A:E%:p Universiteit
N4 Leiden
The Netherlands

Supervisors:
Eleftheria Makri & Serge Fehr

BACHELOR THESIS

Opleiding Informatica
+ Wiskunde

Reverse Multiplication Friendly Embeddings
over ring extensions and their application

to Multiparty Computation.

Jasper van der Zwet

Leiden Institute of Advanced Computer Science (LIACS)

www.liacs.leidenuniv.nl

30/06/2025

www.liacs.leidenuniv.nl

Abstract

Multi-party computation (MPC) is a field that studies interactive algorithms that allow a
group of mutually distrusting parties, providing their own input, to jointly compute a function.
Reverse Multiplication Friendly Embeddings (RMFEs) are a tool used in MPC to parallelize
mainly binary multiplications. These RMFEs were originally introduced over finite fields.
Two types of RMFE constructions were originally shown, a polynomial construction and a
more complex construction using algebraic geometry. This thesis introduces some important
concepts in MPC and shows how RMFEs can be constructed and (have been) applied to MPC.
It is shown in this thesis how the polynomial construction over finite fields can be lifted to
Galois rings. This has previously only been done for the more complex algebraic-geometric
construction. This thesis ends with an evaluation of RMFEs and their use-cases related to
MPC.

Contents
1 Introduction
2 Multi-Party Computation

2.1 Defining MPCo
2.2 Functions as Circults o o
2.3 Secret Sharing L

RMFEs and Elementary Properties

Application of RMFEs to MPC

4.1 Efficient RMFE-based protocol for binary circuits

4.2 Translating to Dishonest Majorityo
4.2.1 The SPDZ Protocol: A General Idea
4.2.2 The Protocol
4.2.3 Dealing With Multiplication
424 Constructionof o

Construction of RMFEs over Fields
5.1 Lagrange Interpolation Lo
5.2 Polynomial Construction

Polynomial Construction over Galois Rings

6.1 Lifting Lagrange Interpolation
6.2 The Existence of a Generator
6.3 In Conclusion e
6.4 Practical Parameters

7 Coral: A Practical Application of (R)MFEs
7.1 Multiplication Friendly Embeddings 0L
7.2 Useof (R)IMFEsin Coral
7.3 Non-mathematical Optimizations

7.4 Offline Optimizations
8 Evaluation

References

19
19
20
22
22

23

28

1 Introduction

Imagine there are two millionaires, Alice and Bob, that wish to know who is richer. However, they
do not want to reveal their actual wealth to one another. This is an important example of a setting
studied in the subfield of secure multi-party computation (MPC) introduced in 1982 by Andrew
Yao | .

MPC is a subfield of cryptography that studies interactive algorithms that allow a group of mutually
distrusting parties, providing their own input, to jointly compute a function. These algorithms
should apply these inputs without revealing any information about the other participants’ private
inputs and while guaranteeing correct output. Specifically, we are looking at an arbitrary function
F X1 x Xy x...x X, =Y for non-empty and finite sets X1, ..., X,,. We then consider the situation
where n different parties Py, ..., P, provide inputs x; € Xy, ...,z, € X,,. The goal is to compute
F(x1,...,z,) in such a way that the individual inputs remain private. In Yao’s example, the parties
are the two millionaires. The function here is fairly simple, as it outputs a boolean depending on
if A> B for A, B the amount of wealth of Alice and Bob respectively. In other words, we have
F : For x For — {0,1} given by F(x,y) = (1) iii;i
more than two parties and more complex functions. Since it was introduced by Andrew Yao in
the 1980s | |, there have been a multitude of approaches to address this challenge. In the last
decades, this has developed from a theoretical curiosity to be practically applicable.

MPC has many uses, such as secure auctions | ,], voting | , | and
even privacy for training Al systems | , |. Although there are some challenging problems
with the implementation of MPC in practice, this has been done successfully several times. For
more information, the reader can look at paragraph 1.3.1 in |].

In MPC, functions are represented as a combination of additions and multiplications. Since most
tools are linear, addition is often more efficient than multiplication. To see this, recall that linearity
of amap ¢ : X — Y guarantees Vz,y € X : ¢(x +y) = ¢(x) + ¢(y), but often Iz, y € X : ¢(zy) #
é(x)é(y). This will be expanded upon in Section 2.2. This thesis will zoom in on a tool addressing
efficiency of multiplications by parallelization. These so-called Reverse Multiplication Friendly
Embeddings (RMFEs) are pairs of F,-linear maps (¢,) from]FZ — F,m and back, which allow
for parallelization of multiplications by their property Va,y € F ’q“ c Y(p(x)p(y)) = x x y. Here, *
stands for coordinate-wise multiplication. This notation and the formal definition of RMFEs are
introduced in Section 3.

This thesis will introduce a variety of models to the reader in which MPC is studied and zoom in
on a couple of these models. This thesis will explain how, when considering these models, RMFEs
are applied to increase efficiency | , , ,]. It will also be shown how
RMFEs can be constructed over finite fields [| in Section 5. In Section 6, this thesis
contributes a lifting of the polynomial construction over finite fields | | to Galois rings.
This new construction of RMFEs over Galois rings is less complex than the existing construction
in the literature by Cramer et al. |], which lifts the other construction by Cascudo et al.
[|. Finally, this thesis will evaluate the use of RMFEs in MPC and it will be discussed in
what settings RMFEs can be used to increase efficiency and in what settings they cannot be or this
has not been shown.

. Note that many applications include

2 Multi-Party Computation

2.1 Defining MPC

An n-party MPC protocol for a function F : X7 x Xy x ... x X,, — Y over finite sets X1, ..., X,,Y is
an n-tuple of interactive, randomized algorithms P, ..., P,,, with certain properties that we discuss
below (partially informally). It is assumed that the reader has a basic understanding of (randomized)
algorithms, including interactive algorithms, which can exchange messages (besides doing local
computations). From now on, we always denote the number of parties in an MPC protocol by n.
Logically, one requirement is that for inputs x; € Xy, ..., z, € X,,, each of these algorithms must
output F(z1,...,z,) (except perhaps with some small probability). An execution involves both
‘local computation’ of each party and private communication between pairs of parties. For this
private communication, we assume that we have access to point-to-point secure communication
channels between each pair of parties, possibly with the addition of a broadcast channel. From now
on, for simplicity of explanation, we do not distinguish between an algorithm P; and the party that
is running it. We will consider dishonest parties that may run a different algorithm than P; in an
execution of the protocol. We still denote such a party by P;.

Two security properties that should hold with respect to a threshold ¢, which represents the maximal
number of dishonest parties participating in the MPC protocol, are privacy and correctness.
Privacy: In any execution, the joint view (the set of all messages received and sent by the parties,
together with the inputs) of any ¢ parties {P,, ..., P;, } should reveal no information on the inputs x;
of P;,j ¢ {i1,...,i:} beyond what can be deduced from the inputs z;,, ..., z;, and y = F(x, ..., Tp).
This should hold even when the t parties are dishonest and arbitrarily deviate from protocol
specifications.

Correctness: Similarly, in any execution, all n parties should receive as output y = F(z}, ..., x)
with o = x; for honest parties and 2 arbitrarily chosen by dishonest parties P;, even when t parties
are dishonest and possibly deviate from protocol specifications. Correctness thus guarantees that
replacing their input z; by another value 2 is the only action dishonest parties can take to influence
the output.

We treat dishonest parties as if they are all corrupted by one entity, called the adversary. We
consider some variants in the definition. We consider a passive (or honest-but-curious/semi-honest)
adversary. This type of adversary will only passively gather as much information as they can
while following the protocol. We may also consider an active (or malicious) adversary. Here, the
dishonest parties may deviate arbitrarily from protocol specifications and actively interfere with
the protocol. Both of these variants consider an adversary that can corrupt a certain number of
parties at will. We thus consider the situation where the parties corrupted by an adversary work in
tandem. This leads to the adversary threshold ¢ that was noted previously. This threshold is usually
denoted as a fraction of n. An important distinction is denoted by dishonest minority or honest
majority (< n/2 corrupted parties) versus honest minority or dishonest majority (> n/2 corrupted
parties). Dishonest majority requires more complex and thus computationally expensive protocols.
Often, this also leads to an increase in communication complexity. One example which might help
the reader see this, concerns validation of output. Assume honest majority. If at least half of the
participants state a value x as the correct output, then, assuming they have correct information,
this can be concluded to be the correct output. It is not possible to use this in dishonest majority,
as up to n — 1 parties may be corrupted.

One may consider MPC protocols in the so-called pre-processing model. Such protocols consist
of two phases, typically called the pre-processing and the online phase. The pre-processing phase
is input-independent and sometimes function-independent, as long as an upper bound on the
function complexity, appropriately measured, is available, and thus can be executed before the
inputs are known to the parties. The online phase is then to be executed once the inputs are known.
The goal is to have the online phase (significantly) more efficient than the pre-processing phase.
Such MPC protocols in the pre-processing model are thus useful when the parties have idle time
available before the inputs become available and if we want the secure computation to be as fast as
possible once the inputs are available. All protocols discussed later in this thesis are protocols in
this pre-processing model.

Privacy and correctness were already noted as two important security properties. For subtle reasons
beyond the scope of this thesis, instead of security properties, a widely accepted security model
called the real-ideal paradigm is used. Using this paradigm, an ideal world is introduced that
captures all security constraints. Intuitively, for every dishonest party in the real world, there is
a dishonest party in the ideal world, called the simulator, that ‘achieves the same thing’. If so,
then the protocol is secure. The first implementation of this, though with different notation and
terminology, is considered to be a 1984 paper by Goldwasser and Micali |].

In the ideal world, the protocol participants, denoted as parties P, ..., P,, securely compute the
function F by privately sending their inputs to a fully trusted third party, denoted as 7. Each
party P; sends their input z; to 7, which then calculates F(xy, ..., z,) and sends the result back to
all parties. 7T is fully trusted, which means that it cannot be corrupted by the adversary, while any
other party can. In this model, any dishonest party only learns the output of F, which is why this
ideal scenario is considered secure. In the real world, since there is no such functionality, parties
communicate using a protocol, usually denoted .

2.2 Functions as Circuits

Any function the parties need to compute can be and is usually denoted as a circuit. An example of
a circuit is shown in figure 1, which is explained in more detail later in this subsection. A circuit C
is a connected directed graph with no cycles. It has some strictly positive number of nodes without
incoming edges, denoting the inputs. All nodes are labeled input, multiplication, addition, or output.
The multiplication and addition nodes are visualized as special symbols. We call these nodes
gates (in some cases these are extended to inversions and/or (pseudo-)random gates). Unlabeled
nodes are branching nodes. These nodes have only one incoming edge and multiple outgoing edges.
Multiplication and addition gates can also have constants as (part of their) input. All nodes without
outgoing edges are labeled output.

Notation 1 Let C be a circuit. Let the integers k,m > 0 represent the number of input and output
nodes. Then, for any commutative ring R, Fo(R) : R¥ — R™ is the function that C gives rise to
by performing the operations in the circuit over R in the obuvious way.

Note that for computation of finite functions over a finite field or Galois ring (introduced in Section
6), a circuit of multiplication and addition gates is complete, as all circuits represent exactly all
multivariate polynomials over the finite field or Galois ring, thus we can indeed model any finite
function as such. A circuit is called a binary circuit if it is defined with computation and in- and

|—D_%L/

D—c out
P/

Figure 1: Circuit of Yao’s millionaires’ problem for 2-bit input. The round gates are AND gates,
the gates with the double line at the start are XOR gates. NOT gates, the triangular gates, are
added for simplicity, but can be simulated using an XOR gate and an external input 1.

output over R = Fy and arithmetic if it is defined over another finite field or ring. For binary
circuits, multiplication gates are called AND gates and addition gates are called XOR gates.
Denoting the function of Yao’s millionaires’ problem can be done as follows. Assume that the
monetary values of the millionaires are denoted in k bits. In this case, we could form the circuit over
R = Fy by first denoting the two monetary values as x,y with separate bits x;,y; € Fo,2 =1, ..., k.
Then calculate for every i : e; = z; @ y; (P is the XOR operation). We also calculate g; = z;(1 — y;).
This is 1 iff x; = 1 and y; = 0. Then, if we set p; such that p; =1 <= “all bits more significant
than i are equal”, which can be written as p; = [[/_;,,(1 — ¢;). Then the output of the circuit is
Fo(Fo) (@1, ey Ty y1, ooy y) = 1= [, (1 = pigs), which is 1 if 2 > y and 0 otherwise. For clarity, it
is shown in figure 1 for k = 2, as the circuit is much larger in size for large k.

2.3 Secret Sharing

In this section, secret sharing is introduced. This is a widely used primitive in MPC protocols.
Intuitively, this technique allows the parties to split a so-called secret into different shares and
distribute these among themselves. The secret can then only be recovered using enough of these
shares. Each of these shares is constructed in such a way that it reveals nothing about the secret.

Definition 1 A (t,n)—secret-sharing scheme for a finite and non-empty domain S consists of a
randomized sharing algorithm that for a given input s € S outputs n shares sy, ..., s, such that the
following two properties hold for any subset A C {1,...,n}:

1. Reconstructability: If |A| > t, then s is uniquely determined by the shares s; with i € A.

2. Privacy: If |A| < 't, then the joint distribution of s; with i € A does not depend on the choice
of s.

Remark 1 In practice, it is often additionally required that the sharing algorithm and the recon-
struction of s from t shares is efficient, but we do not include this into the definition for simplicity.
There are also secret sharing schemes that differentiate between reconstructability and privacy
thresholds, not using the same value t for both. Secret sharing is a widely used security approach in
MPC, and all the protocols discussed in this thesis incorporate some variation of it.

Notation 2 Let [s] denote the list of shares produced from a given secret sharing scheme on the
input s. Note that [s] is not fized, but randomized in some form.

Definition 2 A secret sharing scheme is linear if S is a finite field and the sharing [s| = (s1, ..., Sn)
is computed by means of applying a linear map to s and uniformly randomly sampled r1, ..., € S
for some suitable q € {1,...,n}.

Remark 2 In a linear secret sharing scheme, the reconstruction (for any given A) is also in the
form of a linear map. In particular, if [a] = (a1, ..., a,) is a sharing of a and [b] = (b, ...,b,) is
a sharing of b, then [a] + [b] := (a1 + by, ..., an + b,) is a sharing of a + b, and with element-wise
computation [aly is a sharing of ay for any y € S. By means of local computation, it is also possible
to compute a sharing of a + z from [a] and any z € S.

Let us look at two important examples of linear secret sharing schemes. Namely Shamir’s secret
sharing | | and additive secret sharing.

Shamir’s secret sharing scheme is a (¢,n)-secret sharing scheme that uses Lagrange interpola-
tion (5.1). Assume the secret s € F, for a prime power ¢ > n. Here and henceforth, we denote by
[F, the finite field of ¢ elements. Sample uniformly randomly 7y, ...,7.—; € F,. Then each party ¢
receives (i, (1)) as their share for f := s+ rX + ...r,_1 X'"!. Using interpolation, the secret can
then be recovered by any group of at least ¢ parties. In this explanation, the points ¢ are used as
interpolation points, but it is possible to use any n distinct points in F,,.

Additive secret sharing refers to any secret sharing scheme that outputs shares si,...,s, € R
for some commutative ring R of a secret s € S to the n parties such that we have), s; = s.

The lay-out of a linear secret sharing-based MPC protocol is as follows. Assume we have n
parties Py, ..., P, with inputs 21, ..., z,, € F, and a linear secret sharing scheme [-]. Assume further-
more that we have a circuit C' that gives rise to the function F¢(F,) that needs to be computed. Let
us assume lastly that the pre-processing phase is either not present or already completed. The online
phase then commences and is structured into three steps. In the first step, the private inputs z; € I,
are shared among the parties using the secret sharing scheme. Each party now holds a share of every
other party’s input. In the second step, the computation is performed, represented by the circuit. At
every addition gate, each party adds the applicable shares. Let a, b be the inputs for an addition gate,
then the parties can locally compute [a+b] = [a]+[b] due to the linearity of the secret sharing scheme.
Multiplication of secrets is more complex. This is because [a - b] does not in general equal [a] - [b]. A
multiplication sub-protocol is introduced here. This sub-protocol varies depending on the protocol
and secret sharing scheme. In the pre-processing model, a notion called Beaver triples can be used for
this. We explain this notion below. In the third step, when the end of the circuit has been reached,
the parties reconstruct the output to receive F¢(F,)(1, ..., x,). This reconstruction is called opening.

5

In the pre-processing model, the most used, or expanded upon, notion to decrease communi-
cation complexity for every multiplication in the online phase is the following.

Definition 3 A triple of sharings |al, [b], [¢] for random and independent a and b, such that ¢ = ab,
1s called a Beaver triple. In the context of an MPC protocol, it is typically also assumed that a and
b are unknown to the parties.

The later protocols in this thesis use an extended version of this, called multiplication quintuples.
To understand how these quintuples decrease communication complexity, it can be useful to know
how Beaver triples are generated in the pre-processing phase and consumed in the online phase to
increase efficiency of the online phase. Beaver triples can be generated in a multitude of ways. For
example, for some set-ups using additive secret sharing, every party P; can generate random values
a;,b;, then a :== >, a;,b:=>.b;. Note that the parties do not have access to the values a, b, since
these sums do not need to be computed for the generation of the random values. Then, using a
technique called oblivious transfer (OT), sharings of ab can be securely computed. There are other
ways, using other techniques, such as homomorphic encryption (HE) or oblivious linear evaluation
(OLE). An example of Beaver triple generation can be found in the 2008 paper by Beerliova and
Hirt | |. If we assume we have access to Beaver triples, a multiplication sub-protocol can look
something like this.

Input: [z], [y] two sharings of values z,y € F,, a Beaver triple ([a], [b], [c]).

Output: [zy]

Compute [d] < [z] — [a] and [e] < [y] — [b]. Reconstruct (usually called ‘open’) d < [d] and e < [e]
using the opening sub-protocol, which depends on the type of secret sharing scheme. Then, we
compute:

[w] « [a]e + [b]d + de + [¢]
We see that

w = ae + bd + de + ¢
=a(ly—0)+bx —a)+ (r—a)(y —b) + ab
=ay —ab+ bx — ba + xy — ya — xb+ ab + ab
= xy.

Thus, indeed [w] is a sharing of xy and can be denoted as [zy]. This allows us to compute a
multiplication with only two rounds of communication (opening of [d] and [e]). Note that, for
obvious security reasons, we cannot open [z]| or [y], but opening [d] and [e] only gives access to
the values x — a and y — b. Having access to these values does not allow one to compute the
value x or y, even with unlimited computational power, as both z,y and a, b are unknown. This
type of security guarantee is called statistical security. The other main security model is called
computational security, which guarantees security against any adversary as long as they do not
solve a problem believed to be infeasible in polynomial time.

3 RMFEs and Elementary Properties

This thesis will focus on protocols using a recently developed tool, first introduced in 2018 by
Cascudo et al. |] and separately by Block et al. | |. The name Reverse Multiplication
Friendly Embedding (RMFE) and the notation below were introduced by Cascudo et al.

Definition 4 Let F be a finite field. Let a,b € F". Then a x b denotes the Schur product given by
axb=(ay-by,....a, by).

Definition 5 Let g be a power of a prime and let F, be the field of q elements. Let k,m € Z>, be
integers. A pair (¢,1) is called a (k,m),—reverse multiplication friendly embedding (RMFE) if
O IF’; — Fgm and ¢ : Fgm — IF’; are two F4-linear maps satisfying:

Claim 1 Let (¢,¢) be an RMFE of any kind. Then ¢ is injective and 1) is surjective.

Proof 1 Let x € IF’; such that ¢(x) = 0. Then, by the definition of an RMFE, we have for any
€ FE: p(o(x) - ¢(y)) = x x y, which is equal to 1(0) = 0, since ¢ is linear. This holds for any

y € Fg, thus also fory' := (1,1,...,1). This gives us that x xy = x = 0. ¢ is thus injective, as it

has trivial kernel.

Let x € IF’;, then we see that ¥(o(z)-o((1,1,...,1))) =x*(1,1,...,1) = x. This holds for any x € IF’;,

thus v 1s surjective. [

The original goal of RMFEs is as follows. Let C' be any circuit with n inputs. Instead of taking
1, ..., o, € F¥ and computing Fo(F¥)(x1, ..., 2,), thus effectively computing Fe(F,) k times, a
suitable RMFE allows us to compute C' over F,m with n inputs ¢(z1), ..., ¢(x,,) € Fym. Intuitively,
the RMFE thus allows us to parallelize the computation. However, for ¢ applied element-wise to
the outputs,

V(Fe(Fgn)($(@1), ... 6(x0))) # FollFy) (@1, ...,).

This is partially because 1 (¢(z) - ¢(y) - ¢(z)) is not necessarily equal to = * y * z for any z,y,z € IF’;.
To apply this method, every time we encounter a multiplication gate during computation of C' over
F,m, we apply ¢ o v to the output of this gate. To realize that this works, let again z,y,2 €]F’;)
Then, for 7 := ¢ o ¢, we have

T(0(x xy) - 6(2)) = ¢((z x y) * 2) = Pz *y * 2).

Furthermore, we do not in general have Yz € F: : ¢)(¢(x)) = 2. To retrieve the intended result
in IF’;, we can use ¢!, which exists since ¢ is injective. We will show injectivity below. We thus
compute a function F((Fym), which is given from F¢(Fgm) in the natural way by applying 7 after
every multiplication in C. Then we see, by applying ¢! element-wise to the outputs,

O~ (FC(Fgn) (9(21), ooy (@) = FoFy) (w1, ...,).

Note that we cannot form a circuit that gives rise to 7’ in the natural way from C without the use
of additional multiplication gates. For this reason, it is useful to view F' as a function given rise
to by the original circuit C' with the addition that 7 is applied after every multiplication instead
of viewing a new circuit C’ such that Fer(Fym) = FL(Fym). As mentioned, this would include
additional multiplication gates and thus induce the issues discussed above.

The above is the basis of the protocol by Cascudo et al. from 2018 | |, which is discussed
further in Section 4.1.

Remark 3 Note that to guarantee ¥(¢(z)) = x, we can introduce the additional constraint that
o((1,1,...,1)) = 1, since then Y(p(x)) = P(o(z) - 6((1,1,...,1))) =2+ (1,1,...,1) = x. This is an
additional assumption made in the protocol by Escudero et al. in 2022 [|. This protocol is
over Galois rings, a generalization of finite fields, which we will get into later.

4 Application of RMFEs to MPC

4.1 Efficient RMFE-based protocol for binary circuits

The first application of RMFEs, in the paper they were originally introduced in by Cascudo et
al. | |, was to efficiently perform MPC over a binary circuit in the active security, honest
majority model (specifically ¢ < n/3) with a new trade-off. As the new trade-off, they construct a
way to trade the size of the field for amortized communication complexity, whereas in previous
research the amortized communication complexity was traded for the adversary threshold ¢. Since
most commonly used protocols, for example those that make use of Shamir’s secret sharing scheme,
require the field size to be at least n, there is a need to view the inputs of the binary circuit as
elements of a larger field. We must embed them in F, for a prime power ¢ and ¢ > n. This incurs
an overhead of O(log ¢) >= O(logn) in communication complexity, as around log(g) bits are used -
exactly log(q) if ¢ = 2% for some k - instead of only the 1 that was needed originally. Cascudo et al.
[| create a protocol using RMFEs by applying a protocol by Beerliéva and Hirt |]
as a semi-black box. The protocol by Beerliéva and Hirt was, at the time, (one of) the leading
protocol(s) in efficiency for dishonest minority (¢ < n/3) and active security, having communication
complexity of O(n) per multiplication. As defined in Section 3, they introduce a protocol that
computes Fu(Fom)(p(z1), ..., (xn)), 71, ..., T, € F instead of computing Fo (F5)(x1, ..., z,). They
applied the protocol by Beerliova and Hirt for computation of this circuit, except for at the
multiplication gates, where they introduced a new subprotocol. As mentioned in Section 3, it is
necessary to apply 7 := ¢ o ¢ to the output. Note that ¢ and ¢ are only Fs-linear, not Fom-linear.
For any sharing [r] of a value r € Faym, a sharing of 7(r) can thus not be constructed using local
computations. For this reason, a subprotocol is needed. They also introduced a sub-protocol using
a so called Zero-Knowledge Proof that the input provided is in Im(¢), as dishonest parties may
attempt to give a value in Fom as input that is outside of this image. This thesis will not go
into detail about this. The interested reader is redirected to the original paper by Cascudo et al.
[|, where they show that these two issues can be reduced to the following: “construct a
secure multi-party protocol that outputs a sharing of a random element in a prescribed Fy-subspace
of (Fam). That is, given an Fo-vector space V' C F%,., the protocol should output ([ri],...,[r.])
where (rq,...,7,) is uniformly random in V', and [z] denotes a sharing of = with the secret sharing
scheme used in the protocol for C".” | |, after which they show how to construct such

a protocol. Note that C” is their notation for C' computed over Fom. After the computation of
the circuit, including these subprotocols, the desired output in ’; was retrieved, as in Section 3,
by applying ¢~'. This protocol performs k >= O(logn) multiplications in parallel, removing the
O(logn) overhead and creating a protocol with amortized complexity of O(n) per gate per instance
compared to the O(nlogn) it would regularly cost.

In Remark 7 of the paper by Cascudo et al. | |, the following practical parameters are
introduced for use with their protocol specifications.

1. For all 1 <r <9, there exists a (2r, 6r — 3)o,-RMFE, obtained by concatenation of (2, 3)s and
(r,2r — 1)s-RMFEs.

2. For all 1 <r < 33, there exists a (3r, 10r — 5)o-RMFE, obtained by concatenation of (3,5),
and (r,2r — 1)35-RMFEs.

The existence of (2,3)q, (r,2r — 1)s, (3,5)2 and (r, 2r — 1)30-RMFEs follows from Lemma 4 in this
paper by Cascudo et al. The possibility of concatenation follows from Lemma 5 in the same paper.
In Section 5, the lemmas are shown and proven.

4.2 Translating to Dishonest Majority

In their proceeding paper from 2020 |], Cascudo and Gundersen introduced a new protocol to
extend to dishonest majority. To accomplish this, they combined their approach with the SPDZ
protocol. The original version of SPDZ was introduced by Damgard et al. in 2012 | | and
coined as SPDZ a year later by Damgard et al. | |. The SPDZ protocol operates over a large
field, which intuitively explains why RMFEs can be used. Furthermore, Cascudo and Gundersen
show that their protocol can be transformed to efficiently compute one single binary circuit C' (thus
over Fy) - compared to the amortized result of running multiple instances of the same circuit - with
overhead depending on the circuit structure. They accomplish this by forming a new circuit C’ that
is to be computed over Fam, taking multiple multiplication gates that can be computed in parallel
from the original circuit and combining them into one multiplication gate in C’. All multiplications
that can be done in parallel are considered to be in one so-called layer and all multiplications that
can be computed in parallel directly after this round of multiplications are considered the next
layer. Under the assumption that all the output bits of a given layer are used in the next layer
and only there, they state that one can expect an overhead of about 2 bits of communication per
multiplication gate.

4.2.1 The SPDZ Protocol: A General Idea

In SPDZ, to guarantee active security in the dishonest majority model, Message Authentication
Codes (MACs) are introduced. Originally, SPDZ is defined over an arithmetic circuit over some
large finite field F,. We take oo € F, and call it the global key. This key is then secret shared among
the parties with an additive secret sharing scheme. During the protocol, for any value x € F, in the
computation, the parties not only receive a share of x, but also of a- x. This a - x then acts as a
MAC for x. This provides statistical security, as when an adversary attempts to tamper with a
value z, for example it ‘pretends the value is x 4 €’ for some € € [y, by sending incorrect values as
shares, they would also need to produce a MAC «(x + ¢) corresponding to the original value. This

is equivalent to having to guess o € [Fy, as they only hold a share of o and do not know its value.
The probability of guessing correctly is then %, which is considered negligible if we are operating
over a large field.

As one can see, the probability of guessing correctly is quite large if we are working over a smaller
sized field, like Fy for example. To counteract this, one can embed into a larger field. However, this
creates quite a bit of overhead. RMFEs were again used to address this overhead, similarly to 4.1,
by embedding multiple smaller inputs into a larger field, such that the adversary needs to guess an
element in this larger field.

4.2.2 The Protocol

For the protocol by Cascudo and Gundersen | |, only the following two facts following from
Lemma 4 and 5 by Cascudo et al. | | were used. These lemmas and their proof are shown
in Section 5 of this thesis and denoted as Lemma 1 and Lemma 2.

Corollary 1 (Lemma 1, Lemma 2) For all r < 33, there exists a (3r,10r — 5)-RMFE.

Proof 2 Lemma 1 gives us that there ezists a (3,5)2-RMFE (k=3) and a (r,2r — 1)32-RMFE for
r <32+ 1=33. Lemma 2 then gives us a (3r,10r — 5),-RMFE. [0

Corollary 2 (Proof of Lemma 1, Lemma 2) For all r < 16, there exists a (2r,81)y-RMFE.

Proof 3 Clearly, the proof of Lemma 1 can also be used to show the existence of a (k,2k),-RMFE
for any 1 < k < q+ 1. This gives us that there exist (2,4)s- and (r,2r)16-RMFEs for r < 16.
Lemma 2 then gives us a (2r,8r)y-RMFE. [

The motivation for Corollary 2 is that it gives access to extension fields with a size of a power of 2.
Cascudo and Gundersen state that this might be desirable. Of course, this is in theory less efficient
than the RMFEs in Corollary 1, thus it is clear that some overhead is introduced.

These RMFEs are used specifically to form ‘mixed authenticated sharings’. The sharing of some
value z is then the combination of ‘data shares’, consisting of additive shares of z € F, and ‘MAC
shares’, consisting of additive shares of « - ¢(x) for some global key o € Fym in the extension field.
This global key is also additively shared from the start of the protocol, with the shares denoted as
a®. Due to the additivity of ¢, two of these ‘mixed’ sharings can still be added locally, as can a
public vector and a sharing, to receive a new sharing.

The mixed sharing scheme is denoted as (-), with the sharing of x € F as follows:

(x) = ((:p(i), ™Y (mW(2), ..., m (2))) .

Every party P; holds an additive share 2() € F¥ of 2 and a share m® (), which is called a MAC
share, such that Y7, m@(z) = a- 3" ¢(zY) = a - ¢(z) for a as above. It is indeed possible to
add such sharings locally by defining

(@) + (v) = (x+y) = (@ + 4D, 20 4 y) (mO(2) + mD(y), .., m" () + m™ (y)))
and it is also possible to locally compute (z) + a for a given public vector a by defining

() +a= ((x(l) +a,.., ™+ a), (m(l)(x) +a. o(a), ..., m(”)(x) +a™ . <;5(a))))

10

These MACs are not checked until the output gate. Here, the parties check the values using random
linear combinations of partially opened values after opening the global key «. Partial opening in
this context means that the additive sharing of the values for = in the explanation above are opened,
thus z is computed from the (V. This ensures statistical security with probability 2~™. As one
might expect, multiplication gates are complicated and require some extra attention.

4.2.3 Dealing With Multiplication

One of the standard ways of efficiently computing multiplication gates is the use of Beaver triples.
However, as we will see, the standard method is not sufficient for the protocol by Cascudo and
Gundersen | . Of course, for the computation of the partial sharing for 1 <i < n: (v *y)® of
x 1, Beaver triples can be applied, but when looking at the MAC shares m® (z * y) of a - ¢(x * y),
an issue is encountered. Assume we have obtained a triple (a), (b), (a x b). The parties then partially
open d¥ of d = x — a and e® of e = y — b. We then see:

a-plxxy)=a-plaxb)+a-plaxe)+a-d(bxd)+ ap(dx*e).

The issue here is that a - ¢(a xe) = a - (¢ o ¥)(éd(a)d(e)), but this is not in general equal to
(pop)(a- p(a)p(e)), since ¢ o1 is not in general F m-linear. We can thus not easily compute an
additive sharing of « - ¢(x * y) based on the sharings of « - ¢(z) and « - ¢(y).

For this, another sharing scheme is introduced, originating from SPDZ, denoted as [-]. This is a
sharing of a value r € Fom, given by

Each party has an additive share ¥ of r and an additive share m®(r) of a-7. Thus >_1_, m@(r) =
a- Y% 2. By adding to the pre-processing, besides (a), (b), (a * b), the values (¢(r)), [r], for a
random element r € Fym, one can compute (z * y). This proceeds as follows. Compute and partially
open o from the ¢® of

[0] = [6(x)d(y) — d(a)o(b) —r].
The construction of [o] is shown in 4.2.4. Assuming we have o, we can then apply ¢ to find
(o) = (o(x)o(y) — da)p(b) —r) =
((x)d(y)) — (P(a)p(b)) —¥(r) = zxy —axb—y(r).

Then finally we obtain (z x y) < ¥ (o) + (a % b) + (¥(r)), from (a * b) and (¢ (r)), both present
in the pre-processed quintuple. For the pre-processing, Cascudo and Gundersen thus introduce a
quintuple ({a), (b}, (a * b), ((r)), [r]) for every multiplication instead of a triple ([al, [b]«, [c]«) for
some other secret sharing scheme [-],.

4.2.4 Construction of o

For the construction of o, Cascudo and Gundersen | | introduce two more operations on the
shared values. The first is the Schur product of a sharing (z) of x € F% and a public vector a € F%.

We have ¢(a) - () as the data shares, which are shares of ¢(a) - ¢(z) and the MAC shares are
clearly shares of a - ¢(a) - ¢(x). However, as Cascudo and Gundersen point out: “the data shares
are not distributed uniformly in Fom because ¢ is not surjective, so one cannot say this equals
[¢(a) - p(x)].” Note that their wording is slightly incorrect, as ¢ is not in general surjective. What
is true however, as they also point out, is that for another shared element [z], z € Fam, we have
ax* (x)+ [z] = [¢(a) - ¢(x) + z]. This is because after adding a random element in Fom, the result
can once again be any element of Fom, one could say ‘uniformly distributed-ness is restored’. The
second operation that was introduced was the sum of a sharing (x) of an element z € F5 and a
sharing [y] of an element y € Fom, which was defined as (z) + [y] = [¢(x) + y] in the obvious way.
It is now time to show how [o] is constructed. Recall that we have given (x), (y) and a quintuple
({a), (b), (a *b), (1(r)), [r]). First, partially open d = x — a and e = y — b. Then construct

d* (y) +ex(x) — d(d) - ple) — [r] = [6(d) - ¢(y) + d(e) - P(z) — ¢(d) - d(e) — 1] =
[Pz —a)-d(y) + ¢y —b) - ¢(x) — d(x —a) - ¢y —b) —r] =
[9(z) - ¢(y) — ¢la) - d(y) + d(y) - p(x) — d(b) - p(x) — (¢(x) — d(a)) - (¢(y) — ¢(b)) — 7] =
20(x) - p(y) — d(2)P(y) — ¢la) - ¢(y) + d(a)p(y) — ¢(b) - p(z) + P(x)p(b) — P(a)p(b) — 1] =
[¢(z) - d(y) — d(a)p(b) — 7] = [o].

Thus indeed by only partially opening d = z — a from (z) — (a) and e = y — b from (y) — (b), we
can construct [o] using (a), (b) and [r], the three yet unused values of the quintuple ({a), (b), (a *
by, (¢(r)), [r]), having used (a * b) and (¢ (r)) in 4.2.3

5 Construction of RMFEs over Fields

The first explicit construction of RMFEs was given by Cascudo et al. in 2018 |]. They gave
a polynomial construction in Lemma 4, with a way to concatenate RMFEs in Lemma 5 and went
into the construction of an asymptotic family of RMFEs using algebraic geometry in the rest of the
section. In this thesis a method is given to extend the polynomial construction to the more general
Galois rings. This has been done for the asymptotic family of RMFEs by Escudero et al. in 2022
[], but, as far as the author could find, not directly for the simpler polynomial construction.
This is done in this thesis to provide intuition to the reader. This construction uses the notion of
Lagrange interpolation quite heavily. For this reason, we introduce this in the following subsection.

5.1 Lagrange Interpolation

Let ¢ be a prime power and let £ be a strictly positive integer. Let z4,...,2; € F, be pairwise
distinct. For any vy, ..., yx € I, there exists a unique polynomial f € F,[X] of degree at most k — 1
such that f(z;) = v;,Vi € {1, ..., k}. Lagrange interpolation, which is described below, shows how
to find this unique polynomial.

Definition 6 Let k € Z~y. Let 1, ...,z € Fy be distinct. Let for 1 <j <k

X -z,
G0 = I =—= 2)
1<m<k =M J
m#£j

be the Lagrange basis for polynomials of degree < k — 1.

12

Lemma 1 Let f € F,[X] be a polynomial of degree at most k — 1. Let xy, ...,z € F, be distinct
and let y1 = f(x1), ...,y = f(zg). Then

k
f(X) Zzngj(X)- (3)

Proof 4 Let 1 <i<k. We see

k k
Zngj(xi) = Zyj H ALy Yi,
j=1 J=1

Ly — L5
1<m<k =™ J
m#j

since ¥j # i: [[i<m<k(zi — xm) = 0 and for j =i, we have [[i<m<i(zi — Tm) = [[i<m<i(T; — Tm),
m#j m#j m#j

thus €;(x;) = 1. This holds for all i, thus f and Zj::l y;il; are equal at k distinct points, while both

have degree k — 1. They are therefore equal.

This manner of finding f with given z; and y; = f(x;) is Lagrange interpolation.

Remark 4 [t is in fact possible to extend Lagrange interpolation to include an extra point, often
referred to as ‘the point at infinity’, which is the coefficient of the degree k — 1 term for polynomials
of degree at most k — 1. In the construction in the next subsection, we will show this.

5.2 Polynomial Construction
Notation 3 We write F[X]<,, := {f € F,[X] : deg(f) < m} for m € Z-y.

Using the fact that this interpolation method induces an isomorphism of F,-vector spaces between
Fy[X]<k—1 and F} for any integer 1 < k < ¢+ 1, a simple polynomial construction was introduced
in |], which is given below with additional clarification for completeness.

Notation 4 Let for any m € Z~q, 00, be a formal symbol such that f(00,,) = by, for f =
Z’Zl biX" € Fq[X]Sm'

Lemma 2 (Lemma 4, Cascudo et al., 2018) For all 1 < k < q+ 1, there exists a (k,2k —
1),—RMFE.

Construction 1 (Lemma 2) Let ay,..,a, € Fy U {oo,_1} be pairwise distinct. Let o € Fau—
such that Forn = Fy(a). Note that this is equivalent to the statement that Fpr—1 has basis
{1,a,0?,...,a**7%} as an F, vector space.

Define
El :]Fq[X]gkfl _>F§7f'_> (f(a1)>"'7f(ak)) (4)
52 : Fq[X]SQk_Q —]Fq%—l, f — f(Oé) (5)
1 Fy[X]copo = Fy, [= (f(d), -, f(a})) (6)
witha, =4 % if a; € Fy

O0gk—2 Uf 4 = 00k—1
This s visualized in Figure 2.

13

Fy[X]<p 1 —2— FE

&
c

Fq [X]Sgk_g i) Fq%—l

Figure 2: A diagram of &, & and &]

Claim 2 &, and & are isomorphisms of F,-vector spaces.

Proof 5 Clearly, & is linear. To see this, note that (f + g)(cog—1) = f(ook—1) + g(c0k—1) and
(Af)(00k—1) = Af(oc0k—1). For any point in IF,, it is apparent that this also holds.

Note that injectivity and surjectivity of £, would follow directly from Lagrange interpolation if one
were to exclude cop_1. We show that it also holds when we include it.

Injectivity of & Let f € F [X]<x—1 such that £ (f) = 0. Then we see Vi € {1,...,k} : f(a;) =0.
If Bi - a; = oop_1, then f has k distinct roots, but degree k — 1, thus f = 0. Else if 3i : a; = 00j_1,
then f has k — 1 distinct roots, but degree k — 2, thus f = 0. Thus &, is injective.

Surjectivity of & Since dimp, (Fy[X]<p—1) = diqu(Iﬁ";) = k and &, is injective, it is thus
surjective and thus with linearity an isomorphism of F -vector spaces.

Finally, & is trivially an isomorphism of F,-vector spaces, since we have basis {1, ...,a*=2} for
FqQkfl . D

Claim 3 Set ¢ :=Ey 0 &' and b ==& 0 E;'. Then (¢,) is a (k,2k — 1),— RMFE.

Proof 6 Clearly, these maps are F,—linear, thus we need only show (1).
Let x,y € Fr. Let f, g € Fo[X]<p—1 such that & (f) = x,E1(g) = y. We then see:

(g
W((x) - d(y) = v(E(E () - € (51 1)) = v(&(f) - E(g))
= P(fla)g(@) = ¥(fg(a)) = E(E(fg(a))) = E(fg)
= (fg(ay), ..., fg(a})) = (f(ar)g(ar), .., f(ar)g(ar))
=& (f)x&(g) =z *xy.

)

Note that for all 1 <i <k, fg(a)) = f(a;)g(a;), since fg(cook_2) = bp_1ck—1 = f(00k_1)g(00k_1),
for f =10 X0 g =30 eX0 O

The construction above gives an embedding for an embedded field of dimension close to twice
k. It would intuitively be desirable to reduce the factor 7 for a general (k,m),—~RMFE. There
is an assymptotic family of RMFEs, constructed using qulte a bit of algebraic geometry, which
addresses this problem, the details will not be addressed in this thesis. The interested reader is
referred to |]. Another main limitation is the limit of & < ¢ + 1. The second limitation is
easily addressed with the following lemma, which is Lemma 5 in |], which allows us to
concatenate certain RMFEs.

Lemma 3 Let (¢1,v1) be a (k1,mq)gm2a—RMFE and let (¢2,12) be a (ka, ma)q—RMFE. Define
¢ FiF2 — Fymims
T = (-7551), 1‘52)’ --.,.ﬁEng) .73561)> = ¢1(¢2(Z’1) 7¢2($k1))7

14

where we naturally identify F’;le with (F’;l)’” and write for 1 <i < ky: x; = (xgl), s xz(b)) € F’;Q.
Also define

(U qu1m2 — Flgle
u 1/11<U> - (ul’ Y ukl) = <¢2(U1)(1)7 3] wQ(ul)(lﬁ)a "'7¢2(uk1>(k2))7

with analogous notation. Then (¢,v) is a (k1ka, myms),—RMFE.

Proof 7 (Lemma 3) Clearly, ¢, are F,-linear. Let z,y € IF’;””. Let :Egj),yi(j) be as above for
1<i<k,1 <5< ky. We have:

@Dl(qﬁ(QT) ’ ¢<y)) = ¢1(¢1(¢2($1)7 cey ¢2($k1)) ’ ¢1(¢2(y1)7 ey ¢2(yk1)))
= (¢2(@1), ..., P2(@h,)) * (D2(y1), s P2(Yky)
= (¢2(r1)P2(¥1), -, P2(hy) P2(Uky))-

Thus, we conclude:

Y(o(x) - o(y)) = (Yalda(z1)P2(y1)), -y Yooy) 2(Ury)))

= ((x1 * yl)(l), ey (T % yl)(’”), ooy (T * ykl)(k2)) =1 *y.

Thus (¢,v) is a (k1ka, myms),-RMFE. O

6 Polynomial Construction over Galois Rings

Definition 7 Let t € Z~q and let p a prime. Let f € Z/p'Z[X] be a monic polynomial of degree d
that is irreducible modulo p. Then Ry(d) := (Z/p'Z[X])/ f(X) is called a Galois ring.

Remark 5 Note that a Galois ring is both local and finite. This gives it very similar characteristics
to finite fields, since for a Galois ring Ry(d), we have residue field Ry(d)/(p) = Fpa. For example,
Galois rings with the same cardinality are isomorphic, which justifies leaving f out of the notation
Ry(d). Furthermore, any element outside of (p) is invertible.

This polynomial construction can be lifted to Galois rings. In this section, the following Lemma is
addressed.

Lemma 4 (Own Contribution) Let t € Z-y and let p a prime. Let 1 < k < p® + 1. Then there
exists a (k,2k — 1),.-RMFE over the Galois ring Ri(d).

For this, we first need to extend the definition of an RMFE.

Definition 8 (RMFE over a Galois ring) Let k,m € Zwq. Let ¢ : Ri(d)* — R;(dm) and
¥ : Ri(dm) — Ry(d)* be Ry(d)-module homomorphisms such that

V(@) - 6(y)) =z *y,Va,y € Ry(d)". (7)
Then (¢,v) is a (k,m)yt-RMFE over Ry(d).

15

6.1 Lifting Lagrange Interpolation

It is clearly possible to interpolate to a polynomial f € R[X] using the formula for Lagrange
interpolation for any commutative ring R, as long as for interpolation points aq, ..., ax, the differences
am — aj € R are invertible for all m,j € {1,....,k},m # j.

Lemma 5 Let Ri(d) be a Galois ring over a prime p. Let ay, ...,a, be 1 < k < p? distinct points
i pairwise distinct residue classes modulo p. Then

&1 Ry(d)[Y]<p—1 — Re(d)" (8)
f = (f(al)a 7f<ak>> (9)

is a surjective homomorphism of Ry(d)-modules.

Remark 6 Note that since Ry(d)/(p) = Fpa, we have p* distinct residue classes. We may thus
indeed choose p? distinct points in pairwise distinct residue classes modulo p.

Proof 8 Since for any 1 < i,j < k:a; —a; ¢ (p), we know a; — a; is invertible. Thus, for any
Ui, s Y € Ry(d)E, we can find an f such that f(a1) = y1, ..., f(ax) = yx, namely using the formula
for Lagrange interpolation. & is thus surjective. [

In fact, it follows trivially that this map is an isomorphism of R;(d)-modules.

Lemma 6 Let 1 < k < p? and ay,...,a;, € R(d) pairwise distinct with pairwise differences
(a; — a;) ¢ (p). Then & is an isomorphism of Ry(d)-modules.

Proof 9 This follows trivially, as & is surjective by Lemma 5 and injectivity follows from the fact
that Ri(d)[Y]<k—1 and Ri(d)* have equal cardinality. O]

Remark 7 The following is an alternative way to show injectivity, without the need to use the fact
that the sets have equal cardinality. Let f € Ry(d)[Y]<k—1 such that V1 <1i < k: f(a;) = 0. Since we
have distinct elements aq, ..., a, whose differences are not divisible by p, their reductions modulo p
are distinct in Fpa. Let [f] == (f mod p) € FalY]. Then [f] has degree at most k — 1 and satisfies
[f1([ai]) = O for k distinct elements [a;] := (a; mod p) € F,a. Therefore, [f] = 0. All coefficients
of [are thus elements of (p). We can then write f(Y) = pf'(Y) for some f' € Ry(d)[Y]<g—1-
Note that for all i : f'(a;) € (p), since p- f'(a;) = f(a;) = 0 and all elements outside of (p) are
units. Repeating the same argument for f', we conclude that f(Y) = p°g.(Y) for any e > 1 and a
corresponding g. € Ri(d)[Y]<k—1. However, we can repeat this process until e = d, at which point
p? = 0 in Ry(d). We can thus conclude that if f(a;) = 0 for all i, then f = 0. Therefore, &, is

injective, and surjective by Lemma 5, thus an isomorphism.

Just as in the regular field case, we may include the ‘point at infinity’ to extend the definition of &;.

Notation 5 For any m € Z-o, we expand the definition of the formal symbol oo, such that
f(OOm) = bmf fO’f’ f = Z:il bzXl € Rt(d)[X]Sm

16

Lemma 7 Let 1 < k < p? + 1 and ai1,...,ar € Ri(d) U {oop_1} pairwise distinct such that
(a; — a;) & (p) for alli,j € {1,....k},i # j,a; # o0ok_1,a; # 0ok_1. Then

£ Ry(d)[Y]p—1 — Ry(d)* (10)
= (flar), .., fax)) (11)

is an isomorphism of Ry(d)-modules.

Proof 10 It remains to show bijectivity in the case where 3i : a; = cog_1. Let f € Ry(d)[Y]<k-1
such that & (f) = 0. Then f has degree k — 2 and k — 1 roots in distinct residue classes, thus, using
the preceding, we conclude f = 0. Thus & is injective.

Assume without loss of generality that a; = ooy_1. Let (y1,...,yr) € Ri(d)*. Then set for 1 <i <
k—1,y. = yiH—ylyfgl. Then, using Lagrange interpolation, we have a polynomial g € Ry(d)[Y]<k—2
such that for 1 <i < k—1: g(a;41) = y.. There is then a polynomial ¢'(Y) = g(Y)+11Y*™! of degree
at most k—1. We see that fori #1: ¢'(a;) = g(a;) +ya¥ ™' = yl+yiaf™ = yi—yra " +y1al™ = y;.
Furthermore, ¢'(cog_1) = ¢'(a1) = y1. Thus E1(¢') = (1, ..., yx). We conclude that &; is surjective.
&y is thus an isomorphism of Ry(d)-modules.

6.2 The Existence of a Generator

To continue our lift of the polynomial construction, we need a generator a such that R;(d)(a) =
Ri(dm). Let us first denote Hensel’s lemma, which will be needed in our proof.

Lemma 8 (Hensel’s Lemma) Let (p) be a mazimal ideal of a commutative ring R and let
f € R[X] be a polynomial such that its highest degree term’s coefficient ay is not in (p). If f = aqgh
modulo p for monic polynomials g,h € R[X] that are coprime modulo p, then for any k € Zo,
there exist monic polynomials g, hy such that

f = aqgrhy, mod p,
gr =g mod p,
hy =h mod p.

Furthermore, gy, h;, are unique modulo p*.

This Lemma has a special case, which is the required result and also often called Hensel’s lemma.
When g = X —r (or h), coprimality then gives us that r is a simple root of f mod p. In this case,
r can be lifted to a simple root r, € R/(p*) such that r, =r mod p and ry, is a simple root of f
mod p* (in other words g, = X — 1y, (or hy)).

Lemma 9 Let Ri(d) be a Galois ring over a prime p. Let m € Zso. Ja € Ry(dm) such that
Ri(dm) = Ry(d)(«). In other words, there ezists a generator a that extends Ry(d) to Ri(dm).

Proof 11 We know that Ry(d)/(p) = Fpa and Ry(dm)/(p) = Fpim. For the residue fields, we know
that there exists o € Fpam such that Fpam = Fpa(a’). Let fi be the minimal polynomial of o over F .
Then fi is irreducible of degree m. We can lift i to a monic irreducible polynomial p € Ry(d)[X]
of the same degree m, such that p = g mod p. Using Hensel’s Lemma, specifically the special
case where g = X — o/, we then see that there exists an o € Ry(dm), a root of u, such that

Ri(d) () =2 Ry(d)[X]/p(X). Thus Ri(dm) = Ry(d)(«), as both are free Ry(d)-modules of rank m. O]

17

This gives us an isomorphism of R;(d)-modules for any 1 < k < p? and « such that R;(d(2k —1)) =
Ry(d)(ev):

52 : Rt(d)[Y]ggk,Q — Rt(d<2k‘ — 1)) (12)

[fla), (13)

since « is a generator with minimal polynomial of degree 2k — 1.

6.3 In Conclusion

Claim 4 (Lemma 4) Let ¢ := & o0& and ¢ : € 0 &, for & the natural extension of & to
domain Ri(d)[Y]<ok—2. Then (¢,) is a (k,2k — 1),:-RMFE.

Proof 12 ¢, are isomorphisms of R;(d)-modules by construction. Let x,y € R;(d)*. Then

P(o(x) - dly)) =z xy

analogously to proof 6. [

We thus see that for any 1 < k < p? there exists a (k, 2k — 1),-RMFE over R;(d).

6.4 Practical Parameters

Escudero et al. | | are one of the first to present a protocol over more general rings Z/2'Z.
They use the asymptotic family of RMFES (¢, ¥m), m € Z~y denoted as:

O (Z)2'Z)" — Ry(m), Y, : Re(m) — (Z/2'Z)%.

The existence of such a family has been proven by Cramer et al. in 2021 |]. In the paper
by Escudero et al., they use explicit values: (k,,,m) = (21,65) and (k,,, m) = (42, 135). Using the
construction shown previously in this section, it is not necessary to understand the more complex
lifting procedure shown in this paper. We can obtain RMFEs with these values as follows:

1. A (21,65)2-RMFE is obtained by concatenating a (3,5)s-RMFE with a (7,13)5:-RMFE
over Galois rings.

2. A (42,135)-RMFE is obtained by concatenating a (3,5)2-RMFE with a (14, 27)5-RMFE
over Galois rings.

Naturally, we assume 42 < 2! + 1, as this is necessary for the construction. Note further that
concatenation over Galois rings is possible, since we can identify R;(d)**2 with (R,(d)*)" just as
naturally as we could for finite fields, thus Lemma 3 and its proof can be analogously applied to
Galois rings. They assume further that ¢((1,1,...,1)) = 1, thus providing ¢ (¢(z)) = . This is not
addressed in more detail by Escudero et al. |]. We will see later in Section 7 that there is a
need to slightly change our construction to have this work.

18

7 Coral: A Practical Application of (R)MFEs

The first practical implementation of RMFE-based MPC protocols was provided with the name Coral
[] in 2024. They note that the usage of RMFEs is in fact limited, as implementations also
make use of so called Multiplication Friendly Embeddings (MFEs), which have to be compatible with
the applied RMFE. They note, referencing Escudero et al.’s paper from 2022 |]: “For instance,
the compact (21,65);-RMFE (also employed in their complexity analysis) with an expansion ratio
of m/k = 65/21 ~ 3.1 can be constructed by concatenating (3,5),-RMFE and (7, 13)3.-RMFE.
Nonetheless, the construction in Section 2.2.3 demonstrates the absence of a compatible MFE for
this RMFE.” |]. They show a table of example (R)MFE parameter sets, of which the best
(k, m)o-RMFE ratio is m/k = 42/14 = 3. There are more practical difficulties they ran into, such as
having to explicitly construct an isomorphism IF(gmiymy — Fomim,. Coral will be expanded upon in
the remainder of this section. Note that many of their optimizations do not optimize communication
complexity, which we considered in previous sections, but computation complexity, thus the number
of operations needed to perform the MPC protocol. They tested this using benchmarking tools
within the MP-SPDZ library | -

Coral is a framework with support for packed (Single Instruction Multiple Data) circuits and
mixed (both boolean and arithmetic) circuits, where some operations corresponding to gates are
performed over [Fy and others over another finite field or Galois ring. It is based on the dishonest
majority, active security model. For boolean computation, they build upon the same works this
thesis has referenced previously, namely the works by Cascudo et al. in 2018 | |, Cascudo
and Gundersen in 2020 |] and Escudero et al. in 2022 |]. Before we can go into the
specifics, we need to introduce a new mathematical tool, which might make the name RMFE appear
more logical to the reader.

7.1 Multiplication Friendly Embeddings
Coral uses not only RMFEs, but also Multiplication Friendly Embeddings (MFEs), defined below.

Definition 9 Let 0 : Fgm — T, and p : F, — Fym be Fy-linear maps such that

TY = p(O‘(ZL’) * J(y)),Vx,y €]qu7 (14)
then (o, p) is a (t,m),-MFE.
Similarly to the case of RMFEs, we have the following result:

Lemma 10 (][1) Letm > 2 be an integer with ¢ > 2m—2. then there exists a (2m—1,m),-
MFE.

The construction and proof are similar to the case of RMFEs. Let m, g as in the lemma. Let o € Fym
such that Fym = F (o). Let ay, ..., agm—2 € F, be pairwise distinct. Let 00,,—1, 002,,—2 be as in the
construction of RMFEs. Define:

& Fy[X]amo1 = Fym, f = f(a) (15)
54 : Fq[X]Sm—l — Fgm_lvf = (f(a1)7 "wf(an—Q)v f(OOm_l)) ()
&y Fy[X]<am—2 = Egm, f = f(@) (17)
& Fo [X]como = F;" 70 f (flar), oo, fazm—2), f(00om—2)) (18)

19

Note that these maps are very similar and sometimes overlap with the maps &;, &, £] from the
construction of RMFEs over fields. Set 0 := £ 0 &' and p := & o (£))~L. Then (o,p) is a
(2m — 1,m),~-MFE. The proof can be found in the original paper by Cascudo et al. from 2009
[J

In the 2024 paper introducing Coral, it is claimed that MFEs can be concatenated similarly to
RMFEs. They state that “a (¢;,m;),-MFE and a (2, m2),m:-MFE can be concatenated to produce
a (tita, mymg),-MFE” |]. However, they do not provide a proof and they refer to |],
where only the case of RMFEs is proven. It is not hard to show that this statement is correct
however.

Lemma 11 Let (o1, p1) be a (t1,m1),-MFE and let (09, p2) be a (t2,ma)gmi-MFE. Define:

o Fymimy — IFZItQ,x = (o1 (u1), .01 (ugy)), 0a() = (Ury .oy Usy) (19)
pFI2 s Fymims, (xgl), o xgtl), xél), o xétl), o xgl)) > pQ(pl(xgl), - xgtl)), o pl(xg), o :rgl)))
(20)

Then (o, p) is a (tita, mymsg),-MFE.

Note that oy : Fgmiyms — Fi2, thus o : Fgmiyms — (F}2)". We can identify Fgmiymy; = Fgmim, and
(Fiz)f = Fi'2. For the second isomorphic relation, we can trivially view elements of (F2)" as
elements of IFZ”Z, however, as briefly alluded to prior, we do need to define a specific isomorphism
[(gmiyms — Fymimy for practical application. This is briefly discussed later in this thesis. For now,
assume that they are equal.

Proof 13 Let x,y € Fymimy. Let oo(x) = (uy, ..., ut,) and o2(y) = (vq, ..., ve,) We have:

plo(z) *o(y)) = p((o1(u1), ..., 01(us,)) * (o1(v1), ..., 01 ()
= p((o1(uy) * o1(v1), .oy 01 (Usy) * 01 (V1))
= pa(p1(o1(wr) * o1(v1)), ... pr(o1(ur,) x o1(v,)))
= P21V, oy Ugy Vg,) = pa((Ug, . Usy) * (U1, .oy Usy)) = pa(02(z) % 03(y)) = 2.

Thus (p, o) is indeed a (t1t2, mimse),~-MFE. O

7.2 Use of (R)MFEs in Coral

For boolean computation, the framework builds upon the previously best-performing (theoretical)
RMFE-based protocol by Escudero et al. from 2022 |], which evaluates a circuit C' over
Z/p'Z. Note that boolean computation is equivalent to setting p* = 2, thus we are evaluating over
Z]2Z = Fs. For a (k,m);-RMFE (¢, 1), similarly to Section 4, F{(Fam) is computed with inputs
o(z;), for inputs z; of P;. After computation, the outputs are retrieved by applying 1 instead of
¢~ '. Note that this construction yields correct results, since it is assumed that ¢((1,...,1)) = 1
(thus Vo € T : (4(x)) =), just like in the original protocol by Escudero et al. In this paper
[|, it is, in contrast to the paper by Escudero et al., actually substantiated that such an
RMFE, with ¢((1,...,1)) = 1, exists. Instead of constructing using the (k — 1)-th degree term as an
extra interpolation point, they construct without an extra interpolation point and require that one
of the a; is 0 (this requirement is not necessary in our form of construction, but in their form they

20

replace the (k — 1)-th degree term with the constant term). This, of course, does mean that the
requirement shifts to k < ¢ from k£ < ¢ + 1, but this is a strong enough result for this application.
This indeed gives us that ¢((1,...,1)) = 1 trivially, as the constant polynomial 1 now evaluates
to 1 in all interpolation points, where-as previously we had for p(X) =1 € F,[X] : p(cog_1) = 0.
Similarly to previous applications, we need a ‘repacking operator’ 7 := ¢ o ¢/, which is applied after
every multiplication gate.

MFEs are used only in the pre-processing phase. Similarly to the SPDZ approach, an input, which is
embedded using an RMFE (¢, 1) such that ¢(z) € Fam, is authenticated using a MAC key o € Fom.
An additive sharing is created of a - ¢(z). A more efficient way to generate these sharings was
introduced by Escudero et al. in 2022 |]. Essentially, they used an MFE (o, p) to parallelize
the calculation and compute an additive sharing coordinate-wise of o(a) * o(¢(z)) € F,, which is
decoded back to a sharing in Fom. This turns out to be more efficient. The communication cost
drops from O(m?) to O(t). The interested reader is referred to Section 4.1 in the paper by Escudero
et al. |], as this requires understanding of Oblvious Transfer (OT) and Oblivious Linear
Evaluation (OLE), which is beyond the scope of this thesis.

By the preceding, it is clear that RMFE output should align with MFE input. This is one of the
main contributions of the Coral framework. The Coral framework is, similarly to previous works,
mainly focused on boolean computation, thus the case that ¢ = 2. In Lemma 10, when taking
q = 2, we must have m = 2, as m > 2 and ¢ > 2m — 2. Thus, since all MFEs are constructed as a
finite concatenation of this MFE, if we have any (¢, m)o-MFE, then m is even. This leads to what
was already stated about compatibility at the start of this section. There exists a (21, 65)s-RMFE,
but, since 65 is odd, it is not compatible with any MFE over ¢ = 2. Applying such compatible
combinations of RMFEs and MFEs, is one of the efficiency gains of the framework.

There is one last unaddressed issue for practical application of (R)MFEs, which is the need for an
explicit construction of an isomorphism between Fymim; and Fgmiym,. These are only isomorphic,
but assumed equal in the construction. For this, they use a method introduced by Sunar et al. in
2003 | |, which generates a conversion matrix M € {0, 1}™*™ which allows computation of
x € Fomimy via ¥ = Ma', 2" € Fgmiymy. This thesis will not go into detail on this construction.
There is another practical improvement the framework makes. By setting @« = X mod P(X), for
P the generating (irreducible) polynomial of the extension field Fym, a basis {1, X, ..., X™ '} is
obtained of Fym. In this setting, by abusing the fact that we can now treat elements of F,n as
elements of F,[X]<,,—1, the use of & and &, does not require any computation and thus can be
left out in practice. Note, further, that we use the altered construction of (k, 2k),-RMFEs without
oog—1 and their concatenations, instead of (k,2k — 1),, thus now giving us, for ay, ..., a1 € F:

¢ = EN E Fy[X]apr — FE o (£(0), f(ar), ..., far—1)) (21)
=& Fy[X]cop1 = By, f = (£(0), fla), ., flag-1)) (22)

and for our MFEs:

with &4, &y, &) as under Lemma 10.

21

7.3 Non-mathematical Optimizations

Since the implementation requires extensive calling of mappings, a lot of computations over common
small binary fields are performed. Coral applies pre-computation for this, which increases efficiency
greatly. Furthermore, for smaller-sized input vectors, look-up tables are used, where-as when look-up
table capacity is exceeded, a hash-based cache is used. These two optimizations, together with the
more optimized mapping shown in Section 7.2, massively increased throughput (all operations per
second) when testing in the NTL library | | by 111 times for what they call RMFE decryption,
which is taken to mean the operations done when applying ¢, to 794 times for MFE encryption,
taken to mean the operations done while applying p, as shown in Table 3 of the Coral paper

[J:

7.4 Offline Optimizations

In the pre-processing phase, there are also some notable optimizations. Previously, Escudero et
al. [| introduced multiplication quintuples ([a], [b], [T(a)], [7(b)], [T (a)T(D)]), for some secret
sharing scheme [-], for efficient and secure computation of multiplication gates. In the Coral
framework, different quintuples are generated, namely ([al, [b], [p(¢(a) * ¥ (b)], [T(a)], [T(D)]).

The generation of such quintuples is more efficient and also uses an important paradigm of MPC,
so-called Oblivious Transfer (OT), as a black box, which gives access to a recent advance in this area,
so-called VOLE | | instead of the previously most used IKNP |]. Neither of them
will be addressed in this thesis, but VOLE is more recent and generally more efficient | .
Of course, the use of different quintuples necessitates an updated online protocol. Multiplication in
the framework is performed as follows. Let [z], [y] be authenticated sharings. We need the output
[z] such that ¢(z) = ¢¥(z) * ¥(y). First, we take one of our pre-processed multiplication quintuples
([a], [b], [¢(¢(a) = P (D)], [T (a)], [T (D)])-

We compute:
[d] [z] — [a] and [e] < [y] — [b].
We open d + [d], e + [¢]. Then we compute:
[2] <= 7(d)[T(b)] + 7(e)[r(a)] + T(d)7(e) + [#(¥(a) x ¥ (b))].
We see:

and since 7 = ¢ o 1, this is equal to

= P(d) x p(b) + 1(e) x P(a) + p(d) * p(e) + 1(a) * ¥ (b)
=Pz —a)x (b)) + ¢y = b) x Pla) + ¢(x —a) x Py — b) +¢(a) * (D)
= ¥(x) * p(b) — ¥(a) * ¥ (b) + ¢ (y) * (a) — ¥(b) * Y(a) + (¥(x) — ¥(a)) * (V(y) — (b)) + ¥ (a) * ¥(b)
= P(@) * P(0) + ¢ (y) * P(a) — (1) x (a) + () * P(y) — (a) * P(y) — (x) * P (b) + ¥ (a) * P(b)
= ¥(x) * P(y)

Thus indeed this outputs [z] such that ¥(2) = ¢(x) * ¥ (y) as needed.

The Coral framework introduces some more pre-processing, improving online efficiency further
and/or extending the usage to more general ways of computing circuits. The framework works not
just over boolean circuits, but also over mixed circuits. For this, a variation on daBits and edaBits
is introduced, which uses RMFEs.

A daBit (Double Authenticated Bit) is traditionally a tuple ([b]2, [b],) of two authenticated sharings
of a bit b € Fy respectively shared over Fy and over F, with ¢ # 2, which can be used to switch from
binary to arithmetic in the following manner. Let [z]s be a shared secret in Fa. Set [z]z := [z] + [b]2.
Open z < [z]; and view it as an element of [F,. Then we compute:

(2] = 2 — [b]y — 22([b],-

We see that indeed [z], is now a sharing of x over F,. An edaBit (Extended Double Authenticated
Bit) works similarly, except it is a tuple ([r]y, [r1]2, .., [11]2) where the r; € Fy are all [separate bits
of an element r € Fy. In other words, we have r = >\ 7,271,

In Coral, both daBits and edaBits exist as packed versions. Take a vector r € F}, then a packed
daBit is a tuple of a vector of authenticated sharings and ¢(r). Similarly, a packed edaBit in Coral
is equivalent to k plain edaBits.

Of course, there is a standard way of generating these daBits and edaBits. It is possible to easily
generate these packed (e)daBits by constructing the standard way and then converting the boolean
sharings to RMFE sharings. This however has high cost. They thus construct it differently, which
is another contribution of the paper. This will not be elaborated on in this thesis; the interested
reader is referred to the appendix of the paper introducing Coral |].

Another extension the Coral framework provides is the handling of linear combinations with
constants in Fom. As we have seen previously, we run into the fact that both ¢, are Fy-linear,
but not Fom-linear. For this, they use a so-called ‘encoding pair’, which is a tuple ([r], [7(r)]) of
authenticated sharings. This allows computation of linear combinations as follows. Let [x] be an
authenticated sharing and let ¢ € Fam. We need output [z] such that 1(z) = ¢(x) % c. Take one of
our encoding pairs ([r], [7(r)]). Compute [d] < [z] — [r] and open d < [d]. Then we see:

2] (7(d) + [7()) - 6c).
Indeed, v(z) = 6 ((7(d) +7(r)) -6(c)) = ¥ (((w 1) +7(r)) -6(c)) = ¥ (B(e(x))- 9(e)) = w(x) xc.

Naturally, this is somewhat costly, as it requires a communication round (opening d). However,

as Huang et al. note, it “is critical for common computations. The additional expense is justified
by the advantages of RMFE-based MPC and is marginal for large-scale circuit computations.”

[J

8 Evaluation

Let us summarize the use-cases of RMFEs as specified in the four papers previously discussed in
this thesis | , , , |. In this first paper by Cascudo et al. |],
RMFEs were used to reduce communication overhead for honest majority, active security protocols
over binary circuits that use Shamir’s secret sharing over large finite fields. This was to reduce the
efficiency loss that was incurred by the need to view bits in the computation as elements of a larger

23

field. This was explained in Section 4. In the second paper by Cascudo and Gundersen from 2020
[|, a framework for dishonest majority was introduced, using a combination of RMFEs and
SPDZ-style MACs. However, this still required parties to re-apply the RMFE (applying 7) for every
multiplication, which led to two extra communication rounds for every multiplication. In general,
for secret sharing-based MPC protocols without an extra overhead like re-encoding, there is a need
for only one communication round per multiplication gate. Escudero et al. in 2022 | | then
introduced quintuples in place of the Beaver triples to save one of the two extra communication
rounds introduced in Cascudo and Gundersen and used MFEs for more efficient pre-processing,
using the generalization to Galois rings from finite fields proven by Cramer et al. in 2021 |].
Coral [] in 2024 then made the first practical implementation based on the protocol by
Escudero et al., making improvements. These improvements, as discussed in Section 7, consist of
adding the use of RMFE-based daBits and edaBits, bridging the gap between MFEs and RMFEs
(i.e. showing that there is a need for them to be compatible and showing efficient combinations)
and choosing a suitable representation of values, improving the construction and application of
RMFEs and MFEs. Other smaller practical optimizations are made and the paper addresses some
practical necessities, such as a concrete map between Fymim; and Fgmiyms.

Coral | | is shown to be more efficient than the leading practical implementation, based on
the work of Frederiksen et al. in 2015 |], implemented in the MP-SPDZ library |].
This style of protocol is called Tinier. This implementation was chosen as a comparison, as it
has an easily accessible practical implementation and Coral was integrated into the MP-SPDZ
library. In the pre-processing phase, as shown in Table 3 of | |, with a statistical secu-
rity parameter of A = 128 and choices for k = 14,t = 195, they compared the communication
complexity of the coral framework with this Tinier protocol, which makes heavy use of Oblivious
Transfer. The pre-processing phase of such a protocol is referred to as TinyOT. They compared
the two most expensive sub-modules, input authentication and triple/quintuple generation. For
input authentication, communication complexity of the coral framework in bits is mentioned to be
t/k ~ 13.9, while the previous best implementation by Escudero et al., even when using VOLE-OT
instead of IKNP-OT, has communication complexity for input authentication of 2t/k ~ 27.9. As
mentioned earlier, this thesis does not go into detail about the differences between VOLE-OT and
IKNP-OT. It is only necessary to understand that VOLE-OT is more efficient [|. The
protocols by Escudero et al. using IKNP-OT ((A+1)t/k ~ 1796.8) and another protocol called Tiny
(A = 128), which uses the triple generation technique introduced by Frederiksen et al. |],
but uses input authentication from Spdz2k | |, are several times less efficient here. For the
triple/quintuple generation, parameters called bucketing parameters are needed. This thesis has not
discussed this procedure. The interested reader is referred to Section 4.2 in |]. Taking these
bucketing parameters as B = 3 or 4 and B; = By = 3, the communication complexities in bits for
triple/quintuple generation are presented in Table 1. Here, Coral is more efficient once again. Note,
however, that the results for the quintuples are amortized. These are the results divided by the
packing size k of the (k, m)-RMFE.

Coral was also compared to the Tinier protocol, including both the pre-processing and the online
phase, for the following four circuits: Hamming distance between two 1024-bit strings using an
0O(1024) size circuit, AES circuit, SHA256 circuit and Bitonic sorting on an array of 128 elements
of 32 bits. These were chosen based on a 2017 paper by Wang et al. | |. Coral has around

24

Protocol Communication Complexity (bits)
Tiny |] 6B%\ = 6912 or 12288
Escudero with IKNP-OT |] [] 12tB1B3(\ + 1)/k ~ 582158.6
Escudero with VOLE-OT | N] 24t By B2 [k ~ 9025.7
Coral [] 2(A+2)B+ 10t/k ~ 919.3 or 1179.3

Table 1: Communication complexity in bits for the triple/quintuple generation sub-module in
different MPC protocols

10 times less communication complexity compared to the Tinier protocol. When LAN and WAN
runtime were compared, Coral reduced WAN runtime by about 6 times, while LAN runtime was
reduced by less than 1.5 times for all four circuits. Once again, these are amortized results. They
also compared the mixed-circuit functionality of Coral with a Tinier-based protocol, which had
similar results, with a little less improvement (communication improvement ranging from 1.6 to

2.9x, LAN from 1.1 to 2.9 and WAN from 2.7 to 4.9).

RMFE-based MPC protocols can thus be concluded to be generally more efficient, but only
in an amortized setting. The results are amortized over 140 instances. This is to reduce the waste
of buffered processing material. Unfortunately, no information is given on results or expected
results with other numbers of instances. When using binary circuits over a malicious security
model and when an amortized setting is applicable, RMFE-based protocols can thus possibly be
used to increase efficiency. However, it is necessary to first experiment with amortization over
other numbers of instances. For mixed circuits, RMFE-based protocols are shown to be the most
efficient as well. The improvement is less than for strictly binary circuits. For this reason, it is
advisable that research for different methods continues. It is feasible that for specific mixed-circuit
implementations, depending on the structure of the mixed circuit, RMFE-based protocols are not
the most efficient option. Efficiency also depends on the throughput of edaBit generation, which in
turn depends on available threads/hardware and whether LAN or WAN is applicable, as mentioned
by the authors of Coral “In LAN, Coral underperforms with a single thread but multithreading
mitigates this disadvantage” | |. For honest majority, RMFEs remain a theoretical idea by
Cascudo et al. in 2018 |] without practical implementation, remaining a topic of further
research. For purely arithmetic circuits, there are no practically applicable efficient RMFE-based
protocols in the literature as of yet. This is because the main advantage of RMFEs has been
reducing overhead incurred by embedding bits into larger fields. It is possible that there is a use
for RMFEs in arithmetic circuits where field size is less than n, as embedding into a field of size
larger than n then might have benefits similar to the benefits first found by Cascudo et al. in 2018
[| described in Section 4. This is left as future research. For arithmetic circuits over fields
with size larger or equal to n, it is not apparent where the main benefit of RMFEs could be applied.
The author of this thesis would thus not advise the use of RMFEs for (research of) this type of
protocol, unless prompted by another discovery requiring embedding to an even larger field. As
for which parameters to use, it is desirable to decrease the ratios m/k and t/m, representing the
blow-up of field/Galois ring sizes for the used (R)MFEs. However, note that m must be even and
there is a trade-off between larger values of &k (thus a need for a circuit with possibility to parallelize
to a higher degree and/or the need for amortization over a larger number of instances) and smaller
ratios. This trade-off should be carefully considered when researching RMFE-based protocols.

25

References

[BMN18]

[BTHOS]

[CCCX09)]

[COXY18]

[CDE*18]

[CG20]

[CRX21]

[CSTA19]

[DKL*13]

[DPSZ12]

[EKR22]

[EXY?22]

A. R. Block, H. K. Maji, and H. H. Nguyen. Secure computation with constant
communication overhead using multiplication embeddings. Cryptology ePrint Archive,
Paper 2018/395, 2018.

Z. Beerliova-Trubiniova and M. Hirt. Perfectly-secure MPC with linear communication
complexity. Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, page 213-230, 2008.

I. Cascudo, H. Chen, R. Cramer, and C. Xing. Asymptotically good ideal linear secret
sharing with strong multiplication over any fixed finite field. In Shai Halevi, editor,
Advances in Cryptology - CRYPTO 2009, pages 466-486, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

I. Cascudo, R. Cramer, C. Xing, and C. Yuan. Amortized complexity of information-
theoretically secure MPC revisited. Annual International Cryptology Conference, page
395-426, 2018.

R. Cramer, I. Damgard, D. Escudero, P. Scholl, and C. Xing. SPDZ2k: Efficient MPC
mod 2* for dishonest majority. Cryptology ePrint Archive, Paper 2018/482, 2018.

I. Cascudo and J. S. Gundersen. A secret-sharing based MPC protocol for boolean
circuits with good amortized complexity. TCC, page 652-682, 2020.

R. Cramer, M. Rambaud, and C. Xing. Asymptotically-good arithmetic secret sharing
over Z/p'Z with strong multiplication and its applications to efficient MPC. CRYPTO,
2021.

J. Cartlidge, N. P. Smart, and Y. Talibi Alaoui. MPC joins the dark side. In Proceedings
of the 2019 ACM Asia Conference on Computer and Communications Security, Asia CCS
'19, page 148-159, New York, NY, USA, 2019. Association for Computing Machinery.

I. Damgard, M. Keller, E. Larraia, V. Pastrol, P. Scholl, and N. Smart. Practical covertly
secure MPC for dishonest majority — Or: Breaking the SPDZ limits. In Crampton, J.,
Jajodia, S., Mayes, K. (eds) Computer Security — ESORICS 2013. ESORICS 20135.
Lecture Notes in Computer Science, vol 8134, 2013.

[. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. Advances in Cryptology— CRYPTO 2012, page
643-662, 2012.

D. Evans, V. Kolesnikov, and M. Rosulek. A Pragmatic Introduction to Secure Multi-
Party Computation. NOW Publishers, 2022.

D. Escudero, C. Xing, and C. Yuan. More efficient dishonest majority secure computation
over Zqx via Galois rings. CRYPTO, page 383-412, 2022.

26

[FKOS15]

[GM84]

[Hir01]

[HLW*24]

[IKNPO03]

[Kel20]

[KMS*16]

[Liu24]

[NBSK15]

[Sha79]

[Sho23]
[SSKO03]

[WRK17]

[Yao82]

[YWL+20]

T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach to MPC with
preprocessing using OT. In ASIACRYPT (1) (Lecture Notes in Computer Science, Vol.
9452), page 711-735. Springer, 2015.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270-299, 1984.

M. Hirt. Multi party computation: Efficient protocols, general adversaries, and voting.
Hartung-Gorre, 2001.

Z. Huang, W. Lu, Y. Wang, C. Hong, T. Wei, and W. Chen. Coral: Maliciously secure
computation framework for packed and mixed circuits. Cryptology ePrint Archive,
Paper 2024/1372, 2024.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently.
In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 145-161, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS
’20, page 1575-1590, New York, NY, USA, 2020. Association for Computing Machinery.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 839-858, 2016.

T. Liu. Research on privacy techniques based on multi-party secure computation. In
2024 3rd International Conference on Artificial Intelligence and Autonomous Robot
Systems (AIARS), pages 912-917, 2024.

Divya G. N., V. P. Binu, and G. Santhosh Kumar. An improved e-voting scheme using
secret sharing based secure multi-party computation. CoRR, abs/1502.07469, 2015.

A. Shamir. How to share a secret. Communications of the ACM, Volume 22, Issue 11,
pages 612-613, 1979.

V. Shoup. NTL: A library for doing number theory., 2023. https://libntl.org/.

B. Sunar, E. Savas, and ¢. K. Ko¢. Constructing composite field representations for
efficient conversion. IEEE TRANSACTIONS ON COMPUTERS, 52:1391 — 1398, 2003.

X. Wang, S. Ranellucci, and J. Katz. Authenticated garbling and efficient maliciously
secure two-party computation. Cryptology ePrint Archive, Paper 2017/030, 2017.

A. Yao. Protocols for secure computations (extended abstract). 23rd Annual Symposium
on Foundations of Computer Science. IEEE Computer Society Press., pages 160-164,
1982.

K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang. Ferret: Fast extension for coRRElated
oT with small communication. Cryptology ePrint Archive, Paper 2020/924, 2020.

27

[Zap22] S. Zapechnikov. Secure multi-party computations for privacy-preserving machine
learning. Procedia Computer Science, 213:523-527, 2022. 2022 Annual International
Conference on Brain-Inspired Cognitive Architectures for Artificial Intelligence: The
13th Annual Meeting of the BICA Society.

28

	Introduction
	Multi-Party Computation
	Defining MPC
	Functions as Circuits
	Secret Sharing

	RMFEs and Elementary Properties
	Application of RMFEs to MPC
	Efficient RMFE-based protocol for binary circuits
	Translating to Dishonest Majority
	The SPDZ Protocol: A General Idea
	The Protocol
	Dealing With Multiplication
	Construction of

	Construction of RMFEs over Fields
	Lagrange Interpolation
	Polynomial Construction

	Polynomial Construction over Galois Rings
	Lifting Lagrange Interpolation
	The Existence of a Generator
	In Conclusion
	Practical Parameters

	Coral: A Practical Application of (R)MFEs
	Multiplication Friendly Embeddings
	Use of (R)MFEs in Coral
	Non-mathematical Optimizations
	Offline Optimizations

	Evaluation
	References

