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Abstract

As demand for energy efficiency increases, it is important to look into parallel programming,
as this can give rise to better energy efficiency. This thesis focuses on the implementation
of Fineman’s parallel algorithm for directed graph reachability that, with high probability,
reduces the diameter of a graph by using shortcuts. The algorithm has only been proven to
work fast and efficiently in theory, but not in practice. Therefore, we ask the question of how
well Fineman’s algorithm can be implemented in practice and how well the modified parallel
BFS component of this algorithm performs. The thesis presents a parallel description and
partial implementation of Fineman’s algorithm written for the GPU. Afterwards, part of the
implementation is evaluated on large graphs by measuring runtime. The results show that in
practice the algorithm has the potential to bring about improvements in energy efficiency.
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1 Introduction

Today, one cannot deny the need for energy efficiency with regard to computing. Several reasons
can be named, such as keeping up with higher computing power or the importance of minimizing
damage to our climate. Research has shown that parallel GPU implementations can be more energy
efficient than the usual CPU implementations [7]. If processing power continues to increase, it is
important to pay attention to improvements in energy efficiency. For this reason, it is interesting
to delve deeper into parallel algorithms that are faster and can bring about more efficient energy
usage.

This thesis focuses on a parallel algorithm for directed graph reachability. The parallel algo-
rithm in question was given by Fineman in 2017 [5]. We focus on understanding his algorithm and
the pseudocode that he has provided in his paper. We attempt to implement this algorithm on the
GPU. Finally, we test a part of the algorithm and see if it performs well compared to, for instance,
a normal breadth-first search. The research questions to support this process are the following:

How well can Fineman’s parallel algorithm of digraph reachability be implemented on the GPU?
Furthermore, how well does the algorithm’s graph search perform in practice?

2 Background

This section provides an explanation for several concepts that are important for understanding the
thesis. First, we look at directed graph reachability in more detail. Afterwards, we explore what
parallelization means and give an explanation of CUDA, which has been used to implement the
algorithm on the GPU. Lastly, a detailed explanation of Fineman’s algorithm is given.

2.1 Directed graph reachability

To understand the problem at hand, it is important to understand graph theory. In graph theory,
a graph is defined as G = (V| E), where V is a set of vertices, nodes, or points, and F is a set
of edges [15]. Edges can be seen as a pair of vertices, a connection between two vertices. Two
vertices are adjacent if there exists an edge between them. Furthermore, there is a distinction
between undirected and directed graphs. The set E of an undirected graph G = (V| E) consists
of unordered pairs, and the set E’ of a directed graph G’ = (V’, E’) consists of ordered pairs. In
other words, in undirected graphs, the edges do not have a specific direction, in directed graphs,
the edges do have a specific direction and are one-way. See Figure 1 for an example of a directed graph.

The number of edges emerging from a vertex is called the degree of that vertex. In the case
of a directed graph, we can make a distinction between the in-degree and out-degree of a vertex.
Respectively, these are the edges that come into a vertex and the edges that come out of a vertex.
Another important concept with graphs are paths, which is a sequence of edges [15]. For example, a
path from Figure 1 could be (a, b, ¢,d, c). A graph is connected if and only if there exists at least one
path between two vertices. Furthermore, a graph is strongly connected if there exists a path between
each vertex of the graph. Moreover, the diameter of a graph is the longest shortest path of that graph.
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Figure 1: An example of a directed graph.

Two important algorithms can be used to traverse a graph, namely, depth-first search (DFS)
and breadth-first search (BFS) [15]. Both algorithms start from a so-called root vertex. DFS
walks through unvisited vertices as long as it can continue, and BFS walks through all adjacent
unvisited vertices layer-per-layer. As an example, starting from a in Figure 1, a DFS walk could be
(a,b,c,d, g, f,e) and a BFS walk could be (a, b, c,d, f, g,e). In particular, BFS uses a queue called
a frontier. At the start of the BF'S, the root vertex is inserted into the frontier, after which the
same is done with the adjacent vertices of the vertices in the frontier. This process is repeated until
all the vertices have been visited.

In Fineman’s paper, directed graph reachability is referred to as the single-source reachabil-
ity problem for directed graphs. They state: “Given a directed graph G = (V, E') and a source vertex
s € V , identify the set of vertices reachable by a directed path originating at s [5]”. Naturally, we
can infer that a graph traversal algorithm could be used to solve this problem. Sequentially, BF'S or
DFS can be used [5], but parallelly, other algorithms are used, which is discussed in later sections.

2.2 Parallelization

Conventionally, computations are done serially, meaning tasks are done one by one. Computing like
this consumes a lot of time and energy [7], which is where parallelization comes in. Parallelization
is done by performing as many of the desired computations as possible in parallel [(]. In practice,
sizable problems are often divided into several smaller problems that can be solved at the same
time. We are interested in the parallelization of algorithms, creating parallel algorithms. With
respect to parallel algorithms, it is possible to achieve sublinear runtimes, which is again beneficial
for energy efficiency. This is generally achieved by using a polynomial number of processors in some
parallel computational model, such as PRAMs [(].

In theory, there exist some important terms to determine the efficiency of a parallel algorithm.
In his paper, Fineman describes the work and span [5]. The work of a parallel algorithm is the
total number of primitive operations that are performed; what these operations entail is discussed
later. A parallel algorithm is work efficient if, for a given problem, it asymptotically has O(T*(N))
work, where 7%(N) is the best known sequential running time for that given problem [5]. O is the
notation for nearly work efficient time, where O hides logarithmic factors. The span of a parallel

algorithm is defined as the length of the longest sequence of operations that are executed sequentially.

On the hardware level, parallel tasks are usually done on GPUs as opposed to CPUs. The
reason for this is a difference in the structure between the two units. A CPU typically has a



smaller number of cores, whereas a GPU has a large number of cores. Intuitively, the CPU is
designed for latency, and the GPU is designed for throughput [12]. Usually, the GPU performs
the same task on a large amount of data, as opposed to the CPU, which handles individual tasks,
although with more speed. On the GPU, this is called a single-program, multiple-data programming
model [12]. GPU cores are usually independent of each other and cannot communicate directly.
There is a shared global memory to which the cores can read and write, thus allowing communication.

On the software level, there are multiple programming interfaces that allow parallel comput-
ing to be performed. Initially, these were less general purpose, mainly graphics APIs that lacked
abstraction [12]. However, over the years, more high-level programming languages have become
available. Intuitively, this multipurpose programming is called General-Purpose Computing on
Graphics Processing Units, or GPGPU for short [12]. We are interested in one specific parallel
programming language, namely NVIDIA’s CUDA C++, which is looked at later.

In parallel programming, there exist multiple primitives that are important for creating par-
allel applications, namely scatter, gather, map, reduce, and scan [12]. Scatter and gather are the
actions of writing or reading from a specific location in global memory. Mapping is the application
of an operation to all elements in a given collection of data. Reduction is the action of reducing
a collection of values into a single value. This is done using a binary associative operation, for
example, addition. Lastly, scanning is the action of taking an array and returning the same array
except that every element is an addition of the current element and all the elements that came

before. More specifically, it returns an array A in which each element A[i] is the sum of A[0] through
Ali].

2.2.1 CUDA

NVIDIA CUDA [I1] is a toolkit that can be used to utilize the GPU when executing code. It not
only provides a parallel programming language, but also GPU-accelerated libraries, debugging
tools, and optimization tools. More specifically, we are using CUDA C++. As the name implies, this
is a programming language that is very similar to C++ and it includes new syntax for GPU utilization.

Using CUDA C++, one can define functions that can be executed in parallel on the GPU; these are
called kernels. In the documentation, a sequence of tasks is called a thread [11]. In this way, we
can say that a task can be divided into multiple threads, in our case CUDA threads. In general,
given N different CUDA threads, a kernel is executed IV times in parallel by each of these threads.
Multiple CUDA threads can form a block, and each CUDA thread in such a block has a unique
identifier, namely, a thread ID, which can be accessed through built-in variables in the kernel.
The thread ID is a 3-tuple which can be accessed by calling for the attributes x, y, or z of the 3-tuple.

The structure of CUDA threads is implemented in such a way that it can be used naturally
with containers such as vectors, matrices, or volumes. As mentioned above, multiple threads can
form a one-, two-, or three-dimensional block, called a thread block [I1]. Usually, there are multiple
thread blocks, which can also form a one-, two-, or three-dimensional structure, namely a cluster of
thread blocks. In practice, this is necessary, as on current GPUs, a thread block may contain only
up to 1024 threads [11]. Like independent threads, different thread blocks are also independently



executed. Therefore, each thread block also has a unique 3-tuple identifier, namely the block ID.
Usually, there are also multiple thread block clusters that together form a grid.

There are different levels of memory that can be accessed by CUDA threads, a memory hier-
archy [11]. At the lowest level, there is the local memory of a single CUDA thread, which can only
be accessed by threads in the same warp, where a warp is a bundle of 32 threads. Thread blocks
have their own shared memory, which can be accessed by all CUDA threads inside the thread
block. A thread block can access the shared memory of other thread blocks when they are in the
same cluster. At the highest level, there exists a global memory that can be accessed by all CUDA
threads. Important to note is that the higher the communication, the slower the communication
gets. Using shared memory is slow, so, in general, it is good practice to avoid this.

As is evident, CUDA threads are executed on the GPU, while normal code is executed on the
CPU. In this case, the CPU is called the host and the GPU is called the device [!1]. There exists a
physical gap between the host memory and the device memory, which needs to be bridged manually
to some extent; the GPU has its own RAM, separate from the CPU. For instance, if we want to
pass an array to a CUDA kernel, the needed memory needs to be manually allocated, and the data
from the array needs to be manually copied from the CPU to the GPU. The allocated memory
also has to be manually released at the end, similar to how memory allocation is usually done in C++.

To simplify the programming process, we can use Thrust, which is a parallel template library for
use with CUDA C++ [1]. This library, for one, simplifies the process of bridging the gap between
host and device memory as described above. This is done by including a container called a device
vector, which stores memory on the device side. Moreover, Thrust contains a lot of kernels for tasks
such as sorting, scanning, set operations, sequence generation, and much more. In this way, we do
not have to reinvent the wheel when we want to use one of these tasks in our code, as it is included
in Thrust.

2.3 Fineman’s algorithm

As mentioned, the problem to be tackled is directed graph single-source reachability. There exist
simple sequential solutions, but different solutions are necessary in parallel. Fineman mentions two
parallel algorithms that come to mind, namely parallel BFS and transitive closure [5]. Parallel
transitive closure is highly parallel [3], but is not work efficient, it has work of about O(n?372369) [7],
where n is the number of vertices of a graph. Parallel BFS is work efficient, but the span is linear.
Given a root vertex v, the span of parallel BFS starting from v is asymptotically equal to the
longest shortest path starting in v. In general, it is better to have a lower span because this
allows for more efficient parallelization and less dependency on sequential operations. It is evi-
dent that an algorithm that is both work efficient and has a low span is needed for better energy use.

As an improvement over the algorithms mentioned above, Fineman presented a randomized parallel
algorithm for the problem of directed digraph reachability [5]. He showed that, with high probability,
the algorithm has nearly linear work and span, namely O(m) work and O(n??) span, where m is
the number of edges and n the number of vertices. The general idea of the algorithm is that, by

introducing shortcuts, the diameter of a given graph is reduced with high probability. A shortcut is



an edge between two vertices, where one vertex can initially reach the other vertex through a path.
Again, the diameter is the longest shortest path of a graph. The goal of reducing the diameter of a
graph is to be able to perform a faster parallel BFS to solve the reachability problem. The lower the
diameter, the lower the span of the parallel BF'S. The paper also includes mathematical proofs regard-
ing the complexity of the algorithm, but for the sake of this thesis, we largely skip over those matters.

In his paper, Fineman presents three different versions of his algorithm. The first two versions
consist of one subroutine. The last one consists of two, where the first subroutine is called in the
second subroutine. There are a few terms that are commonly used throughout the paper with
respect to these algorithms. Usually, the subroutines are given a graph G = (V| E), where V is the
set of vertices of the graph and FE is the set of edges of the graph. For a given graph G, n is the
number of vertices, and m is the number of edges.

2.3.1 First versions of the algorithm

The first subroutine shows a basic idea of the algorithm [5, Algo. 1]; see Figure 2. It is a recursive
algorithm that takes a graph G = (V| E') as input. The subroutine immediately returns an empty
set if given G has no vertices. Otherwise, a random pivot vertex x is selected from V. From this
pivot, two sets are derived, namely Rt and R~. Respectively, these are the set of vertices that can
be reached from x and the set of vertices that can reach x. Afterwards, the set of shortcuts S is
generated. All pairs of z and vertices of RT and all pairs of vertices of R~ and x are included in S.
Then, the sets of Vi, Vg, and V; are generated. Vp is the set of all vertices that can be reached
from x but cannot reach x. In contrast, Vg is the set of all vertices that can reach x but cannot be
reached from x. Vi; is the set of all vertices that are not in Rt or R™, basically all vertices that
cannot be reached from z or reach x. The subroutine then recurses with G[Vr|, G[Vg], and G[Vy].
Here, G[V,] means that G only includes the vertices in V,. The subroutine returns S, along with
the return values of the three recursion calls.

Algorithm 2 Modified sequential algorithm for shortcutting

Algorithm 1 Sequential algorithm for shortcutting .SCQSCQ(G :‘(V7 E)): )
SeqSCL(G = (V. B)) : ; gﬁzewrecurszon depth is 1g n then return ()
1. if V =0 then return 0 3 w};le V £0 do
?: select a pivot z € V um‘formbz at random 4: select a vertex x € V' uniformly at random
3: let R denote the set of vertices reachable from x 5 R* = R*(G, )
4: let R~ denote the set of vertices that can reach x 6: - : R’(G’ ;)
5.5 :={(z,v)|v € Rt} U{(u,z)lu e R} 7 S : ((x 17)\1716 RYY U {(uw,2)u € R}
6: Vp:= R\R" s Vpi= RA\R 7
7 VB = R_\R: - 0: VB — Rf\RJr
8 Vo = VA(RTUR) 10 Vy:=V\(RTUR")
9: return S U SeqSCL(G[Vp]) U SeqSCIL(G[Vs]) U

11: S:=5 U SeqSC2(G[VF]) U SeqSC2(G[Va])
122 G:=GW)

13: return S

SeqSC1(G[Vy])

Figure 2: Algorithm 1 and 2 from Fineman’s paper [5].



In his paper, Fineman mentions that Algorithm 1 is very similar to the divide-and-conquer
algorithm by Coppersmith et al. [3], the only difference being that shortcutting is used. From this
he deduces that his algorithm also has O(m log n) runtime like the aforementioned algorithm.
Moreover, the algorithm appears to reduce the diameter of a graph, with high probability given the
randomization of pivot x. The problem with Algorithm 1 is that it is difficult to parallelize in its cur-
rent form. Finding R™ and R~ is the single-source reachability problem that the paper tries to solve.
The solution for this is to limit the search distance, which is included in the last algorithm [5, Algo. 3.

The second subroutine [5, Algo. 2] is a slight modification of the first subroutine; see Figure 2. The
first difference is that, instead of immediately returning an empty set if V' = (), it returns an empty
set if the recursion depth is equal to lg n. However, it eventually returns the empty set by returning
S if V' = (), since it does not pass through the while loop when V' = (). The other difference is the
way the recursion is performed, V; being excluded as a recursive call. V;; is instead included by
altering G to only include vertices from Vs, essentially replacing SeqSC1(G[Vy]) from Algorithm
1 with a loop. Algorithm 2 improves on Algorithm 1 by truncating the recursion depth and is a
step in the right direction when it comes to parallelization, but is not yet ready to be parallelized [5].

There are two obstacles that Fineman mentions with respect to the first two algorithms [5].
The first is the graph search when finding R™ and R™. It is possible for this search to have a
linear span and complexity instead of logarithmic. The natural solution is to limit the distance
of searches, but this introduces some other problems, which is looked at in the next section. The
second obstacle is one that Fineman describes using an example. If a given graph G has no edges,
the loop in Algorithm 2 still requires at least 2(n) iterations. The solution for this problem is to
introduce multiple pivots at once, which is discussed further in Section 4.

2.3.2 The main algorithm

In this section, we look at the main algorithm, namely Algorithm 3 [5, Algo. 3|, see Figure 3. As
stated above, limiting the search distance is a solution that results in better runtime and complexity.
The problem that arises is one that Fineman explains with another example [5]. Say we have a
pivot x, a search distance D, and a path (vg, vy, ..., v¢) where £ is the distance of the path. There
is a possibility that all vertices vy, can be reached from x, but that all vertices vox 1 cannot be
reached from x, given 0 < k < ¢/2. For technical reasons, this would divide the even and uneven
vertices into Vr and Vy, respectively. Fineman deduces that this would split the path into ©(¢)
pieces, with no potential to shortcut between these pieces later on.

The solution Fineman gives for the problem described above is to slightly extend the search
distance [5]. Given a distance dD, all vertices reached within dD are called core vertices. Then,
given the new distance (d + 1)D, all vertices reached within this new distance are called fringe
vertices. When shortcuts are created, the set of fringe vertices and the set of core vertices are
combined. For technical reasons, this solves the problem of the path splitting into even and uneven
components. As can be seen in Figure 3, fringe sets have been included in Algorithm 3. Here, the
fringe set only includes the vertices reached by the fringe search, as vertices from the core search
are excluded from the fringe set.



Algorithm 3 Shortcutting algorithm with distance-limited searches
ParSC(G = (V,E),h) :

. if h =0 then return 0

S:=0

: randomly permute V, giving vertex sequence X = 1, T3, ..., 7y|. Mark each xz; live.

- split X into subsequences X, Xo, ..., Xog, with |X;| = |Xi_in1] = [(1 + &)¢] for i < k and
Xk = X ] < [(1+€x))

=W o

5: for i :=1 to 2k do

6: Amin =1+ hNy N — iNp,

T dmaz = dmin + N, — 1

8: choose random d € {din, dnin + 1, ...y dpar — 1}

9: for each live z; € X; do

10: Ry = Rp(G, 1))

11: R = R, (G, x)

12: Fi =Ry p(Goxy)\Ry

13: Ff = R&H)D(G, ;) \R

14: S:=8 U{(zj,v)lve RfUF} U {(u,2;)luc Ry UF}}
15: append a tag of j to all vertices in Rj+ U Ry

16: for each live z; € X; do

17: remove vertices with tag< j from Rj' Ry, F_‘;} Fr

18: Vij = RI\R;

19: VB,J' = R;\Rj

20: §:=8 U ParSC(G[Vp; UF;],h—1) U ParSC(G[Vp,; U F; |, h—1)

21: mark all vertices in | J ](R;' U R;) as dead in X
222 Vy:=V\U,;(Rj UR;)
23 G :=G[Vy]

24: return S

Figure 3: Algorithm 3 from Fineman’s paper [5].

The inclusion of fringe vertices does create another problem, namely the possibility of fringe
vertices being active in multiple sub-problems, which would have a negative impact on the progress
bound [5]. The initial solution for this is to select a random search distance d from a range
de{1,2,....N; — 1}, where Ny, stands for the number of layers. To expand on this solution, Fine-
man notes that it is important that the search distance does not increase for each iteration of the
algorithm [5]. To account for this, the range is modified such that d € {din, dmin + 1, ..., diax — 1}
Here, d,,;, decreases every time the algorithm recurs with the help of h, and d,,.. is calculated
using d,,;, and Ny, see Figure 3. Ny is also included as a factor in d,,;,, which is discussed later.

As mentioned in the previous section, the solution of the second obstacle regarding the first
two algorithms is to initiate searches from multiple pivots [5]. This solution is also beneficial for
parallelization. As we can see in Figure 3, this has been included in the design of Algorithm 3. First,
a number of random pivots have to be chosen. The first step is to change the order of the vertices in
V' to obtain a vertex sequence X. Afterwards, X is divided into several subsequences that increase
in size the first £ — 1 times and decrease in size until 2k. What k entails is discussed later. When
searching, the core and fringe vertices found using a pivot z; are included in a corresponding set
denoted with j. The found vertices are assigned a tag of j.



After searching, for every vertex v found using z;, v is removed from the corresponding core
and fringe sets if it has a tag lower than j. In other words, if v has been reached by a pivot earlier
than z;, it is not used, as only the first core search to have found v is used. Afterwards, Vg
and F; are calculated; these are the forward and backward sets. The algorithm recurs using a
graph with vertices from the forward and fringe sets, and then with the backward and fringe sets.
Moreover, all vertices are first marked as live. Vertices that are reached by searching are marked
as dead, meaning that these can be ignored by searches after the recursion. This way of handling
vertices can also be applied to removing vertices from the graph. Instead of modifying the graph
explicitly to exclude dead vertices, it is more efficient to simply ignore dead vertices [5].

Algorithm 4 Diameter reduction with distance-limited searches
ParDiam(G = (\A/l E),7):
G =V, E)=G
2: for i := 1 to O(log n) do
3: for each j € {1,2,...,0(vy log n)} do
S; = ParSC(G’,1g n), aborting if number of shortcuts or work exceeds bounds
E=E U (U;5))

5
6: return G’

AN

Figure 4: Algorithm 4 from Fineman’s paper [5].

We now look at the terms Ny and k. Both terms depend on €., which has a value such that 0 < e, <1
and is chosen beforehand. The paper describes N, as the maximum number of iterations needed in
the for loop of Algorithm 3 [5]. Moreover, k is chosen to be large enough to include all vertices,
and mathematically, this is described as a geometric series [5]. The first k values are summed as
ZZ L L(1+ €)"]. The last &k values are similar to the first & values but going downward. In practice,
the sum of the first and last k& values can be calculated using the same summation. Together,
they form 23°% || (1 + €;)?|. The value k is the smallest value such that 2375 [(1 + ;)] > [V].

This can be further calculated using Zk = q_T ) where r = (1 + ¢;)']. We can deduce that

2(’"(1%) > |V|, from which we get k < logr(w)

To actually achieve diameter reduction using Algorithm 3, Fineman mentions that multiple passes
are needed [5]. To do this, a second subroutine is needed to invoke Algorithm 3, see Figure 4.
Algorithm 4 takes a graph G = (V, E), which is the original input graph, and returns a graph G’
to which diameter reduction has been applied. Furthermore, v is given to the algorithm, which is a
failure probability and has a value such that v > 1. For ©(log n) iterations, Algorithm 3 is executed
independently ©(v log n) times. After each iteration, all the shortcuts found in that iteration are

added to G'.

3 Related Work

Since 2017, there have been several improvements to Fineman’s work. In 2019, Jambulapati et
al. showed a parallel algorithm that, with high probability, solves the problem of directed graph



reachability with better work and span than Fineman’s algorithm [9]. More specifically, it has O(m)
work and n'/2t°() span. Similarly, their algorithm attempts to reduce the diameter of a given graph
using shortcuts. Their algorithm is also comparable to that of Fineman’s; the difference lies in
the way they handle fringe vertices. Instead of recursing with the core and fringe vertices lumped
together, they handle them separately. Moreover, they separately track the recursion depth of the
fringe vertices to account for recursion bounds.

In 2020, a group that includes Fineman expanded on the algorithm mentioned above. That
is, Cao et al. expanded the algorithm by Jambulapati et al. to solve single-source shortest-path
problems [2]. For some choice of parameter p € [1,/n], their algorithm has O(mp® + np*) work
and @ span. Their algorithm is tuned to find a hopset, which is a set of weighted edges that
approximates the shortest-path distances by paths of at most a certain length. Furthermore, when
it comes to undirected graphs, efficient parallel algorithms have long been known. In 1982, Shiloach
and Vishkin presented a logarithmic parallel connectivity algorithm [13]. Their algorithm has a
O(log n) span. Connectivity is a similar problem to reachability, where the focus lies on whether
all other vertices can be reached by a root vertex. In addition, their algorithm also uses shortcuts.

4 Algorithm Parallelization and Implementation

In this section, we look at how to implement Fineman’s algorithm in practice. To do this, we first
look at a description of how to parallelize the algorithm. Afterwards, we look at the implementation
process. Specifically, we look at two BF'S implementations that are necessary for an implementation
of Fineman’s algorithm, namely, the normal parallel BFS and the modified parallel BF'S.

4.1 Algorithm parallelization

We look at the parallelization of Algorithms 3 and 4 as described in Fineman’s paper [, Section
5]. A large portion of this description is devoted to how to implement graph searches to find, for
example, Rj. They give the work and the span of the parallel algorithm, as well as the size of the
diameter the algorithm produces. More specifically, the parallel algorithm has O(m logg n+mnlogyon)
work and O(n?3log,yn) span, and the diameter of the graph it produces is O(n*?logn). They
prove this by performing the main algorithm first and then running a standard parallel BF'S limited
to a certain number of hops. If the diameter reduction is successful, the BFS completes before this
limit and the whole process is completed.

4.1.1 Parallelization of graph searches

First, we discuss the parallelization of graph searches. This has been done by using a modified
parallel BFS. Given X;, the modified BFS is the set of all searches from X;, for example, to obtain
Rj. A key property that Fineman mentions is that there is a high probability that a vertex is
not visited by more than O(log n) individual searches. Thus, we can abort the modified BFS if
a vertex is visited too many times [5]. This version of BFS also uses a frontier as mentioned in
Section 2.1. There is also a distinction between the current frontier and the next frontier; the next
frontier contains the vertices of the next BFS round. Furthermore, each vertex v is paired with a



pivot ID, which is the corresponding pivot in X; from which the search that found v originated. In
this way, a distinction can be made between different searches on the current and next frontier.
Before starting the modified BFS, some initializations are performed. First, ©(log n) space is
allocated per vertex in order to store its ID tag list. As the modified BFS performs multiple searches
at once, such a list is needed to track which pivots have reached which vertices. Afterwards, all live
pivots z; € X; are copied to the frontier and, for each live pivot, their corresponding spot in the ID
tag list includes itself.

The paper describes a single round of the modified BFS as follows [5]. First, for each vertex
in the frontier, the out-degree is calculated. Parallel prefix sums are performed on each of these
out-degrees such that each edge has a distinct index in the next frontier. Afterwards, for each edge
(u,v) of vertices u in the current frontier, let x; be the corresponding pivot ID. Check whether
v’s ID tag list contains x;. If not present, record v and z; in the edge slot on the next frontier;
otherwise, record null on the next frontier. Then, sort the frontier list by vertex first and pivot
ID second, after which duplicates are removed using a compaction pass. Duplication removal is
necessary, as it is possible that multiple vertices with the same pivot ID reach the same vertex.
Lastly, for each slot j in the next frontier list, v is the corresponding vertex. Check whether this
is the first occurrence of v in the next frontier list by checking if j — 1 stores a different vertex.
If so, scan through the next O(log n) slots of the next frontier list, for each entry of v, append
the corresponding pivot ID to the ID tag list. Given a distance dD, this process is repeated dD times.

When the process described above has been completed, some finalizations are performed [5].
First, the arrays of all the vertices reached by the searches are sorted. For each vertex v reached in
these searches, the lowest pivot ID reaching v is identified using parallel prefix sums. These pivot
IDs are copied to a new array that can be used for recursive searches. This new array is also sorted
by pivot ID. Building G[Vy| explicitly would require too much processing, so the vertices in V'
should be marked as dead when reached and should be ignored by the modified BFS.

4.1.2 Aborting Algorithm 3

The last issue mentioned is that Algorithm 4 should be able to abort Algorithm 3 when the
maximum search distance has been exceeded, which is equal to O(n?3log;,n) [5]. Aborting simply
based on run-time or recursion depth is inadequate. A suggestion from Fineman is to implement
Algorithm 3 iteratively instead of recursively, in the same vein as a BFS. Instead of the frontier
containing vertices, it contains the different subproblems that would spawn from recursive calls. For
each level of recursion, prefix sums are used to add up the total number of vertices across all the
corresponding subproblems. Fineman suggests that subproblems from a certain level of recursion
can be launched in parallel. Aborting can be performed by checking whether the total number of
edges traversed exceeds the work bound.

4.2 Implementation

We now look at the practical implementation of the parallelization described above!. Note that the
implementation is not entirely finished, however, the modified BFS is complete. We look at the

1For the code, see: https://github.com/zimtuijd/thesis-fineman
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implementation process and discuss some ambiguities regarding the description of the algorithm and
its parallelization. As mentioned, CUDA C++ and Thrust are used for the implementation. Specifi-
cally, nvcc version 12.9.86 has been used to compile the CUDA C++ code and Thrust version 2.8.2
has been used for certain parallel tasks. In general, Thrust device vectors (thrust: :device _vector)
have been used to store arrays for use on the GPU.

An important thing to consider before coding is the graph representation. In practice, there
are several ways to store a graph; the most well-known types are adjacency lists and adjacency
matrices [141]. These can be used for both directed and undirected graphs. Both also have trade-offs
when it comes to memory usage or efficiency when augmenting the graph. For efficiency sake, we
use the compressed sparse row (CSR) representation, which has been used for parallel BFS in a
paper by Merrill et al. [10]. This type of representation can store a sparse graph with fewer elements
than an adjacency matrix, and an adjacency matrix can be converted into a CSR format. In our
case, the representation would consist of two arrays, one for the column indices and one for the row
offsets. The column indices contain, as the name suggests, the column in which a nonzero value is
located. The row offsets contain the number of nonzero values above a given row j. See the arrays
on the left in Figure 5 for an example; the CSR representation of the graph in Figure 1.

0100000
0010000
0001010

A=100100 0 1
0100000
0000100

0000000

columnIndices = [1,2,3,5,2,6,1,4]
edgesOffset = [0,1,2,4,6,7,8, 8]
edgesSize = [1,1,2,2,1,1,0,0]

columnIndices = [1,2,3,5,2,6,1,4]
rowOffsets = [0,1,2,4,6,7,8,8, 8]

Figure 5: Adjacency matrix and CSR representation of Figure 1, and the modified CSR format.

4.2.1 Parallel BFS

Before the modified BES or the rest of Fineman’s algorithm, work had to be done on another type of
BFS. As mentioned, the parallel algorithm uses a bounded parallel BFS to see if the algorithm has
reduced the diameter to an adequate level. This implementation is simple; take a standard parallel
BFS and keep track of the number of completed rounds. If more than O(n*?logn) rounds are
needed before completing, return and continue with the algorithm. Otherwise, stop the algorithm.
Important to note is that this parallel BE'S uses only a single root vertex.

To avoid reinventing the wheel, existing code has been used for the parallel BFS, and the li-
cense for this has been included in the repository. The code has been simplified using Thrust. A
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major advantage of this existing code is that it refers to the paper by Merrill et al. [10], and thus it
already uses the CSR graph representation. It differs slightly from the format described above, as
the row offsets have been split into two arrays, namely edgesOffset and edgesSize. The first is for
the actual row offsets and the second, given an element edgesSize[i] where 0 < i < |edgeOffset],
is the difference edgesOffset[i + 1] — edgesOffset[i]. Note that these arrays contain one less
element than the regular row offsets array; see the arrays on the right in Figure 5 for an example.

The existing parallel BFS implementation uses four different CUDA kernels, namely nextLayer(. . .),
countDegrees(...), scanDegrees(...), and assignVerticesNextQueue(...). All of these ker-
nels have two things in common. The first is the way the thread ID is calculated, they only use
one dimension, and it is calculated using thid = blockIdx.x * blockDim.x + threadIdx.x. The
second is that the thread ID is compared to a given size, in this case always the current frontier
size. More specifically, they check if thid < queueSize, described later. This prevents overflow, as
only threads with thread IDs numbered 0 to queueSize — 1 are needed. In the end, three of the
four kernels have been used, as scanDegrees(...) has been replaced with Thrust API, which we
discuss later.

There are several arrays that are used by the four kernels, all of them use integer values. These are
the following:

- d_adjacencyList: column indices of the CSR representation.
- d_edgesOffset: first part of the row offsets of the CSR representation.
- d_edgesSize: second part of the row offsets of the CSR representation.

- d_distance: given a certain vertex, the distance from the root vertex. All values are first
initialized with INT_MAX, except the root vertex, which has 0.

- d_parent: given a certain vertex, the adjacent vertex that first reached it. All values are first
initialized with INT_MAX, except the root vertex, which has 0.

- d_currentQueue: the frontier of the current level.
- d_nextQueue: the frontier of the next level.

- d_degrees: the out-degree of a given vertex in the current frontier.

nextLayer(...) is used to update d_distance and d_parent. It takes d_adjacencyList, d_edgesOffset,
d_edgesSize, d_distance, d_parent, and d_currentQueue as input. It also takes level and
queueSize as input, where queueSize is the size of the frontier. Given a vertex u in the cur-

rent frontier, all vertices that are directly reached by u are iterated over. Given such a vertex v,
level + 1 < d_distance[v] is checked. In other words, it checks whether v has been reached by

a vertex, and if so, whether v currently has a longer path to the root than through w. If true, it
changes the values in d_distance[v] and d_parent|v] to correspond with u. The value i is assigned

to d_parent|v], where i is used as a for loop iterator with respect to the row offsets.
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countDegrees(...) is used to find the out-degree of a certain vertex v. Here, the out-degree
of v is restricted to vertices that have v set as their parent in d_parent. It takes d_adjacencyList,
d_edgesOffset, d_edgesSize, d_parent, d_currentQueue, and d_degrees as input. It also takes
queueSize as input. Consider vertex v and a vertex v reached by u as described in nextLayer(. ..).
Given v, it checks whether d_parent|v] is equal to i corresponding to u. In other words, it checks if
v actually has u as its parent in d_parent. It also checks if u # v in order to prevent an infinite cycle.
If both are true, a value degree is incremented by one. In the end, d_degrees|thid] is assigned
degree, corresponding to the current frontier.

As mentioned, scanDegrees(...) has not been used, even though it is part of the original
code. The reason for this is the use of an array called incrDegrees. As scanDegrees(...) is a
CUDA kernel, it has a maximum block size of 1024. To account for multiple blocks, incrDegrees
had been used to keep track of the sum of degrees for a single block. The problem lies in the
implementation of this array, as it is modified on both the host and the device, which did not convert
well when changed to a device_vector. Thus, incrDegrees was removed and scanDegrees(. . .)
was exchanged for a Thrust algorithm, namely thrust: :inclusive_scan. The latter is feasible, as
scanDegrees (.. .) basically performs an inclusive scan on d_degrees.

Before calling assignVerticesNextQueue(...), nextQueueSize is changed to the last value
in d_degrees, which is equal to the sum of all out-degrees. Afterwards, the kernel does what
its name implies, it assigns vertices to d_nextQueue. It takes d_adjacencyList, d_edgesOffset,
d_edgesSize, d_parent, d_currentQueue, d nextQueue, and d_degrees as input. It also takes
queueSize and nextQueueSize as input. Again, consider vertex u and v as described above. Given
v, it checks whether d_parent|v] == i and v # u, similar to the check from countDegrees(...).
If both are true, v is inserted into the corresponding position of d_nextQueue. This position is
calculated using the sum of d_degrees[thid — 1] and a counter variable. Here, d_degrees[thid — 1]
is the total number of out-degrees up to u. The counter goes up to the value in d_degrees|thid],
so in the end, all the values between d_degrees[thid-1| and d_degrees[thid] are included in
d nextQueue in their corresponding positions.

As a whole, the bounded parallel BFS runs in the following order. First, it checks level, if
it has reached a value of maxLevel, the BFS is aborted. Afterwards, nextLayer(...) and
countDegrees(...) are called, in that order. Then, thrust::inclusive_scan is used as de-
scribed above, after which nextQueueSize is set. After this, assignVerticesNextQueue(...) is
run. Lastly, the d_currentQueue and d nextQueue are swapped, including their size variables, and
level is incremented by one.

4.2.2 Modified parallel BFS

As discussed, Fineman’s algorithm uses a modified parallel BFS to find, for example, Rj. To
implement this, we build upon the parallel BFS code described above and modify it as needed.
Two main features have been added, namely the possibility of using multiple starting pivot ver-
tices and the ID tag list. There are four CUDA kernels that are called from the host, these are
modCountDegrees(...), modAssignVNQ(...), numberPivotID(...), and assignPivotID(...).
Some of the kernels also use kernels themselves; these are device kernels and cannot be called
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from the host, and we discuss these later on. Similarly to bounded parallel BFS, all kernels
called from the host calculate thid in the same one-dimensional way. The only difference is that
numberPivotID(...) and assignPivotID(...) compare thid with nextQueueSize instead of
queueSize.

There is a difference in the arrays used compared to bounded parallel BFS. Note that d_distance
and d_parent are no longer used. The following arrays are used:

- d_adjacencyList: column indices of the CSR representation.

- d_edgesOffset: first part of the row offsets of the CSR representation.

- d_edgesSize: second part of the row offsets of the CSR representation.

- d_currentQueue: the frontier of the current level.

- d_nextQueue: the frontier of the next level.

- d_degrees: the out-degree of a given vertex in the current frontier.

- d_IDTagList: the ID tag list as described in Section 4.1.

- d_queueID: given a vertex v in the current frontier, its corresponding pivot vertex ID tag.

- d_nextQueuelD: given a vertex v in the next frontier, its corresponding pivot vertex ID tag.

- d_modDistance: given a certain vertex, the distance from a corresponding pivot in the ID tag
list.

- d_IDTagCount: given a certain vertex, the number of pivot IDs that have reached it.
- d_nextQueueIDListNum: used in accordance with d_nextQueue for ID tag list assignment.

modCountDegrees(...) is, as the name implies, a modified version of countDegrees(...). This
kernel closer matches the parallelization as described in Section 4.1. The difference lies in the
absence of d_distance and d_parent. The reason for this is the inclusion of multiple pivot vertices.
Consider u and v as described before. To still check if a vertex has been visited before by some pivot
ID, d_parent|v] == i is replaced with a device function called isVisitedByPivotID(...). This
kernel searches the ID tag list of v for the pivot ID of w. If it is not found, the kernel returns false,
which means that the vertex has not been visited before by the corresponding pivot ID. Moreover,
interesting to note is the absence of nextLayer(...). The reason for this is that duplicates are
removed later on, as described in the parallelization. d_modDistance is modified later on, as opposed
to d_distance in the normal parallel BFS implementation.

Similarly to bounded parallel BFS, thrust: :inclusive_scan is used to perform a prefix sum on the
out-degrees of the current frontier, and nextQueueSize is also calculated the same as above. After
this, modAssignVNQ(. . .) is called, which is a modified version of assignVerticesNextQueue(...).
The difference between the two is the inclusion of the ID tag list and the exclusion of d_parent.
As such, the kernel also takes d_IDTagList, d_queueID, and d_nextQueueID as input on top of the
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arrays used in assignVerticesNextQueue(...), except d_parent of course. Moreover, IDTagSize
is given, which is the length of the ID tag list for a single vertex and is equal to log n. Simi-
larly to modCountDegrees(...), only v # wu is checked, given v and v as described earlier. If
true, isVisitedByPivotID(...) is used to check whether v has already been reached by the
corresponding pivot ID of w. If it has been reached, v is not added to the next frontier. Other-
wise, v is added to the next frontier and the corresponding pivot ID of u is added to d_nextQueuelID.

numberPivotID(. . .) is used to count the number of pivot IDs per vertex and to assign an index in
d_IDTaglist to each vertex in the next frontier. Moreover, by counting, it checks whether a vertex
has been visited by more than log n pivots. It takes d_nextQueue, d_IDTaglList, d_IDTagCount,
and d nextQueueIDListNum as input. It also takes nextQueueSize, IDTagSize, and an array of
length 1 called IDTagListOverflow as input. This last array contains a single boolean. First of all,
the kernel checks whether vertex v = d_nextQueue [thid] is the first occurrence in d_nextQueue.
It does this by checking if either thid == 0 or d_nextQueue[thid] # d_nextQueue[thid-1]. If
either is the case, the next log n places in d_nextQueue are checked for occurrences of v. For each
occurrence, d_IDTagCount|v] is incremented by one, as each v has a distinct ID tag because of
the duplication removal. Moreover, d nextQueueIDListNum is modified for each v to contain the
corresponding position in d_IDTagList for v. If d_IDTagCount|v] exceeds IDTagSize, it means that
a vertex has been visited by too many pivots, the kernel is then aborted and IDTagListOverflow
is modified accordingly.

assignPivotID(...) is used to update d_IDTagList and d_modDistance. For each vertex u in the
next frontier, the corresponding pivot ID is taken. With help of d_nextQueueIDListNum, this pivot
ID is inserted in the corresponding position in the ID tag list. The position in the ID tag list is
calculated using IDTagloc = u * IDTagSize * d_nextQueueIDListNum[thid]. Moreover, the same
position is used to modify d_modDistance. This array is parallel to d_IDTagList, for each vertex v
in the ID tag list, d_ modDistance[v] contains the distance of v from each pivot ID that has visited v.

There are two additional matters that are handled in between the calls of modAssignVNQ(...)
and assignPivotID(...). First, d nextQueue and d_nextQueueID are sorted by vertex first and
pivot ID second. To aid in this, thrust: :zip_iterator objects and tuples were used. Furthermore,
thrust::stable_sort was used for sorting itself, it uses the custom function sort_vertex ID()
as a comparison operator. sort_vertex_ID() takes tuples a and b as input, where a is as-
sumed to be d_nextQueue and b to be d_nextQueueID. It sorts by a first and b second. Sec-
ondly, duplication removal is performed on d_nextQueue and d_nextQueueID. This is done using
thrust: :unique, which takes the zip iterators used in the sorting and performs a compaction pass.
Given ¢ > 0 > |d_nextQueue|, this removes the tuple in position i if it is equal to the tuple in
position ¢ — 1. An iterator to the last element is returned by thrust::unique, which is used to
check if any duplicates have been removed. If so, all values after the new bound in d_nextQueue
and d_nextQueuelD are reset, as the old values are not explicitly removed by thrust: :unique.
Moreover, the value of nextQueueSize is changed accordingly if duplicates were removed.

The following is the order of execution for one round of BFS. First, it checks whether the

BFS is bounded and, if it is, whether level has surpassed distance. Here, level represents
the maximum search distance dD. If this check returns true, the BFS is aborted. Otherwise,
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modCountDegrees(...) is run, after which the inclusive scan is performed on d_degrees and
nextQueueSize is set. nextQueueSize is compared to the maximal queue size. If it is larger,
that means that a vertex has been visited more than IDTagSize times; IDTagListOverflow is
set and the BFS is aborted. If the check is satisfied, modAssignVNQ(...) is run. d_nextQueue
and d_nextQueuelID are sorted and duplication removal is performed on both, as described above.
Then, numberPivotID is run, if it detects ID tag list overflow, the BFS is aborted. Otherwise,
assignPivotID(...) is run, after which level is incremented by one. Lastly, d_currentQueue
and d_nextQueue are swapped, as well as d_queueID and d nextQueueID.

Two matters are addressed when the modified BFS is finalized. The first matter is related to
IDTaglistOverflow. The implementation returns the boolean in this array. When this value is
false, the second matter does not need to be handled. The second is related to what is described
as "sorting the arrays of all vertices reached by the searches® in Section 4.1. To do this, an array
called d_IDTagVertices of length log n is used. For each vertex v in the ID tag list, the lowest 1D
tag is inserted into d_IDTagVertices|v]

During the implementation process, some ambiguities had to be handled with respect to the
description of the modified BFS. One of these is saving the frontier for each BFS round. This
implies that a non-constant amount of arrays would have to be accounted for. Instead of doing
this, one can look at the ID tag list. By scanning the list of a vertex v, all the pivots that reached
this vertex can be found. We can deduce that, given a pivot x;, we can find all the vertices it has
reached by scanning the entire ID tag list. Again, doing this also addresses the ”sorting of the
arrays of all vertices reached by the searches”.

Another ambiguity is how one would store the frontier along with the pivot IDs. It is not explicitly
said how this needs to be done. In this implementation, two individual arrays have been used, one
for the vertices and one for the corresponding pivot ID. Another way to interpret this is to have an
array of pairs or 2-tuples. Then, the array would consist of pairs (v, x;), where v is a vertex, and
x; its corresponding pivot ID. Implementing pairs can be done in two ways, the first of which is
explicitly storing pair objects. The other way is to have an array that is twice as large and stores v
in the even positions and x; in the odd positions.

There is also an ambiguity with regard to the ID tag list. The paper describes that the pivot ID is
simply appended to the tag list of the corresponding vertex. In principle, one cannot simply append
an element in this implementation. There are two ways in which this can be implemented. The
first possibility is that for each corresponding vertex v in d_nextQueue, its ID tag list is scanned to
find an empty position for the corresponding pivot ID. The second way is that these positions are
calculated beforehand, which has been done in the implementation.

Moreover, there is another oversight regarding duplication removal. As described, the values
after the new end of d_nextQueue and d_nextQueuelD need to be reset. However, the paper does
not seem to take this into account. The reason for this could be that the paper assumes that
duplication removal explicitly removes duplicate elements. In practice, this is not always the best
way to handle this task, as it can cause memory issues when duplication removal is performed on
part of the array.
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Lastly, there is an important issue regarding memory usage. With normal parallel BFS, one can
assume that the maximum number of vertices in the frontier is equal to the number of vertices in
the graph. With the modified parallel BF'S, this is not the case. The number of possible vertices
in the queue could grow to n(n — 1), which is in O(n?). The reason for this is that duplication
removal of the next frontier is only done after counting the degrees. In turn, a vertex v that has
not yet been visited by a vertex with pivot ID z; can be placed in the next frontier multiple times
by vertices with the same pivot ID z;, if these vertices are adjacent to v. In the implementation,
the maximum size of the frontier has been set at n - IDTagSize to prevent memory issues. However,
this is only a temporary solution.

4.2.3 BFS validation

We also want to see whether the BFS implementations do what they are supposed to do. To test
this, a way to validate them has also been integrated into the program. A sequential BF'S has
been included in the program, which can be run on a given graph to obtain two arrays, namely
distance and parent. These are similar to the d_distance and d_parent arrays from the normal
parallel BFS implementation and are compared to validate the results of the parallel BFS. First,
sequential BFS and parallel BFS are run on a graph with a root vertex v. If afterward d_distance
and distance contain the same values, the parallel BFS has correctly traversed the graph.

Testing the modified BFS is trickier, as it performs searches from multiple root vertices. Multiple
parent arrays are needed for this. In order to still be able to validate the modified BF'S, such arrays
can be obtained by performing a different normal parallel BFS search for each root vertex. The
result of each search is saved. After the modified BFS finishes, the array d modDistance described
above is used for comparison. For each root vertex v, the ID tag list is traversed to find all instances
of v, and the corresponding value in d_ modDistance are used to build a new distance array. When
the array has been built, it is compared to the corresponding d_distance array from the normal
parallel BFS. If all arrays match, the modified BF'S has also correctly traversed the graph.

4.2.4 Partial Fineman’s algorithm

As mentioned above, the parallelization of Fineman’s algorithm has not been completed. This refers
to the parallelization of Algorithms 3 and 4 described in Figure 3 and Figure 4. Even still, the code
that was finished is included in the repository. Like in Section 4.2.2, there were some ambiguities
with regard to the parallelization of this part of the algorithm, which we briefly discuss in this section.

One of the ambiguities was the vague definitions of Ny, and Nj. In Fineman’s paper, Ny is
described as the number of layers and Ny as the maximum number of iterations or as an upper
bound on the number of necessary iterations [5]. However, it is unclear what the exact value of
these terms would be. This is a problem, as they are essential for calculating d,;, and d,,q., from
which a search distance dD is chosen at random for the modified BF'S to be bounded by. In the
implementation, N = logs s n and N, = 2k were chosen based on our interpretation of Fineman’s
paper, but in turn the difference between d,,;, and d,,., became very small. Multiple definitions of
both terms are given [5], another possibility for Ny is ©(log, n) and one of the other possibilities
for Ny is Q(logn). Therefore, it is left open whether these are the correct values for N; and Ny.
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Another problem was the difference between forward graph searches and backward graph searches,
for example, Rj and R . In our case, performing the forward search using the modified BF'S speaks
for itself, as no changes need to be made to the graph. However, for backward searches, the graph
needs to be transposed. The program uses CSR representation, and to transpose the graph, it needs
to be built again. As mentioned above, rebuilding the graph is something that needs to be avoided,
so transposing the graph should be done sparingly. A solution is to transpose the graph once during
initialization, and to give it as input alongside the normal graph to the parallel implementation of
Algorithm 4.

5 Experiments

In this section, an experiment is performed on the implementations given above. First, a description
of what the experiment entails is given. Details are given on the setup of the experiment. Afterwards,
we discuss the results and try to interpret them.

5.1 Description of the experiment

We now discuss an evaluation of the normal parallel BFS and the modified parallel BFS. As
mentioned, Fineman’s algorithm is not finished, so this part of the implementation is not used. For
the experiment, we want to measure the run-time of the two BFS versions on different graphs and
setups. One main difference is that, instead of starting with a single root vertex, both algorithms
need to search from multiple root vertices. This is similar to the use case of the modified BFS,
which is designed to perform multiple searches at once. Moreover, for reliable results, searches are
performed for 100 epochs with a randomized set of root vertices.

Name Description n (10%) | m (10°) | ID Tag Size
wikipedia-2007026 Wikipedia page links 3.5 45.0 16
coPapersCiteseer Citation networks 0.4 32.0 13
asia_osm Asian road network 11.9 25.4 17
germany_osm German road network 11.5 24.7 17
eu-2005 Crawl of the .eu domain 0.8 19.2 14
wiki-Talk Wikipedia talk pages 2.3 5.0 15
web-BerkStan Berkeley-Stanford web graph 0.6 7.6 14
333SP 2D Tri-element mesh of car 3.7 22.2 16

Table 1: Matrices used for the experiment, retrieved from the SuiteSparse Matrix Collection [1].

In the implementation, the experiment is performed as follows. First, a set of start vertices is gener-
ated randomly. The number of starting vertices is equal to IDTagSize defined in Section 4.2.2, the
reason for this number is to keep implementation changes to a minimum. Then, the normal parallel
BF'S is executed once for each starting vertex, taking as input the said starting vertex. The total
time of this BFS is calculated by adding the time taken for each execution. Afterwards, the modified
parallel BF'S takes the entire set of starting vertices as input and is executed once. This process is re-
peated a certain number of times, as dictated by the number of epochs. In our case, this is 100 times.
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For the graphs used, see Table 1. These were taken from the SuiteSparse Matrix Collection
of the University of Florida [1]. This collection provides .mtx files, which were used as input for the
experiment. These are adjacency matrices that can be converted into a CSR representation when
the program is initialized. Some of these graphs have also been used by Merrill et al. [10] to test
parallel BFS traversal, namely wikipedia-2007026 and coPapersCiteseer.

The machine that has been used for this experiment is from the LIACS facility REL Compute.
They provide several machines for specific use cases, which also includes machines for GPU-heavy
usage. The machine we used for the experiment has the following specifications:

- CPU: 24 Intel Xeon Silver 4214 cores, clock speed 2.20GHz, 48 threads

- GPU: 2 NVIDIA GeForce RTX3090, 24GB memory (only one used in the experiment)
- RAM: 256GB

- O8S: Rocky Linux 9.6 (Blue Onyx)

- CUDA Version 12.9

5.2 Results

As mentioned above, the graphs of Table 1 have been used for the experiment. Both normal parallel
BFS and modified parallel BFS were run 100 times on the graphs. The average runtime was deduced
from these 100 executions and the speedup was calculated. See Table 2 for the results.

. Average runtime

Name ID Tag Size Par. BFS | Aug. Par. BFS Speedup
wikipedia-2007026 16 1412ms 354ms 3.98
coPapersCiteseer 13 49ms 34ms 1.44
asia_osm 17 204ms 52ms 3.92
germany_osm 17 42ms 9ms 4.66
eu-2005 14 166ms 161ms 1.03
wiki-Talk 15 102ms 361ms 0.28
web-BerkStan 14 1028ms 193ms 5.32
333SP 16 14900ms 3295ms 4.52

Table 2: Results of the experiment.

As can be seen, the modified parallel BFS wins seven out of eight times. It appears that multiple-
source BFS traversal for the modified BFS is faster compared to the regular version. In five out of
seven cases, the modified version is at least 3.9 times faster. However, there is one case where the
normal parallel BFS beats the modified version by quite some margin, namely on the wiki-Talk
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graph. This is interesting, as this is the graph with the least number of edges that was tested. It is
possible that the structure of the graph plays a role in this, but we do not have enough information
to be able to draw a conclusion from that.

Although we know too little about the properties of the graphs, there are some interesting differences
to be noted. For example, the runtime of asia osm and germany osm differ by some margin, but
are of comparable size with respect to the number of vertices and edges. Furthermore, despite
having the largest number of vertices, the runtimes of these graphs are quite short compared to
other graphs of smaller size. For example, web-BerkStan needs significantly more time despite
having far fewer vertices and edges. There is also a graph with a significant difference in runtime
compared to the rest, namely 333SP. This is also surprising, as this is not per se the largest graph
that has been used for evaluation. Compared to wikipedia-2007026, which has a similar number
of vertices, the traversal takes a lot longer. All in all, there might be too little detail to see why the
runtimes differ like they do, but it is clear that the modified BFS wins when it comes to searches
from multiple vertices.

6 Conclusions and Further Research

At the beginning of the thesis, we asked how well Fineman’s parallel algorithm of digraph reach-
ability can be implemented on the GPU and how well the algorithm’s graph search performs in
practice. The second question refers to the modified BFS described in Section 4.2.2. Regarding the
first question, it was not always clear how to implement parts of the algorithm. There were some
ambiguities with respect to the parallelization of the algorithm. We have made several choices to
attempt to achieve the best result regarding the implementation.

To answer the second question, an experiment was performed on the two implementations of
parallel BFS. All in all, the results were clear. In almost all cases, the modified parallel BFS
performs better than multiple runs of the regular parallel BFS. However, there does seem to be one
case where the modified version is outperformed by the regular version. The reasons for this could
lie in the properties of the graph, but it remains to be speculated.

There is potential future work with regard to this thesis. First of all, perhaps the rest of the
implementation of Fineman’s algorithm could be finished. Some improvements could also be made
with regard to the implementation in its current form, for instance, with memory usage. It would
be interesting to see how the full algorithm would perform in practice. In addition, practical
implementations of the algorithms mentioned in Section 3 could be made. Specifically, these are
the algorithms in the papers by Jambulapati et al. [9] and Cao et al. [2].
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