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Chapter 1

Introduction

In the digital era, image reconstruction has emerged as a massive field of study
that is crucial when one wants to perform a CT scan, obtain a high resolution
image from a satellite or perform data restoration for forensics. Image recon-
struction allows us to perform a seemingly miraculous act - recreate an high-
quality image from degraded or incomplete data, often with incredible levels of
accuracy. However, at the heart of image reconstruction lies a problem. If the
data we have is incomplete, there are vast numbers of possible ways to impute
the unknown contents we’re looking for. Depending on how we choose to form
said data, the outcomes of our reconstructions can vary significantly. Problems
like this - ones with a multitude of possible solutions and a high sensitivity
to changes in initial conditions - are referred to as ill-posed. We can combat
this ill-posedness by introducing additional constraints on image reconstruction
schemes. In fact, over time a lot of different solutions of constraining the prob-
lem have emerged with varying degrees of effectiveness. A vast majority of those
methods focus on modelling the general characteristics of real-life images - they
aim to filter out high-frequency noise or to obtain smooth transitions between
neighbouring pixels or to retain crisp edges of objects. These methods, while
admittedly very effective, generalize the issue of image reconstruction, neglect-
ing the fact that different domains of images may be characterised by slightly
different features that need to be accentuated in order to obtain realistic recon-
structions. What if we know that the CT scan we try to obtain is an image of
a brain and not of the chest? What if we know that the satellite took pictures
of a dense city landscape and not of a village. What if the face we'’re trying
to reconstruct is a phenotypical male? Could we include said information into
the reconstruction process and would that in fact improve the quality of our
resulting images? We feel that this area of image reconstruction has been so far
relatively under-explored. In this thesis, we set out on an exploration of what it
would exactly mean to input prior class into an image restoration method and
what complexities await when we try to do so. Rather then presenting a single
method that 'works’ in a given context, we decided to focus on describing the
problem in detail - we aim to offer understanding more than solutions. With
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this in mind, we present below the flow of our thesis and the story that we’re
trying to tell.

1.1 Flow of the thesis

The overarching goal of this thesis is the exploration the complexity of using
network inversion to enforce class-specific characteristic on image reconstruc-
tions. We formulated this report to reflect the natural problem-solving flow of
the issue. We start with the most general implementation of network inversion
and then progress into different aspects of its intricacies. Finally, we apply our
findings to a specific use case scenario in order to provide a more tangible, quan-
titative evaluation of our most promising approaches. The bird’s eye view of
the flow of this thesis can be seen on Figure

1.1.1 Part 1: Network Inversion

In the first part of this thesis, we focus on the crux of the issue - the network
inversion. The goal of this operation, explained in detail in Chapter |2 is to
extract dataset information gathered by a network during training. We explore
the different basic building blocks that are required to successfully and reliably
extract this information:

e Convolutional Neural Network (CNN): we limit our investigations to clas-
sification problems and use CNNs as our main model. We opted to use a
lightweight network approach where we use the simplest architecture that
obtains satisfactory performance on a given task.

e Image prior: obtaining realistic reconstructions from networks requires a
strong prior. Based on literature review, we opted for a combination of
total variation and />-norm regularization.

e The choice of optimizer and hyperparameters: while in many common
problems, the choice of optimizer has little effect on resulting performance
of a network, this was not true in our case. We found that the type of
optimizer is an important consideration when performing network inver-
sion. This adds to the pool of at least 5 other hyperparameters that need
to be optimized which presents a considerable challenge that needs to be
addressed.

1.1.2 Part 2: Increasing Robustness

After performing the exploratory phase of Part 1, we focus on a big challenge
of network inversion - how to force a network to learn a representation of the
problem that not only corresponds to good classification performance but also
to a greater susceptibility to inversion. More specifically, how do we train a
classifier so that it’s internal representation is aligned with visual qualities of
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Chapter 1: Network Inversion

Feasibility study of backpropagating
class information through images
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Chapter 2: Increasing Robustness

Examining the effects of robust training
on the problem representation and
inversion susceptibility.

Chapter 3: Class Separation

Trying to improve network inversion by
providing structured methods of
separating classes in latent spaces
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Chapter 4: CT Case Study

Implementing our findings to a CT
reconstruction iterative scheme and
benchmarking with SIRT.

Figure 1.1: A bird’s eye view on the flow of this thesis.
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the images and classes. To that end, we turned our attention to robustness. In
classic training contexts, robustness allows networks to better handle examples
that are outside of the domain of the training dataset or examples that aim to
fool the network into taking wrong decisions. In simplified terms, robustness
means teaching the network to recognise what is and what isn’t a valid class
image and providing a smoother representation that’s more stable to subtle
changes. We decided to explore two approaches that aim to increase robustness:
FGSM adversarial training and intermediate class-enriched datasets.

Fast Gradient Sign Method (FGSM) Following the observation on the
relationship between robustness and susceptibility to inversion by Mejia et al.
[21], we implemented the Fast Gradient Sign Method (FGSM) devised by Good-
fellow et al. [L0] to robustly train our network. The main idea behind using
this approach is that presenting the network with examples that provide small
perturbations in the network’s resulting gradients makes the network more sta-
ble to noise and results in a model that is 'more confident’ of the definitions of
the classes. This should in turn result in more realistic reconstructions of our
images.

Intermediate Class Examples Following the same idea of increasing ro-
bustness, we decided to test another approach - introducing intermediate class
examples to our datasets. The aim here was to force network to learn a smoother
representation by explicitly defining the traversal between classes. This was
achieved by training a Variational Auto-Encoder (VAE) on the target training
dataset and obtaining the intermediate class examples by means of weighted
linear interpolation. As an externality, the labels became then distributions
over the target classes rather than single numbers and the loss was calculated
as the difference between the output and target distributions.

1.1.3 Part 3: Class Separation

One of the conclusions of the previous two parts of the thesis was the fact that
class representations might be ill-separated in the latent space of networks. We
hypothesised that improving this separation might prove beneficial in providing
better reconstructions under network inversion. We investigated this claim by
introducing the concept of prototyping under different geometries. We opted
for two different approaches in this section: (1) hyperspherical prototypes and
(2) hyperbolic prototypes with Busemann loss. These two approaches were
chosen to explore how the classes can be separated under spaces with differ-
ent curvatures and to understand whether forcing networks to learn mappings
to fixed class prototypes rather than straightforward representations would im-
prove their inversion capabilities.
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1.2 The Evaluation Problem

Image reconstruction is a widely studied problem with a multitude of applica-
tions which leads to multiple evaluation schemes dependent on the use context.
Ideally, our approaches should be evaluated in a quantitative manner and com-
pare with state-of-the-art benchmarks on popular, challenging datasets. How-
ever, our interest in the problem makes the evaluation more elusive and best
expressed in a qualitative manner. We are interested in the general ability of
convolutional neural networks to store and transmit class-specific information.
This means that we do not care about the variety of reconstructed images but
rather in a static, singular representation of a whole class. Resulting from this
is the following challenge: how to quantitatively evaluate an approach which
results in a handful of images and what exactly should we compare the results
to? To investigate this challenge, we present a brief review of the common eval-
uation methods in the general field of image reconstruction and discuss their
utility in the context of our research. Before we do that, we start of this discus-
sion with a brief introduction of three common quantitative metrics for image
reconstruction as they are a recurring theme in the literature review part. Fi-
nally, we present our qualitative evaluation approach and then offer a specific
use case in the field of Computer Tomography image reconstruction that will
allow us to more comprehensively evaluate the method that resulted from our
investigations.

1.2.1 Image reconstruction quantitative evaluation met-
rics

In order to properly discuss evaluation methods in the field of image recon-
struction, one has to start with 3 popular pixel-wise quantitative metrics: mean
squared error, peak signal-to-noise ratio and structural similarity index. All
three metrics aim to describe differences between images but do so in differ-
ent ways therefore commonly they are used at the same time by researchers to
provide more comprehensible evaluations.

Mean Squared Error (MSE) This metric, commonly used as a loss func-
tion, is the most straightforward of the metrics chosen in this thesis. It measures
the difference between the obtained image and the ground truth through pixel-
wise comparison, putting more weight to substantial differences. For two images
of equal dimensions m x n, MSE is defined as follows:

n

MSE(X,Y) = (X5 — Yi])° (1.1)

MSE is a handy tool for describing pixel-wise differences between two images
and is commonly used as a loss function in teaching models. However, it can be
often misleading as it does not capture perceived differences/similarities. Com-
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monly, comparing visually similar images can yield substantial Mean Squared
Error values - e.g., if their luminance values differ.

Peak Signal-to-Noise Ratio (PSNR) Peak Signal-to-Noise Ratio is a met-
ric commonly used in assessing the quality of reconstructed images or videos,
e.g., when using lossy compression algorithms. It is defined as a ratio than the
strongest possible signal in an image and the amount of noise that is introduced

by the reconstruction process; the amount of noise is expressed as Mean Squared
Error (MSE).

MAX?

= 1010810 R (X, v
In the above equation, MAX refers to the maximum pixel intensity value (equal
to 2™ — 1 given n bits per pixel). PSNR is expressed in decibels (dB) with higher
values corresponding to better reconstruction quality. PSNR is bounded by 0
as minimum and its maximum bound is determined by the maximum intensity
value (for 8 bits of data per pixel the maximum PSNR is 48.13 dB). While
PSNR is a widely used metric for benchmarking reconstruction algorithms and
offers satisfactory evaluation quality in most cases, it does not correspond well
to human perceived quality.

PSNR(X,Y) (1.2)

Structural Similarity Index Measure (SSIM) Introduced in 2004, SSIM
has gained tremendous popularity for its ability to quantify the differences in
visual qualities of two images in a way that corresponds to human perception.
SSIM’s philosophy is based on comparing perceived changes in structural infor-
mation [32]. This is achieved by comparing three distinct aspects of the images:

e Local luminance (p1x), defined as the mean of the pixel intensities across

an image:
1 m n
px = —ZZXM (1.3)
M 20 5=0

The luminances of the two images are then compared as follows:

2uxpy + Cy

I(X,Y) = SHXHY T
( ) i+ pd 4+ Ch

(1.4)
Here, C1 is a small constant that is introduced for numerical stability (i.e.,
to avoid division by 0) and is defined as the squared product of the pixel
intensity range for the two images and a small positive constant k; < 1
(C1 = (k1L)?). As aresult luminance is a metric in the range (0; 1), where
higher values correspond to more similar luminances.

e Local contrast (ox), defined as the standard deviation of the intensities
across the image:

ox = 33Xy - plX) (15)

i=0 j=0



1.2. THE EVALUATION PROBLEM 7

Contrasts of the two images are then compared in a manner analogous to
luminances:
20xoy + Cy

X,Y)= 22X T2
(X, Y) J§(+O')2,+Cg

(1.6)
Again, a constant C5 is applied for numerical stability, formulated as Co =
koL with ko being a positive constant ks < 1 and L being the pixel
intensity range for the two images.

e Structural similarity of the two images, which is expressed using the cor-
relation coefficient of the pixel intensities:

oxy +Cs

XY=
(X Y) oxoy +C3

(1.7)

Where oxy is calculated as:

oxy = ! ZZ[(XU — px)(Yij — py)] (1.8)

mn — 1
1=0 j=0

The constant Cj is analogous to Cy and Cf.

Finally, the Structural Similarity index measure combines the three qualities
into a single measure:

SSIM(X,Y) = (X, Y)* ¢(X,Y)? - s(X, Y)Y (1.9)

Hyperparameters «, 8 and v allow to adapt the relative importance of the
different measures. In this thesis, all three measures were weighted equally

(a=B=7=1).

1.2.2 Image Reconstruction Evaluation Methods in Liter-
ature

We can consider our approaches within two different areas of study - image re-
construction and network inversion. The two fields differ significantly in their
evaluation schemes with image reconstruction having more established and uni-
fied methods of evaluation. In most cases of image reconstruction, the overall
goal is to restore some distorted or incomplete input into a high quality ground
truth image. This can be exemplified by areas like image de-noising [5} [9], image
in-painting [11] B3] and super-resolution [31] 34] that all fall into this category.
Evaluating such approaches is quite straightforward: given a batch of ground
truth images, distort them accordingly to the task at hand and try to restore
them so that they resemble the ground truth image as closely as possible. In
order to properly capture differences that are important for the given tasks,
appropriate metrics have to be leveraged. Popularly used metrics include MSE,
PSNR and SSIM, all of which are described in Subsection Some of the
insights from these approaches are relevant to our investigations: we want to
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promote realistic reconstructions that preserve edges well and provide pixel-wise
correlation. Having said that, we want to examine a more general capability of
the network inversion to reconstruct class-specific images. In other words we
do not care if an individual image is identical to its ground truth but rather
whether the network can transmit information that makes the image 'look more
like’ a given class. In the field of network inversion on other hand, the evaluation
tasks tend to have a larger variety and depend on the downstream task. Some of
those evaluations can be quantitative, like counting the number of the training
dataset images that can be recovered from a network [13] or reconstructing an
image based on the activations said image provokes in a network [35]. Given
however that we are not interested in specific instances of images, neither of
these approaches would be adequate in our case. More aligned with our work
are qualitative methods in the field of network inversion, such as the work of
Mordvintsev et al. [24] or Mahendran et al. [20] who recover images based on
gradients in different layers of networks. We adapt their approaches and present
our evaluation scheme described in the next section.

1.2.3 Owur Evaluation Approach

In order to maintain integrity of the project and establish means of comparison
between different approaches, we decided to establish an evaluation pipeline that
would compare implementations in a fair way that was relevant to the research
question. The initial, exploratory stage involved testing the feasibility of the
approach and the potential strength of the signal. This step, conducted on the
MNIST dataset, consisted of two parts:

1. Transforming noise to meaningful images through label-guided optimiza-
tion - a batch of 10x 28x28 px images of gaussian noise were passed to a
tested model along with a batch of 10 labels (0 through 9). The resulting
images were evaluated based on the visual properties.

2. Transforming an image of a digit into an image of a different label - images
were provided along with labels that corresponding to different classes
than the original images. The models were then tasked with transforming
the image towards the new labels. The resulting images were evaluated
based on the visual properties.

This method of evaluation allows us to compare efficacy of inverted models
in transferring class knowledge in different contexts. As we will see in later
chapters, this method allowed us to discriminate between approaches in a sat-
isfactory manner. In order to comprehensively compare models that fared sim-
ilarly well, we developed a second evaluation framework which was aimed at
evaluating models in the context of the task laid out in the research question:
improving reconstruction quality through the combination of a model-based and
data-based approach. The framework was constructed:

1. Forward projections of test images were obtained under specified condi-
tions (projection geometry type, number of angles, number and spacing
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of detector pixels, etc.),

. The resulting sinograms were passed through 50 iterations of SIRT in

order to obtain initial reconstructions.

. The initial reconstructions subsequently underwent 50 additional itera-

tions of alternating transformations - SIRT and the tested model step - in
a ratio of 3:1.

. The final reconstructions were compared with the ground truth images

using MSE, PSNR, and SSIM. The results were benchmarked against a
reconstruction provided by 100 of SIRT only.
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Chapter 2

Network Inversion

2.1 Image Reconstruction

2.1.1 The Inverse Problem

There are many reasons why one might want to reconstruct images. Obtaining
a readable image of a CT scan, trying to understand the inner workings of a
Convolutional Neural Networks or reducing the amount of noise in a compressed
image might seem like very different problems but they all fundamentally ask
the same question: given the result of applying a forward process, how can we
faithfully reconstruct the given input? Mathematically, the forward process can
be represented as follows:

§= Aiupus + 1 (2.1)

In many real-world applications recovering Zinpu doesn’t always have a
closed-form solution. Therefore, the problem of inverting the forward process is
often defined as a least-squared solution:

Tinput = argmin || AZinpus — gj||§ (2.2)
xr

Reformulating the inverse problem as a least-squared problem allows us to
approach it using minimisation methods but in its naive form the obtained
solutions would often be unstable and, in many cases, would lead to overfitting
to training data. The reconstructions would not be stable to small changes in
data, violating the Hadamard’s third criterion [12] for a well-posed problem. In
order to combat this, we will add a regularization term R(x) to our solution:

Binpur = arg min(|| Az — gl; + 7R (x)) (2:3)

2.1.2 Image Prior

When dealing with image reconstruction, a consequential hurdle emerges - the
space of potential images is vast and without additional information, many

11
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algorithms struggle to provide a satisfactory result. However, only a small
fraction of all possible images are representative of what can be encountered
in real-life problems. These realistic images tend to have some very general
characteristics. The regularization term can be understood as an image prior -
it helps us determine what we expect from real-life images (in the general sense
or in the context of specific tasks). By defining the prior, we’re limiting the space
of possible image reconstructions and accentuate their expected characteristics.
There are numerous ways of defining the image prior, with the most popular
being ¢5-norm regularization and Total Variation Regularization.

lo-norm regularization The least squares approach to the inverse problem
tends to over-amplify noise, leading to unrealistic reconstructions. fs-norm reg-
ularization is a special case of Tikhonov regularization (with an identity matrix
chosen as the Tikhonov matrix) which penalises large pixel intensity values
across the whole image. This achieves two things: (1) it helps to maintain the
pixel intensity values within reasonable ranges that are more likely to correspond
to ground truth images and (2) prevents oversaturation of the reconstruction.
The regularization term is simply defined as the Euclidean norm of the pixel
intensities:

2
lzlly =) Ll (2.4)
=0

Total Variation (TV) regularization TV regularization handles another
characteristic of real-life images: neighbouring pixels tend to be correlated. By
penalising differences in intensities between neighbouring pixels, TV regulariza-
tion enforces smoother images with lower entropy. We define it as follows:

TV(Z‘) = Z Z((Ii’j+l - .T,',J)Z + (Ii-i-l,j - .1?1',7]')2> (25)

i=0 j=0

2.2 Neural Networks for Visual Tasks

While the inverse problem can apply to many different forward operators, we will
be focusing on one specific case: the Convolutional Neural Networks (CNNs).
In order to interpret images, CNNs leverage two operations: convolutional fil-
tering and pooling [17]. Discrete convolutions are used to extract features from
images. By using trainable filters, the network learns to extract generalizable
patterns from data - starting with low-level features like lines or basic shapes
to more advanced characteristics as we progress deeper into the architecture.
The features are then pooled after each convolutional layer, e.g., using a max
operation across a small neighbourhood of pixels. This introduces invariance
towards minute differences between patterns and decreases the dimensionality
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of the image, allowing for better generalisability and faster processing. An ex-
ample of a CNN is presented in Figure|2.1] An image is passed through several
blocks of convolutions, non-linearities (hke ReLU) and pooling layers, with the
dimensionality of the features being decreased as the image progresses through
the network. Finally, the resulting feature vector is passed through a series of
fully connected layers which perform the end-point task, e.g., classification or
object detection. This powerful technique has found use in a variety of complex
tasks like facial expressions’ analysis, automated driving, feature extraction or
improving computer tomography reconstructions.

convolution w/ReLu  pooling convolution w/ReLu  pooling poo].mg f““}’ connected

0 DD %%%l%%{

input output

fully

v‘v/ ReLu w/ ReLu

Figure 2.1: CNNs parse images by applying a series of convolutions before
processing the resulting features through fully connected layers. An example of
a CNN architecture from O’Shea et al. [25].

2.3 Inverting the Neural Network

In this thesis, we focus on the following task: what are the important complexi-
ties one has to take into account when trying to apply the inversion problem to
convolutional neural networks. This brings us to the crux of the project: invert-
ing the neural network. Mathematically, we can formulate network inversion
by rephrasing the least squares solution to the inversion problem, presented in
Equation[2.2] We now formulate our forward operator as a CNN F parametrised
by its weights ¢. We also substitute the least squares for a more general loss
function L. This results in the following equation:

o = wgmin(L(Fy(z),9) + R(@) (2.6)

2.3.1 Network Inversion in Related Works

Network inversion emerges in several domains of Al research, including adver-
sarial attacks, explainable AI [19] and knowledge distillation [35]. In the context
of this thesis, we are focusing on its applications to Convolutional Neural Net-
works. In a 2015 ’Inceptionism: Going Deeper into Neural Networks’ blogpost,
Mordvintsev et al. inversed a Convolutional Neural Network to reconstruct im-
ages from noise based on specific classification labels [24]. They underscored the
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importance of a strong prior, opting themselves for a combination of £-norm
and total variation regularization. Their results showed promise in terms of
enforcing some characteristics of labels onto images. However, the resulting im-
ages reflected rather the general ’essence’ of classes and would not be suitable
for our task. We take the takeaways of the researchers’ work in the context
of emphasising a strong prior and apply it in our algorithm to obtain better
image reconstructions but focus on realistic reconstructions rather than artistic
quality.

Focusing on the field of knowledge distillation without accessing the training
datasets, Yin et al. inversed a teacher network to generate examples for a
smaller student network [35]. They achieved reconstructions of high fidelity by
extending the prior by feature distribution regularization. In order to avoid
accessing the datasets, the researchers leveraged the batch normalization layers
which in many commonly used libraries store running average feature statistics.
In this thesis, we applied the prior used by aforementioned researchers to obtain
reconstructions in the context of CT image reconstruction.

Mahendran et al. [19] leveraged network inversion to compare its efficacy
in the field of Al explainability with representations like Histogram of Oriented
Gradients (HOG) and Scale-Invariant Feature Transform (SIFT). Additionally,
they examined the relationship between the layer level at which the reconstruc-
tion process started and the quality of resulting reconstructions. They especially
focused on obtaining series of reconstructions from each representation, with the
aim of getting more information about how the networks interpret images. We
applied similar method of optimisation as the researchers and analysed their
work on obtaining reconstructions from each layer of the network to inform
our selection of network architectures but focused on obtaining single realis-
tic reconstructions rather than series of snapshots that represent the networks’
‘thinking’.

2.4 Approach

We started our investigations with a simple proof of concept. We implemented
a relatively small convolutional neural network and trained it to classify digits
from the MNIST dataset. We used two version of the training scheme: in the
first scheme, The network was designed to return logits for each of the 10 possible
digits. The resulting network was then used in our experimental pipeline that
consisted of two tasks.

Task 1: Optimizing noise into images of digits In this task we tested
the ability of feasibility of optimizing noise into an image of a digit using the
just the information contained within the network. A batch of ten tiles of size
28x28 each (the size of an image in the MNIST dataset) was classified by the
network. Then a loss comprising of cross entropy and our regularization term
(a weighted sum of total variation and ¢3-norm) was backpropagated through
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the noise tiles using an optimizer. The images were then investigated visually
to assess their resemblance to the appropriate digits.

Task 2: Transforming an image of a digit into an image of a different
digit In this task we verified the ability of our approach to transform an
existing image of a digit into an image of a different digit. This experiment
was similar in its execution to Task 1 with the difference of the input being an
existing image rather than pure noise. The resulting image was then visually
assessed for its similarity to the target label (digit).

2.5 Results

The results of Tasks 1 and 2 are shown in Figure for SGD and in Figure
for Adam. Figure shows digits that are clearly distinguishable from an
uniform background (with the exception of digits 4 and 9, which lack readability
in comparison to other digits). Similarly, transformation of an image of digit
9 into an 8 was successful for the SGD-trained classifier. However, the results
are wildly different in the case of an Adam-trained classifier. None of the digits
were successfully optimized during Task 1 and, during Task 2, the image was
transformed into what seems like pure noise.

2.6 Conclusions

The results obtained using a classifier trained with an SGD optimizer serve as
a proof of concept for the feasibility of the approach. Both tasks were largely
successful and the obtained reconstructions were clearly distinguishable from
each other. Having said that, an interesting problem emerged. The whole
approach fails when the SGD optimizer used to train the classifier is substituted
for Adam. As seen on Figure both tasks failed in that case. It is worth
noting that the varying the optimizers in the image optimization phase had no
influence on the results in both cases.

2.6.1 Analysing the optimizer discrepancy

Pinning down directly what is the reason for such a discrepancy is a non-trivial
task considering there are two distinct phases with different goals that may be
the source of the resulting differences - the classifier training and the image
optimization. First, let’s consider the training phase. Both models achieved
comparable classification accuracy of around 92% when assessed on the test set
of the MNIST dataset. Additionally, literature suggests that both optimizers
should achieve comparable end performance [8, 26]. Considering this fact, it
seems that the discrepancy is more likely to be due to the way that the two
modalities of the approach are adapted to the second task - optimizing the im-
ages. Our hypothesis is that Adam tends to locate a different loss minimum
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Optimizing Gaussian noise images to represent 10 classes.

(a) Optimizing Gaussian noise images into images of digits through the usage of classi-
fiers yielded images of low quality but, in most cases, clearly representing the assigned
number.

Transformation of an image into a different class.
Iteration 1 Iteration 10 Iteration 20 Iteration 30 Iteration 40

IGEEEE

(b) Transforming an image to represent a different digit than originally yielded unsat-
isfactory results

Figure 2.2: Best results obtained through initial exploration of direct image
optimization.

than SGD when learning the classification task. That minimum provides com-
parable or better performance in that specific task but generalizes worse to the
image optimization tasks than its SGD counterpart. With that hypothesis in
mind, we proceed to the next chapters where we explore the intricacies of the
latent representions.
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Optimizing Gaussian noise images to represent 10 classes.

(a) Using an Adam-trained classifier for the task of obtaining 10 digits from noise
provided curious, subpar results in comparison to SGD.

Transformation of an image into a different class.
Iteration 1 Iteration 10 Iteration 20 Iteration 30 Iteration 40

(b) Transforming an image to represent a different digit than originally yielded unsat-
isfactory results

Figure 2.3: Best results obtained through initial exploration of direct image
optimization using an Adam-trained classifier. No tenable performance was
registered, especially in comparison with the SGD counterpart.
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Chapter 3

Increasing Network
Robustness

3.1 When networks are confidently wrong

The previous section of this thesis has shown the potential of inverting networks
to reconstruct images based just on the final output signal. Using a relatively
simple convolutional neural network, we have managed to recreate convincingly
looking images of digits by simply determining which digits we wanted to ob-
tain (see Figure . However, at the same time, we managed to find obstacles
that prevented us from achieving satisfactory performance in a wider array of
settings. Specifically, just by changing the optimizer that was used to train the
classifier from SGD to Adam, seemingly all ability to reconstruct images was
lost (see Figure . Since the drop-off was surprising - the change of optimis-
ers does not normally result in that big changes of performance - we decided
to investigate the matter further. We hypothesised that during the training
process, Adam tended to find minima that overfitted to the classification task,
focusing on patterns in data that were not aligned with what humans focus on
when deciphering hand-written digits. The idea of the misalignment between
the inputs and the outputs, and specifically fooling networks into making wrong
classifications is an actively studied area of adversarial attacks [7], 27]. Specif-
ically, adversarial examples generation focuses on creating examples that elicit
specific responses from models against their original design [10].

3.2 Adversarial examples and how can we use
them

While adversarial attacks in general are outside the scope of this thesis, we
can leverage some of the findings of this fields to help in our experimentations.
Notably, Mejia et al. [21] found in their research that networks trained to be

19
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robust against adversarial examples attacks are more susceptible to another type
of attacks - networks inversions. While the authors of said paper present it as a
drawback of robust training, susceptibility to network inversions could actually
be seen as desirable in the context of our research. Another important finding
that we will leverage in our work, stems from Goodfellow’s et al. 2015 paper
[10]; the researchers speculated that neural networks are prone to adversarial
attacks because of their linearity. They elaborated that despite deliberate non-
linearities in the architectures of neural networks, they spend most time in a
linear regime. Basing on those observations, they offered the Fast gradient
sign method (FGSM) for generating adversarial samples. This surprisingly
simple and very efficient method leverages the gradient of loss to introduce small
perturbation to inputs that fool the network:

Xnew =X +€- Sign(va(Xv ytrue)) (31)

Here, ’sign’ is a simple function that returns 1, 0 or —1 depending whether
the input is positive, equal to zero or negative, respectively. J(6,z,y) is a loss
function (depending on the task at hand, e.g., cross entropy for classification)
and € is a hyperparameter that dictates the size of the perturbation. While the
method itself is interesting, using it directly would be of no use to our deliber-
ations. In order to benefit from it, we need to employ it in a training regime of
our networks to increase their robustness and, hopefully, their susceptibility to
network inversions as suggested by Mejia et al. [21] which in turn could poten-
tially improve our reconstructions and overcome the Adam training issues. We
follow the works of Goodfellow et al. and Madry et al. [10,[1§] to train a robust
neural network using the following loss function:

J0,z,9) = aJ(@,z,y)+ (1 —a)J0,z+ e sign(V,J(0,2,9)),y) (3.2)

The above criterion combines values of a standard loss function for two cases:
the regular training example and the example obtained through perturbation of
the regular training example. This regime should force the network to become
more robust against adversarial attacks and provide a ’smoother’ optimisation
space for our image reconstruction task. The hyperparameter o € (0, 1) weighs
the importance of both terms, however Goodfellow et al. present o = 0.5 as a
satisfactory value for most cases and we follow their advice here.

3.3 Intermediate classes

In Section we laid out the argument for increasing robustness as a method
for improving the reconstruction capabilities of our network inversions. Aside
from using gradient-perturbed examples, we decided to investigate another
approach for increasing robustness - generating intermediate class examples
through the use of Variational Auto-Encoders.

Our approach to this task necessitates an introduction of a new group of models
- Auto-Encoders.
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3.3.1 Auto-Encoders

This group of models aims to learn a dense representation of a given domain of
inputs by means of a bottle-neck network [3]. The architecture of Auto-Encoders
can be divided into two parts: the encoder and the decoder. The decoder takes
the input an passes it through its layers, condensing the input to a representation
whose dimensionality is no larger the dimensionality of the input. This latent
representation is then passed to the decoder which aims to recreate the original
input with as much veracity as possible. The resulting network can be used for
a variety of tasks, including de-noising, data compression, etc.

Variational Auto-Encoders (VAEs) This group of Auto-Encoders deserves
additional attention thanks to their special characteristics [15]. VAEs differ from
standard Auto-Encoders in their latent space is represented - through a Gaus-
sian distribution. The encoder condenses the inputs into an N-dimensional
latent space where each dimension is represented by a mean and a standard
deviation of a Gaussian distribution. The decoder then samples from these dis-
tributions and subsequently tries to recreate the input, similarly to standard
Auto-Encoders. The sampling step grants VAEs a unique characteristics - the
outputs of the model become stochastic which means that we can use VAEs to
generate completely new data points.

Having these two approaches in mind, we devised the following research ques-
tion:

Can the performance of networks inversions in relation to image re-
construction be improved by prioritising network robustness during
training?

3.4 Approach

In order to generate intermediate class examples we decided to leverage the
latent spaces of Variational Auto-Encoders. We trained a VAE on the MNIST
dataset, then sampled a portion of the training dataset and obtained codings
of the sample. We then picked pairs of codings at random and computed their
weighted sum according to the following equation:

Znew = @21 + (1 — )29 (3.3)

Here, z; stands for a coding of an image provided by the VAE’s encoder
and « is a term weighting parameter that was chosen at random for each pair.
The resulting codings were then decoded to form new examples of intermedi-
ate images. In order to appropriately represent the newly formed images, we
transformed the labels from a single digit label to a vector that represents the
probability distribution of the mixed digits. For example, if we mixed an im-
age of a 4 and an image of an 8, the label would be represented as a vector
[0,0,0,0,,0,0,0,1 — a,0].
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3.5 Results

3.5.1 Adversarial Training

Qualitative analysis of the influence of adversarial training shows an enormous
improvement in reconstruction quality. This was especially true for the Adam
training context where initially no results could be observed - the reconstructions
were meaningless and noisy. After introducing FGSM examples to our training
loss, the situation changed immensely - in both tasks, the reconstructions were
legible and realistic (see Figure .

3.5.2 VAE Intermediate Classes

Examples of the new digits can be observed in Figure While the model
offered satisfactory performance in many cases, sometimes a linear interpolation
led not to a visual mix of two numbers but rather to a different digit altogether
(e.g., image in the bottom right corner of Figure . When comparing the
reconstruction results, we can observe a convincing increase in performance in
the case of a classifier optimized with Adam. Conversely, the classifier trained
with SGD showed a drop-off in the reconstruction quality in comparison to
experiments run without intermediate classes (see Figures and .

3.5.3 Class separation analysis

During the process of creating intermediate classes using a VAE, we observed
that performing linear interpolations between codings of digits in many cases
yielded unexpected results. Examples of such situations can be observed in
Figure — interpolating between a 0 and a 4 here resembles a 9 or an 8 (image
in row 3, column 4). This suggested poor class separation and could potentially
impede the quality of a classifier trained on such data (a significant drop-off
could be seen in the case of a classifier trained with SGD on 'merged’ data). In
order to further investigate this finding, a t-SNE analysis of the latent space of
the VAE was performed. Its results, which can be seen in Figure [3.5] confirm
the pitfall of linear interpolation in this case.

3.6 Conclusions

Initial explorations of using convolutional neural networks for image reconstruc-
tion resulted in promising albeit unstable results. We managed to obtain re-
alistic examples from SGD-trained contexts however classifiers trained using
Adam proved unable to provide any results. In this section of the thesis we
explored improving the reconstruction ability of our networks by introducing
robust training. Our hypothesis was that increasing the variety of the dataset
would allow the networks to create a more linear representation of our prob-
lems which would then correspond to a smoother direct optimisation of images.
We focused on two distinct approaches: (1) training with FGSM adversarial
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Optimizing Gaussian noise images to represent 10 classes.
. n -
' !
(a) The ten digit optimization task yielded well-defined, clear results for most cases
after training the classifier robustly.

Transformation of an image of a 9 into an image of an 8.

Iteration 0 Iteration 4 Iteration 8 Iteration 13 Iteration 17

Iteration 34 Iteration 39

(b) In comparison to the naive training scheme, the transformation results were very
satisfactory. A checker-board effect can be observed on the final image that curiously
could not be removed through stronger regularization without negatively influencing
the digit representation.

Figure 3.1: Best results obtained through direct image optimization for a classi-
fier trained using Adam and a robust training scheme with adversarial examples.
Overall, an immense improvement was observed in comparison with the naive
training scheme.

examples and (2) training with intermediate class examples generated using a
VAE.

Adversarial Training Introducing adversarial training presented by Good-
fellow et al. [10] offered a significant boost in qualitative reconstruction quality.
The results can be observed in Figure - the obtained reconstructions are of
high quality and more robust to hyperparameter changes. The effect of intro-



24 CHAPTER 3. INCREASING NETWORK ROBUSTNESS

2:0.899:0.11 3:0.819:0.19 1:0.729: 0.28 3:0.207: 0.80 7:0.74 9: 0.26

5:0.58 9: 0.42 0:0.80 7: 0.20 5:0.88 6: 0.12 4:0.196:0.81 1:0.246: 0.76

5:0.258:0.75 0: 0.91 4: 0.09 6:0.16 9: 0.84 0:0.53 4:0.47 4:0.597:0.41

0:0.809:0.20 3:0.839:0.17 1: 0.48 4: 0.52 1: 0.61 5: 0.39 4:0.326:0.68

Figure 3.2: Examples of merged digits produced by the Variational Auto-
Encoder. The numbers were generated by decoding a weighted sum of encodings
of examples from the original MNIST dataset. The titles of the images corre-
spond to weights assigned to encodings of corresponding labels.

ducing adversity is especially visible when compared with original results when
the naive training scheme was utilised.

Intermediate Classes Our second approach based on a similar idea of in-
creasing the linearity of the problem representation. However this time, instead
of introducing adversity, we took the approach of explicitly defining intermedi-
ate classes. To that end, we leveraged a VAE trained on the MNIST dataset.
We generated samples that combined the latent representations of different dig-
its and used them to test our assumption. The results were promising however
with some caveats. Introducing the new intermediate examples did improve rel-
ative performance of the Adam-trained classifier, confirming the suspicion that
a smoother optimization space would make it easier for Adam to find a more
generalisable optimum. However, the relative performance of an SGD-trained
classifier actually dropped of. We posit that this was likely due one specific
drawback of our VAE-guided approach: in some cases, the linear interpolations
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Optimizing Gaussian noise images to represent digits 0-9.

. . . . .
(a) Optimizing Gaussian noise images into images of digits through the usage of classi-

fiers yielded images of low quality but, in most cases, clearly representing the assigned
number.

Transformation of an image of a 9 into an image of an 8.

Iteration 0 Iteration 4 Iteration 8 Iteration 12 Iteration 16

Iteration 20 Iteration 24 Iteration 28 Iteration 32 Iteration 36

(b) Transforming an image to represent a different digit than originally yielded unsat-
isfactory results

Figure 3.3: Best results obtained through initial exploration of direct image
optimization.

between the codings of two different digits could inadvertently result in a whole
new digit whatsoever. In order to confirm this hypothesis, we conducted an ad-
ditional t-SNE analysis of the latent space of our VAE. The analysis confirmed
our suspicions; VAE did not separate the classes sufficiently for us to interpolate
between them in a straightforward fashion.

Overall, increasing network robustness proved to be the correct way of in-
creasing our reconstruction quality. This confirmed the conclusions of Mejia
et al. [21I] that robustness of the network is positively correlated with its sus-
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Optimizing Gaussian noise images to represent digits 0-9.

(a) Using an Adam-trained classifier for the task of obtaining 10 digits from noise
provided curious, subpar results in comparison to SGD.

Transformation of an image of a 9 into an image of an 8.

Iteration 0 Iteration 4 Iteration 8 Iteration 12 Iteration 16

Iteration 20 Iteration 24 Iteration 28

(b) Transforming an image to represent a different digit than originally yielded unsat-
isfactory results

Figure 3.4: Best results obtained through direct image optimization for the
classifier trained with a dataset enriched by VAE-generated examples.

ceptibility to inversion. While at this point, we started obtaining realistic and
satisfactory reconstructions that were robust to a wider range of hyperparam-
eters, there was another aspect of the representation issue that we decided to
tackle - class separation.
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t-SNE analysis of the latent space of a MNIST VAE.
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Figure 3.5: Decomposition of the latent space of a Variational Auto-Encoder
(VAE) trained on the MNIST dataset. Interpolating in this space can lead to
unintended consequences - e.g., when taking the interpolation between a ’0’ and
a ’5’, the output would probably be an ’8’.
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Chapter 4

Class Separation

In Chapter |3| we discovered how lack of class separation can impede our overall
goal of image reconstruction. Given how generating additional, intermediate
training samples yielded a promising boost in performance, we decided that the
best train of action would be to try and alleviate this issue. We decided on using
two techniques that can help separate classes in latent spaces: prototyping and
using non-euclidean geometries.

4.1 Latent Space Geometries

When training any Computer Vision Neural Network, the input instances are
transformed into a latent space. The geometry of this latent space can be
instrumental to the behaviour and performance of the resulting network. In
this thesis, we have examined three distinct geometries and their influence on
the quality image reconstructions under network inversion.

Euclidean Geometry

Euclidean geometry is a mathematical system that has been the paradigm for
most artificial intelligence applications. The underlying assumption of Euclidean
geometry is that it is defined on a flat space which is reflected in Euclid’s fifth
postulate:

That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are less than two right angles.

Euclidean geometry is well suited for a wide range of problems and has been
historically adopted in most of the state-of-the-art Machine Learning systems.
However, in some contexts, other geometries that are characterised by curved
spaces have been proven to be better choices.

29
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Hyperspherical Geometry

A handy intuition for hyperspherical geometry can be obtained in its 3D case
- a sphere. Defined by constant positive curvature, hyperspherical geometry
differs from Euclidean theoretically in only one aspect - the Fifth Postulate. In
hyperspherical geometries, parallel lines, in contrast to Euclidean, do at some
point meet. In the context of this thesis, two aspects of hyperspherical geometry
are important:

e Points are defined on a unit n-sphere:

S={reR" |z|=1} (4.1)

e The shortest distance between two points is no longer a straight line.
Instead, we have to follow a geodesic along the curvature of the hyperplane.
In this thesis, we will use the negative cosine similarity as a proxy for
distance [23]:

dist(z,y) =1 — cos b, (4.2)

Figure 4.1: Under a hyperspherical geometry, the shortest lines between points
- geodesics - become arcs rather than straight lines. Image from John Kogut’s
lecture [16].

Hyperbolic Geometries

Hyperbolic geometries are an alternative to Euclidean geometry that are char-
acterised by constant negative curvatures (i.e., the space is constantly curved
in opposing directions, resembling somewhat a horse saddle). Several hyper-
bolic geometry models exists, differing between each other by how points and
geodesics are defined on them. The three most popular models are the Poincaré
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disk, the Hyperboloid (the Lorentz model) and the Klein model [22]. In the
context of this thesis, I used the Poincaré disk as a representative of this group
of geometries due to its relative simplicity of use and analogies to the hyper-
spherical geometry model.

The Poincaré disk The Poincaré disk model is a representation of the hy-
perbolic space by means of a unit ball defined in the Euclidean space as:

Dy={pecR¥:pi+.. . +p3<1} (4.3)

The shortest distance, also called a geodesic, between two points in the Poincaré
disk is defined as the arc of a Euclidean circle that passes through both points
and intersects with the boundary D, at a right angle. The Poincaré disk is
popular for a lot of applications because of its attractiveness in visualizations in
its 2D case but also because it is conformal, i.e. hyperbolic angles are measured
as in Euclidean geometry [22].

Figure 4.2: Visualization of the Poincaré disk as a projection of a 3D hyper-
boloid.

4.1.1 Prototype Learning

In classical machine learning approaches, a fresh network starts training with
no knowledge about the data at hand. During training, the network fits to the
data, creating a latent representation that (at least theoretically) explains the
underlying patterns. While this approach works well in most cases, sometimes
the characteristics of the problem or the data make it difficult to represent them
in such a way. Prototype learning allows to steer the learning process by either
enforcing large separation or introducing semantic information before the start
of training [4].
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4.2 Prototype Learning

Prototype learning is a useful method for decreasing dimensionality of models
while retaining performance, ensuring appropriate class separation and incor-
porating information about data into models before the start of actual training
[2, 4, 23]. In the context of hyperbolic learning, it can also provide help in
structuring hierarchical data before the start of training [2] [22]. Mettes et al.
in their 2019 paper [23] focus on hyperspherical prototypes. They present a
learned method for positioning the prototypes based on desired dimensionality,
the type of problem (classification/regression) and the number of classes (in the
case of classification). In their approach, the network learns a mapping from
inputs to corresponding prototypes by maximising the cosine similarity between
them. In our work we took their general approach and applied it to our problem

4.3 Prototype Learning

4.3.1 Hyperspherical Prototypes

One approach of achieving good separation of classes is through placing proto-
types on a hypersphere and then learn a mapping from inputs to appropriate
prototypes. This presents two problems: (1) how to find a placement of well-
separated prototypes and (2) how to describe the mapping in an efficient way in
a hyperspherical geometry? In this thesis we based our approach on the work of
Mettes et al. [23]. The crux of their work lies in leveraging cosine (dis)similarity
for both placing the prototypes and learning the mapping.

Placing the prototypes Obtaining optimal spacing on a 2D hypersphere
(i.e., a circle) is straightforward - given K classes, we can divide the circle into
K equal slices by placing a point every 360° /K. However, performing this task in
higher dimensions becomes way more challenging and straightforward solutions
exist only for some edge cases [28]. Mettes and al. offer a solution based on the
assumption that the set of optimally spaced prototypes minimises the maximal
cosine similarity between any two prototypes. They therefore propose a learned
approach with the following loss function:

P,

1 .
L=—Y maxM;, M=PP"-2I stV =1 (4.4)

The matrix M in the equation above is the dot product of the set of pro-
totypes with itself (which equates to the cosine similarity between each pair of
prototypes). A doubled identity matrix is subtracted to avoid self-selection.

Learning the mapping Once we obtain the prototypes, we can learn to map
the inputs into appropriate prototypes by once again using the cosine similarity
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- this time we aim to maximise it between the mapping and its corresponding
prototypes. The loss function is thus formulated as follows:

N N

L= Z(l — CO8S azl',pyi)g = Z(l M)

pard =zl eyl

2 (4.5)

4.3.2 Hyperbolic Prototypes

The main motivation behind using the hyperbolic prototypes is the exponential
expansion of the hyperbolic space [22]. This characteristic becomes useful when
dealing with hierarchical, or tree-like structures. Moreover, since the space
becomes effectively bigger, we can potentially fit more data into the same space.
This same characteristic introduces however an additional difficulty in modelling
the prototyping learning problem in a hyperbolic geometry. If we consider a
Poincaré disk model, placing the prototypes on the boundary (as we did in the
hyperspherical case) is no longer feasible. The Poincaré disk model is bounded
by an imaginary circle, meaning that the boundary lies at an infinite distance
from the centre and is therefore not reachable. We overcome this problem by
following the approach of Atigh et al [2]. The researchers modelled our problem
using a mathematical limit as training loss - the Busemann loss [6]:

by(z) = Jim (da(y,(1). 2) — 1) (4.6)

In the Poincaré model that we leverage in this thesis, this Busemann limit
can be expressed in close form as:

2
by(z) = log M (4.7)
1— =]

4.4 Results

4.4.1 Hyperspherical Prototypes

Manifold Precision [%] Recall [%] F1l-score [%]

2D (circle) 78.4 77.2 77.1
3D (sphere) 90.9 90.4 90.4
5D (hypersphere) 97.7 97.7 97.7

Table 4.1: Comparison of classification evaluation metrics on the test set of
MNIST for different dimensionalities of the manifold. 2D manifold was to small
to fit the 10-class problem of MNIST. Optimal results were obtained for a 5-
dimensional manifold.
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(a) Before the start of training, the proto- (b) 2-dimensional mapping space was not
types were placed on a unit circle every {; enough to accommodate the 10 classes of
rad. the MNIST dataset.

Figure 4.3: When examinating the feasibility of the 2D hyperspherical prototype
approach to MNIST classification, 10 prototypes were placed on a unit circle
and a mapping input — prototype was learned.

(\]

(]

(a) Prototypes (blue dots) placed on a unit (b) Mapping of the MNIST test set onto
sphere. In order to appropriately space the unit sphere by a trained network.

out the prototypes, a learned approach

was used.

Figure 4.4: Visualizations of (a) the prototypes on a unit sphere and (b) the
mappings of the MNIST test set onto said sphere. A 3D sphere provided ample
space for the 10 prototypes and the corresponding dataset to be fit.
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Optimizing Gaussian noise images to represent 10 classes.

(a) Using an Adam-trained classifier for the task of obtaining 10 digits from noise
provided curious, subpar results in comparison to SGD.

Transformation of an image of a 9 into an image of an 8.

Iteration 0 Iteration 4 Iteration 8 Iteration 13 Iteration 17

Iteration 21 Iteratlon 26 Iteratlon 30 Iteratlon 34 Iteration 39

(b) Transforming an image to represent a different digit than originally yielded unsat-
isfactory results

Figure 4.5: Best results obtained through direct image optimization for the
classifier trained with a dataset enriched by VAE-generated examples.

4.4.2 Hyperbolic Prototypes

In order to evaluate the hyperbolic approach, a Busemann prototype network
was trained on the MNIST dataset. We compared prototypes of three different
dimensionalities - 2, 3 and 5 dimensions - to select one that provides the best
performance while remaining lightweight. All three dimensionalities performed
very well, especially to low-dimensionality versions of the hyperspherical ap-
proach. Considering the highest generalisation performance of the 5D network
(see Figure this dimensionality was chosen for further studies. Performing
network inversion on said network yielded mixed results. The reconstructions
were subpar in comparison to Euclidean, non-prototypical approaches, however
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the reconstructed digits were somewhat visible. Especially interesting was the
‘connect the dots’ pattern, visible in Figure

Manifold Precision [%] Recall [%] F1-Score [%)]

2D 924 92.4 92.4
3D 95.5 95.5 95.5
5D 96.2 96.2 96.2

Table 4.2: Classification results on the MIST test dataset for the Busemann
Hyperbolic Prototypes.

Figure 4.6: Mapping of the MNIST test set onto the Busemann prototypes. The
closer a point is to a prototype (points on the outline of the circle), the more
confident model was in its mapping. Uncertain mappings are located towards
the centre of the circle. Colours of the points correspond to the class their labels
in the test set.

4.5 Conclusions

Inverting a network to perform image reconstruction requires an accurate rep-
resentation of the features that determine the class of an input image but also
an alignment between how the network internally represents and recognized the
images and how humans perceive them. One way to do it, we hypothesised,
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Optimizing Gaussian noise images to represent 10 classes.
. n - ﬂ
- . i - i
(a) Inverting a hyperbolic prototypes network yields curious results - the reconstructed
digits have a ’connect the dots effect’.

Transformation of an image of a 9 into an image of an 8.

Iteration 0 Iteration 2 Iteration 4 Iteration 6 Iteration 8

Iteration 10 Iteration 12 Iteration 14 Iteration 16 Iteration 19

(b) While the signal from the inverted network in this case provided substantial change
toward the assigned digit, the results were subpar in comparison to other methods.

Figure 4.7: Qualitative results obtained through a 3D hyperbolic prototypes
network.

is to provide a better separation of the classes or a different geometry of the
representation. To that end, we evaluated two distinct prototyping approaches
- hyperbolic and hyperspherical prototypes. The results showed a subpar per-
formance in comparison to non-prototypical approaches conducted in Euclidean
geometry. This, as we understand can be traced back to the core idea of proto-
typical learning - instead of a representation of the images, we learn a mapping
from inputs to fixed prototypes. While such approach leads to well separated
classes (given large enough space, i.e. the dimensionality of the prototypes),
it does not correspond well to our network inversion tasks. Having said that,
an interesting phenomenon occurred when using the hyperbolic prototype ap-
proach. The digits reconstructed in task 1 were legible, however a ’connect the



38 CHAPTER 4. CLASS SEPARATION

dots’ effect appeared. The exact reasons for this occurrence and solutions to in-
crease fidelity of the reconstructions are a matter for future work. It is however
our opinion that prioritising class separation is not ultimately worth the loss of
the smoothness of the representation.



Chapter 5

Case Study

Our investigations so far explored the general feasibility of inverting network and
extracting the information they store. We have shown that, in certain contexts,
we can reconstruct classes of datasets using the latent information stored in
their weights. Our exploration of the issue was however purely qualitative and
inherently subjective - the results were examined and compared visually by the
authors. Such approach gave us information on how different learning contexts
adapted to the task of inversion, it lacked however fair comparisons between
approaches that fared similarly under the qualitative regime. In Section[I.2.2]we
have elaborated why we have chosen to evaluate our models in that way. Having
said that, a quantitative comparison of methods and their usability in more real-
life scenarios would be beneficial. With that in mind, we have decided to conduct
a case study. Image reconstruction in Computed Tomography is famously an
ill-posed problem. While some data-based approaches were developed, model-
based, iterative methods like SIRT still remain state-of-the-art. We wanted to
answer the following question: “Does introducing a network inversion scheme
into the iterative model-based methods improve reconstruction quality?”

5.1 Background

Computer Tomography (CT) offers a relatively non-invasive insight into the
inner structure of objects, animals, plants or humans. Using Computer To-
mography is not trivial - mapping the detected attenuations of the ~-rays is an
ll-posed problem. Obtaining high-quality CT reconstructions that are robust to
noise has been an active area of research for decades.

5.1.1 Conventional methods of CT reconstruction

Historically, CT image reconstruction has been performed using a model-driven
approach. The reconstruction algorithms were design to mimic the inverse of
the forward CT operator. Initially, such methods did not yield satisfying results

39
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due to the instability of the problem; the reconstructions were very dependent
on small changes to input. As a solution to this problem, iterative methods
were developed. These methods commonly were based on the idea of decreasing
the variance of the reconstruction by a small fraction while at the same time
respecting the similarity to the inverse model.

FBP The Filtered Back-Projection (FBP) [14] is an algorithm that aims to
reconstruct images obtained in parallel geometries in a two-step fashion. First,
the 1D projections are transformed into the frequency domain where a variation
of a low-pass filter is applied. This step aims to discard noisy portion of the
image, resulting in a reconstruction that more closely resembles the input image.
During the second step, the filtered projections are transferred back into the
image domain and back-projected onto the image space along their respective
angles. FBP constitutes a light-weight method of obtaining moderate-quality
reconstructions. The use of the low-pass filter results in reconstructions that
tend to be blurry due to the overemphasis of low-frequency data.

SIRT The Simultaneous Iterative Reconstruction Technique (SIRT) algorithm
is an algebraic iterative method that provides better reconstruction results than
analytic methods like FBP [I4]. SIRT provides reconstructions by iteratively
improving an initial guess based on the forward operator data. During each
step, the guess is projected onto ith projection hyperplane under the assump-
tion that if a unique solution exists, the algorithm will converge to it, with
every step providing a better reconstruction than the previous step. SIRT pro-
vides satisfactory reconstructions, is robust to noise and allows to incorporate
constraints (e.g., non-negativity, regularization terms). However, it is also com-
putationally heavy. especially in comparison to analytical methods like FBP.

5.1.2 Data-driven approaches to CT reconstruction

With the advent of artificial intelligence and its promising achievements in the
field of computer vision, numerous researchers tried to implement such methods
in the field of CT reconstructions. Such methods can be divided into three
distinct types:

Learned post-processing (learned de-noising) - where a data-driven ap-
proach is employed to improve a reconstruction obtained through conventional
reconstruction methods.

Learned regularization - aregularization term is learned and then combined
with traditional iterative algebraic methods.

End-to-end optimization In such methods, a data-driven approach is used
to model the whole inverse operator, mapping input data to complete recon-
structions. Such approaches are constly to perform in a single step and do not
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scale well to data sizes seen in real world. Instead, some authors propose iter-
ative data-driven methods that move raw data towards complete iterations in
small steps. [I]

5.2 Experiments

In order to comprehensively compare models that fared similarly well, we de-
veloped a second evaluation framework which was aimed at evaluating models
in the context of the task laid out in the research question: improving recon-
struction quality through the combination of a conventional and data-based
approaches. The experiments in this section were performed using the AS-
TRA toolbox for electron tomography research [29, [30]. The framework was
constructed:

1. Forward projections of test images were obtained under specified condi-
tions (projection geometry type, number of angles, number and spacing
of detector pixels, etc.),

2. The resulting sinograms were passed through 50 iterations of SIRT in
order to obtain initial reconstructions.

3. The initial reconstructions subsequently underwent 50 additional itera-
tions of alternating transformations - SIRT and the tested model step - in
a ratio of 3:1.

4. The final reconstructions were compared with the ground truth images
using MSE, PSNR, and SSIM. The results were benchmarked against a
reconstruction provided by 100 of SIRT only.

5.3 Results

5.4 Conclusions

In this case study we have explored the effects of integrating a network inver-
sion approach into the well-established, conventional, iterative CT reconstruc-
tion pipelines. Our experiments show that network inversion can bring limited
performance boost to angle-constraint CT reconstruction set-ups. This effect
is however, in our opinion, at least partially brought on by the regularisation
techniques rather than the inversion itself. We theorise that consequential per-
formance improvements in this area using network inversions are possible, how-
ever the technique should be applied on problems more complex than MNIST.
In order to achieve that, additional work needs to be performed to improve the
technique and make it more stable to hyperparameter changes.



42 CHAPTER 5. CASE STUDY

0101 [ ® dassifier . sirt]
B oos{ ¢ %
2 [ ] [
0-00 L T T T T
20
z ) )
4 rY
_“ -
01 — ; .
0.8 I ‘
z 0-6 - ‘ } E
= &
n :
044 T
1 I
5 10 50 100

Number of projection angles
Figure 5.1: Comparison of average evaluation metrics for different numbers of
projection angles between pure SIRT and our mixed approach. While a standard

SIRT approach was comprehensively better given sufficient number of angles,
in very angle-constrained contexts our approach provided moderately better

results.
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Figure 5.2: Comparison of reconstructions for different numbers of projection
angles between SIRT and our approach.



Chapter 6

General Conclusions

In this thesis, we have explored the idea of introducing prior class information
into the image reconstruction process via the information encoded in the weights
of pre-trained convolutional neural networks. We based our approach on the
network inversion mechanism which so far has been explored in several types
of adversarial attacks [7, [10, [18] and in AT explainability [20, 24} 35] but has
not yet found usage in the area of image reconstruction. Considering that the
general task we wanted to perform - retrieving visual information for whole
classes - was under-represented in literature, we decided to formulate this thesis
as an exploration of this concept. We started with a proof of concept study and
subsequently investigated two areas of the problem that we deemed interesting
- robustness and class separation. Finally, we concluded with a case study in
the area of CT image reconstruction. Our main findings are as follows:

1. Reconstructing class-specific images using neural network inversion in a
black-box set-up is feasible and highly satisfactory results can be obtained
for simple synthetic datasets.

2. Robustness plays an important role in susceptibility to inversion as ro-
bustly trained networks offer a smoother problem representation with bet-
ter handling of ’garbage’ examples.

3. Class separation may play a role in quality of reconstructions, however
prototypical methods tend to harm the overall performance due to their
focus on classification rather then representation.

4. Using network inversion to improve image reconstructions can bring small
boosts in performance in highly constrained settings (e.g., CT reconstruc-
tions with very limited number of angles).

5. Using network inversion for image reconstructions presents a difficult prob-
lem that requires thoughtful hyperparameter optimisation.

Previous works that could be considered aligned with our research ideas, i.e.,
aimed to recover high-fidelity images from networks, have in most cases opted
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to use a white-box to networks. We decided to focus on a black-box approach
where we could perform predictions using a network but we did not use access
to the network’s weights. In previous literature, such approaches reached sub-
par results, however this could be also attributed to the fact that said research
focused on other tasks where a black-box approach is less feasible. It should
be noted that performing network inversion yields a consequential computa-
tional overhead. This is due to the fact that for each reconstruction, we need
to perform many steps back-propagation (in the case of our experiments, 1000
steps per image). In most learned approaches, this overhead is contained to the
training phase. Overall, this exploration thesis has shown the feasibility of the
concept of introducing class-specific information into the image reconstruction
process. We explored some caveats of this complex problem and offered insights
into their purposefulness. For future work, increasing stability of the recon-
struction process should be studied and methods for decreasing the number of
hyperparameters should be explored. Additionally, this approaches should be
validated for more complex, real-life datasets.
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