
Opleiding Informatica

On The Vulnerabilities of FPGAs to Power Hammering Circuits

Lennart van Drunick

Supervisors:
Dr. Todor P. Stefanov & Abolfazl Sajadi

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 30/11/2025

www.liacs.leidenuniv.nl

Abstract

Since 1985, Field Programmable Gate Arrays (FPGAs) have been used across various electronic
systems due to their flexibility, performance, and cost-effectiveness. However, this flexibility
also introduces specific security risks. One such threat is the power hammering loop, a malicious
circuit designed to draw excessive power, potentially causing system instability or damage.
Today, even open-source Hardware Description Language (HDL) designs for FPGAs may
unknowingly include hidden loops that are activated under certain conditions, posing risks
in security-critical applications. This thesis examines the vulnerability of the Artix-7 FPGA
(XC7A100T-2FTG256) to power hammering circuits and evaluates whether recent versions of
the Vivado design tool chain can detect such circuits. Custom power hammering loops are
developed, simulated in Vivado, and implemented on a CW305 development board. Real-world
power data is collected using the Nordic Power Profiler Kit to assess detection effectiveness
and potential risks in current FPGA workflows.

2

Contents

1 Introduction 4
1.1 Research Questions . 5
1.2 Contributions to the Field of Security . 6
1.3 Summary of the Thesis . 6

2 Background 8
2.1 FPGA Terminology . 8
2.2 Power Hammering Circuits . 9
2.3 Tools and Hardware . 10

3 Related Work 13
3.1 Power Hammering Circuits . 13
3.2 Security Concerns in FPGA Design . 17

4 Hardware and Software Setup 19
4.1 Experimental Goals . 19
4.2 Circuit Design and Simulation . 20
4.3 Spatial Testing Circuit . 24
4.4 Experimental Hardware Setup . 25

5 Experimental Results & Observations 26
5.1 Challenges in Vivado . 26
5.2 FPGA Experimental Results for Power Hammering Loops 28
5.3 Spatial Test Circuit Evaluation Results . 31
5.4 Single Inverter Loops Power Hammering Effects . 32
5.5 Analysis . 34

5.5.1 Ring Oscillator Performance . 34
5.5.2 Single Inverter Loops and Spatial Testing . 35

6 Conclusions and Further Work 36
6.1 Summary of Findings . 36
6.2 Implications . 37
6.3 Limitations and Future Work . 38

References 40

7 Appendix 41
7.1 Single-LUT Oscillators . 41
7.2 Dual Inverter Oscillator . 43
7.3 Enhanced Ring Oscillator . 44
7.4 Multiplexer-Based Oscillators . 46
7.5 Carry-Chain Oscillator . 47
7.6 Flip-Flop Oscillator . 48
7.7 Latch-Based Oscillator . 49
7.8 Generator for multiple instances . 50
7.9 LED blinking code . 50

1 Introduction

With the introduction of the XC2064 chip in 1985, shown in Figure 1 [IEE17], Field Programmable
Gate Arrays (FPGAs) have become increasingly popular across a wide range of digital systems
due to their flexibility, high performance, and cost-effectiveness. Their reconfigurability allows
developers to tailor hardware behavior for specific applications, making them a valuable tool in
areas like embedded systems, networking equipment and cryptographic modules.

Figure 1: First Xilinx FPGA:

XC2064

However, this same flexibility introduces unique security challenges.
Among them is the risk posed by power hammering circuits,
malicious circuit structures designed to consume excessive power and
potentially cause system instability or physical damage. Such circuits
can be cleverly hidden in legitimate-looking Hardware Description
Language (HDL) code and triggered under specific conditions.

For example, a developer might unknowingly deploy open-source
HDL code into a security-critical system without realizing it contains
embedded power hammering circuits. These circuits may be activated after a delay or in response
to a specific signal, thereby disabling the system or reducing its operational lifespan through
overheating or power disruption. This thesis investigates both the technical feasibility of these
circuits on a modern mid-range FPGA, and the effectiveness of the Vivado development toolchain
in identifying and mitigating them.

To make this investigation concrete and manageable, the scope is limited to the Artix-7 FPGA
(XC7A100T-2FTG256), mounted on a CW305 development board [Mou25]. This FPGA is widely
used, well-documented, and cost-effective, making it an ideal candidate for exploring real-world
attack feasibility. Power consumption measurements are performed using the Nordic Power Profiler
Kit (PPK2) alongside Vivado simulations to estimate the circuits switching activity and operating
frequency. The goal is to determine whether malicious circuits can still bypass the Vivado detection
mechanisms and operate without triggering clear warnings.

4

1.1 Research Questions

While the main research question is embedded in the thesis title, it can be formally and specifically
restated as:

How vulnerable is the Artix-7 FPGA (XC7A100T-2FTG256) to power
hammering circuits, and how effectively can recent versions of the Vivado
design tool chain detect these circuits?

This research builds upon prior studies such as FPGADefender [LMG+20], which shows that
earlier versions of Vivado failed to detect some power hammering circuits, potentially enabling
silent hardware disruption. Here, we reevaluate these findings using more recent versions of
Vivado [AMD25] and extend them by re-implementing and measuring the impact of selected
circuits on physical hardware. To this end, it is necessary to divide the investigation into three
sub-questions.

The first step in assessing the FPGA vulnerability is understanding the baseline behavior of the
FPGA. Power hammering circuits are designed to draw an excessive amount of power, but to
measure this increase meaningfully, a reference point is required. Without knowledge of the FPGAs
typical power consumption during idle or normal operations, we cannot quantify the impact of the
injected malicious designs. This leads us to the first sub-question:

What is the normal power usage of the Artix-7 FPGA, and how does it
change when power hammering circuits are introduced?

Once the increase in power consumption is measured, the next step is to evaluate its consequences.
High power consumption may not always result in visible damage or system failure, depending
on the tolerance of the device and the characteristics of the power hammering circuits. To fully
understand the threat these circuits pose, it is essential to test how they affect the system stability
under different conditions. This raises the second sub-question:

Under what conditions do power hammering circuits cause instability,
malfunction, or complete system failure?

Finally, one of the main goals of this thesis is to determine whether current FPGA development
tools can detect these malicious circuits before they are deployed. While previous studies have
shown that earlier versions of Vivado tools were not always capable of flagging harmful circuits,
improvements may have been made in newer releases. Therefore, the third sub-question is:

Can recent versions of Vivado detect these harmful circuits, either during
circuit synthesis, implementation, or static analysis?

When we combine these sub-questions they will act as a guide to the experimental methodology of
this thesis, from power measurement and system observation to evaluating Vivado’s tools response.

5

1.2 Contributions to the Field of Security

This thesis contributes to the field of FPGA security by providing both experimental insights and
practical evaluations in the context of power hammering attacks. The main contributions of this
work are as follows:

• Systematic measurments and quantification of the power consumption impact of several
custom-designed power hammering circuits on a widely used mid-range FPGA, namely the
Artix-7 (XC7A100T-2FTG256), providing a reference baseline for future studies.

• Evaluations of the way power hammering circuits affect the system stability in real-world
hardware conditions, identifying the threshold at which these circuits may cause malfunction
or hardware disruption.

• Assessment of the effectiveness of the recent version of the Vivado 2042.2 design tools in
detecting harmful circuit structures, using synthesis, implementation, and static analysis
outputs.

• Revisiting of prior findings from related works such as FPGADefender [LMG+20] using
updated toolchain versions and hardware, providing insights whether or not detection
capabilities have improved over time.

• Offering a reproducible methodology and experimental setup, including the use of the CW305
board and PPK2, that future researchers can adopt to extend or validate their results.

Together, these contributions highlight the practical risks posed by power hammering circuits and
assess the resilience of widely used FPGA development tools, informing both future research and
security practices in FPGA-based system design.

1.3 Summary of the Thesis

This thesis is structured to systematically investigate the vulnerability of the Artix-7 FPGA to
power hammering circuits, and to evaluate the detection capabilities of recent versions of the Vivado
design suite. It begins with the introduction of key concepts and related work, continues with the
experimental design and implementation, and concludes with the measurements, analysis, and final
conclusions.

Chapter 2 defines the terminology used throughout the research and introduces the hardware and
software tools employed in the design and implementation of the circuits, including the Artix-7
FPGA, CW305 board, and the Vivado toolchain.

Chapter 3 discusses previous research that serves as the basis of this study, with a particular focus
on power hammering circuits and their interaction with FPGA development tools. It also examines
the capabilities and limitations of the Vivado software in detecting potentially harmful circuits.

Chapter 4 describes the hardware and software setup, as well as the methodology used for circuit
design, simulation, and implementation. This chapter outlines the development flow and details the
practical steps taken to prepare the circuits for evaluation.

6

Chapter 5 presents the results and observations obtained by both software simulations and physical
FPGA measurements.

Chapter 6 concludes the thesis by summarizing the key findings, interpreting their implications,
and discussing the broader relevance of the results. It also reflects on the limitations of the study
and proposes directions for future work to build upon these findings.

This bachelor thesis has been conducted at the Leiden Institute of Advanced Computer Science
(LIACS), under the supervision of Dr. Todor P. Stefanov and Abolfazl Sajadi. It aims to contribute
to the growing field of FPGA security by assessing practical risks and toolchain resilience in
real-world development environments.

7

2 Background

With attacks targeting hardware resources becoming more sophisticated, it is critical to examine
the architectural features that make FPGAs both powerful and potentially vulnerable. One such
vulnerability is the presence of power hammering circuits, malicious hardware configurations that
intentionally consume excessive power and can compromise system integrity. Before exploring the
specific mechanics of these circuits, this chapter begins by establishing a basic understanding of the
FPGA fabric. The following section introduces the core components and terminology necessary to
contextualize how these attacks are implemented, detected, or overlooked during the design process.

2.1 FPGA Terminology

To fully understand how various power hammering circuits function on an FPGA, it is essential
to first define the key terminology and components involved. FPGAs are highly flexible and
reprogrammable integrated circuits that can be reconfigured to perform a wide range of digital
logic functions. The name originates from the underlying architecture: a grid, or array, of logic
gates with interconnects that can be programmed to implement custom hardware circuits. This
reconfigurability makes FPGAs extremely powerful for applications ranging from digital signal
processing to embedded control systems. However, the same flexibility that enables highly optimized
designs also introduces the risk of inefficient or even malicious configurations, such as power
hammering circuits. These circuits are intentionally designed to draw excessive power and place
significant stress on the device. FPGAs are composed of a variety of configurable logic elements.
The most relevant components for understanding the power hammering behavior are presented
below:

Figure 2: Truth table

of a NOT gate

Look-Up Tables (LUTs): A LUT is a small memory block used to
implement logic functions. In the Artix-7 FPGA, a typical 6-input LUT
can be programmed to represent any Boolean function of up to six variables.
For example, a LUT can be configured to behave as a NOT gate which
functions like shown in Figure 2. When one input is active and the rest are
grounded, the output is the logical inverse of the input, demonstrating the
flexibility of a LUT configuration.

Flip-Flops and Latches: These elements are used to store binary values
and are essential for implementing sequential circuits. Flip-flops update their
output on the rising or falling edge of a clock signal, whereas latches are level-sensitive and respond
to signal levels rather than edges. In the context of this research, these elements play a crucial role
in forming feedback loops that are often exploited in power hammering designs.

Multiplexers (MUXes): A multiplexer selects one of several input signals based on a control
signal and forwards the selected input to the output. For example, a 2-to-1 MUX outputs either
input 0 or input 1 depending on whether the select line is low or high. MUXes are instrumental
in building conditional or dynamic circuits and can be manipulated to create loop structures in
malicious circuits.

8

Adders: Adders perform arithmetic operations, typically binary addition. In the context of power
hammering, the interest lies in how adders handle carry propagation. When multiple adders are
chained or used in such a way that carry bits toggle frequently, the circuit switching activity
increases significantly, resulting in elevated dynamic power consumption. This behavior can be
exploited to stress the power delivery network of the FPGA.

Standard FPGAs vs. Embedded FPGAs (eFPGAs)
In addition to standard FPGAs, which are standalone programmable logic devices, another
progressively relevant category is the embedded FPGA (eFPGA) [BGG24]. eFPGAs are
reconfigurable FPGA cores integrated directly into a larger System-on-Chip (SoC). This integration
combines the hardware adaptability of FPGAs with the efficiency and specialization of ASIC
components. eFPGAs offer several practical benefits: (I) they retain the reconfigurability of
traditional FPGAs while gaining the performance, area, and power efficiency of SoC-level integration;
(II) they allow post-manufacture hardware updates, which can be critical for correcting logic
bugs or implementing new features; and (III) they are increasingly used in domains such as
cryptographic modules, secure boot systems, AI accelerators, and wireless baseband processors,
where hardware-level security is critical.
However, this tight integration also raises the stakes of a successful attack. Malicious hardware
structures like power hammering circuits, if deployed in an eFPGA region, may have broader
consequences, potentially destabilizing not just the reconfigurable portion, but the entire SoC,
including fixed-function digital logic. While this thesis limits its scope to a standalone Artix-7
FPGA (XC7A100T-2FTG256) on a CW305 development board, the findings may generalize to
eFPGA contexts in two key ways:

1. Design Tool Vulnerabilities – If Vivado (or comparable Electronic Design Automation
tools) fails to detect power hammering circuits in standard FPGAs, similar vulnerabilities
may exist when generating bitstreams for eFPGA fabrics.

2. Power Integrity Risk – Because power delivery networks in SoCs are typically shared
across functional blocks, localized power stress in the eFPGA region could affect system-wide
stability, especially in battery-constrained or thermally sensitive applications.

While experiments are physically performed on dedicated hardware, their implications reach beyond,
potentially stimulating security assessments and verification strategies in emerging eFPGA-based
designs.
Due to their integration with the rest of the system, attacks on eFPGAs may have broader
consequences, potentially impacting the entire SoC. While this thesis focuses on a standalone
Artix-7 FPGA, the findings may be relevant to eFPGA environments as well, particularly regarding
the potential detection limitations in design tools like Vivado.

2.2 Power Hammering Circuits

Power hammering circuits are a class of malicious circuits designed to exploit the power consumption
characteristics of FPGAs by continuously toggling logic elements at high frequencies. Such circuits
are commonly constructed as ring oscillators, configured to maximize the circuits’ switching activity,
and therefore the power consumption, without performing any meaningful computation.

9

Figure 3: A 3-stage ring

oscillator composed of

inverters

As illustrated in Figure 3, the simplest form of a ring oscillator consists
of an odd number of inverters connected in series, where the output of
the last inverter is fed back into the input of the first. This creates a
closed feedback loop in which the signal continuously oscillates between
high and low states. In the example shown in Figure 3, a 3-stage inverter
loop forms such a circuit, producing a periodic waveform without the
need for an external clock.

Ring oscillators like these have legitimate applications in hardware design. They are often
used to generate on-chip clock signals that are independent of the main system clock, or as
components in true random number generators (TRNGs) [SNM20], due to their inherent jitter and
unpredictability. In power hammering attacks, however, this concept is exploited maliciously. Rather
than instantiating one or a few ring oscillators, an attacker may deploy thousands across the FPGA
fabric. These ring oscillators operate in parallel, leading to extreme circuit switching activity across
logic and routing resources. The result is a rapid increase in dynamic power consumption, which
can overwhelm the power delivery system, elevate the on-chip temperature, degrade performance,
or in severe cases, cause irreversible physical damage to the FPGA. As these circuits are compact
and perform no functional computation, they can be hidden inside larger hardware designs. This
makes them especially dangerous in open-source environments, where third-party HDL code may
be integrated without sufficient review, potentially inserting hidden power hammering circuits that
pass through standard design rule checks undetected.

2.3 Tools and Hardware

To design, simulate, and implement circuits on FPGAs, this research relies primarily on the Vivado
Design Suite. Vivado is the industry-standard software tool for developing digital logic on Xilinx
FPGAs. It allows users to describe hardware circuits using HDLs, simulate circuits behavior,
estimate resource usage and power consumption, and generate configuration files for the FPGA.
The circuits in this thesis are written in Verilog, a hardware description language widely used
for modeling, designing, and implementing digital systems [Ver24]. Once the design is described,
Vivado synthesizes it into a netlist composed of basic logic elements, such as LUTs, flip-flops,
multiplexers, carry chains, and more.

At the heart of the FPGA fabric is the Configurable Logic Block (CLB), shown in Figure 4. The
CLB is the fundamental unit used to implement custom logic. In the Artix-7 architecture, each
CLB contains two slices. Each slice integrates several key components, which are highlighted using
distinct colors in Figure 4 for clarity: (I) four 6-input Look-Up Tables (LUT6s), shown in blue,
which can implement arbitrary six-input Boolean functions;

(II) eight flip-flops (only half are drawn in the diagram), marked in yellow, used to store
state or enable sequential logic; (III) the dedicated carry logic (e.g., the CARRY4 primitive),
highlighted in red, designed for efficient arithmetic operations; and (IV) the multiplexers and
routing structures, indicated in green, which provide interconnection within the slice and between
neighboring CLBs.

10

This flexible structure allows CLB slices to be configured to implement combinational
logic, sequential circuits, arithmetic units, registers, and many other hardware constructs. During
implementation, Vivado maps each function in the Verilog design to the appropriate CLB resources
based on its logic and routing requirements. If a design exceeds the available resources of the target
device (in this work, the Artix-7 XC7A100T-2FTG256), implementation will fail.

Vivado also issues warnings for structures that may cause timing or reliability issues, including deep
logic chains or suspected ring oscillators. Once synthesis and implementation complete successfully,
Vivado generates a bitstream, i.e. the binary configuration file that programs the FPGA, defining
the behavior of every logic element and routing connection in the design.

Power Measurement Tools: In addition to Vivado, this project uses the Nordic Power Profiler
Kit (PPK2) [Nor25] to measure current and regulate the voltage supplied to the FPGA board.
The PPK2 is connected in series with the power supply to the CW305 FPGA board, enabling
high-resolution current monitoring during active circuit operation. To measure the actual voltage
experienced by the Artix-7 FPGA, we also utilize the built-in 7-segment display on the CW305
board. This display reflects real-time voltage levels across the FPGA’s core power rail. The nominal
operating voltage is 1.0 V. However, during experiments, the voltage drops are expected if the current
draw increases significantly. These voltage drops are a result of internal board-level protection
circuits designed to prevent damage from excessive current draw conditions, which may be triggered,
for example, by aggressive power hammering circuits.

11

Figure 4: Diagram of a Xilinx CLB slice (Artix-7 architecture) with the key components marked, in blue the LUTs,

in red the Carry chain, in yellow the Flip-Flops and in green the path to the MUXes

12

3 Related Work

This section focuses on the taxonomy and risk profile of power hammering circuits, taken from
prior work, particularly the FPGADefender study [LMG+20]. We revisit the design space outlined
in Table 1, which catalogs several variants of ring oscillators, evaluating their power consumption,
switching frequency, delays, Vivado detection success (DRC Warning), and resource utilization.
Understanding these designs is essential for determining which circuits present the highest risk and
which warrant closer examination in our experimental evaluation.

3.1 Power Hammering Circuits

Among the various hardware-level threats facing FPGA designs, power hammering circuits represent
a stealthy and destructive class of attacks. These circuits are designed to maximize the switching
activity within the FPGA fabric, dramatically the increasing dynamic power consumption while
performing no useful computation, resulting in degradation of power integrity, potential system
instability, or even physical damage to the device.

• Inverters: The first six circuits in Table 1 use a single LUT configured as an inverter (NOT
gate) within a ring oscillator loop. While they perform the same logic function, they differ in
how the LUT configuration utilizes internal resources. This results in noticeable variations in
both power consumption and switching frequency. This highlights how even small changes in
logic routing can significantly affect the circuit behavior.

• Dual Inverters: These circuits (row 7 in Table 1) use two inverter loops connected to a
shared multiplexer to create a more complex feedback structure. Interestingly, this setup is
uses less power per LUT than the single inverter loop. For example, while the dual inverter
loop consumes 8.04 W using two LUTs, averaging to 4.02 W per LUT, compared with 7.32
W per LUT in the more power consuming single inverter configuration.

• Enhanced Ring Oscillators: Rather than maximizing the switching frequency, these designs
intentionally configure LUTs inefficiently to increase internal power consumption. Such design
prioritizes signal routing complexity and toggling activity over raw speed, and can consume
substantial power using relatively simple logic resources.

• Multiplexers (MUXes): These circuits (row 9 and 10 in Table 1) are noteworthy because
they were not detected by Vivado in the FPGADefender study. They use MUXes to route
feedback in a loop, forming an unconventional oscillator that consumes less power per loop
but may evade detection. Due to their stealthy nature and ease of replication, these circuits
represent a significant threat, especially if upscaled to large quantities.

13

• Carry Adders: These circuits (row 11 in Table 1) utilize the CARRY8 primitive, which is an
8-bit wide arithmetic carry chain used in adders. By feeding the carry output back into the
input, an oscillator is formed. Despite being a valid part of arithmetic logic, this configuration
can consume high amounts of power and was not detected by Vivado in the FPGADefender
study, posing another major concern.

• Digital Signal Processors (DSPs): DSP blocks are large, dedicated hardware components
within the FPGA used for efficient arithmetic operations, such as multiply-accumulate (MAC)
operations. They are used for signal processing tasks like filtering, convolution, or Fast Fourier
Transform. In the context of ring oscillators, feedback paths can be artificially created using
DSPs to form high-power circuits. Fortunately, these designs were flagged by Vivado, which
suggests some protection is already in place against misuse of these high-power blocks.

• Latches: Latches are level-sensitive storage elements that can hold one bit of data. Unlike
flip-flops, they continuously respond to input changes when their enable signal is active.
In this way, they can introduce instability in circuits when used improperly. Although less
common in modern digital designs (where flip-flops are mostly used), latches can still be
misused to form parts of power hammering circuits. Notably, these were not detected by
Vivado in the FPGADefender study.

• Flip-Flops (FFs): Flip-flops are edge-triggered storage elements and are the standard
method of storing the state in synchronous digital systems. In power hammering circuits, FFs
can be exploited by feeding a toggling signal into both the PRESET and CLEAR inputs, forcing
constant switching. Fortunately, Vivado correctly detected such circuits in the FPGADefender
study, indicating some robustness against FF-based oscillators.

• Glitch Amplification: Glitch amplification is a technique where transient, unintended
switching events (”glitches”) are exploited to increase dynamic power consumption. These
glitches often arise from signal race conditions or unbalanced signal paths. In this type of
circuits, flip-flops and logic gates are combined in such a way that the number of transitions per
clock cycle is artificially increased. This technique can result in elevated power consumption
despite not producing continuous signal oscillation like a traditional ring oscillator.

With the behavior and detection characteristics of each aforementioned circuit, particular
attention is given to the circuits that previously bypassed detection in Vivado. Especifically,
the multiplexer-based, carry logic, and latch-based circuits. These circuits serve as a benchmark for
our experiments to evaluate improvements in the Vivado’s detection mechanisms.

14

No. Variants Schematics No. of loops Loop Type DRC Warning Report Net
Delay

Report
Inverter
Delay

Expected
Frequency

Measured
Frequency

Power WPP

0 Empty design – – – – – – – – 2.94W –

1
RO using
LUT6 (I5)

2000 Comb (LUTLP–1) 49ps 41ps 5556MHz 5882MHz
7.32W

(+4.38W)
26.63

2
RO using
LUT6 (I4)

2000 Comb (LUTLP–1) 51ps 66ps 4274MHz 3937MHz
6.84W

(+3.90W)
23.69

3
RO using
LUT6 (I3)

2000 Comb (LUTLP–1) 46ps 100ps 3425MHz 3012MHz
5.99W

(+3.05W)
18.52

4
RO using
LUT6 (I2)

2000 Comb (LUTLP–1) 50ps 116ps 3012MHz 2488MHz
5.63W

(+2.68W)
16.32

5
RO using
LUT6 (I1)

2000 Comb (LUTLP–1) 62ps 150ps 2358MHz 2320MHz
6.59W

(+3.65W)
22.21

6
RO using
LUT6 (I0)

2000 Comb (LUTLP–1) 71ps 177ps 2016MHz 1927MHz
6.35W

(+3.41W)
20.75

7
Dual-RO from

two LUT6 primitive
See Figure 5a 2000× 2 Comb (LUTLP–1)

O5: 308ps
O6: 54ps

O5: 85ps
O6: 100ps

O5: 1272MHz
O6: 3247MHz

O5: 1235MHz
O6: 2439MHz

8.04W
(+5.10W)

31.00

8
Enhanced ROs

for power-hammering
See Figure 5b 2000 Comb (LUTLP–1) 64ps 66ps 3846MHz 1779MHz

9.61W
(+6.66W)

40.54

9 RO using MUX7 2000 Comb X 353ps 112ps 1075MHz 1126MHz
5.01W

(+2.07W)
6.30

10 RO using MUX8 2000 Comb X 211ps 109ps 1563MHz 1681MHz
4.04W

(+1.10W)
1.67

11
RO using

Carry Logic
See Figure 5c 2000 Comb X 381ps 104ps 1031MHz 1109MHz

5.14W
(+2.19W)

1.67

12 RO using DSP See Figure 5d 360× 8 Comb X 251ps 994ps 402MHz 585MHz
4.53W

(+1.59W)
0.27

13 RO using latch 2000 Non-Comb X 173ps 96ps 1859MHz 1706MHz
5.14W

(+2.19W)
13.35

14
RO using
flip-flop

2000 Non-Comb
(PDRC–153;

PLHOLDVIO–2)
X X X 555MHz

5.26W
(+2.32W)

7.05

15 Glitch amplification See Figure 5e 2000 Non-Comb
(PDRC–153;

PLHOLDVIO–2)
X X X 481MHz

8.05W
(+5.10W)

10.35

Table 1: Table 2 from the FPGADefender paper[LMG+20] showing the different types of ring oscillators and their

performance as power hammering circuits

15

(a) Schematic using dual LUTs for power
hammering

(b) Schematic for enhanced ROs optimized for
power-hammering

(c) Schematic for a RO using carry-logic (d) Schematic for a RO using a DSP

(e) Schematic for a RO using glitch amplification

Figure 5: Extra table for increased readability for schematics

16

3.2 Security Concerns in FPGA Design

While this thesis primarily investigates power hammering circuits, they exist within a broader
landscape of security vulnerabilities affecting FPGA-based systems. FPGAs, by virtue of their
reconfigurability and complexity, are exposed to a wide array of attack vectors. Some target the
configuration process itself, others exploit physical side channels, and some aim to reverse-engineer
or tamper with deployed designs.

Bitstream Attacks: The paper by Michail Moraitis [Mor23] demonstrates how attackers can
reverse-engineer and manipulate FPGA bitstreams to extract intellectual property or insert
malicious circuits. It also highlights how weak or absent encryption leaves FPGAs vulnerable
during configuration. This is closely related to our work, as both bitstream manipulation and power
hammering rely on the ability to hide malicious circuits within a valid configuration file. However,
while bitstream attacks focus on functional subversion, our work targets resource abuse and physical
side-effects. The cited work emphasizes functional integrity but does not explore how malformed
bitstreams might affect the FPGAs physical stability. Our research contributes by showing that
even semantically valid but malicious configurations can cause instability in FPGAs, expanding the
scope of bitstream-based threats.

Side-Channel Attacks: Mark Zhao and G. Edward Suh [ZS18] explore how attackers can
extract sensitive information from FPGAs by analyzing power consumption, timing variations, and
electromagnetic emissions during operation. The paper provides an overview of physical leakage as a
threat to confidentiality. Our research shares a perspective on the physical aspect of the FPGA, but
instead of focusing on information leakage, we focus on how similar leakage pathways, like power
consumption and switching activity, can be used for denial-of-service attacks via power hammering
circuits. However, their work looks only at confidentiality risks and not at situations where an
attacker aims to disrupt or damage the device. Our work instead explores how the same physical
effects like power consumption and circuit switching activity can be pushed to cause instability.
This shifts the focus from using side channels to read information to using them as a way to damage
a FPGA.

• Power Analysis (PA) Attacks: Schellenberg et al. [SGMT18] details how adversaries can
use simple or differential power analysis to recover cryptographic keys by observing power
behaviour over time. While our work does not focus on key recovery, it shares perspective
on the same observation: power consumption can reveal, or be influenced by, hidden circuit
behavior. Both approaches require circuits that produce measurable power fluctuations. This
prior work does not consider how purposely designed high-power consumption circuits can
disrupt the power behaviour. Our results show that such circuits can both hide sensitive
activity and serve as an intentional payload for causing interference.

17

• Timing Attacks: Mukherjee et al. [MSA+21] also illustrates how attackers can infer secrets
based on the execution time of operations that depend on internal data. This concept relates
to our research in that timing-sensitive designs often have irregular or unintended switching
behavior, something power hammering circuits can exploit or imitate. However, the focus
remains on inferring secrets, not on stability or damage. Our work shows how abnormal
switching patterns can be deliberately induced not to steal secrets, but to destabilize power
delivery systems.

• Electromagnetic (EM) Attacks: Mulder et al. [DMBO+05] explore how different FPGA
logic blocks emit distinct EM signatures, which can be used to recover information using both
direct and statistical analysis techniques. This research is somewhat related to ours: both
highlight how low-level physical behaviors can be exploited. In fact, EM emissions could serve
as an indicator of suspicious high-activity logic like power hammering circuits. Nonetheless,
their work treats EM analysis mainly as a passive way to extract information. In contrast, we
view these physical emissions as signs of malicious activity, which opens up new possibilities
for detecting and preventing hardware misuse.

18

4 Hardware and Software Setup

To evaluate the power consumption behavior of various potentially malicious FPGA circuits, we
developed an experimental setup involving both hardware instrumentation and software tooling. The
setup consists of a CW305 FPGA development board featuring an Artix-7 XC7A100T-2FTG256
chip, paired with the PPK2 to measure current draw with high resolution. Software support is
provided through Vivado for synthesis and implementation, and the PPK2’s native software for
high-precision power analysis. Each circuit follows a consistent workflow that guides it from a
concept design to measurements, as visualised in Figure 6.
This pipeline-based workflow ensures a structured and repeatable development process, from initial
circuit creation in Vivado to final measurements on the physical FPGA. This infrastructure enables
us to deploy a variety of power hammering circuits onto the FPGA, observe their effects in real-time,
and quantify their impact on the supplied voltage and current. The following sections detail the
experimental goals, design methodology, and testing procedures.

Figure 6: The design and evaluation workflow used for each ring oscillator circuit.

4.1 Experimental Goals

To design meaningful experiments, it is important to clearly define the objectives and the knowledge
we aim to gain. The primary goal of these experiments is to analyze the power consumption
behavior of the Artix-7 FPGA when subjected to power hammering circuits. This is accomplished
by recreating and implementing several power hammering circuits described in the FPGADefender
study, and deploying them on our target FPGA. Specifically, we aim to determine: (I) the number
of power hammering circuit instances required to cause system instability, performance degradation,
or system overload from power hammering circuits; (II) the corresponding power consumption and
oscillation frequency of each design; and (III) how effectively the current version of Vivado detects
or flags these circuits during synthesis and implementation.

An additional goal is to evaluate how clearly Vivado communicates any warnings or detection results.
Previous work [LMG+20] reports that, warnings are sometimes buried among other messages or
logs, while in other cases, they are prominently displayed as critical alerts. Understanding the
consistency and visibility of such warnings is essential to assess the practical security of the Vivado
software.
Together, these goals will help us evaluate both the hardware vulnerability of the Artix-7 FPGA
and the progress (if any) made by Vivado in identifying malicious circuit patterns.

19

4.2 Circuit Design and Simulation

The design of the power hammering circuits begins with the goal of recreating known circuits from
the FPGADefender paper. While the process seems straightforward, implementation on the Artix-7
FPGA presents several challenges due to architectural differences and unsupported primitives.
For instance, the authors of the FPGADefender paper employed the CARRY8 primitive, which is
not available on the Artix-7 series. As a result, our design is adapted using the CARRY4 primitive,
functionally similar but supporting fewer bits. Although this change is unlikely to skew the results
significantly, it introduces some debugging overhead.

Fortunately, most other required components are available, including LUTs, multiplexers, flip-flops,
and latches. All designs are written in Verilog HDL and synthesized using Vivado. To prevent
Vivado from optimizing out the ring oscillator logic, which often lacks meaningful output, we add
dummy outputs and wired each oscillator’s final output to a probe pin confirming activity. These
dummy connections preserve the integrity of the circuits during synthesis and simulation. Before
implementing the actual power hammering circuits, a baseline power measurement is taken with
the FPGA in an idle state. This provides a reference point for evaluating power increases caused by
the power hammering circuits.

Figure 7: Inverter-based loop using LUT6

Single Inverter Loop: The simplest oscillator
consists of a single Look-Up Table (LUT6)
configured as a NOT gates (see Figure 7),
with its output fed back into one of its
inputs. Vivado’s LUT6 primitives support six
input signals (I0-I5) and one output (O),
implementing any Boolean function with up to
six inputs [AMD21, Section: LUT6]. Internally,
a 64-bit truth table is programmed into the
LUT’s SRAM-based configuration cells. When
the output is looped back into the input, a
self-sustaining feedback loop is formed. The
Verilog implementations for all six variants are
provided in Appendices 7.1.

Six circuit variants are designed and simulated
by connecting the feedback path to each of the
six inputs individually (I0–I5). Although the logical function is the same in all cases, the routing
delay and physical layout differ across inputs, resulting in observable differences in the circuit
switching frequency and delays. These variations arise from the fact that different input lines route
through slightly different paths within the LUT itself.

20

Figure 8: Dual inverter with MUXF7

Dual Inverter with MUX: This design
connects two LUT-based inverter loops to a
MUXF7 primitive (Figure 8). The MUXF7 acts
as a two-input selector, with the select signal
(S) determining whether input I0 or I1 is
passed to the output [AMD21, Section: MUXF7].
Internally, it is implemented using transmission
gates and control logic within a Configurable
Logic Block (CLB), along with associated
routing resources. By statically assigning S = 1,
the MUX constantly selects the output of one
LUT2 table and feed it back to the input of the
same table, formaing a loop. This increases the
resource utilization and signal toggling activity without significantly altering the logical behavior.
Internally, the MUX adds extra switching logic that toggles even when unused paths remain idle at
the logic level. The corresponding Verilog description is included in Appendix 7.2.

Figure 9: Extended Ring Oscillator design

Extended Ring Oscillators: The circuit
design shown in Figure 9 implements an
intentionally inefficient ring oscillator using
six LUT6 primitives [AMD21, Section: LUT6].
Unlike simpler inverter loops that aim for
maximum frequency, this circuit is configured
to maximize internal dynamic power draw by
exploiting redundant input toggling and internal
routing. The first five LUT6 units are configured
as inverter loops with an additional enable input.
Each operates as a controlled NAND gate with
self-feedback, where toggling is driven by both
the feedback signal and a constantly enabled
control line. These five LUTs independently
oscillate but do not contribute directly to the
output logic of the system. The full Verilog
implementation is shown in Appendix 7.3.

Their outputs feed into the sixth LUT6, which is also configured as an inverter loop with enable
control. However, the five incoming signals from the five LUTs are wired in such a way that
they do not influence the feedback path of the sixth inverter, their input is simply ignored in the
configuration the LUT6. Their presence ensures additional signal toggling activity through the
use of wider logic input combinations and unnecessary signal switching. The overall purpose of
this configuration is not to achieve the highest oscillation frequency possible, but to force all six
LUTs into a state of continuous, complex toggling activity. By routing more signals and increasing
internal switching capacitance, the circuit elevates the total power consumption well beyond that
of the simpler configurations like the inverter which keeps the switching activity only within it’s
own single LUT at the cost of an large increase in used components.

21

Figure 10: MUXF7-based oscillator

Multiplexer-Based Oscillators: Oscillators
based on MUXF7 and MUXF8 primitives are
implemented to evaluate multi-level selector
logic (see Figure 10) [AMD21, Section: MUXF7,
MUXF8]. The MUXF8 primitive is constructed by
cascading two MUXF7 blocks with an additional
select line. These multiplexer stages are built
using the FPGA’s underlying LUTs (Look-Up
Tables), which are reconfigured to act as 2:1
selectors. In a typical implementation, a 6-input
LUT can be used to emulate a 2:1 MUX by
assigning input-output mappings that respond
to a select signal. MUXF7 and MUXF8 chains further combine multiple LUTs with fixed internal
interconnects inside a configurable logic block (CLB). This structure consumes more LUTs
per stage than a simple inverter or logic gate loop, because each multiplexer instance must
route multiple data and control paths while still supporting high-speed switching. Each MUXF8

requires four LUT6 components and two MUXF7s, creating deeply nested signal paths. These
configurations can be exploited to create long feedback loops that switch frequently but perform no
computation. In previous Vivado versions, these were not detected due to their legitimate multiplexer
structure, though they behave as oscillators in this configuration. Their implementations appear in
Appendix 7.4.

Figure 11: Carry-chain based oscillator

Carry Logic Oscillators: The CARRY4

primitive implements fast carry logic within
each Configurable Logic Block (CLB) and
is commonly used in arithmetic operations
[AMD21, Section: CARRY8]. Internally, it
consists of four interconnected MUX-XOR pairs
arranged to propagate carry signals between bits
in an adder chain. To construct the oscillator,
only the first stage of the CARRY4 primitive is
used (as can be seen in Figure 11). Specifically,
the carry-in (CI) and data-in inputs of the first
stage MUX are fixed to a constant ’0’ and ’1’,
respectively, and the MUX carry-out (CO) is
routed back to its carry-select (S), forming a self-sustaining loop. The remaining three stages in
the CARRY4 block are left unused. This specific configuration simplifies the feedback path while
still taking advantage of the primitive’s high-speed switching characteristics. Because the carry
logic has dedicated routing within the FPGA fabric, the resulting oscillator can toggle with very
high frequency. In earlier Vivado versions, this usage was not flagged as problematic, making it a
particularly efficient and stealthy option for inducing excessive power draw. The Verilog source
code is provided in Appendix 7.5.

22

Digital Signal Processors (DSPs): DSP slices in Xilinx FPGAs are specialized hardware
blocks for arithmetic functions such as multiplication and accumulation. Internally, they include
bit multipliers, adder-subtractors, accumulators, and optional pipeline registers. Creating a ring
oscillator in DSPs is theoretically possible by feeding output results back into their input stages with
combinatorial paths. However, due to their complexity and the lack of a straightforward feedback
loop mechanism, no DSP-based oscillators are implemented in this work. Further experimentation
and understanding of the DSP block feedback loop options are needed.

Figure 12: LDCE latch-based oscillator

Latch-Based Oscillators: Latches such as
the LDPE are level-sensitive memory elements
with asynchronous preset and clear signals
[AMD21, Section: LDCE]. Internally, they use
transmission gates controlled by the gate (G)
input signal, which allows data at the D input to
flow through to the outputQ when enabled. In
our configuration (see Figure 12), we connect G
and GE to logic high and keep the CLR input low,
allowing the latch to operate continuously. The
Q output is inverted and fed back to input D,
forming a feedback loop that toggles as quickly
as the routing and gate delays allow. This
behavior generates high switching activity across the latch internal path and associated logic
slices. The full Verilog code is provided in Appendix 7.7.

Figure 13: FDPE flip-flop oscillator

Flip-Flop Oscillators: The FDPE flip-flop
is an edge-triggered storage element with
asynchronous preset and clock enable
[AMD21, Section: FDPE]. Internally, it
uses a master-slave latch configuration and
responds to rising clock edges. Initially, feeding
the Q output directly into the clock input
fails to generate sustained toggling due to
timing constraints. However, with further
experimentation, a functional oscillator is
achieved by constructing a feedback loop
using the PRE and CLR inputs alongside some
combinational logic (see Figure 13). The
resulting circuit operates without an external
clock, instead relying on internal feedback to
create a self-sustaining toggling pattern. While
the frequency is lower than that of pure LUT-based loops due to clocking and setup/hold delay
constraints, the design reliably induces high dynamic power consumption. These oscillators also
provide a useful benchmark for analyzing the detection robustness of Vivado. The Verilog listing is
included in Appendix 7.6.

23

Figure 14: Glitch-based design

Glitch Amplification Circuits: These
circuits (for example see Figure 14) exploit
asynchronous signal transitions and unbalanced
logic paths to generate high-frequency switching
without forming traditional oscillators.
Internally, they rely on races between signal
edges that arrive at slightly different times at
a logic gate (e.g., XOR or MUX), resulting
in glitches, i.e. brief unwanted transitions.
While difficult to simulate and control, these
glitches can collectively increase dynamic power
consumption. They are harder for Vivado to
model accurately, as timing violations are
usually filtered or averaged out during analysis. As such, they present a non-traditional power
threat.

4.3 Spatial Testing Circuit

LED Colour FPGA Region Pin
LED0 RED1 X0Y0 T2
LED1 GREEN1 X1Y0 T3
LED2 BLUE1 X0Y1 T4
LED3 RED2 X1Y1 C16
LED4 BLUE2 X0Y2 D13
LED5 GREEN2 X1Y2 B14
LED6 WHITE1 X0Y3 B16
LED7 YELLOW1 X1Y3 C13

Figure 15: Location of LEDs for spatial testing

This circuit is designed to study the spatial behavior
of the FPGA fabric under an increasing number
of instantiated power hammering circuits. The
FPGA is divided into eight distinct regions, each
associated with a dedicated LED indicator, as shown
in Figure 15. Every region implements a circuit
that generates a periodic flicker signal by a simple
counter. Every flicker signal controls the blinking
of the associated LED indicator connected to a
specific part of the FPGA as shown in Figure 15.
Under normal FPGA operating conditions, all eight
LEDs blink asynchronously at consistent, predictable
rates, serving as a simple but effective indicator of
the circuit stability across the chip. Then, a power
hammering workload is introduced by gradually increasing the number of simple inverter loops,
instantiated across the FPGA fabric by Vivado, so no loops are added on specific locations. Each
loop represents a minimal structure configured to toggle continuously, maximizing the dynamic
power consumption and internal switching activity. By scaling the number of active loops, we can
observe how localized and global power consumption increase propagates across the device, the
Verilog code of this spatial testing circuit can be found in the Appendix under 7.9. This regional
testing approach provides a clear visual and empirical method to identify the threshold at which
the FPGA’s internal timing network and power consumption distribution can no longer maintain
a reliable FPGA operation. Beyond this threshold, any measurement or signal output from the
FPGA device that affect the blinking frequency of the LEDs can no longer be trusted, as circuit
instability, missed clock edges, or transient logic errors begin to occur. The resulting dataset when
experimenting with the spatial testing circuit captures not only the total power consumption but

24

also the onset and spread of functional instability across the FPGA fabric as a function of the
number of active power hammering loops.

4.4 Experimental Hardware Setup

With the aforementioned circuits designed and simulated, we describe the hardware setup for
the circuit deployment and physical testing. As previously stated, the experiments are performed
on a CW305 power measurement board, which hosts the Artix-7 XC7A100T-2FTG256 FPGA.
To supplement voltage readings, we also use the PPK2, which enables precise measurement of
current, a feature not directly supported by the CW305 board. Both the CW305 and the PPK2 are
connected to a laptop over a USB port, which acts as the power source and host for programming
and data acquisition. The system draws a maximum current of 1 Ampere at a supply voltage of 1
Volt, giving a theoretical upper limit on the power consumption of 1 Watt. In practice, however,
the observed power consumption remains below this limit.

Figure 16 shows the complete hardware setup used in this study. The laptop supplying power and
controlling the boards is positioned just outside the image to the right. In the foreground, we can see
the CW305 board and the PPK2 connected in series. To obtain the most accurate current readings,
the standard convenient setup is bypassed: instead of routing the power through the PPK2 first,
the laptop’s power is connected directly to the CW305. This configuration minimizes measurement
interference while still allowing the PPK2 to monitor the current flow with high precision. In the
PPK2 software, a maximum voltage limit of 1000mV is enforced to protect the FPGA during
high-load tests. As power hammering circuits are activated, we expect to see a noticeable voltage
drop accompanied by a corresponding increase in current, as the loops force the FPGA to consume
more power. Figure 17 provides a closer look at the CW305 board. The RGB LEDs on the left-hand
side as well as a few extra LEDs (not on the board in the figure) are used as a visual indicator of
the reliable operation of the FPGA as explained in Section 4.3, while the 7-segment display on the
right shows real-time voltage readings during tests.

Figure 16: Full measurement setup including the

Nordic PPK2
Figure 17: CW305 with RGB LEDs (left) and

7-segment voltage display (right)

25

5 Experimental Results & Observations

This chapter presents the practical evaluation of various power hammering circuits implemented
on the Artix-7 FPGA. It begins by detailing the initial challenges encountered within the Vivado
design environment, including detection mechanisms and necessary workarounds. Following this,
simulation-based frequency estimates are discussed, and real-world power measurements are reported
from physical testing on the FPGA. The next chapter reports the measured behavior of the
FPGA under increasing switching activity, both through spatial testing and through large-scale
single-inverter loop experiments. Finally, the results are analyzed in terms of resource usage, power
efficiency, and the conditions that lead to functional instability.

5.1 Challenges in Vivado

The experimental phase began with several unexpected challenges related to Vivado’s improved
detection of ring oscillators and power hammering circuits. Even with a small number of instances
(e.g., 10 loops), Vivado issued warnings during both synthesis and implementation. For larger
designs, the software not only generated warnings in the console but also triggered prominent
pop-up messages alerting the user for potential risks due to excessive dynamic power consumption.
In many cases, these warnings halted the implementation or simulation process entirely, preventing
the circuits deployment to the physical FPGA. To continue experimenting, it was necessary to
introduce workarounds that would bypass these protective mechanisms. The most effective approach
involved modifying the FPGAs constraint file to suppress specific Design Rule Check (DRC) errors.
The following line was added to reclassify the “LUTLP-1” warning, used to flag excessive logic
toggling, as a non-blocking issue:

set_property SEVERITY {Warning} [get_drc_checks LUTLP-1]

While this modification allowed synthesis and implementation to proceed, it did not suppress
the warnings entirely. Vivado continued to flag the circuits through the Messages tab, console
output, and project summary screen, reinforcing the tool’s heightened sensitivity to potential power
abuse. Beyond synthesis and implementation, Vivado was also used to simulate and evaluate the
behavior of each power hammering loop, particularly to estimate their switching frequency. This
was done using the Post-Implementation Timing Simulation, which incorporates physical delays and
routing characteristics of the target FPGA to provide a realistic model of circuit behavior. Since no
frequency constraints were applied, each oscillator was allowed to operate at its maximum possible
frequency. Due to the lack of high-speed measurement tools such as oscilloscopes or logic analyzers,
it was not possible to directly measure the switching the frequency on the hardware. As such,
Vivado’s timing simulation served as the primary method for estimating frequency. Although these
simulations do not fully account for thermal or electrical noise, they offer a reliable approximation
and serve as a useful tool for validating whether the loops behave as expected in a real deployment.
All power measurements presented in this chapter are based on the average current and voltage
recorded over a one-minute runtime for each test configuration. This approach minimizes short-term
fluctuations and ensures consistent comparison between different circuit types.

26

20
00

C
ir
cu
it
s

1
C
ir
cu
it

C
ir
cu
it

L
U
T
s

M
U
X
es

F
F
s

C
u
rr
en
t
(m

A
)

V
ol
ta
ge

(m
V
)

P
ow

er
(m

W
)

S
im

u
la
te
d

F
re
q
u
en
cy

(M
H
z)

S
im

u
la
te
d

D
el
ay

(p
s)

C
al
cu
la
te
d

F
re
q
u
en
cy

(M
H
z)

C
al
cu
la
te
d

N
et

D
el
ay

(p
s)

C
al
cu
la
te
d

L
og
ic

D
el
ay

(p
s)

B
as
el
in
e

0
0

0
25

97
5

24
0

0
0

0
0

In
ve
rt
er

A
1

20
00

0
0

39
1.
7

85
2

33
4

39
8

12
56

39
8

11
32

12
4

In
ve
rt
er

A
2

20
00

0
0

N
A

N
A

N
A

51
1

97
9

51
9

85
6

10
7

In
ve
rt
er

A
3

20
00

0
0

N
A

N
A

N
A

41
0

12
19

42
2

10
95

90
In
ve
rt
er

A
4

20
00

0
0

N
A

N
A

N
A

42
2

11
84

43
9

10
60

79
In
ve
rt
er

A
5

20
00

0
0

N
A

N
A

N
A

12
20

41
0

14
45

28
6

60
In
ve
rt
er

A
6

20
00

0
0

N
A

N
A

N
A

98
2

50
9

11
63

38
5

45

D
u
al

In
ve
rt
er

40
00

20
00

0
45
1.
8

83
6

37
8

87
0
(m

ai
n
m
u
x
lo
op

11
57

(e
x
tr
a
in
v
lo
op

)
57
5

43
2

77
9

97
7

38
0

43
3

79 60

E
x
te
n
d
ed

In
ve
rt
er

12
00
0

0
0

66
9.
9

75
9

50
8

18
52

(i
n
v
1)

11
34

(i
n
v
2)

11
29

(i
n
v
3)

11
13

(i
n
v
4)

17
54

(i
n
v
5)

17
54

(i
n
v
6)

27
0

44
1

44
3

44
9

28
5

28
5

15
10

96
0

95
6

94
7

16
61

16
61

27
1

44
2

44
4

44
9

24
1

24
1

60 79 79 79 60 60
E
x
te
n
d
ed

In
ve
rt
er

x
33
3

20
00

0
0

38
4.
9

85
9

33
1

18
52

27
0

15
10

38
8

45
M
U
X
7

40
00

20
00

0
31
9.
3

86
5

27
6

75
6

66
1

79
1

41
5

21
7

M
U
X
8

80
00

60
00

0
29
2.
7

88
0

25
8

61
3

81
5

65
9

54
2

21
7

C
ar
ry
4

20
00

0
0

28
9.
1

87
1

25
2

14
71

34
0

73
9

57
8

99
F
li
p
-F
lo
p

40
00

0
20
00

40
4.
5

85
5

34
6

76
7

65
2

21
8

20
52

24
6

L
at
ch

20
00

0
20
00

31
4.
3

84
0

27
3

68
8

72
7

65
6

51
0

25
2

T
ab

le
2:

R
es
u
lt
s
F
P
G
A

po
w
er

h
a
m
m
er
in
g
ci
rc
u
it

te
st
in
g,

va
lu
es

fo
r
th
e
In
ve
rt
er

A
2
-A

6
a
re

m
is
si
n
g
d
u
e
to

ti
m
e
co
n
st
ra
in
ts

a
n
d
V
iv
a
d
o
o
p
ti
m
iz
a
ti
o
n
,

a
fu
ll
ex
p
la
n
a
ti
o
n
ca
n
be

fo
u
n
d
in

se
ct
io
n
5
.2
.

27

5.2 FPGA Experimental Results for Power Hammering Loops

Continuing with the actual experiments with the implemented circuits on the FPGA, all results
are shown in Table 2. The first column lists each circuit type evaluated in this experiment. For
all designs, the listed circuit is instantiated 2000 times to form the complete power-hammering
structure implemented on the FPGA. The only exception is the Extended Inverter ×333 entry,
which uses a reduced version of the extended-inverter design containing only 2000 LUTs (333 loops)
to allow a fair comparison with the single-inverter circuits. The next three columns report the total
FPGA resources used by each design (LUTs, multiplexers, and flip-flops). The CARRY4 loop appears
as a special case, since it relies on the dedicated carry-chain structures already present inside each
CLB slice and therefore does not consume additional LUT resources. Following this, three columns
list the measured current, voltage, and resulting power consumption for each circuit, obtained using
the measurement procedure described in Section 4.4.
The next two columns show the simulated frequency and simulated delay obtained from Vivado’s
functional simulation. These values reflect the logical behaviour of the circuits and do not account
for the full physical routing characteristics. The relationship between the frequency (MHz) and
delay (ps) is as follows:

fsim =
1

2 ·Delay
· 106.

Finally, the last three columns provide the calculated timing parameters derived from the
post-implementation timing analysis. Here, the Net Delay corresponds to the signal routing
delay between components, while the Logic Delay refers to the signal propagation delay through
the logic element itself. The corresponding calculated frequency (MHz) is determined as:

fcalc =
1

2 · (Net Delay + Logic Delay)
· 106.

Overall, the simulated frequency and delay columns represent idealized behaviour obtained from
Vivado’s simulator, whereas the calculated timing values capture the physical routing effects
introduced during implementation. It is likely that the simulation does not include all routing
effects for many of the circuits, therefore in many cases it reports higher achievable frequencies
than the calculated timing analysis.

The measured power results confirm that all tested power hammering circuit types successfully
induce substantial dynamic power consumption on the FPGA, with clear variations in both
frequency and net delay. Notably, the carry-based oscillator benefits from the dedicated architecture
of the CARRY4 primitive. Within each carry block, the feedback path leverages its own internal
multiplexer (MUXCY) to form the loop, resulting in a very short and consistent propagation
path compared to using the internal MUXes of the CLB. For the flip-flop-based oscillator, the
behavior is more complex. The internal structure of the FDPE element introduces two distinct
feedback paths, one through the asynchronous preset (PRE) and another through the data (D)
input. Timing analysis reveals that these paths correspond to separate propagation loops with delays
of approximately 591 ps and 340 ps, respectively. Together, they make up the overall oscillation
characteristics observed in simulation.

28

Because of this distinction, several circuits show a noticeable difference between their simulated and
calculated frequencies or delays. The Flip-Flop circuit, for example, reaches 767 MHz in simulation
but 218 MHz in the calculated timing analysis, reflecting the added routing constraints of the
physical implementation. Similarly, the CARRY4 oscillator exhibits a large difference between the
simulated (1471 MHz) and calculated (739 MHz) frequencies, highlighting how the actual routing
structure of the carry chain influences its achievable performance. These differences emphasize that
the post-implementation timing results more accurately represent the expected hardware behaviour,
while simulated values could illustrate the theoretical limits of the design’s logical structure.

Unfortunately, it is not possible to obtain measured power data for the Inverter A2 to A6
configurations. During implementation, the Vivado toolchain consistently optimizes or re-maps the
inverter loops in an identical way, regardless of the intended input-to-output routing differences.
This behavior caused all variants to be physically realized using the same wiring structure, making
meaningful measurement comparisons between different designs impossible. Although manual
remapping of inputs can be performed for a single inverter instance to achieve distinct loop
configurations, allowing for accurate simulation and frequency calculation. Due to the limitations of
the automated implementation flow, manual placement constraints for 2,000 instances were outside
the scope of this study. As a result, only the simulated and calculated frequency data are included
for these designs, while the measured current and voltage values could not be reliably obtained.

We begin by measuring the baseline power consumption of the board without any custom circuit
implemented. The idle power consumption is measured at an average current of 25mA at the
default core voltage of 975mV, resulting in a baseline power of approximately 24mW.

Single Inverter Ring Oscillators: The single inverter circuit denoted as A1–A6 in Table 2.
Their simulated frequencies range from approximately 398 MHz to 1.22 GHz, while calculated
values, based on post-routing delays, extend up to 1.445 GHz. The variation between simulated
and calculated values indicates how routing and placement significantly affect achievable oscillation
frequency. Calculated net delay varies across instances from 286 ps to 1132 ps, while the calculated
primitive delay is between 45 ps and 124 ps. The power consumption for 2000 loops was difficult
to test as mentioned earlier, but with the A1 inverter having the lowest frequency it is likely to
have the lowest power consumption which is at 334 mW with a current of 391.7 mA and voltage of
852 mV. When looking at the data for the frequency, we can deduce that the Inverter A5 has the
highest power consumption of the single inverter power loops because it has the highest frequency.

Dual Inverter: The first loop, uses 2000 LUTs and produces a simulated frequency of 1157 MHz
and a simulated net delay of 432 ps. The second loop however, incorporates a MUX into the loop,
resulting in higher complexity and a LUT usage of an extra 2000 LUTs. The simulated frequency
drops to 870 MHz, reflecting the added combinatorial delay. The total delay is simulated at 575 ps
and 432 ps, with the calculated primitive delay being 79 ps. This full configuration records a higher
power consumption of 378 mW, with a current of 451.8 mA and voltage of 836 mV. The calculated
delay and frequency of the two loops are a bit lower compared to the simulation but still remain in
an acceptable ratio to the simulated values.

29

Enhanced ROs: The enhanced ring oscillator group uses 12000 LUTs. Frequency varies widely
from 1113 MHz to 1852 MHz, and the simulated net delay is 270 to 449 ps with primitive delay
between 60 ps and 79 ps. Power consumption is the highest among all tests at 508 mW, and current
draw reaches 669.9 mA, likely due to the high amount combination logic and active switching
elements in the design. There is a quite large difference between the calculated and simulated
values, and the ratio of calculated versus simulated values does hold up quite well. To evaluate how
much the component count contributes to the power increase, the same design was tested with
fewer instances, using only 2000 LUTs. This corresponds to 333 extended-inverter loops, each with
identical per-loop characteristics as the previous full 12000 size extended inverter. In this reduced
configuration, the power consumption drops back to a more typical 331 mW, with a current draw
of 384.9 mA.

MUXF7-Based Oscillators: Using 4000 LUTs and 2000 MUXes, because every MUX7 uses 2
LUTs for its input according to the description given by [AMD21, Section: MUXF7, MUXF8]. This
circuit achieves a simulated frequency of 756 MHz. with a calculated frequency being 791 MHz.
The power consumption is a moderate 276 mW, and the current draw is 319.3 mA.

MUXF8-Based Oscillators: This implementation doubles the logic resource usage of the MUXF7
design because a MUX8 is simply a combination of 2 MUX7s to a new MUX causing 3 MUXes to
be used per circuit, totalling 8000 LUTs and 6000 MUXes. The added complexity corresponds to a
lower oscillation frequency of 613 MHz, with a calculated frequency of 659 MHz. Despite its larger
footprint, it draws a relatively low 258 mW, with 292.7 mA current, implying a trade-off between
frequency and overall energy efficiency. The difference between calculated and simulated values are
minimal.

Carry Logic Oscillators: This oscillator leverages the FPGAs dedicated carry-chain logic and
uses 2000 LUTs and 2000 MUXes, but those 2000 MUXes are all from within each of the Carry4
components itself. It achieves one of the highest simulated frequency in the set of circuits at 1471
MHz, with a simulated delay of 340 ps and a calculated primitive delay of 99 ps. It operates at 252
mW, with a current draw of 289.1 mA, the high frequency and relatively low power consumption
suggests that optimized logic paths within the carry chain enable high throughput without excessive
power costs. However there does seem to be a large difference between simulated and calculated
values.

Flip-Flop Oscillators: Occupying 4000 LUTs and 2000 Flip-Flops, where 2000 LUTs are used for
the NAND-gate and 2000 more for the inverter. This design reaches a simulated frequency of 767
MHz and exhibits a simulated delay of 652 ps, with a calculated net delay of 2052 ps. It draws 346
mW at 404.5 mA. The large difference in calculated and simulated delay is likely because of the
reason stated earlier with the different paths.

Latch-Based Oscillators: Implemented using 2000 LUTs and 2000 Flip-Flops for the required
inverter, this design oscillates at 688 MHz. It has a high simulated net delay of 727 ps. Power
consumption is 273 mW at 314.3 mA. The circuit has the slowest logic delay of 252 ps, which
causes it to have a low calculated frequency which translates in a relatively low power consumption.
The difference between calculated and simulated values are minimal.

30

5.3 Spatial Test Circuit Evaluation Results

The experimental results obtained from the evaluation of the circuit described in Section 4.3 are
summarized in Figure 18. The plotted measurements show the relationship between the current
draw (mA) and core voltage (mV) as the number of active single inverter loops increases. At low
loop counts, the current rose almost linearly while the voltage dropped gradually, remaining above
900 mV up to approximately 5,000 loops. Beyond this point, both the current and voltage curves
diverged sharply, indicating growing stress on the FPGA’s internal power delivery network.

The first visible functional disturbance occurred at 14,000 loops, when LED2 (BLUE1, region
X0Y1) stopped flickering, suggesting a local timing or voltage fault. At 16,000 loops, LED2
temporarily recovered before failing again at 22,000 loops, reflecting a marginal stability window
near the failure threshold. At 26,000 loops, LED5 (GREEN2, region X1Y2) began flickering more
slowly than the others, marking the onset of wider timing inconsistency across the fabric. Finally,
at 28,000 loops, all LEDs ceased operation, signifying complete loss of reliable power supply.

Beyond this point, the voltage continues to drop slightly, but no meaningful activity is
observed, indicating total system instability. These results confirm that as localized loop density
increases, power supply degradation first manifests in isolated regions before propagating across
the entire device. The early failure of region X0Y1 suggests slightly higher sensitivity to voltage
drop or routing delays in that section of the FPGA, while the final collapse illustrates how power
hammering circuits can, for example, saturate the entire power grid. The intersection of these
effects defines a clear operational boundary: above approximately 28,000 LUT1 loops, the FPGA
operation can no longer be considered trustworthy due to its instability and clock distortion that
begins at around 14000 loops.

Figure 18: Measured current (mA, blue) and voltage (mV, orange) versus number of active single inverter loops.

Vertical dashed lines indicate key moments of regional failure, including early LED faults (14 000 – 26 000 loops)

and full system collapse at 28 000 loops.

31

5.4 Single Inverter Loops Power Hammering Effects

To further investigate the contribution of single inverter power hammering circuits to the overall
power consumption, a second experiment is conducted focusing exclusively on single inverter loops
without any additional counters or LED logic. This experiment shows the power consumption of
the FPGA as the number of active single inverter loops increases.

Figures 19 and 20 illustrate the measured current (mA) and core voltage (mV) as a function of the
number of active single inverter loops. The first graph shows current and voltage values for up to
500 single inverter loops, while the second graph extends the range to 55,000 single inverter loops.

Using two plots makes the lower loop counts easier to study, because their details are
mostly lost in the full-range plot. In the low-loop count range (below 500 single inverter loops), the
current draw increases gradually and proportionally with the number of active loops, while the
voltage decreases only marginally. A notable spike between 80 and 90 loops is visible in the voltage
curve. This sudden jump is likely caused by the power supply’s dynamic power scaling, as many
modern boards, including the CW305 we evaluate, have a dynamic power scaling which changes
the supplied voltage to the FPGA when a certain threshold is crossed.
This interpretation aligns with the observed voltage surge followed by stabilization at higher loop
counts. Beyond this region, smaller irregularities appear throughout both graphs, particularly near
the mid-range (5,000 - 15,000 loops) and again toward the upper range (around 20000 loops).
These fluctuations could be attributed to several potential causes:

• Clock distribution adjustments within the FPGA as internal routing congestion changes.

• Voltage regulation effects, where the onboard power regulators briefly overshoot or undershoot
during dynamic load transitions.

• Minor inaccuracies in the current and voltage readings which may also occur when the power
profiler changes between different current measurement ranges.

Despite these minor anomalies, the overall trend remains consistent and predictable, i.e. as the
number of loops increases, the current rises sharply while the core voltage drops steadily, confirming
the relationship between increasing switching activity and increasing power demand.

32

Figure 19: The first 500 loops and their respective current (mA, red) and voltage (mV, blue) showing a voltage

spike around 80-90 loops with an otherwise steady decrease in voltage and a steady increase in current overall

Figure 20: The full 0 to 55000 loop current (mA, red) and voltage (mV, blue) measurements first showing a sharp

increase in current and decrease in voltage before both gradually flatten out as the loops increase

33

5.5 Analysis

5.5.1 Ring Oscillator Performance

The results shown in Table 2 provide a detailed comparison between the various ring oscillator
implementations in terms of resource utilization (LUTs, MUXes, FFs), switching behavior, and
power consumption. Each design demonstrates a distinct balance between frequency, logic delay,
and power consumption, revealing the trade-offs between a circuits’ architectural complexity and
switching frequency.

The single inverter-based oscillators (A1 to A6) form the baseline for the comparison. These circuits
rely solely on LUT-based feedback loops and therefore scale predictably with the number of single
inverter loops present. Their simulated and calculated frequencies remain in the mid-hundreds of
megahertz range, while their power consumption rises steadily with increased loop count. Among
these, Inverter A5 and A6 stand out, achieving high simulated frequencies and probable strong
power consumption despite using only a single LUT per loop. However, due to the repetitive LUT
structure, their per-resource power density is not the optimal, but its simplicity renders it the best
option for the single inverter loop testing explained in Section 4.3 and 5.4.

The MUX-based oscillators (MUX7 and MUX8) introduce additional routing and switching elements,
but their overall power consumption is lower than the inverter designs (276 mW and 258 mW). This
suggests that while these circuits include more logic levels, much of the additional structure does
not translate into increased dynamic power consumption, possibly due to partial signal correlation
and limited simultaneous signal toggling.

The Carry4-based oscillator proves exceptionally efficient at inducing power stress relative to its
size. By exploiting the FPGAs dedicated carry chain, which integrates its own internal multiplexer
within each carry block, this design achieves a very short and highly active feedback path. The
result is a consistent high-frequency oscillation (1.47 GHz simulated) with minimal routing overhead.
Despite using only 2,000 oscillators, it draws 289 mA of current at 871 mV, corresponding to the
highest current while using the least amount of resources in the dataset. This potentially makes
the Carry4 structure the most effective in terms of the overloading of FPGAs.

The Flip-Flop-based oscillator also demonstrates high total current (405 mA), but its efficiency per
element is lower. The Flip-Flop configuration forms two distinct feedback paths, the preset loop (591
ps) and the data (D) loop (340 ps), which divide the switching activity between asynchronous and
synchronous transitions. Although this enhances the overall toggling complexity, it also introduces
longer path delays and partial clocking dependencies, making the design less power-dense than the
carry-based oscillator.

The extended inverter networks (Extended Inverter and Extended Inverter x333) occupy a unique
position. By instantiating multiple large inverter chains in parallel, they maximize total logic
activity and achieve the highest overall power consumption (508mW). However, this comes at the
cost of substantial resource usage (12k LUTs) and reduced per-element power consumption. These
designs are ideal for testing global power delivery limits but less optimal in terms of simplicity,
because a single loop requires at least 6 LUTs to work, whereas the single inverter loop only uses 1
LUT.

34

Overall, when comparing the power consumption relative to the resource utilization, the A5-based
ring oscillator emerges as the most efficient structure for overloading the FPGA. It achieves high
switching activity, minimal routing delay, and a compact footprint and a probable high power
consumption, all of which contribute to a disproportionately large impact. The extended inverter
(x333) oscillator provides the next highest power consumption due to its chained feedback paths.
Importantly, all evaluated circuit variants triggered design rule warnings in Vivado. These included
timing and logic warnings, especially related to unrealistic net delays or potential latching hazards.
This reinforces prior observations that even structurally valid designs can be flagged due to their
behavior at implementation time, likely as part of power-aware design rule checks introduced in
recent Vivado versions.

Taken together, these results suggest that the most effective power hammering circuits
are not necessarily the ones with the highest complexity, but rather those that maximize switching
within minimal area of the FPGA fabric. The Inverter A5 in particular illustrates how efficient,
low-delay paths can cause a disproportionally high power consumption.

5.5.2 Single Inverter Loops and Spatial Testing

The results from the power scaling and spatial stability experiments highlight how increasing
switching activity directly impacts both the electrical and functional behavior of the FPGA.

In the single inverter loop measurements presented in Section 5.4, a clear trend emerges, as the
number of single inverter loops increase, the current increases while the core voltage decreases at a
comparable rate. This reflects the inherent limit of the FPGA’s power consumption. Since the FPGA
cannot exceed its maximum power supply, any increase in switching activity (and thus current
draw) is accompanied by a corresponding drop in voltage to prevent overload. Minor irregularities,
such as the voltage spike around 80–90 loops, are observable but infrequent and are likely caused
by dynamic power management mechanisms or perhaps measurement inaccuracies. Overall, this
experiment confirms that the relationship between switching activity and power consumption is
largely predictable within the FPGA’s operational limits.
The spatial test results in Section 5.3 shows how localized power consumption affects the FPGA’s
functional stability. Initially, low loop densities produce a similar current increase and voltage
decrease, while allowing all LEDs to operate normally. However, once the number of single loop
inverters exceed approximately 14,000, early signs of functional instability appear, such as the
failing of only LED BLUE1. This indicates a window where the FPGA is still partly stable but
nearing the threshold of reliable behavior. As the loop count continues to increase, an additional
region of the FPGA begins to fail (e.g., LED GREEN2 at 26,000 loops), following a total functional
collapse at 28,000 loops. These observations illustrate that localized power hammering circuits can
cause the FPGA to produce results that can not be trusted to be correct.

35

6 Conclusions and Further Work

In light of the conducted experiments and analyses, this section consolidates the key findings of the
research, highlighting the advancements made in detecting power hammering circuits on FPGA
platforms. It also discusses the broader security implications these findings have for the FPGA
development ecosystem. Finally, the section outlines potential avenues for further investigation
aimed at enhancing detection capabilities and addressing the evolving nature of FPGA-based
threats.

6.1 Summary of Findings

Firstly, Vivado appears to have improved significantly in its ability to detect power hammering
circuits. In contrast to earlier research, where some of the malicious power hammering circuits
went undetected, all of our evaluated designs in this study triggered warnings during synthesis or
implementation. In many cases, additional steps, such as constraint file modifications, are required
to bypass Vivado’s safety mechanisms and proceed with running the circuits on the FPGA. This
may indicate that the Vivado toolchain has evolved to flag more effectively potentially harmful
configurations. Based on the measurements, the power hammering circuits constructed using the
Inverter A5 ring oscillators are considered to be optimal at consuming the highest power with the
least FPGA resources. However, these circuits are also clearly detected and heavily flagged by Vivado,
making it unlikely they could be deployed without an unsuspecting developer noticing substantial
warnings and errors. Across all evaluated circuits, a clear trend does emerge, i.e., higher LUT
utilization does not always correspond to proportionally higher power consumption. For example,
some complex designs such as the Dual-Inverter and Flip-Flop based circuits utilize significantly
more LUTs but only modestly more power is consumed, resulting in lower power-per-LUT efficiency.
In contrast, simpler designs like the Inverter A5 circuits would achieve much higher dynamic
power consumption per unit of logic used. This underlines a critical insight, i.e., efficiency in
power hammering is driven more by switching density and logic simplicity than raw resource
utilization. Designers or attackers seeking to stress the FPGA power supply would benefit more
from maximizing signal toggling activity per LUT than from simply scaling up resource usage.

The single inverter loops power-scaling experiments confirm that the current draw increases almost
linearly with the number of active loops while the supply voltage steadily drops. This relationship
remains until the FPGA device reached its upper operating limit, where the limits of the power
supply cause the voltage and current to remain stable as the amount of loops increase.

The spatial (regional) test circuit experiment shows how the electrical stress spreads across the
FPGA. As the switching activity increases, circuit timing instability first appears in one region
before gradually spreading to the rest of the FPGA device. Full functional failure occurs at around
28,000 active loops and instabilities already around 14,000, indicating the practical limit of the
FPGA’s reliable operation.

36

6.2 Implications

As discussed in Section 3 in the context of broader FPGA security concerns, power hammering
circuits are not the only threat to FPGA-based systems. Side-channel and bitstream attacks,
for example, do not require the execution of malicious logic and can still compromise sensitive
information. However, the risks posed by power hammering circuits remain particularly relevant
due to their potential for physical damage or system disruption through malicious circuit design
alone. Although the evaluated circuits in this study are all successfully flagged by Vivado, there
remains a possibility that other, as-yet-unknown designs of power hammering circuits could evade
detection. This study focused on compact and previously documented circuits, arguably the most
likely to be reused or embedded within larger projects. However, more complex or unconventional
loops, including larger circuit topologies or novel combinations of primitives, could still pose a
threat. Furthermore, as FPGA architectures evolve, new primitives and features may be introduced
that could be misused to create power-abusive loops that cannot be identified by existing detection
mechanisms in Vivado.
This highlights the need for ongoing updates to FPGA development tools such as Vivado, not only
to detect known potentially dangerous circuit patterns but also to anticipate new forms of abuse as
FPGA design techniques advance.
To mitigate future risks, the following improvements could be considered for enhancing power
hammering circuit detection in FPGA toolchains:

• Machine learning-based detection: Incorporating machine learning models trained on
known malicious and benign designs could allow Vivado to identify anomalous structures not
covered by hardcoded rules.

• User-defined power limits: Allowing developers to set explicit per-region or per-module
power constraints could trigger warnings if localized consumption exceeds determined
thresholds.

• Architecture-aware updates: As new primitives (e.g., enhanced DSP blocks, AI-specific
logic) are introduced, detection frameworks should be regularly expanded to evaluate their
misuse potential.

Overall, while current detection mechanisms in Vivado are robust for known potentially malicious
circuit patterns, proactive and adaptive approaches will be necessary to safeguard future FPGA
designs against evolving threats.

37

6.3 Limitations and Future Work

This research has demonstrated improvements in the detection of power hammering circuits by the
Vivado software, but several limitations should be acknowledged. Most notably, all experiments are
conducted on a single FPGA device, the Artix-7 (XC7A100T-2FTG256). While representative of
many general-purpose applications, FPGAs from other families, such as Kintex, Zynq, or devices
from different vendors, feature distinct architectures, resources, and detection mechanisms. As such,
the generalizability of our findings to other platforms remains unclear.

Another limitation lies in the scope of circuit types we experimented with. Although the circuits
chosen for this study are based on known patterns and are likely candidates for malicious reuse, the
space of possible power hammering circuits is much broader. Several attempts were made to explore
and develop novel power hammering circuits, but these did not lead to viable new implementations
within the limited timeframe of this research.

Future work could expand this investigation by experimenting with a wider variety of FPGA families
and architectures as well as exploring more advanced or obscure circuit designs. With increased
experience and understanding of low-level hardware behavior, it may be possible to develop entirely
new types of power hammering circuits. In addition, integrating some of the proposed improvements,
such as anomaly detection, user-defined constraints, or machine learning methods, into Vivado or
similar tools could offer further insights into how security mechanisms may be strengthened.

Ultimately, continued research into FPGA-level vulnerabilities remains essential to ensuring the
security and reliability of future reconfigurable hardware systems.

38

References

[AMD21] AMD Xilinx. UltraScale Architecture Libraries Guide (UG974). AMD, 2021. Available
at: https://docs.amd.com/r/en-US/ug974-vivado-ultrascale-libraries.

[AMD25] AMD. AMD Vivado Design Suite. https://www.amd.com/en/products/software/
adaptive-socs-and-fpgas/vivado.html#overview, 2025. Accessed: 2025-06-06.

[BGG24] Allen Boston, Roman Gauchi, and Pierre-Emmanuel Gaillardon. Secure efpga
configuration: A system-level approach. In Iouliia Skliarova, Piedad Brox Jiménez,
Mário Véstias, and Pedro C. Diniz, editors, Applied Reconfigurable Computing.
Architectures, Tools, and Applications, pages 151–165, Cham, 2024. Springer Nature
Switzerland.

[DMBO+05] E. De Mulder, P. Buysschaert, S.B. Ors, P. Delmotte, B. Preneel, G. Vandenbosch,
and I. Verbauwhede. Electromagnetic analysis attack on an fpga implementation of
an elliptic curve cryptosystem. In EUROCON 2005 - The International Conference
on ”Computer as a Tool”, volume 2, pages 1879–1882, 2005.

[IEE17] IEEE Spectrum. Chip Hall of Fame: Xilinx XC2064 FPGA. IEEE Spectrum, 2017.
Accessed: 2025-06-06.

[LMG+20] Tuan Minh La, Kaspar Matas, Nikola Grunchevski, Khoa Dang Pham, and Dirk Koch.
Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale + fpgas. ACM
Trans. Reconfigurable Technol. Syst., 13(3), September 2020.

[Mor23] Michail Moraitis. Fpga bitstream modification: Attacks and countermeasures. IEEE
Access, 11:127931–127955, 2023.

[Mou25] Mouser Electronics. NAE-CW305-04-7A100-0.10-X. https://mou.sr/43Qsq6B, 2025.
Accessed: 2025-06-06.

[MSA+21] Shyamapada Mukherjee, Swapnanil kr Saikia, Stuti Anand, Ritu Chouhan, and Hiresh
Das. A counter measure to prevent timing-based side-channel attack on fpga. In 2021
6th International Conference on Communication and Electronics Systems (ICCES),
pages 983–988, 2021.

[Nor25] Nordic Semiconductor. Power Profiler Kit II. https://www.nordicsemi.

com/Products/Development-hardware/Power-Profiler-Kit-2, 2025. Accessed:
2025-06-06.

[SGMT18] Falk Schellenberg, Dennis R.E. Gnad, Amir Moradi, and Mehdi B. Tahoori. An inside
job: Remote power analysis attacks on fpgas. In 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 1111–1116, 2018.

[SNM20] Markku-Juhani O. Saarinen, G. Richard Newell, and Ben Marshall. Building a modern
trng: An entropy source interface for risc-v. In Proceedings of the 4th ACM Workshop
on Attacks and Solutions in Hardware Security, ASHES’20, page 93–102, New York,
NY, USA, 2020. Association for Computing Machinery.

39

https://docs.amd.com/r/en-US/ug974-vivado-ultrascale-libraries
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html#overview
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html#overview
https://mou.sr/43Qsq6B
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2

[Ver24] Ieee standard for systemverilog–unified hardware design, specification, and verification
language. IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017), pages 1–1354,
2024.

[ZS18] Mark Zhao and G. Edward Suh. Fpga-based remote power side-channel attacks. In
2018 IEEE Symposium on Security and Privacy (SP), pages 229–244, 2018.

40

7 Appendix

7.1 Single-LUT Oscillators

module RO_LUT1(

output wire out,

input wire prev_out, // Still present to prevent optimization

input wire enable

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT6#(

.INIT(64’h55555555FFFFFFFF) // out = ~in when enable = 1, else 1

) lut_inst (

.I0(in),

.I1(1’b0),

.I2(1’b0),

.I3(1’b0),

.I4(1’b0),

.I5(enable),

.O(out)

);

endmodule

module RO_LUT2(

input wire enable,

output wire out,

input wire prev_out // Still present to prevent optimization

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT6 #(

.INIT(64’h33333333FFFFFFFF) // out = ~in when enable = 1, else 1

) lut_inst (

.I0(1’b0),

.I1(in),

.I2(1’b0),

.I3(1’b0),

.I4(1’b0),

.I5(enable),

.O(out)

);

41

endmodule

module RO_LUT3 (

input wire enable,

output wire out,

input wire prev_out // Still present to prevent optimization

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT6 #(

.INIT(64’h0F0F0F0FFFFFFFFF) // out = ~in when enable = 1, else 1

) lut_inst (

.I0(1’b0),

.I1(1’b0),

.I2(in),

.I3(1’b0),

.I4(1’b0),

.I5(enable),

.O(out)

);

endmodule

module RO_LUT4 (

input wire enable,

output wire out,

input wire prev_out // Still present to prevent optimization

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT6 #(

.INIT(64’h00FF00FFFFFFFFFF) // out = ~in when enable = 1, else 1

) lut_inst (

.I0(1’b0),

.I1(1’b0),

.I2(1’b0),

.I3(in),

.I4(1’b0),

.I5(enable),

.O(out)

);

endmodule

42

module RO_LUT5(

input wire enable,

output wire out,

input wire prev_out // Still present to prevent optimization

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT6 #(

.INIT(64’h0000FFFFFFFFFFFF) // out = ~in when enable = 1, else 1

) lut_inst (

.I0(1’b0),

.I1(1’b0),

.I2(1’b0),

.I3(1’b0),

.I4(in),

.I5(enable),

.O(out)

);

endmodule

module RO_LUT6 (

input wire enable,

output wire out,

input wire prev_out // Dummy to prevent optimization

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT6 #(

.INIT(64’h55555555FFFFFFFF)

) lut_inst (

.I0(enable), // A1

.I1(1’b0), // A2

.I2(1’b0), // A3

.I3(1’b0), // A4

.I4(1’b0), // A5

.I5(in), // A6

.O(out)

);

endmodule

7.2 Dual Inverter Oscillator

module DUAL_INV(

43

input wire dummy_in,

output wire out,

input wire enable

);

// Oscillator 1 (self-looping)

wire osc1_lut_out;

wire osc1_lut_in;

// Oscillator 2 (driven by mux output)

wire osc2_lut_out;

wire osc2_lut_in;

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut1 (

.I0(osc1_lut_in),

.I1(enable),

.O(osc1_lut_out)

);

assign osc1_lut_in = osc1_lut_out;

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut2 (

.I0(osc2_lut_in),

.I1(enable),

.O(osc2_lut_out)

);

// MUXF7 selects between two oscillators

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

MUXF7 mux_inst (

.I0(osc1_lut_out),

.I1(osc2_lut_out),

.S(1’b1), // always selecting I1 = osc2

.O(out)

);

assign osc2_lut_in = out;

endmodule

7.3 Enhanced Ring Oscillator

module RO_LUT6_Chain (

44

input wire enable,

output wire out,

input wire prev_out

);

// Internal oscillator signals

wire ro1_out, ro2_out, ro3_out, ro4_out, ro6_out;

wire lut1_inputs;

assign lut1_inputs = lut1_output;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut1 (

.I0(lut1_inputs),

.I1(enable),

.O(lut1_output)

);

wire lut2_inputs;

assign lut2_inputs = lut2_output;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut2 (

.I0(lut2_inputs),

.I1(enable),

.O(lut2_output)

);

wire lut3_inputs;

assign lut3_inputs = lut3_output;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut3 (

.I0(lut3_inputs),

.I1(enable),

.O(lut3_output)

);

wire lut4_inputs;

assign lut4_inputs = lut4_output;

45

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut4 (

.I0(lut4_inputs),

.I1(enable),

.O(lut4_output)

);

wire lut5_inputs;

assign lut5_inputs = lut5_output;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // out = ~in when enable = 1, else 1

) lut5 (

.I0(lut5_inputs),

.I1(enable),

.O(lut5_output)

);

wire lut6_inputs;

assign lut6_input = lut6_output;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

LUT6 #(

.INIT(64’h0000FFFFFFFFFFFF)

) lut6 (

.I0(lut4_output),

.I1(lut1_output),

.I2(lut2_output),

.I3(lut3_output),

.I4(lut6_input),

.I5(lut5_output),

.O(lut6_output)

);

assign out = lut6_output;

endmodule

7.4 Multiplexer-Based Oscillators

module MUXF7_RO (

input wire dummy_in,

output wire ro_out

);

46

reg feedback_delayed;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

MUXF7 mux_inst (

.I0(1’b1),

.I1(1’b0), // Always 0

.S(feedback_delayed), // Always select feedback

.O(ro_out)

);

always @ (ro_out) begin

feedback_delayed = ro_out;

end

assign feedback = ro_out;

endmodule

module MUXF8_RO (

input wire dummy_in,

output wire ro_out

);

reg feedback_delayed;

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

MUXF8 mux_inst (

.I0(1’b1),

.I1(1’b0), // Always 0

.S(feedback_delayed), // Always select feedback

.O(ro_out)

);

always @ (ro_out) begin

feedback_delayed = ro_out;

end

assign feedback = ro_out; // Feedback to itself

endmodule

7.5 Carry-Chain Oscillator

module CARRY4_RO (

input wire dummy_in, // Unused, just to preserve structure

output wire ro_out,

input wire enable

);

wire co0;

wire input_co0 = enable & co0;

47

// CARRY4 primitive: use first mux as an oscillator

(* KEEP = "TRUE", DONT_TOUCH = "TRUE" *)

CARRY4 carry4_inst (

.CI(1’b0), // Carry input is 0

.CYINIT(1’b0), // Initial carry is 0

.DI(4’b0001), // DI[0] = 1, rest unused

.S({3’b000, input_co0}), // S[0] = CO[0]

.CO(co0), // CO[0] = output

.O() // O output not used

);

assign ro_out = co0;

endmodule

7.6 Flip-Flop Oscillator

(* KEEP, DONT_TOUCH *)

module FDPE_RO (

input wire dummy_in,

input wire enable,

output wire osc_out

);

wire q_int;

wire out_nand;

wire out_inv;

wire ff_out;

(* KEEP, DONT_TOUCH *)

LUT6 #(

.INIT(64’h55555555FFFFFFFF) // NAND-like behavior gated by enable

) lut_nand (

.I0(enable), // Enable control

.I1(1’b0),

.I2(1’b0),

.I3(1’b0),

.I4(1’b0),

.I5(q_int), // Feedback from loop

.O(out_nand)

);

(* KEEP, DONT_TOUCH *)

LUT2 #(

.INIT(4’h7) // NOT(out_nand), enable ignored

) lut_inv (

48

.I0(enable),

.I1(out_nand),

.O(out_inv)

);

// FDPE flip-flop for edge-triggered storage

(* KEEP, DONT_TOUCH *)

FDPE #(

.INIT(1’b0)

) ff_inst (

.Q(q_int), // Feedback output

.C(out_inv), // System clock

.CE(1’b1), // Clock enable

.PRE(out_nand), // No async preset

.D(1’b0) // Data from inverter

);

// Final output

assign osc_out = q_int;

endmodule

7.7 Latch-Based Oscillator

(* KEEP, DONT_TOUCH *)

module RO_LATCH (

input wire init,

input wire in,

output wire out,

input wire enable

);

wire g;

assign g = ~out; // Inverter for feedback loop

LDCE #(

.INIT(1’b0)

) latch (

.Q(out),

.D(g), // Inverted feedback

.G(1’b1), // Constant 1

.GE(enable), // Always enabled

.CLR(1’b0) // No async clear

);

endmodule

49

7.8 Generator for multiple instances

module RO_LUT1Gen (

output wire ro_out,

input wire enable

);

wire [0:0] ro_signals;

(* KEEP, DONT_TOUCH *)

RO_LUT1 ro_first (

.prev_out(1’b0),

.out(ro_signals[0]),

.enable(enable)

);

genvar i;

generate

for (i = 1; i < 1; i = i + 1) begin : ro_gen

(* KEEP, DONT_TOUCH *)

RO_LUT1 ro_stage (

.prev_out(ro_signals[i-1]),

.out(ro_signals[i]),

.enable(enable)

);

end

endgenerate

assign ro_out = ro_signals[0];

endmodule

7.9 LED blinking code

module RO_STAGE(

output wire out,

input wire prev_out // Still present to prevent optimization

);

wire in;

assign in = out;

(* KEEP, DONT_TOUCH *)

LUT1#(

.INIT(2’h1) // out = ~in when enable = 1, else 1

) lut_inst (

.I0(in),

.O(out)

);

50

endmodule

module heartbeat_counter(

input wire clk,

output wire led

);

(* KEEP = "true" *) reg ff = 0;

reg [25:0] counter = 0;

always @(posedge clk) begin

counter <= counter + 1;

ff <= counter[25];

end

assign led = ff;

endmodule

51

	Introduction
	Research Questions
	Contributions to the Field of Security
	Summary of the Thesis

	Background
	FPGA Terminology
	Power Hammering Circuits
	Tools and Hardware

	Related Work
	Power Hammering Circuits
	Security Concerns in FPGA Design

	Hardware and Software Setup
	Experimental Goals
	Circuit Design and Simulation
	Spatial Testing Circuit
	Experimental Hardware Setup

	Experimental Results & Observations
	Challenges in Vivado
	FPGA Experimental Results for Power Hammering Loops
	Spatial Test Circuit Evaluation Results
	Single Inverter Loops Power Hammering Effects
	Analysis
	Ring Oscillator Performance
	Single Inverter Loops and Spatial Testing

	Conclusions and Further Work
	Summary of Findings
	Implications
	Limitations and Future Work

	References
	Appendix
	Single-LUT Oscillators
	Dual Inverter Oscillator
	Enhanced Ring Oscillator
	Multiplexer-Based Oscillators
	Carry-Chain Oscillator
	Flip-Flop Oscillator
	Latch-Based Oscillator
	Generator for multiple instances
	LED blinking code

