [23]. Global models can be separated into two categories:
(1) global univariate, which share parameters across series but still predict one series
at a time, and (2) global multivariate, which jointly predict multiple series at once [11].
Global univariate models may learn from multiple related time series but still output
forecasts for each series independently: for example, rising hotel bookings in sum-
mer can help improve forecasts of restaurant reservations in the same area. Global
multivariate models instead produce joint forecasts across series, such as predicting
traffic flows at multiple road segments simultaneously during rush hour, when they
are strongly interdependent.

Interest in global models has grown over time, and global models have become
prominent in large-scale forecasting competitions such as the M-series [24], [25]. In
these competitions, participants forecast a large collection of time series, with sub-
missions evaluated on an unseen test set. Because these competitions attract hun-
dreds of innovative approaches, their results are widely regarded as benchmarks for
the state of the art. While the M3 competition [26] was dominated by local statis-
tical methods, M4 [24] marked a turning point: despite the dataset’s heterogeneity,
the top two models were global univariate approaches [24]. Deep learning–based
global models such as DeepAR [27] and TFT [28] further accelerated this shift by
using shared representations across many series. In contrast, the M5 [25] accuracy
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competition was based on a highly correlated retail dataset, and all the top 50 sub-
missions contained global models [25]. In addition, most submissions did not train
one model on all time series in the dataset, but partitioned the time series into sub-
sets, on which multiple global models were then trained. Finally, both competitions
showed that ensembling was crucial: the best submissions used many different mod-
els simultaneously and combined the forecasts of these models to produce the best
results. These three insights from the M5 competition strongly influence our experi-
mental design. After we validate that global approaches do indeed outperform local
models on our dataset, we investigate the best way to partition the time series in
our dataset to train our global models. Ensembling is an essential part of the most
important library used in this thesis, AutoGluon-TimeSeries, which we will discuss
in Section 3.3.

Beyond the competition setting, recent years have seen major advances in time-
series forecasting through transformer-based architectures. The Multi-resolution
Time-Series Transformer (MTST) introduces a multi-branch patch-based architecture
that captures both long-term trends as well as high-frequency local dynamics, and
achieves state-of-the-art accuracy on several benchmark datasets [29]. Another re-
cent transformer-based model is Chronos, a foundation model that tokenizes time
series for zero-shot probabilistic forecasting, with its Chronos-Bolt variant reaching
up to 250x faster inference and improved accuracy compared to the base models
[30].

3.2 Hydraulic head forecasting

Forecasting hydraulic head time series is difficult due to their complicated dynam-
ics, which are influenced by the external water level, subsurface processes, seasonal
cycles, evaporation, and precipitation [3]. Forecasting hydraulic heads has several
applications. For example, they help manage groundwater resources in wells, and
they are essential for determining the failure probability of a dike. Despite these
variations, the fundamental problem of predicting groundwater levels is compara-
ble, and methods from both domains are relevant to this work.

Early studies on hydraulic heads in wells relied on classical time series models or
simple machine learning approaches (e.g., multiple linear regression; early ANNs)
[13], [31], [32]. These classical approaches performed well on less complex time se-
ries, but struggled on time series with nonlinear and long-term dependencies [33].
In recent years, research has shifted toward the use of more advanced machine learn-
ing and hybrid techniques, including support vector machines (SVM), neuro-fuzzy
systems, and deep neural networks [34]. Recent work shows that deep learning
models such as LSTM and CNN architectures often outperform shallower methods
in modeling nonlinear dynamics and long-term dependencies [35]. For instance,
CNN-based models outperformed a large set of traditional and deep learning mod-
els for Iranian groundwater levels [36], SVMs best captured regional aquifer behav-
ior in South Africa [37], and an LSTM architecture achieved the lowest error in India
[38].

In the context of dikes, hydraulic head forecasting is often used to predict the phreatic
line (the saturated–unsaturated zone interface), which is a critical input for dike sta-
bility calculations and safety assessments. Most of the current literature on hydraulic
head in dikes has focused on physics-based or conceptual models, such as Pastas
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[39], a Python library that models the response of groundwater to subsurface con-
ditions and hydrological stresses. On the other hand, software like Plaxis [40] is a
geotechnical finite-element suite for coupled flow–deformation used to create a 2D
or 3D model of a specific dike section, mapping the subsurface conditions of a dike
to detailed groundwater flow simulations. These approaches require detailed site
characterisation and repeated calibration, making them costly and hard to scale be-
yond localised sections. Recent studies focusing more on data-driven methods in
this domain show the possibilities of different models. In a study on the subsurface
conditions of dikes in one of the provinces of the Netherlands, nonlinear time se-
ries models have been shown to better capture hydraulic head responses to heavy
rainfall than simpler approaches [8]. In another study, LSTM models trained on hy-
drodynamic model outputs have been shown to predict flood inundation patterns
after dike breaches with high accuracy (MAE=0.045 m) [41]. Together, these stud-
ies demonstrate that data-driven approaches are becoming feasible alternatives for
short-term scenario evaluations, even though traditional dike-related modeling is
still centered on physics-based models and observational monitoring.

Overall, the literature presents a wide range of models applied to hydraulic head
forecasting, mainly applied to wells, but no single approach consistently outper-
forms others. The large variety of different high-performing models across loca-
tions highlights the strong dependence of groundwater dynamics on local environ-
mental and subsurface conditions. A large-scale survey confirms that the effec-
tiveness of machine learning methods for groundwater level forecasting is highly
dataset-specific, recommending the testing of multiple methods and the use of en-
sembling [34]. However, this leaves selection and ensembling largely manual and
expert-driven, opening up the opportunity for AutoML to systematize and scale this
process.

3.3 Automated Machine Learning

Automated Machine Learning (AutoML) aims to reduce the human effort in se-
lecting models, features, and hyperparameters by automating the search for high-
performing modeling pipelines. In time series forecasting, AutoML tools aim to
handle tasks such as algorithm selection, hyperparameter tuning, and ensemble con-
struction without requiring deep forecasting expertise from the user. Over the last
few years, a number of open-source AutoML frameworks have introduced support
for time series tasks. Examples include NeuralProphet [42], FLAML [43], AutoTS [44],
and research projects like HyperTS [45]. Many of these frameworks experiment with
a diverse set of traditional and deep learning models, and attempt to find the best
model for a given problem. Additionally, these frameworks rely on some sort of hy-
perparameter optimization, often either Bayesian Optimization or an evolutionary
approach. This combination of model selection and hyperparameter optimization
can be computationally expensive, and in many frameworks is not combined with
an ensembling approach, which, given the results of the M-challenges, is an impor-
tant aspect in the state of the art of time series forecasting.

Among all other frameworks, AutoGluon–Timeseries (AG-TS) has established itself as
a state-of-the-art framework for time series forecasting [16]. The core idea behind
AG-TS is to focus on ensembling over hyperparameter optimization. AG-TS uses
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a broad selection of models, and initializes these models with robust hyperparame-
ter presets that are expected to perform well across domains. The models included
in AG-TS range from local methods like ARIMA [21] and ETS [46], to global meth-
ods, including tabular methods like LightGBM [47] and deep learning methods like
DeepAR [27], PatchTST [48] and Temporal Fusion Transformer [28]. AG-TS fits each
model on the given dataset, and then ensembles the models using the forward selec-
tion algorithm for up to K steps (default K=100) [49]:

ŷ ensemble
i,T+1:T+H =

M

∑
m=1

wm · ŷ (m)
i,T+1:T+H with wm ≥ 0,

M

∑
m=1

wm = 1. (3.1)

Where weights wm are added greedily to minimize the validation loss.

In a benchmark across 29 diverse open-source forecasting datasets, AG-TS outper-
formed traditional models as well as deep learning methods and AutoML frame-
works [16]. Additionally, AG-TS was also found to perform best among seven other
AutoML tools on a benchmark of 17 "smart city" datasets [17]. This consistent per-
formance across various domains shows the generalizability and robustness of its
ensemble-based approach.

In hydraulic head forecasting, AutoML remains under-explored; most prior work re-
lies on custom, site-tailored pipelines. We therefore systematically evaluate AG-TS
on hydraulic head data and introduce domain-specific extensions (e.g., selective
pooling and peak-aware features) tailored to groundwater and dike monitoring.
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Chapter 4

Methods

This chapter outlines the methods used to investigate AutoML for time series fore-
casting in dikes. We start by investigating the performance of AG-TS in a local uni-
variate setting against classical methods and AutoML frameworks. We then build
on this by exploring selective pooling methods to increase the performance of AG-
TS in a global univariate setting. We then test the AG-TS approach in a multivariate
setting by reframing the methodology through another package, and compare the
performance to the previous approaches. Finally, we propose a method to improve
the forecasting performance of AG-TS around peaks in the hydraulic head data.

    

(A) Local univariate

    

(B) Global Univariate

    

(C) Multivariate

FIGURE 4.1: Outputs by model class. (a) Local univariate: each model
outputs an h-step vector for its own series. (b) Global univariate:
shared Φ with a head θi(Φ) that produces a single h-step vector for
target zi. (c) Multivariate: shared Φ produces a joint d × h output

(multiple targets over the horizon).

4.1 Local univariate

Local univariate models train a separate model for each of the N time series inde-
pendently, forecasting only its future values. Patterns learned for one series are not
transferred to others unless explicitly provided through shared covariates. This ap-
proach has been widely used in classical statistical methods and early applications
of neural networks [11].

Formally, for the i-th time series, a local univariate model estimates the predictive
distribution:

p(zi,t+1:t+h | zi,1:t, Xi,1:t+h; θi), θi = Ψ(zi,1:t, Xi,1:t+h), (4.1)
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where Ψ is a function mapping input features to the parameters θi of the probabilistic
model, local to the i-th series. Multidimensional covariates xi,t may be included, but
the task remains univariate since only one time series is forecasted.

4.2 Global univariate

While local models can capture patterns specific to a single site, they ignore pat-
terns that may occur across locations. In practice, hydraulic head series often share
seasonalities and hydrological response dynamics, which motivates pooling across
sites. A global univariate model uses this shared information while still producing
forecasts for individual series [11].

The global univariate model is formalized as:

p(zi,t+1:t+h | Z1:t, X1:t+h; θi), θi = Ψ(zi,1:t, Xi,1:t+h, Φ), (4.2)

where Φ are the shared parameters of the model across the N time series in z. This
allows the model to learn information across all series, while the output for each
time series through the parameters θi remains specific to that series. The model can
thus learn cross-site features, which can improve overall performance. Although
the model may see all series jointly, the forecasts for each are still produced indepen-
dently.

A problem can arise if we train the global model on all N series. For some N, if a
subset of series follows a distribution very different from the majority, the model will
also attempt to optimize for these, which can lead to conflicting learned features. To
address this, we apply selective pooling: instead of training on the full set Z, we select
a subset Si ⊆ Z for each target series zi. The selection is given by a function

S : {z1, . . . , zN} → {S ⊆ Z | zi ∈ S} (4.3)

which maps the set of all series to an informative subset Si to be used when forecast-
ing zi. Different definitions of S(·) correspond to different selection strategies.

We propose a novel selective pooling method: Bayesian Optimization for Selec-
tive Pooling (BOSP), and compare it against methods proposed in other research.
The proposed algorithm is inspired by the Sequential Model Based Optimization
(SMBO) algorithm as proposed by Hutter et al. [50]. Where the main function of
SMBO is to automatically tune the hyperparameters of a given algorithm, our pro-
posed method automatically optimizes the subset of time series to train a global
univariate model on. The procedure is summarized in Algorithm 1 and explained
step by step below, with references to the corresponding pseudocode lines.

The algorithm begins by extracting features from each time series using TSFresh [51]
at line 3, creating a compressed representation of the temporal patterns of each se-
ries. TSFresh is a widely used library in academic work and provides a large feature
set. It has been shown that Bayesian Optimization suffers when the dimensions of
the input increases over 20 [52]. We therefore use Principal Component Analysis
(PCA) [53] to reduce the dimensionality of the feature representation to 19 dimen-
sions at line 4. Each subset of time series is encoded through three key representa-
tions: the mean and variance of its dimensionality-reduced time series feature vector
representations, and the minimum distance to the target series in feature space. We
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start by generating initial subsets of time series at line 7 following a structured sam-
pling scheme. We first create a fixed number of pair- and triplet-sized subsets to
ensure coverage of very small subsets. The remaining subsets are then drawn ac-
cording to a predefined size distribution: 40% with 4–7 series, 40% with 8–15 series,
and 20% with more than 15 series. The initial subsets are then evaluated by AG-TS
at line 9, generating pairs of feature vectors and performance scores. As evaluat-
ing many subsets using AG-TS is computationally expensive, we limit the models
used by BOSP in subset evaluation to three models: DirectTabular, Temporal Fu-
sion Transformer and DeepAR. We use these three models as they are SOTA in their
respective model types (tabular, transformer and neural network).

The observations of error-subset pairs are fed into a Gaussian Process Regressor
(GPR) at line 16, which maintains a posterior distribution p(F|D) over the function
that maps subset features to performance. Since our subset representation now ex-
ceeds 20 dimensions (mean and variance of PCA components, minimum distance to
the target, and subset size), we employ an ARD kernel that assigns separate length
scales to each dimension, allowing the GPR to down-weight irrelevant features.
After collecting 30 initial observations, the GPR is used for principled exploration
through Expected Improvement (EI) [54]:

EI(x) = ( f ∗ − µ− ξ)Φ(
f ∗ − µ− ξ

σ
) + σ(ϕ(

f ∗ − µ− ξ

σ
)) (4.4)

where f ∗ represents the best observed score, µ and σ are the predictive mean and
standard deviation of the candidate subset. ξ is an exploration parameter, and Φ, ϕ
are the cumulative and probability density functions of the standard normal distri-
bution. For each iteration, candidate subsets are generated at line 17, their expected
improvement computed at line 18, and the most promising candidate selected at
line 19. This acquisition function balances exploitation of promising regions with
exploration of uncertain areas in the subset space.

The process continues until the maximum number of iterations is reached, with each
evaluation updating the GPR posterior. After BOSP has reached the maximum iter-
ations it returns the best found subset. This subset is then used in the full AG-TS
evaluation, which uses all global models provided in AG-TS. The full experimental
setup is described in Chapter 5, and the hyperparameters associated with BOSP can
be found in Appendix C.
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Algorithm 1: Full pipeline for BOSP

1 Input: All time series S, target series st, number of initial points ninit, maximum
iterations max_iter

2 Output: Best subset S∗ and best score y∗

3 F ← extract_TSFresh_features(S)
4 P← PCA(F)
5 X ← ∅, Y ← ∅
6 y∗ ← ∞ S∗ ← ∅
7 init_subsets← generate_diverse_subsets(ninit)
8 foreach v ∈ init_subsets do
9 y← evaluate_subset(v)

10 X ← X ∪ {v}, Y ← Y ∪ {y}
11 if y < y∗ then
12 y∗ ← y
13 S∗ ← subset(v)

14 for iter ← 1 to max_iter do
15 Xrepr ← {feature_repr(v) | v ∈ X}
16 Fit GP on (Xrepr, log Y)
17 candidates← sample_candidates(v∗, 1000)
18 EI ← {expected_improvement(c) | c ∈ candidates}
19 vnext ← arg maxc EI[c]
20 y← evaluate_subset(vnext)
21 X ← X ∪ {vnext}, Y ← Y ∪ {y}
22 if y < y∗ then
23 y∗ ← y
24 S∗ ← subset(vnext)

25 return {st} ∪ S∗, y∗

We compare BOSP to several other methods for selective pooling. Two of these
strategies, Dynamic Time Warping and feature-based clustering, have been shown
to improve forecasting accuracy in other literature [55], [56]. In the domain of hy-
draulic head forecasting in dikes, it is logical that piezometers in the same dike may
share similarities, we therefore also experiment with global models for all piezome-
ters in a site. Additionally, we use greedy forward selection, which iteratively adds
time series to the subset and evaluates on a proxy model. Finally, we include a full
global model, which trains a single model on all time series in the dataset. We will
now provide further explanation of these strategies.

• Feature-based clustering: We automatically extract features using TSFresh [51]
and apply the K-means clustering algorithm on a maximum of 5 clusters to
select the best subset.

• Dynamic Time Warping similarity: We select the k series with the smallest
Dynamic Time Warping distance dDTW(zi, zj) to the target zi, computed on
first-differenced values to remove low-frequency trends [57].

• Greedy forward selection: Given a target series zt ∈ Z and a proxy evaluation
function M(S) for any subset S ⊆ Z, we first compute the pairwise
improvement ∆i = M(zt)−M(zt, zi) for each zi ∈ Z \ zt, retaining only those
with ∆i > 0. We initialize S = zt, arg max zi∆i and iterate over remaining
candidates in descending ∆i order, adding zj only if M(S ∪ zj) < M(S).
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Iteration stops when no zj added to S results in further improvement,
returning S as the selected subset.

• Time series from the same location: We select all series measured at the same site
as zi, i.e., Si = {zj ∈ Z | ℓ(zj) = ℓ(zi)}, where ℓ(·) maps a series to its location
identifier.

• Full global model: We train on the complete set Si = Z for all i, corresponding
to no selective pooling.

4.3 Global multivariate

For the third modeling approach, we test whether multivariate models can improve
upon the best found models in previous experiments. To keep comparisons across
models as fair as possible, we replicate AG-TS’s ensemble-based strategy in a multi-
variate setting using Darts [58]. Darts is a Python library for time series forecasting
that supports both statistical and deep learning models. Darts is one of the few
Python libraries that natively handles multivariate targets with a unified API, mak-
ing it suitable for replicating AG-TS’s ensemble strategy in a joint forecasting setting.

To ensure comparability with AG-TS, we implemented multivariate counterparts
of its main models in Darts: DeepAR (as DeepVAR), Temporal Fusion Transformer
(TFT), and TiDE (TiDEModel). Since AG-TS does not support multivariate forecasting,
we reproduced its approach by matching hyperparameters, using the same feature
generator and scaling strategy, and applying the same greedy ensemble selection
procedure. Formally, the multivariate setup extends the predictive distribution to

p(Zi,t+1:t+h | Z1:t, X1:t+h; θ), θ = Ψ(Z1:t, X1:t+h, Φ), (4.5)

where Z contains all series from the same location, as dependencies in our case only
exist within a dike. This ensures that differences in performance between univariate
and multivariate experiments stem from model structure rather than implementa-
tion details, allowing a fair comparison across approaches.

4.4 Peak-aware forecasting

In addition to BOSP for selective pooling, we propose a second contribution: a peak-
aware forecasting strategy designed to address the frequent sharp rises in hydraulic
head data. Dealing with sudden peaks is a common challenge in modeling and fore-
casting hydraulic head data [10], [59]. The hydraulic response of dikes to external
stimuli can change significantly over time. For instance, during a prolonged dry
period, the upper soil layers of a dike may dry out, reducing their hydraulic con-
ductivity or even becoming hydrophobic. In such conditions, rainfall infiltrates only
slowly, and much of the water is temporarily stored in the unsaturated zone. By con-
trast, when the soil is already wet or near saturation, infiltration occurs rapidly and
groundwater heads can rise sharply as the infiltration pathways are open and rain-
fall rapidly transmits downward. These peaks are difficult to model, as they can be
triggered by drought–rainfall interactions but also by a variety of other hydrological
and geotechnical processes [3].
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We define a peak at time t in the hydraulic head time series z1:T as a local maxi-
mum within a lookback window L, where the rate of change is larger than a certain
threshold η, defined as the change of hydraulic head (m/day). We set η = 0.8 by cal-
ibrating on a set of representative time series and verifying that the detected events
aligned with the desired peaks. To ensure the detected peaks are distinct local max-
ima, we additionally require a minimum spacing D from the previously identified
peak. Formally,

yt = 1

[
zt − zt−L

L
> η, zt = max

s∈[t−⌊W/2⌋, t+⌊W/2⌋]
zs, zt >

1
r

t−1

∑
s=t−r

zs, t− tlast ≥ D

]
,

(4.6)
where W is the peak-window size, r is the length of the recent-past comparison, and
tlast is the time of the most recent peak.

To improve the performance of our model at these peak locations, we use a separate
model that is trained to forecast peaks. The motivation for introducing a separate
peak classifier is that peaks arise from a variety of hydrological processes, as de-
scribed earlier. These dynamics are hard for a forecaster like AG-TS to capture, as
it mainly relies on future covariates and aims to model the average behavior of the
time series, rather than sparse peaks. By integrating peak probabilities as covariates,
we provide the forecaster with an explicit signal as to where sharp upwards rises
are likely to occur. This allows the model to relate high peak probabilities to sharp
rises in the hydraulic head, improving the predictive accuracy at these timesteps,
while also potentially refining point forecasts by avoiding to predict sharp rises in
the hydraulic head when no peak is expected.

We train an XGBoost model [60] to perform a binary classification task, predicting
whether a point within the forecast window will be a peak or not. The full configura-
tion for the model is described in Appendix D, and the procedure of integrating the
predicted peaks into the AG-TS forecaster is described in Algorithm 2. The pipeline
begins by training a multi-output XGBoost classifier on lagged hydraulic head, pre-
cipitation, and evaporation values, as well as cumulative and trend statistics of these
values (line 6). The model outputs peak probabilities for the next H timesteps. The
integration process at line 13 starts by augmenting the AG-TS training set with pre-
dicted peak probabilities, treated as additional covariates alongside hydraulic head,
precipitation, and evaporation. AG-TS is then fitted on the enriched data to learn
both hydro-meteorological drivers and peak likelihood. At inference, the classifier
predicts peak probabilities for each forecast window at line 14, which are passed to
AG-TS as covariates for the final hydraulic head forecasts.
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Algorithm 2: Peak-aware covariate pipeline (train on train set, then backtest)
Input: Set of time series S, forecast horizon H, feature builder F , number of

backtest windows K
Output: ẑτk+1:τk+H for all windows K

1 0. Define train/backtest split
2 Let {τ1, . . . , τK} be the forecast origins.

3 Let Dtrain = {t | t ≤ τ1} and, for window k, D(k)
val = {τk+1, . . . , τk+H}.

4 1. Train peak classifier on Dtrain
5 Build Xtrain = F (S|Dtrain) and multi-horizon targets Ytrain = peaks|Dtrain .
6 Train multi-output XGBoost C on (Xtrain, Ytrain) with class-imbalance

handling.
7 2. Train AG-TS forecaster on Dtrain
8 Augment the training set with in-sample peak probabilities p̂t+1|t predicted

by C
9 Known covariates: xt = (precipt, evapt, p̂t+1|t).

10 Fit forecaster A on
(
z1:T|Dtrain , x1:T|Dtrain

)
with prediction length H.

11 3. Rolling backtest (no refit)
12 Y ← [ ]
13 for k = 1 to K do

// At forecast origin τk

14 Predict future peaks p̂τk+1:τk+H = C
(
F (S|≤τk)

)
.

15 Set future covariates xτk+1:τk+H = (precip, evap, p̂).
16 Forecast ẑτk+1:τk+H ← A.predict(history ≤ τk, xτk+1:τk+H).
17 Append ẑτk+1:τk+H to Y
18 return Y
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Chapter 5

Experimental setup

In this chapter we will outline the experimental setup to evaluate the methods dis-
cussed in Chapter 4. Our experiments are set up to address the following four
queries:

• What is the best-performing method for local univariate hydraulic head fore-
casting among classical approaches and AutoML frameworks?

• Can global univariate models outperform local univariate models, and which
strategies are most effective?

• Does incorporating location specific multivariate information improve fore-
casting accuracy over the best global univariate model?

• How can forecasting performance during sudden hydraulic head peaks be im-
proved?

We will start by addressing the baselines used in our experiments, and how the rele-
vant baselines evolve throughout the experiments. Next, we will discuss the dataset
we use in our experiments. After this, we will discuss the evaluation protocol, and
highlight how we test the performance of the models. Finally, we will discuss the
evaluation metrics we use to quantify this performance.

5.1 Baselines

In line with the research questions, the set of baselines against which we compare
evolves across experiments. The local univariate experiments serve two purposes:
(1) to assess which AutoML framework can outperform classical forecasting meth-
ods and alternative AutoML frameworks, and (2) to establish a performance baseline
against which subsequent global and multivariate models can be compared. Specif-
ically, we compare the following set of models and AutoML frameworks: Naive,
Seasonal Naive, Linear Trend, Exponential Smoothing, AutoRegressive, ARIMA,
SARIMA, HyperTS, AutoTS, and AutoGluon-TimeSeries. The classical models were se-
lected as they are well-represented in time series forecasting literature and provide
interpretable baselines. The three AutoML frameworks were chosen as they provide
complementary optimisation strategies; HyperTS uses Monte Carlo tree search and
adaptive grid search, AutoTS employs evolutionary algorithms, and AutoGluon-TimeSeries
emphasizes ensemble learning.

In the global univariate experiments, the comparison is extended to whether pool-
ing across time series can improve upon the strongest local baseline. The global
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multivariate setting further builds on this by testing whether incorporating multi-
variate dependencies leads to gains over the best-performing global univariate ap-
proach. Finally, the peak-aware experiments focus specifically on improving pre-
dictions during sudden hydraulic head surges, where the best-performing method
from the earlier stages serves as the baseline.

5.2 Data

The dataset used in our experiments consists of measurements from 10 monitoring
sites on dikes in the province of South-Holland, the Netherlands and is publicly
available through the open-data portal of the TU Delft [61]. The original dataset
contains 65 time series, but 14 of these were excluded due to missing values or er-
roneous measurements, resulting in a total of 51 time series. Each site contains be-
tween 4 and 6 piezometers placed along a cross-sectional profile of a dike. A typical
cross-sectional profile is illustrated in Figure 1.1. Each piezometer is equipped with
a filter at the bottom, allowing groundwater to enter the tube. A diver placed inside
the piezometer records the water level, which rises as pore water pressure increases.
The measurements are expressed as hydraulic head values relative to Normaal Am-
sterdams Peil (NAP), the Dutch national reference for approximated mean sea level,
and serve as the target variable in our forecasting tasks.

All series were resampled to daily resolution. To enrich the dataset, we include
two covariates provided by the Royal Netherlands Meteorological Institute (KNMI):
daily precipitation (mm/day) measured at a South-Holland weather station, and
potential evaporation (mm/day) estimated using the Makkink method [62]. Both
precipitation and evaporation datasets are publicly available through the Meteobase
portal [63].

The placement of piezometers along the cross-section leads to distinct behaviors:
sensors near the canal exhibit relatively stable signals, whereas those located on
the slope of the dike show larger variability in hydraulic head fluctuations. Eight
sites were recorded between February 2020 and January 2025, while two sites were
recorded between May 2020 and January 2025. To make sure the performance across
all time series is comparable, we fixed the observation window of each time series
to start at 2020-07-08, and to end at 2024-12-31 resulting in time series of 1638 data
points each. The dataset contains very few missing values or outliers (<0.1%), which
were handled through linear interpolation. A full overview of the time series in-
cluded in this work can be found in Appendix A.

5.3 Evaluation protocol

All experiments follow a standard evaluation protocol to ensure comparability across
approaches and research questions. We use a multi-window backtesting approach
to generate forecasts, with a prediction horizon of three days. The three day forecast
horizon was chosen to mimic practical application; As we include precipitation and
evaporation as covariates, these values are forecasted in practice, and long term fore-
casts lose most of their reliability after three days. For each experiment, we define
K rolling forecast origins, and evaluate the predictions over the according K predic-
tion windows. To maintain comparability across sites, all test sets are taken as the
final K windows of each time series. As all time series end on the same calendar
day, this ensures that differences in performance are due to modeling choices, and
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not differences in temporal coverage. To account for stochasticity in model training,
each experiment is run on three different random seeds. The results are always re-
ported as the mean across runs, and for completeness we also provide the standard
deviation.

5.4 Evaluation metrics

Performance is assessed using two metrics: mean absolute error (MAE) and mean
absolute percentage error (MAPE). MAE provides a measure that is directly inter-
pretable in physical units (centimeters relative to NAP), which directly indicates
how far predictions differ from actual hydraulic heads. MAPE complements this
by providing a scaled measure through normalizing the errors relative to the mag-
nitude of the time series. MAPE provides extra insight into the relative performance
across piezometers, as piezometers placed in different sections on a cross profile
have different levels of variability.

Formally, for a forecast horizon of length H (here H = 3) and K backtest windows
with forecast origins τ1, . . . , τK, the metrics are defined as:

MAE =
1

KH

K

∑
k=1

H

∑
h=1

∣∣zτk+h − ẑτk+h
∣∣, (5.1)

MAPE =
100
KH

K

∑
k=1

H

∑
h=1

∣∣∣∣ zτk+h − ẑτk+h

zτk+h

∣∣∣∣ , (5.2)

where zτk+h denotes the observed value at horizon h after forecast origin τk, and
ẑτk+h is the corresponding model prediction. Both metrics aggregate errors across all
horizons and all backtest windows, ensuring a robust evaluation of forecasting per-
formance. Additionally, we provide the ’wins’ for each model. The wins correspond
to the amount of time series on which a listed model returned the lowest MAE.

5.5 Statistical significance testing

To assess whether observed differences in forecasting performance are statistically
significant, we apply the Wilcoxon signed-rank test [64] with the less alternative hy-
pothesis, testing whether the first method achieves lower errors than the second.
The Wilcoxon test is a nonparametric paired test that compares distributions of er-
rors across time series.

For each site, model errors are first averaged across the three random seeds to obtain
a single score. This ensures that stochasticity in training does not inflate the number
of paired samples. The number of pairs, n, is therefore equal to the number of time
series (n = 51). In this test, the statistic W denotes the sum of the ranks of positive
differences (i.e., cases where the first method performs worse). A small W value
indicates consistent improvement of the first method across sites.

Throughout the results chapter, we report the Wilcoxon test outcome as (W, n, p)
when comparing a candidate method to the best-performing baseline. Statistical
significance is evaluated at the conventional α = 0.05 level.
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Additionally, we provide a critical distance (CD) diagram of the Nemenyi test [65].
The Nemenyi test is a nonparametric post-hoc procedure that evaluates whether
differences between average ranks of multiple strategies are statistically significant.
The resulting CD diagram visualizes the mean rank of each strategy across all time
series, while a horizontal bar connects methods whose rank differences fall below
the critical distance. In this way, the plot provides an overview of which methods
perform comparably and which are significantly different. The Wilcoxon signed
rank test is applied to all experiments, and the Nemenyi test with CD diagram is
applied to all experiments containing more than two models in the comparison.
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Chapter 6

Results

In this chapter we report the experimental results and answer the research questions
posed in Chapter 5. Throughout this chapter, values are reported as mean± standard
deviation across the 51 piezometer time series, averaged over three random seeds. A
win denotes the number of sites on which a method achieved the lowest MAE. Bold-
face values indicate the best mean performance across methods; they do not imply
statistical significance, which is assessed separately using the procedure described in
Chapter 5. We proceed in four steps. First, we benchmark AutoGluon-TimeSeries
(AG-TS) against classical local models and alternative AutoML frameworks in the
local univariate setting. Second, we extend AG-TS to a global univariate approach and
compare several pooling strategies. Third, we reframe forecasting as a global mul-
tivariate problem at the site level. A full per-site comparison of the results of these
three models, as well as boxplots for the distribution of the errors, is provided in Ap-
pendix B. Finally, we evaluate BOSP+Peak designed to improve performance specif-
ically during sudden hydraulic head surges. The full results table of BOSP+Peak can
be found in Appendix D.

6.1 Local univariate results

Table 6.1 shows the performance of the local univariate models across all piezome-
ters. Among the classical baselines, the AutoRegressive model achieved the best av-
erage results. This suggests that for some time series the dynamics are not too com-
plex, allowing a relatively simple model to capture them well. ARIMA and SARIMA
only provided small improvements over the Naive and exponential smoothing fore-
casts, and their large error variances show that these methods were not reliable
across sites.

The two alternative AutoML frameworks (AutoTS, HyperTS) rely on evolutionary
search to pick a single model family before hyperparameter tuning. This often pro-
duced unstable selections across runs and sites: when the candidate space includes
many comparable options, small differences in search trajectories lead to different
winners and varying errors. HyperTS, in particular, underperformed on average
relative to the Naive baseline but did achieve the best score on four sites. This is evi-
dence that it can occasionally discover strong configurations, but is unstable overall.
AutoTS behaved more consistently but rarely achieved site-level wins. Overall, both
approaches show that “finding one good model” is possible in principle but lacks ro-
bustness across time series.

AutoGluon-TimeSeries (AG-TS) showed the best performance overall. It obtained
the lowest mean absolute error (3.12) and mean absolute percentage error (1.99),
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and it produced the lowest error on 34 of the 51 sites. Its error variance was also
much lower than the other methods, which indicates that it is more reliable across
different conditions. The ensemble strategy of AG-TS, which combines multiple
models rather than relying on a single one, likely contributes to both its accuracy
and its stability.

TABLE 6.1: Local univariate model performance comparison

Model MAE MAPE Wins

AG-TS† 3.121 ± 0.681 1.99 ± 0.38 34
AutoRegressive 3.367 ± 3.138 2.22 ± 3.66 10
ARIMA 3.559 ± 3.801 2.35 ± 4.29 2
AutoTS† 3.678 ± 3.422 2.33 ± 3.01 1
SARIMA 3.737 ± 3.577 2.39 ± 3.17 0
Naive 3.930 ± 3.785 2.60 ± 4.22 0
Exponential Smoothing 4.014 ± 3.839 2.64 ± 4.24 0
HyperTS† 4.183 ± 4.712 2.78 ± 4.65 4

FIGURE 6.1: CD diagram of the Nemenyi test for the local univari-
ate models. The numbers represent the mean ranks, where lower is
better. Ranks with non-significant difference are connected with a

horizontal line.

To test whether the improvement of AG-TS over the classical baselines was statisti-
cally significant, we applied a Wilcoxon signed-rank test across all time series. The
test comparing AG-TS to the best performing baseline (AutoRegressive) resulted in
W = 549, n = 51, and p = 0.14. This indicates that the difference is not statistically
significant at the conventional α = 0.05 level.

With these results, we can answer the first research question: What is the best-performing
method for local univariate hydraulic head forecasting among classical approaches and Au-
toML frameworks? AG-TS achieved the best overall performance, with the lowest
mean error (MAE 3.12, MAPE 1.99), the most site-level wins (34 of 51), and substan-
tially lower variance than the alternatives. The Wilcoxon test comparing AG-TS to
the next-best model (AutoRegressive) did not confirm a statistically significant im-
provement (W = 549, n = 51, p = 0.14), but AG-TS nevertheless provides the most
consistent and reliable results. We therefore adopt it as the local univariate reference
model for subsequent experiments.
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6.2 Global univariate results

In the global univariate setting (Table 6.2), strategies based on simple pooling did
not improve over the local AG-TS baseline. The full global model, which trains
on all series jointly, showed high error variance. This is a classic negative-transfer
effect: sites differ in hydrological response (e.g., lag and gain with respect to precipi-
tation/evaporation), so parameters that help one subset can degrade others. Unable
to separate or weight incompatible series, the model fits an “average” relationship
that fits no site particularly well.

TABLE 6.2: Global univariate strategy performance comparison av-
eraged across all time series. All strategies train an AG-TS model on
the subset proposed by that strategy; The ’Local univariate’ row is the

best found model in Section 6.1

Strategy MAE MAPE Wins

BOSP 2.615 ± 0.071 1.87 ± 0.04 46
Local univariate AG-TS 3.121 ± 0.681 1.99 ± 0.38 5
Full global model 3.773 ± 2.166 2.64 ± 3.52 0
DTW similarity 3.807 ± 0.406 2.69 ± 0.41 0
Same location 3.831 ± 0.409 2.69 ± 0.59 0
Greedy forward selection 3.867 ± 0.314 2.67 ± 0.38 0
Feature-based clustering 3.893 ± 0.492 2.73 ± 0.59 0

FIGURE 6.2: CD diagram of the Nemenyi test for the global univari-
ate models. The numbers represent the mean ranks, where lower is
better. Ranks with non-significant difference are connected with a

horizontal line.

The simple selective pooling strategies also struggled. Feature-based clustering showed
the worst performance on average, while this approach has had success in other do-
mains. Selective pooling through DTW similarity, Greedy forward selection and
taking time series from the same location also did not result in any significant im-
provement over the local univariate baseline. Clearly, these methods struggle to find
subsets of time series that are informative to the global univariate approach using
AG-TS.

BOSP overcomes this by learning which subsets are informative. We embed each
candidate subset into a feature vector (summarizing the series in the subset) and
model the mapping from subset features to validation loss with a Gaussian Process
(GP). After initial random exploration of subsets to shape the GP posterior, we select
new subsets via the Expected Improvement (EI) acquisition, which trades off ex-
ploring uncertain regions and exploiting areas with predicted lower loss. As shown
in Figure 6.3, once the posterior stabilizes (typically after ∼30 evaluations), EI re-
peatedly proposes subsets that beat the local baseline and progressively improves



24 Chapter 6. Results

the best error. This explains BOSP’s low mean error (MAE 2.62; MAPE 1.87) and
dominant site-level wins (46/51).

A paired analysis across all time series confirms that BOSP provides a statistically
significant improvement over the local baseline. The Wilcoxon signed-rank test com-
paring BO global univariate to the Local univariate model resulted in W = 215,
n = 51, one-sided p < 10−8. This shows that the performance gains of BOSP are
both consistent across sites and statistically robust.

This allows us to answer our second research question: Can global univariate models
outperform local univariate models, and which strategies are most effective? The results
showed that a full global model has to deal with too much noise to improve perfor-
mance overall, and that simple selective pooling strategies do not partition the time
series into subsets that are informative for AG-TS. Using Bayesian Optimization to
optimize the subset selection did prove informative, resulting in a clear improve-
ment over the local univariate baseline.
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FIGURE 6.3: Bayesian optimization progress for four representative
piezometers. Blue markers denote evaluated subsets, the red line the
best subset found so far, and the dashed green line the baseline per-
formance of a local run. The baseline is the best found error by the

local univariate model.

6.3 Global multivariate results

Table 6.3 compares the performance of the multivariate models with the best global
univariate approach (BOSP) and the local univariate baseline. The multivariate
models did not outperform the global univariate strategy. On average, the multi-
variate error was higher (MAE 3.44, MAPE 1.85) but did win on 12 sites, compared
to 37 site-specific wins for BOSP.
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TABLE 6.3: Multivariate strategy performance comparison averaged
across all time series

Strategy MAE MAPE Wins

BOSP 2.615 ± 0.071 1.87 ± 0.12 37
Local univariate AG-TS 3.121 ± 0.681 1.99 ± 0.38 2
Multivariate 3.444 ± 0.187 1.85 ± 0.10 12

FIGURE 6.4: CD diagram of the Nemenyi test for the multivariate
models. The numbers represent the mean ranks, where lower is bet-
ter. Ranks with non-significant difference are connected with a hori-

zontal line.

The fact that the multivariate model got the lowest error on 12 sites requires addi-
tional analysis. The multivariate experiments are set up so that all time series from a
site are modeled jointly, as the piezometers at the same site experience the same in-
ternal and external stressors, possibly allowing for informative features from these
nearby piezometers. Figure 6.5 shows that the wins were spread across five loca-
tions, showing improvements in at most half of the sensors of a single location. This
indicates that multivariate modeling can be useful under certain local conditions,
but the benefits are not consistent across the entire dataset. This also suggests that
while multivariate forecasting is not competitive as a general strategy, it remains rel-
evant in specific settings, and further work could explore which site characteristics
drive these gains.
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FIGURE 6.5: Total amount of piezometer wins per site for each strat-
egy. Wins are calculated based on MAE. The amount of piezometers
varies from 4 to 6 per site, and each piezometer represents a time se-

ries.
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Additionally, although the multivariate models perform worse in terms of MAE, Ta-
ble 6.3 shows that they perform better in terms of MAPE. This can occur because
MAPE normalizes errors by the magnitude of the series, and several of the piezome-
ters where the multivariate model performs well are those with smaller hydraulic
head values. This results in a lower relative error, while the absolute error remains
higher.

We can now answer our third research question: Does incorporating location specific
multivariate information improve forecasting accuracy over the best global univariate model?
While the results suggest that there may be specific settings in which a multivari-
ate approach is beneficial, it is generally outperformed by the global univariate ap-
proach. After assessing the three modeling approaches (local univariate, global uni-
variate and global multivariate) on our dataset, we found that the global univariate
approach performs best. We will use this approach in the final set of experiments,
which focuses on peaks in the hydraulic head time series.

6.4 Hydraulic head peaks results

We augment BOSP with a peak predictor that estimates, for each forecast window,
the probability of a peak. The predicted probabilities are passed as covariates to AG-
TS so the forecaster can condition on peak risk. Because peaks are rare but critical,
an effective peak signal can help indicate peak periods.

Table 6.4 summarizes the results of adding our proposed peak predictor (BOSP+Peak)
compared to the original BOSP strategy. While the overall MAE slightly increased
compared to BOSP (2.642 vs 2.615) the performance at peaks increased notably, with
the peak MAE reduced from 9.44 to 7.74. This shows that the BOSP+Peak helps the
model adjust to possible peaks, even if it comes at a slight cost in overall accuracy.

TABLE 6.4: Performance comparison with and without peak predic-
tor averaged across all time series

Strategy Total MAE Peak MAE

BOSP 2.615 ± 0.071 9.44 ± 0.57
BOSP+Peak 2.642 ± 0.062 7.74 ± 0.46

Figure 6.6 compares the results at peak moments of BOSP+Peak to the original BOSP
approach. BOSP+Peak improves peak performance at 75% of the sites. The fact
that the peak predictor rarely results in much worse performance shows that it is
informative, but not harmful to the model.

Statistical analysis across all time series supports this conclusion. Peak MAE im-
proved significantly with BOSP+Peak (Wilcoxon signed-rank: W = 215, n = 51,
one-sided p < 10−5). In contrast, the change in total MAE was not significant
(Wilcoxon signed-rank: W = 668, n = 51, one-sided p = 0.42), confirming that
the overall error difference remained statistically indistinguishable from BOSP.

To illustrate the range of outcomes, Figure 6.7 shows differences in forecasts for
three sites representing the 25th, 50th and 75th percentile of improvement in peak
MAE.

The results answer our final research question: How can forecasting performance during
sudden hydraulic head peaks be improved? As we have shown, including a dedicated
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peak predictor and passing the predicted probability of peaks in the prediction win-
dow as covariates improves the performance of the model at peak moments, while
keeping overall accuracy mostly the same.
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Chapter 7

Conclusions and future work

In this thesis, we investigated the use of AutoML for hydraulic head forecasting in
dikes. Though AutoML techniques have been used for hydraulic head forecasting
in wells, this is, to the best of our knowledge, the first application of AutoML in the
domain of dikes. This domain is unique due to its layered structures, site-specific
boundary conditions and variable response to external and internal stressors, while
its short-term forecasting accuracy is directly tied to the dike stability and flood de-
fense safety. The goal was to investigate whether AutoML can provide improve-
ments over traditional forecasting approaches, and to explore extensions to make
the AutoML approach more suitable to our domain. Our experiments addressed
four research questions, each focusing on a different modeling strategy.

First, we evaluated the performance of AutoGluon-TimeSeries against classical time
series forecasting methods, as well as other AutoML frameworks in a local univari-
ate setting. Though the results of AG-TS were not significantly better than the sec-
ond best performing model (simple autoregressive) the results did show that AG-TS
achieved lower error metrics compared to all other strategies, and achieved the low-
est error on 34 out of 51 time series. This established AG-TS as a good baseline for
further experiments.

Second, we investigated AG-TS in a global univariate setting, where the model
learns information across multiple time series. Training the model on all time series
in the dataset introduces too much noise to improve performance, so we used sev-
eral strategies to partition the time series into smaller subsets. The selective pooling
strategies we used came from either relevant literature (DTW, feature-based cluster-
ing) or domain knowledge (series from the same location). As these strategies were
unable to partition the dataset in meaningful subsets, we proposed Bayesian Op-
timization for Selective Pooling (BOSP). BOSP adaptively searched for informative
subsets through Bayesian Optimization, which did result in clear improvements. It
achieved the lowest error overall, and consistently outperformed the local univari-
ate baseline across sites. Our results showed that global models can outperform local
models, but only if the time series are partitioned into meaningful subsets on which
the model can be trained.

Third, we tested whether multivariate models could exploit dependencies between
piezometers at the same site. We implement the AG-TS approach with robust model
presets and ensembling using the multivariate counterparts of the AG-TS models
in DARTS. While the multivariate models achieved lower error on certain time se-
ries, they did not outperform the BOSP approach from the previous experiments.
Their relative performance in mean absolute percentage error (MAPE) combined
with good performance at certain sites does suggest they may be useful for certain
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specific situations, especially when the magnitude of the values is smaller. Their
general performances maintained inconsistent, showing that multivariate forecast-
ing is not the best solution in this context.

Finally, we developed a peak-aware forecasting strategy to improve predictions dur-
ing sudden hydraulic head peaks. We introduced a separate model to predict peaks
during the time series, and use its predictions as covariates within AG-TS. This re-
duced peak errors significantly, while only slightly increasing the overall error. This
shows that our peak-aware forecasting method is a useful complement to previous
approaches.

7.1 Limitations

While we have shown results that could be useful in practice, the work has certain
limitations. We evaluated all models using 10 backtesting windows to ensure com-
parability across experiments. While this design choice provides a consistent basis
for comparison, it may not fully capture longer-term variability in model perfor-
mance. Larger test sets or more extensive backtesting would have provided addi-
tional insight into the robustness of the methods.

This extends into the size of our dataset; though we use 51 time series, these come
from a limited 10 measuring locations, all located in the same province. Due to the
computational cost of AG-TS and BOSP, including more experiments and/or time
series was unfortunately not possible.

Additionally, our experiments assumed perfect knowledge of covariates such as pre-
cipitation and evaporation. In practice, these values come from weather forecasts
that are inherently uncertain. As we did not include uncertainty around these co-
variates, some questions in this regard remain unanswered.

7.2 Future work

Although this work presents only the first step into including AutoML methods into
the domain of hydraulic head forecasting in dikes, we have shown the potential of
this direction. Therefore several directions remain open for future research.

In this work, we observed a large improvement in performance through our pro-
posed BOSP method. Though this method showed promise, it is computationally
expensive. We see several options to improve its efficiency, for instance through
surrogate assisted optimization, different dimensionality reduction techniques or
smarter exploration of the search space. As the work presented in this thesis has
a large potential for practical application, improving efficiency could make it more
attractive for operational use. Another interesting direction regarding BOSP is to
investigate whether the informative subsets defined by BOSP stay stable over time,
or if they evolve over time. This could provide insight into the temporal dynamics
of these time series and the cross-series relationships that are important in the use of
global univariate models.

Our peak-aware forecasting approach could also be extended in multiple ways. Our
current classifier had to deal with a large class imbalance, as peaks are relatively rare
compared to non-peaks. Exploring alternative models or imbalance-aware strategies
could improve the peak forecasting performance.
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Finally, we assumed perfect knowledge of precipitation and evaporation at predic-
tion time for our covariates. As uncertainty is an important factor of hydraulic head
forecasting, further research could focus on including probabilistic forecast or sce-
nario testing to improve these models for practical use in dike monitoring and flood
defense.

Together, these directions highlight the potential to further strengthen AutoML-
based approaches for hydraulic head forecasting, both in methodological develop-
ment and in preparing them for practical use in dike monitoring and flood defense
management.

7.3 Code and data availability

The code used for all experiments in this thesis, along with preprocessing scripts
and sample data is available at github.com/bramvaneerden/AutoML-Hydraulic-
Head. The hydraulic head dataset used in this thesis contains measurements until
January 1, 2025; an updated version is available through the data portal of TU Delft
[61]. Precipitation and evaporation data are available through the Meteobase plat-
form [63].

https://github.com/bramvaneerden/AutoML-Hydraulic-Head
https://github.com/bramvaneerden/AutoML-Hydraulic-Head
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Appendix A

Dataset overview

This appendix gives a full overview of all time series included in this work. This
section is intended to provide additional information on the dataset as described
in Chapter 5 Each time series is recorded through a piezometer at a measuring site
(e.g. Aarland), and the position of the piezometer on the cross-sectional profile of
the dike is indicated by the integer following the site name (e.g. aarland_1). The
piezometers are placed in ascending order from closest to the water body to furthest
away. Some piezometers contain a (additional) diver that measures the groundwater
level at a lower depth, meant for specific stability calculations. These piezometers
are indicated with ’_002’ at the end of the id.

A.1 Distribution of hydraulic head
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FIGURE A.1: Distribution of hydraulic head per time series, shown
through boxplots. It is often the case that piezometer placed closest to
the waterbody (e.g. aarland_1) show lower variance and piezometers
placed further inland (e.g. aarland_5) show higher variance. Seep-
age from the water body itself keep the water level relatively stable at
nearby piezometers, but piezometers placed further away are influ-

enced more heavily by external stressors.
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A.2 Statistics per series

id date min date max mean variance min max Missing %

aarland_1_001 2020-07-08 2024-12-31 -213.335465 4.973381 -219.342542 -204.005375 0.0
aarland_2_001 2020-07-08 2024-12-31 -265.159148 212.766304 -293.039500 -218.567333 0.0
aarland_3_001 2020-07-08 2024-12-31 -360.415716 421.350907 -415.173667 -312.891625 0.0
aarland_4_001 2020-07-08 2024-12-31 -405.365180 936.619754 -485.915583 -349.507208 0.1
aarland_5_001 2020-07-08 2024-12-31 -421.172355 817.924478 -496.143083 -383.367292 0.0
bermweg_1_001 2020-07-08 2024-12-31 -228.708083 4.413103 -234.750333 -219.685708 0.0
bermweg_2_001 2020-07-08 2024-12-31 -259.101232 24.422168 -274.461708 -249.764542 0.0
bermweg_3_001 2020-07-08 2024-12-31 -306.955125 142.415548 -339.448917 -282.596583 0.0
bermweg_4_001 2020-07-08 2024-12-31 -385.856732 221.333109 -424.298333 -356.002833 0.0
bermweg_5_001 2020-07-08 2024-12-31 -441.482702 85.421827 -461.568333 -418.218000 0.0
duifpolder_n_1_001 2020-07-08 2024-12-31 -73.203981 4.386675 -83.273792 -64.350417 0.0
duifpolder_n_2_001 2020-07-08 2024-12-31 -131.555723 84.508124 -147.236958 -93.179667 0.0
duifpolder_n_2_002 2020-07-08 2024-12-31 -141.819577 29.925816 -161.737458 -122.970875 0.0
duifpolder_n_3_001 2020-07-08 2024-12-31 -270.405178 237.507569 -306.874167 -233.169708 0.0
duifpolder_n_4_001 2020-07-08 2024-12-31 -297.176917 25.552147 -313.454583 -285.919542 0.0
duifpolder_z_1_001 2020-07-08 2024-12-31 -98.533921 9.014223 -109.130750 -85.636750 0.0
duifpolder_z_2_001 2020-07-08 2024-12-31 -181.293835 43.866921 -202.013750 -158.967625 0.0
duifpolder_z_3_001 2020-07-08 2024-12-31 -243.792905 128.812129 -267.363542 -212.811833 0.0
duifpolder_z_4_001 2020-07-08 2024-12-31 -292.940836 89.334139 -315.368958 -270.339208 0.0
geerblank_1_001 2020-07-08 2024-12-31 -107.380242 75.909170 -133.254125 -80.553625 0.0
geerblank_2_001 2020-07-08 2024-12-31 -223.488591 212.392498 -281.862500 -194.004625 0.0
geerblank_3_001 2020-07-08 2024-12-31 -254.539731 684.963291 -325.737708 -197.812500 0.0
geerblank_4_001 2020-07-08 2024-12-31 -307.035310 141.392835 -349.608958 -284.453500 0.0
groen_molen_1_002 2020-07-08 2024-12-31 -93.963190 88.014378 -136.433500 -78.526375 0.0
groen_molen_2_001 2020-07-08 2024-12-31 -168.077153 789.468883 -228.080042 -103.160792 0.0
groen_molen_2_002 2020-07-08 2024-12-31 -164.045595 411.293681 -210.497417 -107.503083 0.0
groen_molen_3_001 2020-07-08 2024-12-31 -179.650399 832.621087 -262.867875 -117.605542 0.0
groen_molen_3_002 2020-07-08 2024-12-31 -176.046787 112.589941 -208.940333 -156.804792 0.1
groen_molen_4_001 2020-07-08 2024-12-31 -191.494376 441.678178 -241.998417 -147.803125 0.0
groen_molen_5_001 2020-07-08 2024-12-31 -196.199767 619.116677 -257.423458 -149.514042 0.0
hennipsloot_1_001 2020-07-08 2024-12-31 -256.477542 68.111757 -284.952417 -239.628500 0.0
hennipsloot_2_001 2020-07-08 2024-12-31 -283.370358 353.767860 -350.272792 -248.109000 0.0
hennipsloot_3_001 2020-07-08 2024-12-31 -322.872221 602.935054 -404.737667 -261.572500 0.0
hennipsloot_4_001 2020-07-08 2024-12-31 -360.838635 1598.840535 -443.873917 -283.081750 0.1
hennipsloot_5_001 2020-07-08 2024-12-31 -375.061039 1146.017540 -457.905625 -326.363292 4.3
molenlaan_1_001 2020-07-08 2024-12-31 -123.476442 420.136394 -140.076500 -42.069125 0.0
molenlaan_1_002 2020-07-08 2024-12-31 -114.229331 359.787286 -160.372875 -53.414083 0.0
molenlaan_2_001 2020-07-08 2024-12-31 -150.105333 1523.985715 -225.153667 -59.407917 0.0
molenlaan_2_002 2020-07-08 2024-12-31 -131.976129 736.793369 -194.847208 -68.984417 0.0
molenlaan_3_001 2020-07-08 2024-12-31 -159.175207 1192.449267 -234.947833 -94.194542 0.0
molenlaan_3_002 2020-07-08 2024-12-31 -141.637604 517.684803 -187.867792 -98.980583 0.0
molenlaan_4_001 2020-07-08 2024-12-31 -140.187631 282.332822 -185.245750 -105.436042 0.0
mtpolder_1_001 2020-07-08 2024-12-31 -323.083018 303.297824 -389.750042 -294.777000 0.0
mtpolder_2_001 2020-07-08 2024-12-31 -465.431308 313.732699 -523.803167 -437.374458 0.0
mtpolder_3_002 2020-07-08 2024-12-31 -569.477592 428.016149 -661.436042 -529.975125 0.0
mtpolder_4_002 2020-07-08 2024-12-31 -580.179098 429.743225 -670.346208 -542.444833 0.0
mtpolder_5_002 2020-07-08 2024-12-31 -580.296347 387.922806 -651.302042 -542.847125 0.0
noordringdijk_2_001 2020-07-08 2024-12-31 -308.799206 72.806281 -330.774708 -292.481375 0.0
noordringdijk_3_001 2020-07-08 2024-12-31 -416.177757 151.839550 -458.688333 -392.309458 0.0
noordringdijk_4_001 2020-07-08 2024-12-31 -514.143224 338.610753 -592.728083 -479.396167 0.0
noordringdijk_5_001 2020-07-08 2024-12-31 -597.926313 155.531258 -623.308583 -569.423750 0.0

TABLE A.1: Statistics for each time series in the dataset. All time
series span the same period, but vary in hydraulic head distribution.
Missing values are presented as percentage of the total points in the

time series.
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Appendix B

Per-series model errors

This appendix gives an overview of the model errors of the local univariate, global
univariate, and global multivariate models for each time series. Figure B.1 shows
the total amount of wins per strategy and Figure B.2 shows the difference between
the best error found and the errors produced per strategy. Tables B.1 and B.2 show
the complete set of errors for all time series and models. Figure B.3 shows the dis-
tribution of the error values through boxplots. These per-series results complement
the aggregate results presented in Chapter 6 by highlighting site-level variation and
identifying cases where a strategy performs better or worse.

B.1 Wins per strategy
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FIGURE B.1: Winning strategy per site for MAE (left) and MAPE
(right). Bars show how often each strategy achieves the lowest per-

series error across the 51 time series.

B.2 Average error comparison

BO global univariate

Local univariate model
Multivariate

0.0

0.5

1.0

1.5

2.0

2.5

M
AE

 to
 p

er
-s

ite
 b

es
t

Distribution of MAE across sites

BO global univariate

Local univariate model
Multivariate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AP

E 
to

 p
er

-s
ite

 b
es

t

Distribution of MAPE across sites

FIGURE B.2: Distributions of ∆ to the per-site best for MAE (left) and
MAPE (right). For each time series, ∆ is computed as the strategy’s

error minus the best error achieved at that series.
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B.3 Per-location MAE
TABLE B.1: Per-location MAE (mean ± std) per strategy, averaged
across three seeds. Boldface entries denote the lowest mean error

among the three strategies for that series.

location BOSP Local Multi

aarland_1_001 1.341 ± 0.008 1.387 ± 0.287 1.351 ± 0.007
aarland_2_001 2.130 ± 0.064 4.042 ± 0.417 7.017 ± 0.542
aarland_3_001 2.899 ± 0.046 3.381 ± 0.289 4.212 ± 0.417
aarland_4_001 2.419 ± 0.009 2.765 ± 0.562 6.375 ± 0.526
aarland_5_001 1.140 ± 0.177 1.776 ± 0.634 3.083 ± 0.602
bermweg_1_001 0.243 ± 0.013 0.386 ± 0.140 0.636 ± 0.001
bermweg_2_001 0.392 ± 0.009 0.945 ± 0.364 0.871 ± 0.039
bermweg_3_001 0.827 ± 0.077 2.264 ± 0.472 1.577 ± 0.036
bermweg_4_001 1.271 ± 0.188 1.990 ± 0.708 1.813 ± 0.033
bermweg_5_001 2.081 ± 0.095 2.241 ± 0.656 1.887 ± 0.281
duifpolder_n_1_001 1.177 ± 0.022 1.816 ± 0.713 1.008 ± 0.018
duifpolder_n_2_001 4.791 ± 0.226 4.952 ± 0.293 2.494 ± 0.043
duifpolder_n_2_002 2.742 ± 0.129 3.024 ± 0.696 1.917 ± 0.038
duifpolder_n_3_001 1.382 ± 0.193 2.949 ± 1.168 2.557 ± 0.194
duifpolder_n_4_001 0.762 ± 0.036 0.923 ± 0.375 0.901 ± 0.024
duifpolder_z_1_001 2.295 ± 0.016 2.858 ± 1.020 2.291 ± 0.038
duifpolder_z_2_001 2.793 ± 0.171 3.565 ± 1.002 3.198 ± 0.008
duifpolder_z_3_001 2.622 ± 0.030 2.660 ± 0.228 2.415 ± 0.036
duifpolder_z_4_001 1.588 ± 0.004 1.727 ± 0.526 2.097 ± 0.118
geerblank_1_001 2.017 ± 0.064 2.725 ± 1.214 2.494 ± 0.086
geerblank_2_001 1.231 ± 0.036 1.923 ± 1.437 2.422 ± 0.242
geerblank_3_001 3.768 ± 0.240 2.391 ± 1.197 5.148 ± 0.072
geerblank_4_001 1.493 ± 0.059 1.648 ± 0.232 2.610 ± 0.372
groen_molen_1_002 1.761 ± 0.226 1.991 ± 0.386 2.297 ± 0.107
groen_molen_2_001 6.033 ± 0.313 4.236 ± 0.592 4.518 ± 0.233
groen_molen_2_002 5.892 ± 0.089 6.014 ± 0.218 4.852 ± 0.308
groen_molen_3_001 5.285 ± 0.285 5.458 ± 0.430 5.115 ± 0.140
groen_molen_3_002 1.422 ± 0.032 1.619 ± 1.026 1.599 ± 0.070
groen_molen_4_001 4.366 ± 0.127 8.335 ± 1.821 5.500 ± 0.142
groen_molen_5_001 3.275 ± 0.088 3.391 ± 0.504 3.922 ± 0.256
hennipsloot_1_001 1.257 ± 0.094 1.613 ± 0.202 1.711 ± 0.201
hennipsloot_2_001 2.221 ± 0.023 3.330 ± 1.080 3.623 ± 0.180
hennipsloot_3_001 4.312 ± 0.133 4.455 ± 1.440 5.436 ± 0.271
hennipsloot_4_001 4.565 ± 0.701 4.267 ± 1.190 5.803 ± 0.059
hennipsloot_5_001 1.293 ± 0.151 1.715 ± 0.520 5.846 ± 0.565
molenlaan_1_001 9.689 ± 0.552 6.021 ± 0.443 6.688 ± 0.242
molenlaan_1_002 4.326 ± 0.037 5.460 ± 1.116 4.191 ± 0.153
molenlaan_2_001 8.570 ± 0.249 8.199 ± 1.259 7.835 ± 0.325
molenlaan_2_002 3.600 ± 0.357 5.074 ± 1.336 3.502 ± 0.394
molenlaan_3_001a 3.263 ± 0.234 5.696 ± 0.330 3.826 ± 1.186
molenlaan_3_002a 1.216 ± 0.026 1.768 ± 0.651 3.589 ± 0.591
molenlaan_4_001 1.665 ± 0.207 2.638 ± 0.227 2.134 ± 0.033
mtpolder_1_001 1.824 ± 0.262 2.034 ± 0.340 2.523 ± 0.047
mtpolder_2_001 1.182 ± 0.008 1.379 ± 0.276 3.610 ± 0.096
mtpolder_3_002 3.197 ± 0.075 3.892 ± 1.034 5.102 ± 0.438
mtpolder_4_002 2.144 ± 0.139 3.950 ± 0.197 3.620 ± 0.083
mtpolder_5_002 3.395 ± 0.169 7.591 ± 0.739 3.809 ± 0.130
noordringdijk_2_001 0.601 ± 0.029 1.471 ± 0.287 1.308 ± 0.200
noordringdijk_3_001 1.330 ± 0.081 1.954 ± 0.774 3.016 ± 0.749
noordringdijk_4_001 0.914 ± 0.050 1.374 ± 0.596 6.039 ± 0.073
noordringdijk_5_001 1.298 ± 0.009 2.566 ± 0.241 2.403 ± 0.217
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B.4 Per-location MAPE
TABLE B.2: Per-location MAPE (mean ± std) per strategy, averaged
across three seeds. Boldface entries denote the lowest mean error

among the three strategies for that series.

location BOSP Local Multi

aarland_1_001 0.634 ± 0.004 0.626 ± 0.523 0.637 ± 0.003
aarland_2_001 1.027 ± 0.030 2.143 ± 0.345 2.976 ± 0.220
aarland_3_001 0.967 ± 0.015 1.024 ± 0.327 1.268 ± 0.129
aarland_4_001 0.706 ± 0.032 0.648 ± 0.260 1.635 ± 0.136
aarland_5_001 0.320 ± 0.046 0.443 ± 0.166 0.768 ± 0.152
bermweg_1_001 0.106 ± 0.006 0.151 ± 0.061 0.278 ± 0.000
bermweg_2_001 0.154 ± 0.019 0.318 ± 0.144 0.336 ± 0.015
bermweg_3_001 0.316 ± 0.026 0.500 ± 0.239 0.515 ± 0.011
bermweg_4_001 0.374 ± 0.051 0.543 ± 0.105 0.473 ± 0.008
bermweg_5_001 0.486 ± 0.023 0.360 ± 0.154 0.434 ± 0.065
duifpolder_n_1_001 1.772 ± 0.032 2.116 ± 0.197 1.364 ± 0.025
duifpolder_n_2_001 4.026 ± 0.153 3.440 ± 0.249 1.921 ± 0.036
duifpolder_n_2_002 1.952 ± 0.092 2.166 ± 0.327 1.365 ± 0.026
duifpolder_n_3_001 0.568 ± 0.074 1.088 ± 0.820 0.962 ± 0.073
duifpolder_n_4_001 0.261 ± 0.013 0.282 ± 0.199 0.303 ± 0.008
duifpolder_z_1_001 2.333 ± 0.128 2.915 ± 0.091 2.322 ± 0.035
duifpolder_z_2_001 1.638 ± 0.103 2.223 ± 0.151 1.854 ± 0.007
duifpolder_z_3_001 1.254 ± 0.015 0.953 ± 0.288 1.036 ± 0.019
duifpolder_z_4_001 0.589 ± 0.001 0.464 ± 0.192 0.715 ± 0.039
geerblank_1_001 2.058 ± 0.046 2.515 ± 0.229 2.211 ± 0.075
geerblank_2_001 0.662 ± 0.016 0.906 ± 0.625 1.122 ± 0.106
geerblank_3_001 1.849 ± 0.117 1.569 ± 0.607 2.289 ± 0.034
geerblank_4_001 0.549 ± 0.020 0.393 ± 0.182 0.852 ± 0.122
groen_molen_1_002 2.047 ± 0.221 2.166 ± 0.247 2.533 ± 0.114
groen_molen_2_001 5.061 ± 0.361 3.522 ± 0.475 3.296 ± 0.157
groen_molen_2_002 5.014 ± 0.096 4.559 ± 0.409 3.644 ± 0.207
groen_molen_3_001 4.046 ± 0.207 3.918 ± 0.260 3.335 ± 0.100
groen_molen_3_002 0.919 ± 0.019 0.977 ± 0.323 0.921 ± 0.039
groen_molen_4_001 2.761 ± 0.066 5.727 ± 0.522 3.064 ± 0.078
groen_molen_5_001 2.087 ± 0.058 1.938 ± 0.350 2.080 ± 0.132
hennipsloot_1_001 0.510 ± 0.106 0.574 ± 0.367 0.687 ± 0.082
hennipsloot_2_001 0.888 ± 0.008 1.282 ± 0.825 1.326 ± 0.066
hennipsloot_3_001 1.587 ± 0.054 1.187 ± 0.068 1.811 ± 0.084
hennipsloot_4_001 1.485 ± 0.231 1.493 ± 0.922 1.780 ± 0.013
hennipsloot_5_001 0.412 ± 0.044 0.450 ± 0.306 1.693 ± 0.164
molenlaan_1_001 15.869 ± 0.571 9.625 ± 0.308 8.716 ± 0.213
molenlaan_1_002 6.150 ± 0.040 7.560 ± 0.290 4.749 ± 0.177
molenlaan_2_001 10.874 ± 0.332 9.384 ± 0.132 8.128 ± 0.187
molenlaan_2_002 4.460 ± 0.407 6.248 ± 0.665 3.507 ± 0.408
molenlaan_3_001a 3.178 ± 0.200 3.703 ± 0.961 4.465 ± 0.203
molenlaan_3_002a 1.247 ± 0.032 1.680 ± 1.026 3.014 ± 0.481
molenlaan_4_001 1.509 ± 0.184 2.259 ± 0.935 1.668 ± 0.031
mtpolder_1_001 0.611 ± 0.083 0.648 ± 0.498 0.768 ± 0.013
mtpolder_2_001 0.282 ± 0.002 0.260 ± 0.193 0.780 ± 0.021
mtpolder_3_002 0.629 ± 0.014 0.881 ± 0.675 0.897 ± 0.074
mtpolder_4_002 0.418 ± 0.024 0.704 ± 0.434 0.630 ± 0.014
mtpolder_5_002 0.627 ± 0.029 1.274 ± 0.664 0.664 ± 0.022
noordringdijk_2_001 0.232 ± 0.010 0.360 ± 0.164 0.425 ± 0.064
noordringdijk_3_001 0.334 ± 0.020 0.465 ± 0.295 0.735 ± 0.184
noordringdijk_4_001 0.200 ± 0.010 0.252 ± 0.237 1.169 ± 0.014
noordringdijk_5_001 0.241 ± 0.002 0.408 ± 0.233 0.408 ± 0.037



36 Appendix B. Per-series model errors

B.5 Optimization progress
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FIGURE B.3: Boxplots of the results for the local univariate, global
univariate and multivariate experiments. For each experiment, a plot
is shown for MAE and MAPE. Models are ordered from left to right

based on the mean score across all time series.
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Appendix C

BOSP implementation details

This appendix provides implementation details of the BOSP method as proposed in
Chapter 4, as well as optimization dynamics and concrete subset examples for the
Bayesian Optimization for Selective Pooling (BOSP) results as described in Chap-
ter 6. The implementation settings are shown for reproducibility and the examples
are intended to provide additional insight into how BOSP selects informative train-
ing subsets. The first section outlines the hyperparameters used in the BOSP exper-
iments. The second section illustrates the optimization progress of eight time series
from the dataset, and the third section provides information on the size of the found
subset and the time series included in it.

C.1 Hyperparameters

Table C.1 summarizes the fixed hyperparameters used in all BOSP runs.

TABLE C.1: BOSP implementation settings.

Component Setting / Value

Initial random subsets (ninit) 30
Max BO iterations 30
Prediction horizon (H) 3 days
Validation windows 10 rolling windows
Objective Mean MAE over validation windows
Response transform log(MAE) for GP fit
Kernel Constant ×Matern(ν=2.5) with length scaling + White noise
Acquisition Expected Improvement (EI), ξ=0.01
Feature basis TSFresh→ Standardize→ PCA (19 comps)
Subset embedding mean(PCA), var(PCA), min-dist-to-target, subset size
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C.2 Optimization progress

Figure C.1 illustrates the optimization progress for the target time series. Each plot
shows the MAE of the evaluated subsets per iteration, the best-so-far subset, and the
local univariate AG-TS baseline.

(A) Geerblank_4_001 (B) Aarland_3_001

(C) Molenlaan_1_001 (D) Geerblank_1_001

(E) Duifpoldernoord_1_001 (F) Noordringdijk_3_001

(G) Aarland_2_001 (H) Noordringdijk_5_001

FIGURE C.1: Bayesian optimization progress for 8 piezometers. Blue
markers denote evaluated subsets, the red line the best subset found
so far, and the dashed green line the baseline performance of the local

univariate model.
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C.3 Subset composition

Table C.2 reports the final BOSP-selected subsets for the set of representative targets,
alongside baseline and final MAE.

Target Subset
size

Baseline
MAE

BOSP
MAE

% improv. Selected series

geerblank_4_001 2 1.65 1.53 6.9% groen_molen_3_002,
molenlaan_4_001

aarland_3_001 6 3.38 3.05 9.7% aarland_4_001,
duifpolder_z_4_001,
hennipsloot_4_001,
molenlaan_1_001,
molenlaan_3_002a,
molenlaan_4_001

molenlaan_1_002 18 5.46 4.49 17.8% bermweg_3_001,
bermweg_5_001,
duifpolder_n_1_001,
duifpolder_n_2_002,
duifpolder_z_3_001,
duifpolder_z_4_001,
geerblank_1_001,
groen_molen_3_002,
. . .

geerblank_1_001 26 2.72 2.05 24.6% aarland_3_001,
aarland_4_001,
bermweg_2_001,
bermweg_4_001,
duifpolder_n_2_001,
duifpolder_n_2_002,
duifpolder_n_4_001,
duifpolder_z_1_001,
. . .

duifpolder_n_1_001 6 1.82 1.26 30.9% aarland_1_001,
duifpolder_n_2_001,
geerblank_1_001,
groen_molen_1_002,
molenlaan_1_001,
mtpolder_5_002

noordringdijk_3_001 32 1.95 1.25 36.1% aarland_2_001,
aarland_3_001,
aarland_4_001,
bermweg_2_001,
bermweg_3_001,
bermweg_4_001,
duifpolder_n_2_001,
duifpolder_n_3_001,
. . .

aarland_2_001 5 4.04 2.27 44.0% bermweg_5_001,
duifpolder_z_1_001,
geerblank_3_001,
groen_molen_4_001,
noordringdijk_3_001

noordringdijk_5_001 5 2.57 1.39 45.9% aarland_3_001,
bermweg_4_001,
geerblank_2_001,
geerblank_4_001,
noordringdijk_4_001

TABLE C.2: Time series contained in the best found subset for eight
target series. For each subset the corresponding BOSP MAE is com-
pared to the local univariate model, as well as the percentage im-

provement.
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Appendix D

Peak predictor

This appendix provides implementation details of the peak predictor as described in
Chapter 4 and the aggregated results of the peak predictor in Chapter 6. The hyper-
parameters of the XGBoost model were found using gridsearch and the results are
shown in Table D.1. Grid search was performed over 20 random target time series,
and the best subsets found by BOSP were used to train the BOSP+Peak model. The
model was trained on 80% and evaluated on 20% of the data. Table D.2 shows the
top 10 best performing configurations of the grid search. Table D.3 shows the MAE
at peak moments for all time series for the BOSP and BOSP+Peak models.

D.1 BOSP+Peak hyperparameters

TABLE D.1: BOSP+Peak XGBoost hyperparameters.

Component Setting / Value

n_estimators 200
max_depth 4
learning_rate 0.05
subsample 0.8
colsample_bytree 0.8

D.2 Best performing configs

TABLE D.2: Ranking of the top 10 XGBoost hyperparameters across
targets. Values are mean±std across targets; AP is average precision

(AUPRC).

config_id xgb_config wins AUCmacro APmacro AUCh1 AUCh2 AUCh3

1 n=200, d=4, lr=0.05, ss=0.8, cs=0.8 9 0.731 ± 0.028 0.192 ± 0.025 0.879 ± 0.017 0.715 ± 0.034 0.598 ± 0.046
2 n=200, d=4, lr=0.05, ss=0.8, cs=1.0 6 0.730 ± 0.027 0.192 ± 0.023 0.879 ± 0.018 0.715 ± 0.034 0.595 ± 0.044
8 n=200, d=6, lr=0.05, ss=0.8, cs=1.0 0 0.726 ± 0.030 0.189 ± 0.028 0.876 ± 0.018 0.707 ± 0.037 0.594 ± 0.048
7 n=200, d=6, lr=0.05, ss=0.8, cs=0.8 2 0.725 ± 0.031 0.189 ± 0.029 0.876 ± 0.018 0.707 ± 0.038 0.593 ± 0.048

13 n=400, d=4, lr=0.05, ss=0.8, cs=0.8 0 0.724 ± 0.028 0.189 ± 0.030 0.874 ± 0.018 0.705 ± 0.035 0.593 ± 0.046
14 n=400, d=4, lr=0.05, ss=0.8, cs=1.0 0 0.723 ± 0.028 0.189 ± 0.027 0.874 ± 0.019 0.706 ± 0.035 0.590 ± 0.044
20 n=400, d=6, lr=0.05, ss=0.8, cs=1.0 0 0.721 ± 0.032 0.187 ± 0.032 0.873 ± 0.020 0.701 ± 0.039 0.591 ± 0.050
3 n=200, d=4, lr=0.1, ss=0.8, cs=0.8 0 0.721 ± 0.029 0.187 ± 0.029 0.872 ± 0.018 0.701 ± 0.037 0.591 ± 0.045

19 n=400, d=6, lr=0.05, ss=0.8, cs=0.8 0 0.721 ± 0.032 0.186 ± 0.031 0.873 ± 0.020 0.700 ± 0.039 0.590 ± 0.049
4 n=200, d=4, lr=0.1, ss=0.8, cs=1.0 0 0.720 ± 0.028 0.186 ± 0.028 0.872 ± 0.019 0.700 ± 0.036 0.589 ± 0.044

25 n=600, d=4, lr=0.05, ss=0.8, cs=0.8 0 0.720 ± 0.029 0.186 ± 0.032 0.871 ± 0.019 0.699 ± 0.036 0.590 ± 0.046
32 n=600, d=6, lr=0.05, ss=0.8, cs=1.0 1 0.720 ± 0.032 0.186 ± 0.032 0.871 ± 0.020 0.698 ± 0.040 0.590 ± 0.050
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D.3 Performance at peaks per series

TABLE D.3: Overview of the MAE for BOSP and BOSP+Peak at peak
moments for all time series in the dataset. Values are shown as
mean±std over three runs. Boldface entries represent the model with

the lowest error at a time series.

site_id BOSP BOSP+Peak Improvement

aarland_1_001 4.370±0.161 3.096±0.418 29.2%
aarland_2_001 9.954±0.472 3.701±0.770 62.8%
aarland_3_001 10.127±0.575 8.247±0.006 18.6%
aarland_4_001 9.534±0.028 7.881±0.063 17.3%
aarland_5_001 8.309±1.228 3.698±1.084 55.5%
bermweg_2_001 3.280±0.291 2.368±0.073 27.8%
bermweg_3_001 5.102±0.183 6.385±0.258 -25.2%
bermweg_4_001 6.711±1.026 6.793±0.206 -1.2%
bermweg_5_001 3.855±0.595 1.869±0.729 51.5%
duifpolder_n_1_001 5.822±0.240 6.017±0.322 -3.3%
duifpolder_n_2_001 20.482±0.300 18.807±0.853 8.2%
duifpolder_n_2_002 6.017±0.209 5.303±0.299 11.9%
duifpolder_n_3_001 3.391±0.609 3.309±0.252 2.4%
duifpolder_n_4_001 3.522±0.081 3.686±1.247 -4.7%
duifpolder_z_1_001 7.046±3.825 4.076±0.571 42.1%
duifpolder_z_2_001 7.093±0.625 6.344±0.071 10.6%
duifpolder_z_3_001 14.895±1.481 13.817±1.572 7.2%
duifpolder_z_4_001 9.127±2.754 6.982±0.702 23.5%
geerblank_1_001 7.757±1.088 7.598±0.327 2.0%
geerblank_2_001 8.866±0.054 9.340±0.065 -5.3%
geerblank_3_001 20.762±0.736 18.341±0.046 11.7%
geerblank_4_001 7.456±0.553 6.062±0.022 18.7%
geerblank_5_001 7.358±1.336 7.595±0.874 -3.2%
groen_molen_1_001 5.265±1.242 5.158±0.039 2.0%
groen_molen_1_002 7.065±0.590 4.733±0.234 33.0%
groen_molen_2_001 18.264±0.010 18.769±1.636 -2.8%
groen_molen_2_002 16.562±0.171 15.970±1.996 3.6%
groen_molen_3_001 21.674±5.805 16.635±1.509 23.2%
groen_molen_3_002 4.640±0.148 4.006±0.046 13.7%
groen_molen_4_001 23.725±6.181 15.639±1.322 34.1%
groen_molen_5_001 3.227±0.509 1.437±1.536 55.5%
hennipsloot_1_001 4.741±0.273 4.023±0.456 15.2%
hennipsloot_2_001 14.412±0.047 9.708±1.767 32.6%
hennipsloot_3_001 11.436±2.116 11.258±2.420 1.6%
hennipsloot_4_001 21.825±0.720 16.836±1.687 22.9%
hennipsloot_5_001 10.098±1.026 7.622±0.063 24.5%
molenlaan_1_001 19.746±0.100 22.739±1.809 -15.2%
molenlaan_1_002 9.285±0.220 9.022±0.349 2.8%
molenlaan_2_001 24.562±5.621 22.979±0.625 6.4%
molenlaan_2_002 8.536±1.439 9.786±1.252 -14.6%
molenlaan_3_001a 12.882±1.504 13.978±0.846 -8.5%
molenlaan_3_002a 7.043±0.116 5.511±0.561 21.8%
molenlaan_4_001 8.221±0.199 8.239±0.372 -0.2%
mtpolder_1_001 9.351±1.961 6.811±0.079 27.2%
mtpolder_2_001 3.664±0.522 1.871±0.481 48.9%
mtpolder_3_002 11.692±1.076 9.850±3.799 15.8%
mtpolder_4_002 15.017±1.128 15.591±1.399 -3.8%
mtpolder_5_002 10.711±0.264 8.313±0.431 22.4%
noordringdijk_2_001 3.546±0.262 3.522±0.740 0.7%
noordringdijk_3_001 5.550±0.309 4.360±1.210 21.4%
noordringdijk_4_001 3.007±0.560 4.516±0.430 -50.2%
noordringdijk_5_001 6.658±0.208 4.602±0.146 30.9%
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