
Opleiding Informatica

Multi-objective optimization for auto-tuning GPU kernels

Maric A. Blommaert

Supervisors:
Ben van Werkhoven & Stijn Heldens

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 28/01/2026

www.liacs.leidenuniv.nl


Abstract

In this thesis an extension to the auto-tuning framework Kernel Tuner is pre-
sented that makes it capable of tuning multiple objectives simultaneously. This
makes it possible to obtain the configurations of the application being tuned
that sit at trade-off points with respect to the selected objectives, which allows
software engineers to make better informed decisions about the configurations
that is most fitting for their situation. The extension makes this possible by inte-
grating two Multi-Objective Evolutionary Algorithms (MOEAs), NSGA-II and
NSGA-III, into the framework. The algorithms are tested on the pre-evaluated
search spaces of nine mixed-precision GPU kernels using three and five objec-
tives and their performance is compared to Random Search (RS) and each other.
The results show that NSGA-II and NSGA-III are on average able to find solu-
tion sets that are up to 60% better than RS given the same evaluation budget
and are able to achieve the same solution quality as RS in half the time (a 100%
speedup) for evaluation budgets that allow them to have a sufficient number of
generations.

1 Introduction
Graphics Processing Units (GPUs) have become an indispensable part of the High-
Performance Computing (HPC) landscape and are the computational backbone of the
Artificial Intelligence (AI) and Machine Learning (ML) revolution that is currently
taking place. They have taken this position because GPUs are a type of hardware
accelerator that offers massive parallel compute power relative to conventional CPUs
while remaining application-agnostic. It is also exactly these characteristics that make
GPUs so effective for the highly parallel workloads often found in HPC, AI, and ML
applications.

The sections of application code that run on GPUs are called GPU kernels, or just ker-
nels for short, and are difficult to implement such that they run efficiently on different
input datasets and GPU architectures [1]. A kernel’s performance, implementation
details, and the architecture it is executed on are tightly coupled, which means that
small changes in the implementation choices can generally drop its performance by
an order of magnitude and similar effects can occur when the kernel is executed on
another architecture [2]. This generally makes it difficult to implement kernels that
have portable performance.

The factors that need to be considered during the implementation of each kernel are
numerous, so there are many knobs that can tuned. The work-group dimensions the
kernel is executed with is one of the main tuning parameters and has a wide range
of possible values for each dimension with which it runs correctly, but for which the
performance varies greatly. But there are many other parameters that need to be
tuned, such as:

• the algorithms and data structures used for the computations

• the tile sizes used for loop tiling

• the factor by which loops are unrolled

• the arithmetic precision of the input, output, and intermediate values of the
computations

• the layout of the data in memory
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• the clock frequency of the processors

Each parameter has multiple possible values, making the search space very large. It is
also non-contiguous because not every point in the parameter space corresponds to a
valid implementation. These properties make it practically infeasible for a developer
to manually tune the kernels, as such automatic performance tuning (auto-tuning) is
necessary to achieve optimal and portable performance [1].

Another aspect that the developer needs to consider is the performance objectives of
the kernel. The most familiar one is the total execution time, but there are other and
they can be in conflict with each other. The energy related objectives are especially
interesting because they are important to both HPC and low-energy embedded sys-
tems, so if a kernel can be implemented using less energy while maintaining about the
same execution time than that is something developers in these areas would want to
know. Another objective a developer might want to consider is the numerical accu-
racy of the computation. Lowering the accuracy would allow the use of smaller data
types that have lower arithmetic precision. This would in turn make the data items
smaller, making more items fit in the same memory space and allowing for more items
to be transferred using the bandwidth. Together this would increase the arithmetic
intensity and reduce the total execution time. It can also reduce the total amount of
energy used because less data will have to be transferred overall. On the other hand,
the reduction in accuracy also means the results have a larger error, so this trade-off is
something some applications may be able to use and others will not. These examples
show that performance tuning naturally has multiple objectives that developers may
want and need to consider to get a clearer picture of the trade-offs available to them.

In the language of multi-objective optimization this means that the implementations
of interest are those on the Pareto front with respect to the performance objectives
we are interested in. That is, the implementations that are no worse than any other
implementation with respect to every objective. These are also called non-dominated,
or Pareto optimal.

The complexity of tuning GPU kernels combined with the fact that performance
considerations have multiple, sometimes competing, objectives naturally leads to the
research question of this thesis: how do we implement multi-objective automatic per-
formance tuning for GPUs using Kernel Tuner and do the selected algorithms do better
than random search?

In this thesis I will present an implementation of a multi-objective automatic per-
formance tuner for GPU kernels. It is integrated into Kernel Tuner, a open-source
auto-tuning tool [3]. This means the code is open-source and available to the public.
The algorithms made available in Kernel Tuner are NSGA-II and NSGA-III and the
solution sets they produce will the compared to random search to assess if these algo-
rithms are a promising direction for further research on multi-objective auto-tuning.

Section 2 gives the required background on multi-objective optimization followed by a
description of auto-tuning and finally an overview of Kernel Tuner. Section 3 provides
an overview of different auto-tuning framework. Then comes Section 4 which starts by
describing genetic algorithms, then NSGA-II and NSGA-III and finally a description
of the implementation. Section 5 first describes the dataset that was used to obtain the
results followed by the results themselves and a discussion of them. Finally Section 6
gives an overview of what has been done, states conclusions drawn from this work,
and provides possible directions of future work.
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2 Background
This section describes multi-objective optimization, auto-tuning, and Kernel Tuner.
The multi-objective section will give a short overview of the topic which is required
to properly understand the added challenges when compared to single-objective opti-
mization. After that comes an overview of auto-tuning and finally Kernel Tuner, the
framework that I extend in this thesis.

2.1 Multi-objective optimization
Multi-objective optimization (MO) is concerned with solving the optimization prob-
lems that have multiple objective functions that all need to be optimized simulta-
neously. This allows for the expression of optimization problems where there are
conflicting goals without having to decide what objectives are more important than
others before optimization can happen like would be the case with goal programming.
The presence of conflicting goals generally makes it impossible for a single solution
to be the best with respect to every objective. Instead there is a set of solutions that
are optimal with respect to a subset of the objectives, but which cannot be improved
for one objective without degrading it for another. These solutions correspond to the
fundamental trade-offs that exist for a MO problem and is where a decision needs to
be made about what is most important.

A multi-objective optimization problem (MOP) can be stated as:

minimize 𝒇(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑛(𝑥)]
s.t. 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑚) ∈ 𝑋

(1)

where

• 𝑛 is the number of objectives and 𝑚 the number of decision variables.

• 𝒇(𝑥) ∶ 𝑋 → 𝑌 ⊆ 𝐑𝑛, the vector-valued objective function that is formed by
the combination of the objectives. It maps feasible solutions to their objective
vector in the objective space, 𝑌.

• 𝑋 ⊆ 𝑋+ = ∏𝑚
𝑖=1 𝑋𝑖, the feasible set, which is the subset of the Cartesian prod-

uct of the domains of the decision variables, 𝑋+, that only contains the feasible
solutions. The feasibility of a solution depends on the constraints imposed on
the problem.

What follows are some definitions that are required to talk multi-objective optimiza-
tion:

Given two feasible solutions 𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 dominates 𝑥2, written 𝑥1 ≺ 𝑥2, iff is at
least as good as 𝑥2 in every objective and there is at least one objective in which 𝑥1
is better than 𝑥2. Another way of saying that 𝑥1 dominates 𝑥2 is to say that 𝑥1 is a
Pareto improvement of 𝑥2.

Given a subset of the feasible set 𝑋′ ⊆ 𝑋 and a solution in this subset 𝑥 ∈ 𝑋′,
𝑥1 is non-dominated in 𝑋′ iff there does not exist any other solution in 𝑋′ that
dominates 𝑥. A Pareto optimal solution is a solution that is non-dominated in the
entire feasible set, such solutions are also said to be Pareto efficient.

Continuing with the set 𝑋′, the non-dominated set 𝑋∗ of 𝑋′ is the set of non-
dominated solutions in 𝑋′. The Pareto set is the non-dominated set of the entire
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feasible set, which is the same as the set of Pareto optimal solutions. The Pareto
front is the image of the Pareto set in the objective space.

The Pareto set and Pareto front of a MOP can now be stated as:

𝑋∗ = arg min
𝑥∈𝑋

𝒇(𝑥) (2)

𝑌 ∗ = {𝒇(𝑥∗) ∣ 𝑥∗ ∈ 𝑋∗} (3)

where 𝑋∗ is the Pareto set and an 𝑥 is considered minimal is it is non-dominated.

The optimization problems will, going forward, be considered minimization problems
because auto-tuning GPU kernels generally takes the form of trying to minimize the
amount of resources (e.g. time, energy, memory space) used during its execution.

The ideal and nadir vectors are two vectors in the objective space whose com-
ponents are the best and worst (resp.) values for each objective function found in
a non-dominated set. Given a non-dominated set 𝑋∗ the ideal (𝐲ideal) and nadir
(𝐲nadir) vectors are defined as follows for a minimization problem:

𝐲ideal = [𝑓min
1 , 𝑓min

2 , ..., 𝑓min
𝑚 ] (4)

𝐲nadir = [𝑓max
1 , 𝑓max

2 , ..., 𝑓max
𝑚 ] (5)

where 𝑓min
𝑖 = min𝑥∈𝑋∗ 𝑓𝑖(𝑥) and 𝑓max

𝑖 = max𝑥∈𝑋∗ 𝑓𝑖(𝑥) for 1 ≤ 𝑖 ≤ 𝑚. The hypercube
defined by the ideal and nadir gives important information about the range of possible
objective values and is required to normalize the objective space [4].

2.2 Auto-tuning
“Autotuning refers to the automatic generation of a search space of possible imple-
mentations of a computation that are evaluated through models and/or empirical
measurement to identify the most desirable implementation.” — [5]

It is important to note that implementation does not just refer to the sequence of
instructions of the program to be executed but also to the configuration of the com-
puting system it will be executed on. This means that all non-functional aspects of
an implementation over which there is sufficient control can in principle be tuned and
as such be considered tuning parameters.

The parameters selected to tune a program combine to form the parameter space
𝑋 defined as the Cartesian product of the value sets 𝑋𝑖 of these parameters:

𝑋 = ∏ 𝑋𝑖.

An element 𝑥 ∈ 𝑋 is called a parameter configuration and together with the
program 𝑃 has a map to an implementation variant (𝑃 , 𝑥) ↦ 𝑃𝑥 if it satisfies the
constraints imposed by the user, software, and hardware. The search space that
needs to be explored is then the subset of 𝑋 containing the configuration for which
such mappings exists. In other words, the search space is the set of parameter con-
figurations that correspond to a valid implementation variant.

2.2.1 Tuning parameters

Tuning parameters may generally be divided into two groups, the system parameters
and the program parameters [6].
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The system parameters do not alter the code of the program itself, but do effect
how the code is executed on the computing system. Examples of system parameters
are:

• the thread block size and the extent of each dimension;

• the clock frequency of the processor and memory; and

• the number of communication channels between the host and GPU.

The program parameters are the transformations applied to the program to pro-
duce a program variant while keeping them semantically equivalent, although an in-
crease in round off error may be permissible depending on the problem domain. Each
transformation can further have its own parameters that can be tuned. Examples of
program parameters are:

• loop unrolling, which has the unrolling factor as parameter;

• loop tiling, which has the tile dimension as parameter;

• the data types and structures used to represent the data being processed; and

• the algorithms used to perform the computations.

The order that the transformations occur in is also important, because changing
the order of application can produce different programs with different performance
characteristics. As a very simple example take the program:

FOR (i := 0; i < N; i := i + 1)
FOR (j := 0; j < M; j := j + 1)

f(i, j);

First applying loop interchange of i and j and then unrolling the inner loop 2 times
produces:

FOR (j := 0; j < M; j := j + 1)
FOR (i := 0; i < N; i := i + 2)

f(i, j);
f(i + 1, j);

While performing these transformations in the opposite order produces:

FOR (j := 0; j < M; j := j + 2)
FOR (i := 0; i < N; i := i + 1)

f(i, j);
f(i, j + 1);

If f() were to now access an array using the indices the performance could be vastly
different depending on the array’s layout. This shows that unless all transformations
are independent (i.e. do not effect the same region of code) their order of application
should be considered another tuning parameter.

2.2.2 Evaluation

There are generally two approaches to evaluate a variant [5]. The first and most
straightforward approach is to compile and benchmark the configuration and measure
the characteristics of interest, e.g. execution time and energy usage. The second
approach is to create a mathematical model that is able to predict the objective
values without having to compile or execute the program. Such a model can either
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be constructed using heuristics or through machine learning methods. The advantage
of this latter approach is that the benchmarking step is avoided which takes a lot
of time, making tuning faster. The disadvantage however is that the model takes
a non-trivial amount of work to create, its accuracy needs to be validated, and it
needs to be updated each time the tuning parameters change. This generally makes
model-based evaluate techniques less flexible than the model-free ones.

2.2.3 Exploration

The size of the parameter space and in turn the search space increases quickly as the
number of tuning parameters and their possible values they can have increases. This
makes the exhaustive evaluation of all possible configurations infeasible for practical
applications of auto-tuning. Instead optimization algorithms have to be used so that
only a small subset of the search space has to be explored to find a good configuration.

A wide variety of optimization algorithms have been employed for auto-tuning [7].
A constraint that the use of optimization algorithms imposes however, is that the
user now needs to decide what performance metrics are going to be the optimization
objectives that will steer the tuning process, whereas with exhaustive exploration a
wide range of metrics could be recorded and the selection done after the fact. A
further limitation is that many optimization algorithms are designed to only work
with a single objective, so when multiple objectives need to be taken into account
they have to be transformed in a single one, which inevitably means that information
will be lost. This is a major issue because, just like in economics, it is rarely the case
that we only care about a single objective, we want the code to run as fast as possible,
use as little energy as possible, minimize the response time, maximize the throughput,
etc. The use of multi-objective optimization algorithms for the auto-tuning process
solves this latter issue by being able to search for the program variants that sit at
trade-off points between the different objectives, as it is rarely the case that there is
a single variant that is the best for all objectives.

2.3 Kernel Tuner
Kernel Tuner is an extensible and generic auto-tuning framework written in Python [3].
It is capable of tuning CUDA, OpenCL, and HIP kernels and can even be used to
tune C host side code that launches these kernels.
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Figure 1: Block diagram of the architecture of Kernel Tuner.

The ability to tune both host and device code allows for the optimization of host-
device communication and across different GPU kernels. The latter is very useful for
applications that contain a pipeline of different kernels.

Kernel Tuner offers a wide variety of optimization algorithms, which they refer to as
strategies, such as Basin Hopping, Genetic Algorithms, and Bayesian Optimization,
but by default it uses the “brute force” strategy, which explores the search space
exhaustively.

To control the tuning process of Kernel Tuner a Python script is needed that sets up
the tuning problem and calls the tuner. Among the things this script prepares and
passes onto the tuner are the program code, problem size, the list of arguments used
to call the program, and the tuning parameters with their possible values. There are
other settings like the tuning objectives, the search strategy, and the settings of the
strategy, but these are optional, so unless specified the defaults will be used. The full
list of parameters that are available to control the tuning process can be found in the
documentation of Kernel Tuner [8].

Kernel Tuner evaluates a parameter configuration by compiling the program using
the configuration’s parameter values and benchmarking it on the inputs passed by the
script. What is recorded in the results of the benchmark depends on the observers
and metrics that are being used. The observers record values that are measured
from the execution of the program configuration or can only be known about the
program after it has been compiled, these include the execution time, energy usage,
the number of registers used by each thread, and performance counters. Metrics on
the other hand are values that are calculated from the values recorded by the observers
or from the parameter values. Each program configuration is benchmarked multiple
times in a row, 7 by default, to reduce the effect of the variance of the properties that
are being measured, like execution time, and their mean is also recorded in the result.

A consequence of evaluating the configurations by benchmarking is that the time
taken to execute the different program configurations dominates the total time it
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takes to tune.

A result cache is maintained during tuning so that the benchmark results can be
reused when the strategy tries to evaluate an already benchmarked configuration
again instead of redoing the work, greatly speeding up the tuning process. It makes
it possible to use optimization algorithms that require the objective functions to
be deterministic, which would not be the case if the same kernel was benchmarked
multiple times due to the stochasticity inherent in the measurement of objectives like
execution time and energy consumption.

Kernel Tuner is able to simulate the tuning process on exhaustively explored search
spaces using the result cache system. This allows for different strategies and the same
strategy with different settings to be tried on the search space without having to
benchmark the program configurations for each tuning run with different setup.

One of the limitations that Kernel Tuner currently has and that this thesis tries
to resolve is that it only supports tuning for a single objective, so when multiple
objectives are of interest scalarization techniques need to be used to reduce them to
one.

3 Related work
In this section I will discuss a number of auto-tuning frameworks, the first 2 works are
genetic auto-tuning frameworks that have been used to both tune CPU, GPU, and
mixed workloads, the 3 works after that mainly focus on tuning GPU applications,
but may also be capable of tuning CPU applications, and the last 3 works have multi-
objective auto-tuning as their primary focus. The works that I looked at do generally
not incorporate compiler techniques such as performance heuristics or optimization
passes, but instead empirically measure the characteristics of the program variants
which are produced by changing the source program and the compiler settings used
to compile the programs to find the best program configuration.

OpenTuner [9] is one of the first generic auto-tuners. It can accept multiple objectives,
but either scalarizes them into a single objective or in the case of two objectives can
optimize one while thresholding the other. This means OpenTuner is still essentially
a single objective auto-tuning framework.

Rasch et al. [10] introduce the Auto-Tuning Framework (ATF). ATF is a generic auto-
tuning framework written in C++ that support a range of target languages and search
techniques. It allows for the expression of dependencies between tuning parameters
making it especially useful for situations where this is important, like with the GEMM
operator for which the shape of the accumulation matrix depends on the shape of the
multiplied matrices. Its handling of multi-objective optimization is however lacking,
it is possible to specify multiple objectives like with OpenTuner, but it is required
that the solutions can be placed in a total ordering based on their objective values for
the optimization algorithms to work correctly. This means the domination relation
cannot be used as it only induces a partial ordering on the space of solutions and it
cannot produce a Pareto set of configurations at the trade-off points.

CLTune by Nugteren and Codreanu [11] is a single-objective auto-tuner designed to
work with OpenCL applications. It is written in C++ and allows the user to pick be-
tween the exhaustive search, random search, simulated annealing, and particle swarm
optimization algorithms to explore the search space.
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Kernel Tuner Toolkit [12] is a auto-tuning framework written in C++ with an API
based on that of CLTune and its search space generation derives from ATF. Its primary
focus is GPU kernels and it supports the OpenCL and CUDA kernels. It is however
able to also tune for th CPU and the ability to optimize pipelines of kernels and the
communication between host and device were all considered during its design.

Kernel Tuner [3] as I’ve already described in Section 2.3 is the auto-tuning framework
I chose to extend with multi-objective capabilities. Because it is written in Python
it is more easily accessible to a wide variety of applications, especially data science
and machine learning applications. Kernel Tuner and ATF are both very generic and
extensible, but Kernel Tuner has a stronger focus on the tuning of GPU applications.

Chen and Hollingsworth [13] introduce ANGEL, a hierarchical optimization technique
that is able to accept multiple objects and is tailored to auto-tuning for HPC applica-
tions. The proposed technique first gives each objective a priority ranking and then
a single-objective algorithm is used to optimize the objective in priority order. Con-
straint information is passed on from higher to lower objectives which makes solutions
invalid that have a value for a higher objective that exceeds a specified relative dif-
ference with the best known value for this objective. Because the multiple objectives
are in essence scalarized, only using a hierarchical technique, only a single solution is
returned as optimal, which has the downside that the user does not have access to a
range of trade-offs to pick between.

Nardi et al. [14] introduce HyperMapper 2.0, a design space exploration framework
that is able to work with multiple objective simultaneously. Design space exploration
is similar to auto-tuning, but approaches the problem from the angle of computer sys-
tem design and engineering design optimization more broadly. The proposed frame-
work uses a white-box model and Design of Experiments (DoE) methods to learn how
the design variables effect the objective values. They use their framework to explore
the design space of implementing a computation on an FPGA. The framework can
also be used to auto-tune GPU kernels, as was done in [15].

Cheema and Khan [16] introduce an auto-tuning framework called MOKAT that uses
NSGA-II, a evolutionary multi-objective algorithm, and apply it to a 2D convolution
kernel to simultaneously optimize its runtime performance and energy efficiency. It
is able to tune OpenCL and CUDA kernels and uses NVIDIA NVML to obtain the
the power sensors values on the device. It does not support any other way of measing
power, making it unable to measure power metric on AMD and Intel GPUs. Unlike
the other frameworks, MOKAT does not seem to be open-source, making it both
difficult to studie and assess its capabilities besides those mentioned in the paper
directly.

4 Design and Implementation
In this section I will first describe the application of multi-objective optimization
to the problem of auto-tuning GPU kernels, then genetic algorithms in Section 4.1,
NSGA-II in Section 4.2, NSGA-III in Section 4.3, and finally the implementation in
Section 4.4.

In real-world application we rarely only care about a single facet of the application’s
performance and computational resources it consumes. Instead, a wide variety of
aspects need to be considered to satisfy the non-functional desires and requirements
of the application. Take a cloud computing environment for example, in this space
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the service cost is often directly proportional to the amount of resources used so
to minimize the cost a configuration of the application that uses the least amount of
resources is desirable. On the other hand, we still want maximal throughput, minimal
response time, or a combination of both while using as little memory as we can. All
these, often conflicting, desires mean that to understand the trade-offs that exist in
the design space of our application we need to consider a variety of objectives, making
multi-objective optimization a natural choice for tuning applications.

Multi-objective optimization problems do not generally have a single solution that
minimizes all objectives simultaneously. Instead there is a Pareto set, a set of solutions
that cannot be altered to decreased the cost in any objective without also increasing
the cost of at least one other objective (see Section 2.1).

The feasible region of the parameter space, i.e. the search space, cannot be fully
determined statically because the validity of a parameter configuration can only be
fully known after it has been successfully compiled and launched. This is because
of the hardware restrictions imposed by the GPU that is being tuned on and the
guarantees, or the lack thereof, that successful compilation gives.

The objective values of a parameter configuration are determined in multiple ways,
the major aspects such as execution time and energy consumption are measured
empirically. Other aspect such as memory footprint can often be calculated from the
parameters themselves using knowledge about the kernel that is being tuned. There
are also objective values that can be derived from others, such as average power draw,
which is defined as the total energy consumption divided by the execution time.

A consequence of the empirical nature of the objective space is that the true Pareto
set cannot be known unless the search space is exhaustively evaluated, which is pro-
hibitively expensive for practical applications. Instead the true Pareto set can only be
approximated using a variety of optimization algorithms, two of which are explored
below. Not knowing the true Pareto set causes issues when it needs to be known how
good an approximation is in an absolute sense, but it is still possible in a relative
manner, this is explored further in Section 5.

4.1 Genetic algorithms
The Pareto set can be approximated using various algorithms, such as Multi-objective
Evolutionary Algorithm Based on Decomposition (MOEA/D) [17], Reference Vector
guided Evolutionary Algorithm (RVEA) [18], and Non-dominated Sorting Genetic
Algorithm I, II, and III (NSGA-I, NSGA-II, and NSGA-III) [19]–[21]. NSGA-I is
the earliest algorithm in the NSGA family, but has been completely superseded by
NSGA-II. Only NSGA-II and NSGA-III have been explored in this thesis to keep the
score and the required implementation effort reasonable.

NSGA-II and NSGA-III are genetic algorithms and the latter also makes use of refer-
ence directions. Genetic algorithms are meta-heuristics that for the purposes of this
thesis can be described using the outline shown in Algorithm 1. For the purposes of
this thesis it can be assumed that 𝜈par = 𝜈off and 𝜌cross = 1.

This same structure also applies to its multi-objective variant, but instead of main-
taining a single best solution that approximates the optimal solution, a set of solutions
is maintained that are all Pareto optimal within the population, effectively approxi-
mating the true Pareto set.

An important aspect of applying genetic algorithms to a problem is how the solutions
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Algorithm 1 Genetic algorithm outline
▷ Hyperparameters ◁
𝜈init = the size of the initial population.
𝜈par, 𝜈off = the number of parents and the number of offspring.
𝜌cross, 𝜌mul = the rate of crossover and the rate of mutation.
𝜈pop = the size of the population that survives to the next generation.

1: 𝑃0 ← sample(𝜈init)
2: evaluate(𝑃0)
3: 𝑡 ← 0
4: while not terminate(𝑃𝑡) do
5: ▷ Mating phase ◁
6: 𝑀𝑡 ← select-mates(𝑃𝑡, 𝜈par)
7: 𝑄𝑡 ← crossover(𝑀𝑡, 𝜈off, 𝜌cross)
8: mutate(𝑄𝑡, 𝜌mut)
9: repair(𝑄𝑡)

10: ▷ Survival phase ◁
11: evaluate(𝑄𝑡)
12: 𝑃𝑡+1 ← select-survivors(𝑃𝑡 ∪ 𝑄𝑡, 𝜈pop)
13: 𝑡 ← 𝑡 + 1
14: end while

are represented. Nothing special is done in this regard, largely because Kernel Tuner
already uses a representation that was easily adapted to work with multiple objectives.
Formally it can be assumed that a solution is an element of the Cartesian product of
the tuning parameter domains.

What follows is a description of the operators mentioned in Algorithm 1:

Sampling The sample() operator selects a sample of the search space, there are
more sophisticated ways of sampling that take the objectives into account but these
are not explored in this thesis, instead a simple uniform random sample is used.

Evaluation The evaluate() operator determines and assigns fitness scores to the
individuals of the population. In the case of auto-tuning this corresponds to bench-
marking the implementation variant in case it was not found in the result cache.

Termination The terminate() operator decides when to end optimization loop
should end. Only fixed budget termination is considered in this thesis.

Selection The selection operators select-mates() and select-survivors() pick
the population members which are going to produce offspring and survive to the
next generation respectively using the fitness score assigned to them. The algorithm
most commonly used to implement select-mates() is Tournament Selection [22].
Tournament Selection works by taking 𝜈par simple random samples with replacement
from 𝑃𝑡 with each sample being size 𝑘. The members of each sample are then ranked
according to some comparison function. After that an individual is picked from each
sample to form the mating population 𝑀𝑡. The method of picking individuals can
either be probabilistic or deterministic. The probabilistic method chooses

• the highest rank individual with probability 𝑝,
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• the second highest with probability 𝑝(1 − 𝑝),

• the third highest with 𝑝(1 − 𝑝)2,

• et cetera

while the deterministic method always picks the one with the highest rank, which
is the same as the probabilistic method with 𝑝 = 1. This means that normally
Tournament Selection has the hyperparameters 𝑘 and 𝑝 in addition to 𝜈par, but for
the purposes of this thesis 𝑘 = 2 and 𝑝 = 1, eliminating these variables again. The
comparison function will also not be considered hyperparameter, because it is an
integral part of the design of NSGA-II and NSGA-III.

The select-survivors() is required because only a subset of the combined popula-
tion 𝑃𝑡 ∪𝑄𝑡 can survive to the next generation. In the case of NSGA-II and NSGA-III
it also serves the purpose of selecting those members from the combined population
that are simultaneously the most promising solutions and together are as diverse as
possible to make convergence to the Pareto front more likely.

Crossover The crossover() operator pairs solutions in the mating population 𝑀𝑡
and combines each pair to produce two offspring solutions in the offspring population.
There are many possible ways of combining two solutions to produce new ones, of them
the ones I selected are single-point, two-point, and uniform crossover [23], [24] because
they work well for the tuple representation used to represent the solutions. Figure 2
shows a simple visualization of single-point crossover.

Figure 2: Single-point crossover: The cells that make up each row repre-
sent a variable for which a value needs to be selected. The top two rows
are the parents solutions and the bottom two the produced offspring. The
colored regions indicate from which parent the values were selected for
the variables of the offspring.

The nature of the search spaces dealt with in auto-tuning makes this a major source
of invalid configurations and is also why the repair() operator is important to have
a decent ratio of proposed solutions to valid solutions, which is explained below.

Mutation The mutate() operator has the chance to modify solutions with prob-
ability called the mutation rate. The general intent of this operator is to introduce
new variance into the population.

A design is chosen where each solution has a chance of being swapped with a valid
solution that differs in exactly 1 tuning parameter, i.e. has a Hamming distance of
1, from the original. A solution is only allowed to be swapped with a valid one in
its neighborhood because a parameter configurations can easily become invalid when
modified, so allowing invalid solutions would mean that either a large number of the
solutions in a generation can become invalid or the mutation rate would have to be
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kept low to prevent this. Keeping the mutation rate low would in turn mean less
variance is introduced in the population, which would reduce the exploration that
occurs. Allowing mutate() to produce invalid solutions would also make it possible
for the repair to revert the solution back to its pre-mutation state, rendering the work
useless. The effect of increasing or decreasing the mutation rate would also become
less predictable because the frequency at which mutated solutions are reverted back to
their pre-mutation state would counteract the mutation rate. A benefit of the chosen
design is that the original and modified solutions are always very similar which should
allow it to function as a local search.

Repair The repair() operator takes an invalid solution and attempts to turn it
into a valid one.

In the design an attempt is made to repair an invalid solution by looking for a valid
solution in three increasingly wide neighborhoods one by one. The invalid solution
is replaced by the first valid solution found, but if there are no valid solutions in the
neighborhood then the solution is left unchanged.

4.2 NSGA-II
NSGA-II [20] is a Multi-Objective Evolutionary Algorithm (MOEA) which has three
main goals (1) good convergence, (2) good variety, and (3) good coverage [25]. Good
convergence means that the difference between the true and approximate Pareto fronts
reliably decreases or is maintained which would result in the approximation settling
down given sufficient generations. If this is not the case the algorithm would be able to
get stuck in a loop of the approximation getting closer and further away from the true
Pareto front. Good variety means that the algorithm maintains sufficient diversity
in its population so the entire Pareto front remains reachable. Good coverage means
that the approximate Pareto fronts produced cover a sufficient portion of the Pareto
front. The latter two are closely connected because if a diverse population can be
maintained until the end it is also likely that said population will cover a significant
part of the true Pareto front.

Algorithm 2 NSGA-II
1: 𝑃0 ← sample(𝜈init)
2: evaluate(𝑃0)
3: 𝑃1 ← first-generation(𝑃0)
4: 𝑡 ← 1
5: while not terminate(𝑃𝑡) do
6: 𝑀𝑡 ← select-mates(𝑃𝑡, 𝜈par)
7: 𝑄𝑡 ← crossover(𝑀𝑡, 𝜈off, 𝜌cross)
8: mutate(𝑄𝑡, 𝜌mut)
9: repair(𝑄𝑡)

10: evaluate(𝑄𝑡)
11: 𝑅𝑡 ← 𝑃𝑡 ∪ 𝑄𝑡
12: 𝑃𝑡+1 ← select-survivors(𝑅𝑡, 𝜈pop)
13: 𝑡 ← 𝑡 + 1
14: end while

NSGA-II with a repair() operator added is shown in Algorithm 2 and is practi-
cally identical to Algorithm 1 except for Lines 3 and 4, because the first generation
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Algorithm 3 NSGA-II’s survivors selection
1: procedure select-survivors(𝑅𝑡, 𝑁)
2: 𝐹 ← fast-non-dominating-sort(𝑅𝑡)
3: 𝑆𝑡 ← ∅; 𝑙 ← 1
4: while |𝑆𝑡| + |𝐹𝑙| < 𝑁 do
5: 𝑆𝑡 ← 𝑆𝑡 ∪ 𝐹𝑙
6: 𝑙 ← 𝑙 + 1
7: end while
8: assign-crowding-distance(𝑆𝑡 ∪ 𝐹𝑙)
9: if |𝑆𝑡| + |𝐹𝑙| = 𝑁 then

10: 𝑆𝑡 ← 𝑆𝑡 ∪ 𝐹𝑙
11: else
12: sort-dsc(𝐹𝑙, ≺𝑛)
13: 𝑆𝑡 ← 𝑆𝑡 ∪ take(𝑁 − |𝑆𝑡|, 𝐹𝑙)
14: end if
15: return 𝑆𝑡
16: end procedure

is a special case. Its select-survivors() operator shown in Algorithm 3 uses the
objective values of the population to determine for each individual how many dom-
inate it, called its rank, and which solutions it dominates. This is used to quickly
sort the population into least non-dominated levels, as described in Algorithm 4. It
also determines how crowded individuals in the population are using a metric they
call the crowding distance. The crowding distance is calculated using the Manhat-
tan distance an individual has to its two neighbors per objective. The neighbors are
the first objective values smaller than and larger than the individual’s value after
the values of the objective have been min-max normalized and sorted. The mini-
mal and maximal individuals, i.e. those that only have one neighbor for one of the
objectives, are assigned infinite crowding distance. The internal individuals’ crowd-
ing distance is the mean of their Manhattan distance for each objective. (See [20]
for a more complete description.) The rank and crowding distance are combined in
the Crowded-Comparison Operator (≺𝑛) which prefers individuals with lower rank
over those with a higher one, but if their ranks are the same it picks the one with
the highest crowding distance. This operator is used in both select-mates() and
select-survivors(), although the latter mostly relies on non-dominated sorting and
only uses the comparison operator to select a part of the survivors. These mechanisms
combined allow the algorithm to have both good convergence and diversity properties.

Figure 3: Left box is 𝑅𝑡. Right
box is 𝑆𝑡 after selection. Subboxes
are levels 𝐹𝑖. Red line is the cutoff
point 𝑁.

The algorithm’s steps are now briefly described
in word in addition to the algorithms that have
already been given. The first generation (com-
puted by first-generation()) is a special case
because the crowding distance is calculated dur-
ing the survival phase so the first mating selection
cannot yet make use of the complete crowded-
comparison operator, instead the rank is used on
its own. After the first generation the algorithm
goes as follows: Given generation 𝑡 we have par-
ent population 𝑃𝑡 of size 𝑁. Mating pairs are
then selected from 𝑃𝑡 to procreate offspring 𝑄𝑡
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also of size 𝑁. Populations 𝑃𝑡 and 𝑄𝑡 are then
combined to form population 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡 of size
2𝑁. 𝑅𝑡 is now partitioned into non-dominated
levels 𝐹1, 𝐹2, etc. using Algorithm 4, where 𝐹1
is the non-dominated set of 𝑅𝑡, 𝐹2 the non-
dominated set of 𝑅𝑡 − 𝐹1, and so on for the rest
of the levels. The survivors 𝑆𝑡 are chosen in two
steps: (1) starting from 𝐹1, non-domination lev-
els are selected one by one until their union’s size would either be equal to or exceed
𝑁, name the last level 𝐹𝑙 and 𝑆𝑡 = ⋃𝑙−1

𝑖=1 𝐹𝑖. This means the levels 𝑙 + 1 and up are
all rejected and will not survive until the next generation. (See Figure 3.) (2) If
|𝑆𝑡| + |𝐹𝑙| = 𝑁 then the members of 𝐹𝑙 are added to 𝑆𝑡. If this is not the case their
combined size would exceed 𝑁, so only a subset of the members 𝐹𝑙 can be added.
𝐹𝑙 is now sorted using Crowded-Comparison Operator (≺𝑛) in descending order and
individuals are selected from the start and added to 𝑆𝑡 until it reaches size 𝑁.

Algorithm 4 Fast non-dominated sorting algorithm from [20]
1: procedure fast-non-dominated-sort(𝑃 )
2: 𝐹1 ← ∅
3: for each 𝑝 ∈ 𝑃 do
4: 𝑆𝑝 ← ∅ ▷ Set of individuals that 𝑝 dominates
5: 𝑛𝑝 ← 0 ▷ Count of individuals that dominate 𝑝
6: for each 𝑞 ∈ 𝑃 do
7: if 𝑝 ≺ 𝑞 then
8: 𝑆𝑝 ← 𝑆𝑝 ∪ {𝑞}
9: else if 𝑞 ≺ 𝑝 then

10: 𝑛𝑝 ← 𝑛𝑝 + 1
11: end if
12: end for
13: if 𝑛𝑝 = 0 then
14: 𝑝rank ← 1
15: 𝐹1 ← 𝐹1 ∪ {𝑝}
16: end if
17: end for
18: 𝑖 ← 1
19: while 𝐹𝑖 ≠ ∅ do
20: 𝐹𝑖+1 ← ∅
21: for each 𝑝 ∈ 𝐹𝑖 do
22: for each 𝑞 ∈ 𝑆𝑝 do
23: 𝑛𝑞 ← 𝑛𝑞 − 1
24: if 𝑛𝑞 = 0 then
25: 𝑞rank ← 𝑖 + 1
26: 𝐹𝑖+1 ← 𝐹𝑖+1 ∪ {𝑞}
27: end if
28: end for
29: end for
30: 𝑖 ← 𝑖 + 1
31: end while
32: end procedure
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4.3 NSGA-III
NSGA-III [21] is a Many-Objective Evolutionary Algorithm (MaOEA). MaOEAs are
MOEAs that have four or more objectives. NSGA-III is similar to NSGA-II but has
significant differences in its selection operator to better deal with higher-dimensional
objective spaces. The hypervolume of the objective space grows quickly as the number
of objectives increases, making the solutions more sparse in the objective space. This
makes the crowding-distance metric used by NSGA-II a less effective measure of
solution density because it uses neighboring solutions to approximate this. NSGA-
III like NSGA-II partitions the combined population 𝑅𝑡 into non-dominating levels,
orders them from least to most dominated, and selects the levels just like NSGA-II
does. It does however differ in the way it selects members from the last level 𝐹𝑙 in
case |𝑆𝑡| + |𝐹𝑙| > 𝑁. Instead of crowding distance it uses reference points to maintain
the diversity of the population. Using reference points to maintain diversity is more
robust against the curse of dimensionality because its approximation of the solution
density doesn’t depend on neighboring solutions, which get further and further away
as the number of objectives increases.

The reference points lie on the unit hyper-plane in the objective space, this means that
for any reference point 𝐱 the sum of its components, ∑ 𝐱 = 1. To make the objective
vectors of 𝑆𝑡 ∪𝐹𝑙 compatible with the reference points they are normalized using their
ideal and nadir vectors. The members of 𝑆𝑡 ∪ 𝐹𝑙 are then associated to the reference
point they are closest to, where closeness is measured by the perpendicular distance an
objective vector has when treated as a point to the lines passing through the origin
and reference points, as shown in Figure 4. This is also why they are sometimes
called reference directions instead of reference points. Using the information about
the number of solutions associated with each reference point it keeps track of the least
populous ones while selecting the individuals from 𝐹𝑙. It does the selection one at
a time based on which individual is closest to a least populated reference point and
associates the individual to it, increasing the population count of the reference point.
This process is repeated until the number of individuals required to make |𝑆𝑡| = 𝑁
have been selected from 𝐹𝑙.

The reference points can be either generated using techniques like Das and Dennis’s
structured approach [26] and the Riesz 𝑠-Energy based method [27] or manually spec-
ified. Manually specifying the reference points allows the user to guide the search
process because NSGA-III is likely to identify Pareto optimal solutions close to the
specified reference points. This means the reference points can be used to encode
preference information and as such become part of the decision making process [21].

4.4 Implementation
In this section I describe the implementation of my multi-objective optimization ex-
tension to Kernel Tuner. The implementation can be neatly separated into two parts,
the modifications made to Kernel Tuner to accommodate multiple objectives (Sec-
tion 4.4.1) and the new strategy module that gives access to multi-objective opti-
mization algorithms (Section 4.4.2).

4.4.1 Multiple objectives

The tune_kernel() function, a part of Kernel Tuner’s user interface, is extended
so the user can specify multiple objectives to guide the strategy and their respective
optimization directions, i.e. minimize or maximize.
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Figure 4: The perpendicular distance distance between objective vector
𝑦 and reference points R0, R1, R2. Y is the point vector 𝑦 corresponds to
and 𝑑(𝑦, Ri) is the perpendicular distance point Y has to the line ORi.

I have also modified the result cache (Section 2.3) because the original format does
not work well when multiple objectives are involved. In the original format a result is
stored in a Python dictionary that contains the tuning parameters, observed values,
and derived metrics. The issue is that the field used as the objective is also used
to store the error received if the configuration associated with the result fails to be
evaluated. This might work fine when you are dealing with a single objective, but
when dealing with multiple objectives it is unclear which one to pick. A naive solution
would be to always pick the first objective specified, but this creates an unnecessarily
dependence on the order of the objectives. Instead I chose for an approach that uses
a special “error” key that is only added to results that failed to be evaluated. This
makes checking if a cached result is erroneous as simple testing if the “error” keys
is in the dictionary. A collateral effect of changing the cache format is that all the
places that use it need to be adapted for it.

The code Kernel Tuner uses to get the objective value from a result is also modified
to allow for multiple objectives and returns the objective vector taking optimization
directions of the objectives into account.

The runners, which compile and benchmark the GPU kernels, did not need to be
modified to work with multiple objectives. This is because the runners depend on the
observers and metrics, but do not interact with the objectives specified by the user.
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4.4.2 Strategy module

Kernel Tuner implements strategies using a modular interface, making it easy for
users to add their own. Each strategy is a Python module that implements the
tune() function. The tune() function takes a search space, runner, and the tuning
options as parameters and returns all the results gathered during tuning.

The new strategy module uses the Pymoo [28] framework for its implementation of
the NSGA-II and NSGA-III optimization algorithms. Pymoo is a framework written
in Python for multi-objective optimization and is designed in an object-oriented style
that makes it easy to adapt to various applications. In the framework, optimization
problems and algorithms are represented by classes as are most other parts of Pymoo.
The algorithms are further more factored into various operators, genetic algorithms
for example can be constructed using a variety of sampling, selection, crossover, and
mutation operators. After an algorithm has been constructed it still needs to be set-
up for the optimization run you want to do. This step sets the optimization problem,
the termination condition, and has various other parameters to configure the run.
A Pymoo problem class is implemented to represent the tuning problems of Kernel
Tuner, all this class does is call Kernel Tuner’s solution evaluation machinery. It also
makes the true Pareto front accessible to Pymoo in tuning simulation mode, this is
not accessible during normal tuning because the search space needs to be known to
determine the true Pareto front.

Pymoo is primarily designed for continuous optimization problems so I had to imple-
ment custom sampling and repair operators that are aware of the structure of Kernel
Tuner’s search spaces. It would have also been possible to model the entire search
space using components from Pymoo, but I decided against it because this would
have also required that all the constraint machinery in Kernel Tuner would have to
be reimplemented using Pymoo and it was unclear if this would result in any tangible
benefits.

Pymoo provides multiple crossover and mutation operators that can be used for dis-
crete optimization problems. These operators do not normally need special knowledge
about the search space, but as was described in the design section I still chose to write
a custom mutation operator. The crossover operators can be used as is however and I
decided to give easy access to the uniform crossover, single-point crossover, and two-
point crossover methods, because they worked on the solution representation without
the need to make any additional changes to the case. When it comes the the se-
lection operators, the defaults that Pymoo provides for NSGA-II and NSGA-III are
used as is, which is Tournament selection for select-mates() and the algorithms are
described above for select-survivors(). This decision is made because both the
mating and survivor selection operators are tightly coupled with the implementations
of the algorithms, making it hard to swap them freely for another selection algorithm
without exposing an excessive amount of the implementation details to the user. It
is thus left to future work to make these hyperparameters configurable by the user.

5 Evaluation
I reused the dataset produced for [29] to perform my experiments. The dataset con-
tains results for the search spaces of 9 kernels that have been exhaustively evaluated
with a focus on mixed-precision computing, so there are multiple tuning parameters
that affect the data types of variables and the numerical error on the computed out-
put values. The exact number of tuning parameters and information on the size of
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the search spaces can be found in Table 7 in Appendix A.2. A total of 5 metrics
were recorded during the evaluation of the search spaces of the kernels, 2 of them
pertaining to computational resources and 3 pertaining to numerical precision:

• The execution time of the kernels, the value for this metric is determined by
executing the kernel seven times and taking the average of the individual mea-
surements.

• The memory footprint, this represents the amount of memory the kernel occu-
pies on the device.

• The mean relative error (MRE):

MRE = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − 𝑦′
𝑖 |

|𝑦′
𝑖 |

• The normalized root mean squared error (NRMSE):

NRMSE =
√ 1

𝑛 ∑𝑛
𝑖=1|𝑦𝑖 − 𝑦′

𝑖 |2
1
𝑛 ∑𝑛

𝑖=1 𝑦′
𝑖

• The normalized mean absolute error (NMAE):

NMAE =
1
𝑛 ∑𝑛

𝑖=1|𝑦𝑖 − 𝑦′
𝑖 |

1
𝑛 ∑𝑛

𝑖=1|𝑦′
𝑖 |

What follows is a description of the kernels that were tuned:

Bessel A Bessel kernel that computes the approximation of the modified Bessel
function of the first kind using the follow formula:

𝐼0(𝑥) = 1 +
𝑘max

∑
𝑘=1

𝑡𝑘 where 𝑡0 = 1 and 𝑡𝑘 = 𝑡𝑘−1 ⋅ 𝑥2

4𝑘2

The tuning parameters are the number number of terms evaluated (i.e. the value of
𝑘max) and the data types of the inputs and output, the intermediate result, and the
computations.

Convolution2D A kernel that computes the 2D convolution of an input image.
Each thread block loads a tile of the image into shared memory and the threads in
each thread block cooperate to process the image elements and store the results. The
tuning parameters are:

• the thread block dimensions
• the tile dimensions
• the option to use shared memory
• the minimum number of thead block per SM, this parameter prevents the

overutilization of registers in an SM
• the data types of the input and output image, the filter weights, the internal

accumulators, and shared memory.

The kernel was benchmarked by applying a 17×17 filter to an 8192×8192 image.
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K-means A kernel that performs distance computation step of the K-means clus-
tering algorithm, i.e. it computes the the distance all 𝑁 data points have to the 𝐾
cluster centers. Each thread is assigned multiple data points to spread the workload.
The tuning parameters are the data types of the input data points, cluster centers,
and the output distances. The kernel was benchmarked by processing 5 × 106 data
points with 15 features for 40 cluster centers.

LavaMD The LavaMD kernel computes the inter-atomic forces among particles in
3D space to simulate their molecular dynamics. The 3D space is divided into fixed-
size cubes and only the forces between particles in the same cube and adjacent cubes
are computed. Each cube gets assigned to a thread block and the threads in each
thread block the cooperatively process the particles in the cube and its adjacent cubes.
The tuning parameters are the particle positions, the particle charges, the internal
accumulators, and the output forces. The kernel was benchmarked by processing
8.6 × 105 particles and the cubes are 15×15×15.

Inverse Kinematic (InvK) An Inverse Kinematic kernel that computes the angle
that each joint of a robot arm needs to have to reach a given target point. The tuning
parameters are:

• the number of threads per block
• the number of points processed per thread
• The data types of the input targets, the output angles, and the intermediate

variables

The kernel was benchmarked by processing 50×106 targets in parallel for a four-joint
robotic arm.

Newton-Raphson A Newton-Raphson kernel that computes the roots of 4th-
degree polynomials using the iterative Newton-Raphson method for 10 iterations.
The tuning parameters are:

• The number of threads per block
• The number of polynomials processed per thread
• The data types of the polynomial coefficients, input root estimates, output roots
• The data types used for the first 5 and last 5 iterations, which they can be

different but do not have to be

The kernel was benchmarked by processing 108 polynomials in parallel.

Coulombic The Coulombic kernel that computes the electric potential of a col-
lection of charged particles at discrete points on a 2 dimensional grid. The tuning
parameters are:

• The data types of the particle positions, particle charges, and electric potentials
• the thread block dimensions
• the number of grid points per thread
• the unrolling factor for the loop that iterates over the particles

The kernel was benchmarked using 104 particles and 4 × 106 grid points.

MRI-Q The MRI-Q kernel that performs an inverse non-uniform Fourier transform.
It is commonly used in the field of MRI (magnetic resonance imaging) to produces an
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image from the input frequency domain data. The data types of the input magnitude-
and-phase values, 𝑘-space frequency domain positions, spacial domain positions, and
output image can be tuned. The kernel was benchmarked using 16×16×16 dimensions
for the 𝑘-space positions and 64×64×64 dimension for the spacial positions.

Black-Scholes A kernel that computes the call and put prices of options according
to the Black-Scholes model from quantitative finance. The kernel was benchmarked
by processing 2 × 108 options in parallel.

The kernels were auto-tuned on the Nvidia A100 and the AMD Instinct MI250X
GPUs.

• The A100 GPUs have 40GB of memory and were in DAS6 nodes located in the
ASTRON-site [30], a part of the distributed supercomputer of the Netherlands.
There nodes also have two 16-core AMD EPYC 7282 CPUs and 128 GB of
memory. The software used is Rocky Linux 8.9, CUDA 12.2.1, Python 3.11.5,
and Kernel Tuner 1.0.

• The MI250Xs have 128 GB of HBM2e memory and are in nodes from LUMI [31],
a pre-exascale system located in Finland. Each of the 2,978 GPU nodes has one
64-core AMD Trento CPU and four GPUs. The MI250Xs has two compute dies
but they only used a single one per GPU to gather the data. The software
used is SUSE Linux Enterprise Server 15 with ROCm 6.0.3, Python 3.9.13, and
Kernel Tuner 1.0.

Auto-tuning on these pre-explored search spaces was simulated on a AMD Ryzen AI
7 350 CPU. This CPU has 8 cores 4 of which have the Zen 5 µ-architecture and
the other 4 the Zen 5c µ-architecture. Every simulation was run on a single Zen 5
core with simultaneous multi-threading (SMT) disabled, to remove the influence of
the scheduler and make sure the results can be compared fairly. Frequency scaling
was however not disabled, because this is an integral part of modern day CPUs, so
disabling it would limit the hardware’s capabilities on the task. Lastly the software
used was Fedora Linux 43 and CPython 3.12.12 compiled using GCC 15.2.1.

It is important to note that normally not every accuracy metric is applicable to every
kernel because of consideration about their numerical range, but this fact has been
ignored during the following analysis and any solutions that had NaN values for any of
the objective values were removed and not considered valid solutions. This was done
so that the dataset could be treated as having 5 fully fledged objectives instead of the
number of objectives depending on the kernel. The decision to ignore the nature of
the measurements does make the analysis less representative of real world situations,
but having 5 complete objectives to work with was deemed more important to assess
the multi-objective capabilities of the algorithms.

5.1 Quality indicators
When compared to single-objective optimization, working with multiple objectives
greatly complicates the analysis of solutions because there is generally no natural
total ordering of single solutions, instead there is the partial order induced by the
domination relation called the Pareto order and there are Quality Indicators (QIs)
that assigns a single number to a set of solutions with that number representing a
scoring of its quality. Examples of QIs include the Hypervolume Indicator (HV) [32],
the Generational Distance (GD) [33], the Inverted Generational Distance (IGD) [34],
and their augmentation variants GD+ and IGD+ [35]. An aspect of QIs is the

22



extend to which the order they induce on the solution sets is compatible with the
Pareto order, namely a QI 𝐼(𝑥) is called Pareto compliant if given two solutions sets
𝐴 and 𝐵 that are not equal it follows from every element 𝑏 ∈ 𝐵 having an element
𝑎 ∈ 𝐴 that weakly dominates it 𝑎 ⪯ 𝑏 that 𝐼(𝐴) < 𝐼(𝐵) and weakly Pareto compliant
if it follows from this relation that 𝐼(𝐴) ≤ 𝐼(𝐵) [36]. If a QI satisfies this property
then better solution sets correspond will have higher scores in case of full Pareto
compliance and a score that is no worse in case of weak compliance.

IGD+ , a weakly Pareto-compliant QI was used to score the quality of the produced
solution sets. It is defined as follows: given two set objective vectors 𝐴 and 𝑍 IGD+

measures how “close” 𝐴 is to 𝑍 as follows:

IGD+(𝐴, 𝑍) = 1
|𝑍|

∑
𝑧∈𝑍

min
𝑎∈𝐴

𝑑+(𝑎, 𝑧),

where

𝑑+(𝑎, 𝑧) = √
𝑚

∑
𝑖=1

[max(𝑎𝑖 − 𝑧𝑖, 0)]2.

This definition assumes the objectives are being minimized. For the purposes of this
thesis 𝐴 is the set of objective vectors (of a prefix) of the list of solutions evaluated
during a run and 𝑍 the true Pareto front of the search space. So IGD+ will measure
how “close” the current approximation of the Pareto front is to true front.

IGD+ was chosen over HV, which is strongly Pareto-compliant, making HV have
better theoretical properties than IGD+ , because unlike HV, IGD+ does does not
have exponential runtime complexity in the number of objectives, making it much
cheaper to compute for many-objective problems. IGD+ is also similar to HV in its
ability to measure convergence and diversity as long as the true Pareto front is known,
which is the case in this studie [37].

Going forward it should be assumed that the objective vectors have been normalized
using the ideal and nadir vectors of the true Pareto front of their search spaces before
their IGD+ score was computed.

5.2 Hyperparameters
In order to fairly compare the optimization algorithms across different tuning prob-
lems, reasonable values need to be chosen for the algorithms’ hyperparameters. Of
all the possible values for the hyperparameters the ones considered are shown in Ta-
ble 1. These are tested on 6 tuning spaces (2 GPUs × 3 kernels), with 3 objectives
for NSGA-II and 5 for NSGA-III, for every evaluation budget of interest.

Kernels: Bessel, Convolution, and MRI-Q

GPUs: Nvidia A100 and AMD Instinct MI250X

Objectives: NSGA-II: Time, memory footprint, and MRE.
NSGA-III: NRMSE and NMAE in addtion to the ones NSGA-II has.

Budgets: 50, 100, 150, and 200

This is done by doing a gridsearch over all the combinations of tuning problems
(kernel × GPU × objectives), hyperparameter tuples, and evaluation budgets for
each algorithm, with each experiment repeated 20 times.
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Algorithm Hyperparameter Domain Domain size

NSGA-II

Population size {20, 40, 80} 3
Crossover method {two-point-crossover} 1

Crossover probability {1.0} 1
Mutation method {𝑐𝑢𝑠𝑡𝑜𝑚} 1

Mutation probability {0.05, 0.1, 0.2} 3
Number of possible configurations 9

NSGA-III

Population size {20, 40} 2
Crossover method {two-point-crossover} 1

Crossover probability {1.0} 1
Mutation method {𝑐𝑢𝑠𝑡𝑜𝑚} 1

Mutation probability {0.05, 0.1, 0.2} 3
Reference directions method {Riesz s-Energy} 1

Number of reference directions = population size 1
Number of possible configurations 6

Table 1: Hyperparameters per algorithm and the domain of each param-
eter.

I will now describe the procedure that was used to select a hyperparameter configu-
ration for each each algorithm at each budget by giving the steps used on the data
for NSGA-II at a single budget, but the steps are the same for the other algorithm,
budget pairs: The IGD+ score of each repetition was computed, producing a table
the following signature:

Configuration Kernel GPU Score
9 × 3 × 2 × 20 = 1080 rows

The median and interquartile range (IQR) of scores was then computed while grouping
by the Configuration, Kernel, and GPU columns to aggregate the 20 repetitions of
each experiment, producing:

Configuration Kernel GPU Median IQR
9 × 3 × 2 = 54 rows

The mean was then taken by grouping by the Configuration and Kernel columns
to get an average score and spread for the kernel on both GPUs per configuration,
producing:

Configuration Kernel E(Median) E(IQR)
9 × 3 = 27 rows

The mean was then taken again, but this time grouping by Configuration column
to finally produce a single value for the average and a single one for the spread per
configuration. The columns were respectively renamed 𝑦1 and 𝑦2 because “mean of
mean of medians” and “mean of mean of IQRs” is quite long and cumbersome.

Configuration 𝑦1 𝑦2

9 rows
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The averaging was done in this way because I wanted to both produce a single value
to represent the average score and spread for each configuration, but at the same time
wanted it to be more robust against more extreme values and this was a simple way
to achieve that goal. The median could have also been used, but I judged that the
potential outliers should not be too extreme and that underlying distribution should
not be very skewed, so a mean of means seemed fitting.

The best configuration for the budget should produce results that have the best
average score and give confidance that the scores it produces on a variety of search
spaces does not vary excessively. To find this configuration first the Pareto front
was calculated by minimizing both 𝑦1 and 𝑦2 and then a configuration on the Pareto
front was picked using the following simple decision procedure: If the number of
configurations for a budget is odd then select the middle one else the number is even
in which case a coin is tossed to pick one of the two middle points.

This procedure was repeated for each algorithm and budget producing the Pareto
fronts shown in Figure 5 and Figure 6 for NSGA-II and NSGA-III respectively with
the selected configurations highlighted in the table on the right. It can be seen on
the plots that for a budget of 50 the Pareto front distributions are quite horizontal in
shape, with the one for NSGA-III almost being collinear, while the front distributions
for a budget of 200 are much more vertical in shape. The horizontal shape corresponds
with a large variance in the average IGD+ score and small variance in the average
spread, this is not unexpected for a low budget and can be explained by the fact that
there has been at most one round of evolution, so the algorithms did not yet have a
chance to properly converge, making the variance in the scores high, which together
causes 𝑦1 to vary a lot and 𝑦2 to be high and stable. The vertical shape of the front
distributions when the budget is 200 can be explained through similar reasoning: the
solution population would have undergone a number of rounds of evolution before
termination, giving it time to converge towards the true Pareto front, making the
variance in the score lower, which together causes 𝑦1 to be low and stable, but 𝑦2
is now not kept high by the lack of convergence, making the differences in variance
more apperent. This analysis is however speculative and further research is required
to properly understand the effects of changing the hyperparameter values on tuning
problems. It is also notable that when the budget is 150 the fronts have fewer than
3 points and in the case of NSGA-III only 1, but I do not have an explanation
for this phenomenon. Table 6 can be referenced to get a clear overview of what
hyperparameter values were selected for the algorithms per budget.

It is worth noting that the size of the hyperparameter space is rather small, or at
least, given the flexibility of genetic algorithms it could be much bigger. It was a
conscious decision to keep the search small, it is after all not the goal of this thesis to
find the optimal configuration for NSGA-II or NSGA-III, but to extend Kernel Tuner
with multi-objective capabilities. The goal of this analysis should then be taken to
show the promise of these techniques and to do further research using them now that
there easily accessible implementation that can be applied to auto-tuning problems.

5.3 Algorithm comparison
To assess the quality of the solutions produced by NSGA-II and NSGA-III for certain
budgets tuning was simulated on all the pre-evaluated search spaces for 30 repetitions
using the best hyperparameter value for each budget. This was done for the same
two sets of objectives used to selected the best hyperparameter configurations (see
Table 6), which from now on will simply be referred to as the 3 and 5 objective sets.
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Budget Pop size P(muta) 𝑦1 𝑦2

50 20 0.10 0.126214 0.077449
50 20 0.20 0.141475 0.076920
50 40 0.05 0.146606 0.074142

100 20 0.10 0.069203 0.039828
100 20 0.05 0.071388 0.036830
100 40 0.05 0.094395 0.030919

150 20 0.20 0.044986 0.029355
150 20 0.10 0.048416 0.027212

200 20 0.10 0.028532 0.027749
200 20 0.20 0.031582 0.018643
200 20 0.05 0.035726 0.015902

Figure 5: The left plot shows the objective values (𝑦1, 𝑦2) of each config-
urations considered for NSGA-II per budget, the crosses connected by a
line correspond with the non-dominated configurations and the dots with
the dominated ones. The table on the right also shows the configurations
in the Pareto set and the highlighted rows are the configurations that
were selected.

The same experiments were done with the Random Search (RS) algorithm which was
used as a baseline.

RS is a very simple algorithm: it takes a random sample the size of the function
evaluation budget without repetition from the search space, evaluates each solution
in the sample, and finally produces the Pareto front of this sample as the result. This
simplicity is also why it makes a good baseline, because if a proposed optimization
algorithm is unable to do better than RS it indicates that the extra effort the algorithm
has to do compared to RS does not result in observable improvement.

As was done to find the best hyperparameter configuration, the IGD+ score of each
repetition was computed and the median score taken for further comparison. These
values are shown in the top plot of Figure 7 for the experiment using the Bessel search
space on the AMD Instinct MI250X with 3 objectives. To further determine how much
better NSGA-II and NSGA-III did than RS for a certain budget their median score
for each budget was subtracted from RS’s median and then divided the latter. This
value can be interpreted as representing how much better the solutions found by the
algorithms are relative to the quality of the solutions found by RS. The plots for the
rest of the experiments can be found in Appendix A.3.

These plots and Table 2 show that RS, on average, has similar performance as NSGA-
II or NSGA-III and sometimes does better than the latter when the evaluation budget
is 50, the lowest budget that was tested with, while at 100 evaluations NSGA-II and
NSGA-III seem to consistently do better than RS, with them both being better in
35/36 cases or 97% with the notable exception Figure 7. It is from around a 150
evaluations that the algorithms start always outperform RS. The similar performance
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Budget Pop size P(muta) 𝑦1 𝑦2

50 20 0.20 0.144258 0.080259
50 40 0.10 0.151696 0.079509
50 40 0.05 0.162116 0.078624

100 20 0.20 0.070623 0.041672
100 20 0.10 0.073415 0.034445
100 20 0.05 0.074109 0.034436

150 20 0.05 0.045112 0.021210

200 20 0.05 0.030591 0.025012
200 20 0.20 0.030916 0.014982
200 20 0.10 0.031789 0.014012

Figure 6: The same type of plot and table as shown in Figure 5 for NSGA-
III.

Budget NSGA-II (SD) NSGA-III (SD)
50 11.19 (± 19.46) 1.23 (± 13.64)
100 34.60 (± 15.16) 34.36 (± 15.90)
150 49.87 (± 15.07) 52.95 (± 17.01)
200 59.76 (± 17.45) 64.29 (± 14.21)

Table 2: The mean and standard deviation (SD) of the percentage median
improvements of NSGA-II and NSGA-III over RS for the IGD+ score
obtained for the solutions sets they produced per evaluation budget that
was tested with.

to RS for a budget of 50 can be explained by the fact that NSGA-II and NSGA-III
have not yet had a change to have multiple round of evolution before the budget is
already exhausted. When the budget is 100 a population of size 20 has 4 evolution
rounds, so this is where the effects algorithms really start to show, which is also
reflected in the results. This trend continues and by 150 evaluations there are no
more problems on which RS does better than NSGA-II or NSGA-III.

It can also be observed in the plots and summarized in Table 3 that the difference
between NSGA-II and NSGA-III is minor and that NSGA-III does not do consistently
better than NSGA-II even on the ”many-objective” tuning problems. I suspect that
this is because 5 objectives is too few for NSGA-II to really start to suffer from
the problems that come with objective spaces that have high dimensionality and for
NSGA-III to start showing its adaptations for these types of problems, but it requires
further research to answer this question with certainty. NSGA-III does however seem
to have a tendency to outperform NSGA-II as the budget exceeds 150.

Next the time the algorithms require to tune the kernels was investigated by look-
ing at the number of evaluations and the time the algorithms spent benchmarking,
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Figure 7: The top shows the median IGD+ score per algorithm and
budget with the shaded region displaying the range between the first
and third quartile (i.e. the IQR). The bottom plot show the relative
improvement of NSGA-II and NSGA-III over RS, 𝑦 = 0 indicates the
same performance as RS and 𝑦 = 1 corresponds to obtaining a median
score of 0.

verifying the results of, and compiling the kernels, which I will from now on refer to
as “evaluation time” (Kernel Tuner calls it “simulated time”). First I looked at how
much faster NSGA-II and NSGA-III are than RS to obtain a certain IGD+ score
and then if any speedup in the evaluation time was obtained for the same number
evaluation budget.

To assess how much faster NSGA-II and NSGA-III are than RS in reaching a certain
IGD+ score I looked at how many variants they needed to evaluate to obtain a median
score that was at least as good as RS achieved when using the full 200 evaluations.
Using this information I was able to compute the amount of evaluation time both
algorithm needed to get this score with which I was able to determine the speedup
over RS. On average both were twice as fast as RS in reaching the RS’s median score
at 200 evaluations, with NSGA-II having a 122% (± 43%) and NSGA-III a 117% (±
34%) speedup over RS. The average speedup the algorithms have per kernel is shown
in Table 4. In absolute terms NSGA-II can speedup the tuning process between 1:09
and 8:10 minutes and NSGA-III between 1:19 and 7:16 minutes on these kernels.
These results clearly show that NSGA-II and NSGA-III are capable of cutting the
time that it requires RS to achieve a certain quality score in half, which would improve
the experience of engineers using these tools in their development pipeline.

To assess the amount of time the algorithms spend tuning the kernel for certain
budgets the total evaluation time of each run was analyzed. The results of this
analysis are succinctly displayed in Table 5, these improvements might look minor at
first, especially with their large standard deviation values, but when it is taken into
account that RS would have spent anywhere from 2 minutes and 15 seconds to 11
minutes and 14 second on evaluating kernels for a budget of 200 an improvement of
about 10% is quite welcome, especially if auto-tuning is to become an integral part of
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No. objectives
Budget 3 & 5 (SD) 5 (SD)

50 −15.01 (± 24.56) −17.24 (± 26.27)
100 −2.19 (± 21.64) −0.11 (± 18.25)
150 5.16 (± 28.17) 6.49 (± 30.51)
200 9.89 (± 27.04) 9.55 (± 28.69)

Table 3: The mean and standard deviation (SD) of the percentage median
improvements of NSGA-III over NSGA-II for the IGD+ score obtained for
the solutions sets they produced per evaluation budget that was tested
with. The 3 & 5 column shows these values for the scores that were
obtained when the algorithms were run with each objective set and the
5 column only the scores when they were run with the 5 objective set.

Kernel NSGA-II (SD) NSGA-III (SD)
Bessel 121.86 (± 9.65) 109.89 (± 15.31)
Convolution2D 137.98 (± 42.63) 108.48 (± 39.09)
K-Means 94.70 (± 49.91) 114.50 (± 42.04)
LavaMD 137.95 (± 32.58) 129.11 (± 32.81)
InvK 96.26 (± 29.44) 89.02 (± 23.78)
Newton-Raphson 137.19 (± 17.38) 148.62 (± 6.85 )
Coulombic 117.43 (± 58.79) 105.11 (± 23.23)
MRI-Q 107.22 (± 30.95) 111.13 (± 28.48)
Black-Scholes 147.13 (± 80.46) 140.78 (± 56.18)

Table 4: The mean and standard deviation (SD) of the percentage
speedup NSGA-II and NSGA-III have over RS per kernel when they
have to read the same score as RS is able to achieve with a budget of 200
evaluations.
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Budget NSGA-II (SD) NSGA-III (SD)
50 2.25 (± 6.97) 0.30 (± 3.59)
100 8.78 (± 7.66) 7.82 (± 6.92)
150 9.87 (± 7.86) 9.93 (± 7.75)
200 11.94 (± 9.19) 11.15 (± 7.84)

Table 5: The mean and standard deviation (SD) of the median percent-
age improvement of NSGA-II and NSGA-III over RS for the time spent
benchmarking, verifying the results of, and compiling the GPU kernels
per evaluation budget.

the software development pipeline. It should be noted however that this most likely
a result of time being one of the objectives that is being minimized during tuning, so
it should not be surprising that NSGA-II and NSGA-III spend less time evaluating
kernels as their populations evolve to contain solutions that are faster while RS takes
a random sample and does not make any decisions to direct the optimization process.
For SOO this would mean that we can only have these benefits if time is the objective
being tuned for, but MOO does not have this limitation, with it the time objective
could always be added purely to speed up the tuning process, even if it is not one of
the objectives of interest. This does however mean a part of the tuning budget will
consequently be used to try and explore the direction in the space of solutions that
corresponds with improvements in the time objective, but with MOO it is at least an
option that can be considered, unlike SOO.

6 Conclusion
In this thesis, I describe the design and implementation of an extension to the auto-
tuning framework Kernel Tuner that makes it capable of doing multi-objective opti-
mization. The extension makes the NSGA-II and NSGA-III available which allows
developers to tune their GPU kernels for multiple objectives simultaneously without
requiring any form of scalarization of the objective functions. This makes a more
hands-off approach possible because no knowledge of the underlying search space is
required to tune multiple objectives, which is not the case when multiple objectives
are scalarized so they can work with a single-objective optimization algorithm.

To evaluate the quality of the solution sets produced by NSGA-II and NSGA-III was
then analyzed by comparing them to Random Search for specific evaluation bud-
gets. To do this analysis the best hyperparameter values for the algorithms were
first determined from a limited set of options. Using these hyperparameter values
the algorithms were applied to the pre-evaluated search space of nine kernels and two
devices, making for a total of 18 spaces used for the evaluation. Because the search
spaces are pre-evaluated the true Pareto fronts are known, which made it possible to
use the IGD+ metric to score the quality of the solutions found. These scores were
then compared to the ones obtained by Random Search on the same problems and
evaluation budgets. This test showed that for lower evaluation budgets NSGA-II and
NSGA-III are about tie with Random Search, but starting from a budget of around
100 function evaluations they start to consistently outperform it and by 150 evalua-
tions this is always the case. This leads to the conclusion that the algorithms need
at least 4 round of evolution to consistently outperform Random Search with the
hyperparameter configurations that were used, further research is however required
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to find the best default hyperparameter values so that the algorithms can be broadly
applicable without needing much effort on the user’s side. The amount of time the
algorithms spend evaluating kernels was also analyzed. The first test showed that
NSGA-II and NSGA-III on average only need half the time RS requires to obtain a
median IGD+ score that RS obtains using 200 evaluations and the second test led
to the interesting conclusion that MOO makes it possible to add the minimization of
time as one of the objectives purely to reduce the time spend on auto-tuning.

This work makes multi-objective auto-tuning more easily accessible to a wider audi-
ence by being implemented in an extensible framework written in the Python pro-
gramming language. Future work could, as previously mentioned, make more of the
hyperparameters NSGA-II and NSGA-III have accessible to the user, explore better
default settings for the algorithms, or compare their performance to different multi-
objective optimization algorithm when applied to auto-tuning GPU kernels. How
simultaneous multi-objective optimization as done in this work, compares to itera-
tively tuning for a single objective using conventional single-objective optimization
algorithms also needs to be investigated. It is in any case my hope that this work
will allow for this field to gain a broader audience by allowing user to more directly
encode their tuning goal by using multiple objectives.
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A Appendices
A.1 Appendix: The hyperparameters of the algorithms

Budgets

NSGA-II 50 100 150 200
Population size 20
Crossover method two-point-crossover
Crossover probability 1.0
Mutation method 𝑐𝑢𝑠𝑡𝑜𝑚
Mutation probability 0.2 0.05 0.2 0.2

NSGA-III 50 100 150 200
Population size 40 20 20 20
Crossover method two-point-crossover
Crossover probability 1.0
Mutation method 𝑐𝑢𝑠𝑡𝑜𝑚
Mutation probability 0.1 0.1 0.05 0.2
Reference directions method Riesz s-Energy
Number of reference directions 40 20 20 20

Table 6: The selected hyperparameter values per algorithm for each bud-
get.

A.2 Appendix: The tunable parameters per GPU kernel

Name Field Source Error No. params No. configs
Metric

Bessel Mathematical Physics Kernel Float [29] MRE 8 15,120
Convolution2D Image Processing BAT [38] NRMSE 11 72,112
K-Means Machine Learning Rodinia [39] MRE 6 3,328
LavaMD Molecular Dynamics Rodinia [39] NMAE 8 14,896
InvK (Inverse Kinematic) Robotics AxBench [40] NMAE 7 4,641
Newton-Raphson Numerical Analysis AxBench [40] NRMSE 8 5,572
Coulombic Electrical Engineering Parboil [41] MRE 8 20,736
MRI-Q Medical Parboil [41] NRMSE 8 29,916
Black-Scholes Finance CUDA Samples [42] NRMSE 7 6,383

Table 7: Benchmarks used for performance evaluation. The exact number
of valid configurations depends on hardware capabilities, numbers shown
for Nvidia A100.

A.3 Appendix: The scores compared to random search
Refer to Figure 7 to understand how to read the plots.
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