
Master Computer Science

AI-Driven Synthetic Route Length Prediction –
Benchmarking Graph Neural Networks Against Traditional
Machine Learning in de novo Drug Discovery

Name: Pengxu Zheng
Student ID: s2917211
Date: 06/04/2025
Specialisation: Advanced Computing & Systems
1st supervisor:
2nd supervisor:

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

 
  

Dr. Preuss, M. 
MSc. Hassen, A.K.



Abstract

Abstract

Computer-Aided Synthesis Planning (CASP) has revolutionized retrosynthetic analysis through computa-
tional approaches, yet challenges remain in high computation cost and synthetic feasibility. This study in-
vestigates machine learning for predicting synthetic route lengths directly from molecular structures, circum-
venting time-intensive CASP search methods. We implement graph neural networks (GNN) and XGBoost
models trained on 1k, 10k, and 50k bioactive molecules from the CASPYrus dataset, with comprehensive
evaluation on 200k ChEMBL test molecules. Our results demonstrate that GNN-based multiclass classifi-
cation achieves 62.8% accuracy and 0.625 F1 Score in generalizability testing, significantly outperforming
regression approaches (best R²=0.29). The 50k GNN model shows particular effectiveness in predicting
shorter routes (1−4 steps) that are most relevant to chemists, with hyperparameter optimization confirming
parameter robustness. While XGBoost exhibited overfitting tendencies, GNNs proved superior at capturing
structural relationships in molecular graphs. This work establishes the feasibility of machine learning for
synthetic complexity prediction, providing a foundation for future applications in de novo drug design and
synthetic route optimization.

KEYWORDS: computer-aided synthetic planning, retrosynthesis, GNN, cheminformatics, high-performance
computing, synthetic route scoring, de novo drug discovery
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Chapter 1

Introduction

1.1 Subject overview

Retrosynthesis has long been the core of the de novo drug discovery process [51]. With each new type of drug
developed, hundreds of millions of lives can be saved. Thus, empowering such processes with new technologies
to push the frontier of that subject matter has significant value in unfolding. With computer-aided synthetic
planning (CASP), high-performance computing, and predictive modeling based on machine learning with
an available chemical knowledge base, retrosynthesis as a traditional chemical process is nowadays being
revolutionized. Corey and Wipke envisioned such a bright future of computer-assisted synthetic planning as
early as 1969 [10], followed by a 50-year-long endless discovery. From the earliest vacuum tube computers
that solved hard-coded chemical reactions to modern scientists utilizing deep neural networks and symbolic
AI to plan, evaluate, and optimize synthetic routes, CASP as an active research area has achieved remarkable
progress [52, 59, 36]. Yet, with reaction templates representing the collection of known chemical properties
and reactions of available chemical compounds, the computation and time cost of such calculations sometimes
still impose limitations on the use of digital synthetic plans in laboratory practices. On top of that, synthetic
routes, as computed by mainstream CASP software, are not always optimal, cost-effective, or environmentally
friendly. Ertl and Schuffenhauer’s seminal work in 2009 inaugurated the field of synthetic accessibility scoring
by establishing a robust quantitative framework for evaluating the synthetic feasibility of drug-like molecules,
thereby setting the stage for subsequent advances in synthetic accessibility scoring [14]. In recent years,
researchers have begun to deep dive into the feasibility and scoring of synthetic routes solved by CASP
software, such as Retrosynthetic accessibility score (RAscore) by Thakkar et al. in 2021 and the synthetic
route scoring framework in the most recent release of the CASP tool AiZynthFinder 4.0 by Saigiridharan
et al. in 2024 [59, 48]. Following such achievements, this project aims to explore a different approach to
speed up the de novo drug discovery process. By estimating synthetic route lengths using AI on molecular
structures of target molecules, we discover the possibility of more efficient synthetic planning and synthetic
routes scoring that offers feasible chemical insights in laboratory settings, which further enables use cases
for CASP-powered chemical laboratory practices.

1.2 Experiment overview

To explore the feasibility of predicting synthetical properties using machine learning on only chemical struc-
tures, the experiment is designed to carry out large-scale data generation, processing, model training, and
evaluation in a modern, academic high-performance supercomputing cluster [34]. As there were limited ref-

1



Experiment overview

erence materials on such novel endeavors, it is yet not clear which specific machine learning paradigms tend
to achieve the most convincing results. Considering the scope of this master’s thesis project, we decided
to structure the experiments on supervised learning methods of multiclass classification and regression, as
illustrated in detail. Two machine learning algorithms, Graph Neural Networks (GNN) and eXtreme Gra-
dient Boosting (XGBoost) are used to train machine learning models. Data sets containing synthetic route
properties, including route lengths, are generated by open-source CASP software AiZynthFinder from a
curated bioactive molecular data set jointly developed by Amsterdam University Medical Center and Leiden
University [18, 6]. Size partitions of the training data are applied to explore the scaling effect on the models’
performance metrics 1. Generalizability evaluations are carried out on all machine learning models trained
on the aforementioned data sets. Finally, hyperparameter optimization experiments are performed to verify
the robustness of our chosen and default training hyperparameters.

1We’ve adopted different training and evaluation objectives for the multiclass classification and regression experiments as
detailed in Chapter 4.4.
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Chapter 2

Backgrounds and related work

2.1 Machine Learning

Machine learning, as first introduced as a terminology by Arthur Lee Samuel in 1959 [49], is now an active
field in artificial intelligence that focuses on developing systems capable of approximating patterns from
input and generate anticipatory outcomes. Similar to a mathematical function y⃗ = f(x⃗), the foundation
of machine learning revolves around the functional relatiionship between an independent variable x⃗ and a
dependent variable y⃗. In other words, a dependent variable y⃗’s value can be approximated with a trained
machine learning model based on the value of the independent variable x⃗. With such capability of function
approximation, machine learning has now become a key source of automation in many research or industrial
scenarios where repetitive statistical estimation is needed. From image identification to natural language
processing, from self-driving vehicles to predicting the outcome of chemical synthesis, machine learning finds
a broad spectrum of use cases.

2.2 Machine learning paradigms

Consists of many paradigms, machine learning tasks can be carried out via various methods characterizing
each of their unique structures and objectives. Machine learning paradigms are the foundation of modern
data analysis and predictive modeling, where each paradigm and the respective algorithm exhibit distinct
properties, enabling them target different scenarios and use cases.

2.2.1 Supervised learning

A fundamental method known as "supervised learning" entails training an algorithm on a labeled dataset,
associating each training example with an output label. After training, the model learns a mapping x⃗ 7→ y⃗

from inputs to outputs based on its learning objective function and generalize this mapping to new, unseen
data. Such paradigm of labeling-train-predict enables supervised learning to replace repetitive manual labor
in numerous unique scenarios, from financial risk estimation to medical imaging scans [57, 1].

3



Machine learning paradigms

Classification vs. Regression

Classification and regression fall into the category of supervised learning. Classification involves the pre-
diction of input data into pre-defined groups or classes. For example, the widely used image recognition
technology is capable of identifying cats and dogs from a collection of unordered pictures [33]. Similarly,
email spam filters can prevent messages with a high likelihood of being malicious from entering our inbox [20].

Regression focuses on predicting continuous numerical outcomes from input data rather than classifying
observations into discrete categories. In a regression task, the model learns a mapping that estimates the
value of a continuous target variable based on input features, where the target variable can take any value
within a range. For instance, in financial forecasting, a common regression task is the prediction of daily
stock returns. Because the target variable of financial return is inherently continuous, regression is the nat-
ural modeling framework. In this scenario, regression models utilize historical prices, trading volumes, and
various market indicators (x⃗) to forecast the continuous change in stock values for the next day (y⃗) [21].

Both methods have their unique pros and cons in a given machine learning task, which is why task
formulation at the beginning of any machine learning project should be considered first. As this project
focuses primarily on supervised learning methods, further details of task formulation and the comparison
between classification and regression methods will be discussed in detail in Chapter 4.1.

2.2.2 Unsupervised learning

Unsupervised learning is a machine learning paradigm that discovers inherent patterns in unlabeled data
through self-organization rather than predefined labels [63]. Primary examples of unsupervised learning
include clustering for intrinsic grouping and dimensionality reduction for feature simplification. Cluster-
ing methods partition data based on similarity metrics, exemplified by K-means which minimizes intra-
cluster variance through iterative centroid updates [38]. Density-based approaches like DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) overcome spherical cluster assumptions by identifying
arbitrary-shaped groups through neighborhood connectivity analysis [15]. Dimensionality reduction pre-
serves essential information while compressing features, as achieved by Principal Component Analysis (PCA)
through orthogonal transformation to linearly uncorrelated components [30].

2.2.3 Reinforcement Learning

Reinforcement learning is a machine learning paradigm in which an agent learns optimal behavior through
interactions with an environment by taking actions, observing the resulting states, and receiving rewards
or penalties based on chosen actions. One famous example is the Monte Carlo Tree Search (MCTS). The
theoretical foundations of MCTS trace their origins to the Upper Confidence Bounds applied to Trees (UCT)
algorithm formalized by Kocsis and Szepesvári in 2006 [32]. Further developments emerged in game theory,
particularly Coulom’s 2006 pioneering application of MCTS to the game Go, demonstrating its effectiveness
in combinatorial state spaces [12]. MCTS gained more formality in 2012 through Browne et al. in their com-
prehensive survey, which unified variant implementations and established parameter conventions [5]. David
Silver et al. further refined MCTS’s real-time planning capabilities with the power of deep neural networks
with the well-acknowledged AlphaGo in 2016 [54]. Combined with random sampling, it is an ideal choice
for automated planning where traditional machine learning algorithms are computationally too expensive to
be carried out, allowing the agent to excel in coordinating complicated actions in unexplored environments.
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Algorithm 1 demonstrates an abstract workflow of the MCTS algorithm [5]:

Algorithm 1 Monte Carlo Tree Search (MCTS) [5]

Require: Initial state s0, maximum iterations K
Ensure: Optimal action a∗

1: Create root node v0 with state s0
2: for k = 1 to K do
3: v ← v0 ▷ Start from root
4: Selection:
5: while v is not leaf node do
6: Select child v′ using:

a∗ = arg max
a∈A(v)

[
Q(v, a)

N(v, a)
+ C

√
lnN(v)

N(v, a)

]

7: v ← v′

8: end while
9: Expansion:

10: if v not fully expanded then
11: Expand new node vnew with action anew
12: v ← vnew
13: end if
14: Simulation:
15: Perform random rollout to terminal state, get reward ∆
16: Backpropagation:
17: while v ̸= null do
18: Update visit count: N(v)← N(v) + 1
19: Update cumulative reward: Q(v)← Q(v) + ∆
20: v ← parent(v)
21: end while
22: end for
23: return a∗ = argmaxa∈A(v0) N(v0, a)

The Upper Confidence Bound (UCB) formula

a∗ = arg max
a∈A(v)

 Q(v, a)

N(v, a)︸ ︷︷ ︸
Exploitation

+C

√
lnN(v)

N(v, a)︸ ︷︷ ︸
Exploration

 (2.1)

balances exploitation of known rewards Q(v, a), from action a at node v, with exploration C
√

lnN(v)
N(v,a) ,

where N(v, a) denotes action a’s selections and N(v) the parent node’s total visits. The exploration constant
C regulates this balance (normally set to

√
2) ), while the natural logarithm (ln) ensures exploration decays

appropriately as N(v) increases. The action set A(v) defines available choices at node v that maximizes the
total rewards [12].

Noticeably, the application of reinforcement learning has been extended by researchers to the realm
of retrosynthetic analysis, as introduced in Chapter 2.6. The MCTS algorithm also plays a pivotal role
in the retrosynthetic design package AiZynthFinder as the main searching algorithm [18], which will be
introduced in Chapter 2.6.2.
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2.2.4 Deep Learning

Deep learning is a specific paradigm of machine learning based on the significant usage of multi-layered
neural networks to analyze complex patterns difficult to be picked up by basic machine learning models. In
tasks like computer vision, natural language processing, and speech recognition, this development enables
machines to reach high performance levels matching or even surpassing humans [54].

Multi-layer perceptron (MLP) is a fundamental building block of artificial neural networks, first in-
troduced by Frank Rosenblatt in 1958 [46]. Artificial neural networks function as interconnected artificial
neurons, transforming input data into multiple layers of abstraction through intermediate activation func-
tions. Once the network completes the feature abstraction, it back-propagates the model weights to reflect
the significance of the features in relation to the objective. Based on this mechanism, deep learning removes
the need for manual feature engineering by automatically abstracting features from raw data through stacked
layers of networks.

2.3 Machine learning algorithms

In this project, two algorithms were taken into account for comparison studies, which are Graph Neural
Network (GNN) [50] and eXtreme Gradient Boosting (XGBoost) [9].

2.3.1 Graph Neural Networks

In December 2008, Franco Scarselli et al. proposed a type of artificial neural network named Graph Neural
Network (GNN) [50]. The GNN models are capable of carrying out deep-learning in graph-like data struc-
tures directly, either acyclic, cyclic, directed, or undirected, in scenarios such as molecular chemistry and
computer vision. In the scope of this project, we are primarily interested in GNN’s application towards de
novo drug discovery. Below is a piece of pseudocode for a general GNN framework with forward propogation.

Algorithm 2 Graph Neural Network (GNN)

1: Input: Graph G = (V,E) with node features X ∈ R|V |×d

2: Output: Updated node representations H(K) ∈ R|V |×h

3: Initialize H(0) ← X ▷ Initial node features
4: for k = 1 to K do ▷ Message passing iterations
5: for each node v ∈ V do
6: m

(k)
v ← AGGREGATE(k)

(
{H(k−1)

u : u ∈ N (v)}
)

7: H
(k)
v ← σ

(
COMBINE(k)

(
H

(k−1)
v ,m

(k)
v

)
W(k)

)
8: end for
9: end for

10: return H(K)

The input graph G = (V,E) consists of nodes V and edges E, where each node v ∈ V has an initial
feature vector stored in the matrix X ∈ R|V |×d with d denoting the feature dimension. The parameter K

controls the number of message-passing iterations, corresponding to the depth of the GNN layers. During
each iteration k, the AGGREGATE function collects transformed features from neighboring nodes N (v),
while COMBINE integrates these aggregated messages with the node’s previous state H

(k−1)
v . The learnable

weight matrix W(k) ∈ Rhin×hout transforms node representations at layer k, where hin and hout define the
input/output dimensions of the hidden states. The nonlinear activation σ (e.g., ReLU or sigmoid) enables

6
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model expressiveness. The final output H(K) ∈ R|V |×h contains refined node embeddings after K propagation
steps, suitable for downstream tasks like node classification or regression.

Chemprop

Developed and introduced by Esther Heid et al. in Chemprop: A Machine Learning Package for Chemi-
cal Property Prediction in 2023 [27] , Chemprop leverages directed message-passing neural networks (D-
MPNNs), a variation of graph neural networks (GNN). This package is extensively utilized in this project,
in which the GNN module is one of the two algorithms being experimented upon for comparison studies.

2.3.2 eXtreme Gradient Boost

Introduced in year 2016 by Tianqi Chen and Carlos Guestrin, the eXtreme Gradient Boost (XGBoost) is
an open source library to perform efficient, portable, and flexible gradient boosting in machine learning [9].
The Python version of this package is extensively used in this project to carry out comparison experiments.
The algorithm of XGBoost is as follows:

Algorithm 3 eXtreme Gradient Boost (XGBoost)

Require: Training data D = {(xi, yi)}ni=1, iterations T , learning rate η
Ensure: Boosted model FT (x)
1: Initialize model: F0(x) = argminγ

∑n
i=1 L(yi, γ)

2: for t = 1 to T do
3: Compute gradients: gi = ∂Ft−1L(yi, Ft−1(xi))
4: Compute hessians: hi = ∂2

Ft−1
L(yi, Ft−1(xi))

5: Build tree ft to minimize:

L(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft)

6: Update model: Ft(x) = Ft−1(x) + ηft(x)
7: end for

XGBoost combines gradient boosting with advanced regularization techniques [9]. The core objective
function L(t) contains two components: the loss approximation using second-order Taylor expansion:

L(t) =
∑[

gift +
1

2
hif

2
t

]
(2.2)

and the regularization term:

Ω(ft) = γT +
1

2
λ∥w∥2 (2.3)

that penalizes tree complexity through leaf count T and weights w. The gradients gi and hessians hi

enable precise updates by capturing both first and second derivatives of the loss function L. Each iteration t

adds a new tree ft scaled by learning rate η to prevent overfitting. The tree construction uses gain calculation:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ (2.4)

to determine optimal splits, where G and H represent gradient sums in left/right nodes. This combina-
tion of boosting with L1/L2 regularization and parallel tree construction enables superior performance on
structured data.
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2.4 Hyperparameter Optimization

The first literature appearance of the term hyperparameter traces back to the work by Lindley and Smith
in 1972 in their paper Bayes Estimates for the Linear Model, in which hyperparameters are defined as a
hierarchical representation where the parameters of a linear model are themselves governed by additional
parameters [35]. Hyperparameter optimization as a modern machine learning technique was first intro-
duced by James Bergstra and Yoshua Bengio in 2012 in their article Random Search for Hyper-Parameter
Optimization [3]. The concept of hyperparameter optimization (denoted as HPO from now on) aims to
provide a method to search for the best combination of hyperparameters to train machine learning models
to reach optimal performance metrics. There are two prominent paradigms of HPO, namely, grid search
and random search, as explained in detail by Matthias Feurer & Frank Hutter in 2019 in their publication
Hyperparameter Optimization [16]. In this project, HPO is utilized as a robustness evaluation of the training
hyperparameters of the machine learning models, which will be discussed later in Chapter 4.7.

2.5 High-Performance Computing

High-Performance Computing (HPC) refers to the aggregation of advanced processing resources—such as
supercomputers, clusters, and cloud-based infrastructures—to solve problems that require substantial com-
putational horsepower beyond that of conventional desktops [22]. Dated back to the year 1975 when Richard
M. Russell introduced the first supercomputer, CRAY-1 [47], scientific research has been revolutionized by
the increasinly more available and affordable computation powers. Over the decades, HPC has become
indispensable in academic research by enabling the simultaneous processing of vast datasets and complex
scientific models.

Modern HPC systems integrate innovative technologies such as cloud computing, virtualization, and
GPU-accelerated frameworks to optimize resource allocation and boost computational efficiency [41, 22].
Central to HPC is the practice of parallel computing, wherein large problems are decomposed into numer-
ous smaller subtasks that run independent of each other. A particularly common paradigm is known as
embarrassingly parallel [17]. In embarrassingly parallel computing, the overall computational task naturally
splits into independent subtasks that require minimal or no inter-task communication, thereby simplifying
algorithm design and allowing for nearly linear scalability in performance.

2.5.1 Academic Leiden Interdisciplinary Cluster Environment (ALICE)

The Academic Leiden Interdisciplinary Cluster Environment, known as ALICE for short [34], is one of these
clusters for academic researchers where a majority of the scientific computation of this project took place.
Equipped with 44 computing nodes and 68 GPUs, ALICE offers a considerable computation capability
with its powerful infrastructure – 1109 TB of storage, 17.9 TB of RAM, 1234 TFlops, and 1712 cores

(3424 threads). ALICE is CUDA-capable and Slurm-enabled [29] that allow heavy computing tasks to
be carried out in an embarrassingly parallel manner [17].

2.5.2 Simple Linux Utility for Resource Management (Slurm)

Developed by Morris A. Jette and Tim Wickberg [29], Slurm is an open-source workload manager designed
to encompass tasks for high concurrency running in HPC clusters. By using its GNU Bash command
sbatch in the format of sbatch –array=1-9000 -i my_in_%a -o myout%a my.program, the user can
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specify how many instances of the program should be spawned using the –array flag. On ALICE the
maximum limit of the size of the –array flag is set to 1000 [34].

2.6 Computer-Aided Synthesis Planning and Retrosynthesis

Chemical synthesis is a process to experimentally assemble bigger molecules using known chemical reactions
based on smaller, easy-to-obtain precursors. Retrosynthetic analysis, or retrosynthesis for short, is a process
to trace back the target molecule from a chemical synthesis back to available precursors. Traditionally, plan-
ning for chemical synthesis involves primarily chemists’ knowledge of the characteristics of the functional
groups and various reactions, as detailed by Corey and Cheng in The Logic of Chemical Synthesis back in
the year 1989 [11]. Nowadays, with the power of artificial intelligence and machine learning, the planning of
chemical synthesis has been revolutionized with a new active field of research – Computer-Aided Synthesis
Planning – denoted as CASP in short. Instead of exhausting hundreds of years of chemistry knowledge,
chemists nowadays can rely on CASP to plan an optimal synthetical route to achieve their chemical syn-
thesis objectives.

Pioneered by Corey and Wipke, the concept of Computer-Assisted Design of Complex Organic Syntheses
was first introduced in 1969 [10]. In 2018, by training a neural network to recognize chemical reactions and
later use it as the policy for MCTS, Segler, Preuss, and Waller demonstrated the feasibility of applying
reinforcement learning on retrosynthetic tasks with deep neural networks and symbolic AI. [52]. GNN-
based retrosynthetic analysis tooling has also gained popularity in recent years. In 2022, two groups of
researchers demonstrated their advances on applying GNN to retrosynthetic planning. Presented by Liu el
al, RetroGNN focuses on synthesizability1 estimation in generative drug discovery pipelines [36]. Zhao et
al. demonstrated GNN-retro, which, despite its similar name, specializes in providing better insights on cost
estimation for candidate synthetic routes in a large search space to reach the target molecule during the de
novo drug discovery process [23]. Being directly inspired by their prior work, GNN was adopted as one of
the two algorithms being studied in this project.

2.6.1 Synthetic route

A synthetic route, as explained by Corey and Cheng in 1989, is a pathway derived by the retrosynthesis
process from the precursor to be converted to the target molecule [11]. A synthesis task may have more than
one synthetic route, which necessitates synthesis planning to select the most optimal synthetic route to carry
out experiments. For chemists, the length of the synthetic route is the biggest decision factor that determines
the difficulty of a synthesis task. Other factors such as reagent toxicity and cost are also important decision
factors to determine an optimal synthetic route. Researchers in this novel field are motivated by such factors
as the synthetic route scoring system Routescore by Seifrid et al. in 2022 and synthesizability estimation
RAScore by Thakkar et al. in 2021 [53, 59].

1The ability of finding a synthetic route to a target molecule and ensuring such a molecule could be produced
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Figure 2.6.1.1: Synthetic route of (±)-Perhydrohistrionicotoxin from Corey and Cheng’s Logic of Chemical Syn-
thesis [11]

2.6.2 AiZynthFinder

AiZynthFinder is an open-source software dedicated to retrosynthetic planning [18]. As introduced by
Genheden et al. in 2020, given a target molecule, AiZynthFinder leverages MCTS to recursively search
for purchasable chemical compounds that can be used as a precursor for the retrosynthetic route being
searched on. Since its first release, AiZynthFinder has gone through several upgrades that significantly
enhanced its features and capabilities. In 2024, Saigiridharan and Hassen et al. introduced the 4.0 version
of AiZynthFinder, incorporating new policies for filter reactions, support for any one-step retrosynthesis
model and scoring framework, and additional search algorithms other than MCTS [48]. Details of some
crucial features for of AiZynthFinder will be illustrated in detail in this section.

Building blocks and Stocks

Building blocks, as indicated in AiZynthFinder, represent the group of chemical compounds that meet the
winning state of MCTS as available or purchasable, implying that those molecules could be obtained to
carry out synthesis in a laboratory. The abstracted collection of the building blocks is denoted in AiZyn-
thFinder as "Stocks". Additionally, stocks can be customized to fit specific rules, such as limiting the
amount of carbon atoms in a compound [18].

In AiZynthFinder, the authors obtained a list of purchasable chemical compounds as building blocks,
denoted as the ZINC stock that originated from the ZINC 15 – Ligand Discovery for Everyone database,
proposed by Sterling and Irwin in 2015 [56]. Compounds in the ZINC stock were converted to the SIMLES
format (introduced in Chapter 2.6.3) for better search compatibility [18].
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Reaction templates

Genheden et al. categorized retrosynthesis planning algorithms as template-based and template-free in their
publication AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning in
2020 [18]. For CASP algorithms based on templates, a reaction template is a collection of well-documented
chemical reactions that serve as the knowledge base for retrosynthetic algorithms when planning a retrosyn-
thesis, similar to the supervised learning approach introduced in Chapter 2.2.1. For template-free algorithms,
the "knowledge base" is replaced with another machine learning model, usually Transformer models [61] that
excel at pattern approximation in large amounts of data, which serves as the search policy. Examples in the
latter category include a self-correcting transformer neural network for retrosynthetic prediction presented
by Zheng et al. in 2019 and the augmented transformer by Tetko et al. in 2020 [65, 58].

AiZynthFinder implements a hybrid approach consisting of template-based strategies with Monte Carlo
Tree Search (MCTS) guided by machine learning. The AiZynthFinder flavor of the MCTS consists of the
following structures: root node denoting the target molecule at initialization of the search, leaf nodes rep-
resenting available, purchasable compounds or unexplored branches that need further expansion, and edges
represent applied reaction templates [18]. The AiZynthFinder flavor of the MCTS framework operates
through four key phases: 2

1. Selection: The algorithm traverses the synthetic tree from the root (target molecule) to the leaf
nodes using the Upper Confidence Bound (UCB) scores outlined in Equation 2.1. The balance of UCB
weighs the exploration of new routes against the exploitation of high-probability routes [5].

2. Expansion: At chemically viable leaf nodes, which are neither terminal nodes nor purchasable com-
pounds, a multilayer perceptron neural network (MLP) trained on USPTO reaction data [18, 37]
ranks the applicable reaction templates by predicted applicability (Ptemplate ∈ [0, 1]). The upper k (k
= 50 usually) templates generate precursor nodes through simulated retrosynthetic disconnections.

3. Simulation: Recursive roll-out continues until all precursors reach purchasable compounds, verified
by the ZINC stock filters described in Chapter 2.6.2, or the maximum search depth (dmax = 9 in our
case, as illustrated in Table 2.6.2.1) is reached [18]. Terminal states receive scores based on synthetic
accessibility metrics.

4. Backpropagation: Pathway evaluation scores propagate backward to update route metrics based on
precursor availability and route lengths [18].

AiZynthFinder parameters

AiZynthFinder has many parameters to adjust for to produce ideal retrosynthetic analysis. The table
below shows the parameters chosen for the data generation process for this experiment, as explained in
detail in Chapter 4.3. The description of the parameters is obtained from the official documentation of
AiZynthFinder [18].

2According to the algorithmic workflow described in the documentation of AiZynthFinder by Genheden et al. [18].
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Parameter Value Description
C 1.4 Balance factor of

exploitation and exploration
in MCTS

Cutoff cumulative 0.995 Accumulative probability of
the suggested templates is
capped at

Cutoff number 50 Maximum number of
templates returned from the
expansion policy

Max transforms 9 Maximum depth
of the search tree

Default prior 0.5 Prior that is used if
policy-provided priors
are not used

Use prior True If True, priors from the policy
are used instead of the
default_prior

Return first True If True, the tree search
will be terminated as soon
as one solution is found

Iteration limit 1000 The maximum number of
iterations for the tree search

Time limit 900 The maximum number of
seconds to complete the
tree search

Exclude target
from stock True If True, the target in stock

will be broken down
Template column retro_template The column in the template

file that contains the
templates

Filter cutoff 0.05 The cut-off for the
quick-filter policy

Prune cycles in
search True If True, prevents the MCTS

from creating cycles by
recreating previously seen
molecules when it is expanded

Additive expansion False Expand routes additively
Search algorithm mcts Search algorithm for

AiZynthFinder
Post processing min_routes: 5,

max_routes: 25,
all_routes: False,

Table 2.6.2.1: Parameters of AiZynthFinder being applied during this project for training data generation

2.6.3 Simplified Molecular-Input Line-Entry System (SMILES)

Introduced by David Weininger in 1988, the SMILES notation has paved the way for modern chemical
information processing in CASP. Designed according to molecular graph theory, SMILES is capable of
abstracting complex chemical structures into machine-compatible strings with minimal lexical effort [62].
By specifying and standardizing chemical notations for atoms, bonds, cyclic and disconnected structures,
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and aromaticity, the SMILES notations excel at denoting and distinguishing unique chemical properties of
different molecules. For example, the molecule ethanol ’s molecular formula is CH3CH2OH. In SMILES
notation, such a molecular formula is denoted as "CCO" that preserves the fundamental atoms and functional
groups that consistitute the molecule and omits lengthy C-H and O-H bonds in the expression.

2.6.4 Data conversion and encoding

In the fields of machine learning and data science, the first step in data preparation is always to convert
raw data into compatible vectors that models can process and perform actions on. In this project, a more
specific use case for such a vectorization process is to convert the SMILES strings to vectors that repre-
sent certain molecular and chemical properties. In general, the process works as follows: first, a molecular
fingerprint is chosen based on the availability and reliability of the conversion so that the converted vectors
are model-compatible; next, based on molecular properties taken into account by the molecular fingerprint,
the SMILES strings are converted into machine-readable vectors. Finally, the converted features encoded
by the molecular fingerprints are sent as inputs to the machine learning models3.

In this project, it is worth mentioning that some specific molecular fingerprints were attempted or con-
sidered during the experimentation phase. In the beginning, the molecular fingerprint of Molecular ACCess

System (MACCS) [44], as a part of the CASP library RDKit, was attempted to encode the molecules. It
was later discovered that this molecular fingerprint lacks expressibility in a machine learning task due to its
limited ability4 to capture only certain chemical characteristics but not the whole molecular structure. A
second attempt with a different molecular fingerprint called Extended Connectivity Fingerprints [45], or
ECFP in short, succeeded. Introduced by David Rogers and Mathew Hahn in 2010, the ECFP molecular
fingerprints specialize in identifying circular atomic environments and encoding them with variable finger-
print lengths that offer a wide range of flexibility and compatibility [45]. On the other hand, due to its high
flexibility in fingerprint lengths, it sometimes incurs a rather high computational cost as a trade-off. Below
is a picture illustrating the workflow of creating an ECFP molecular fingerprint5 [45]:

Figure 2.6.4.1: Illustration of the fingerprint creation process in ECFP for benzoic acid amide by Rogers & Hahn

3For Chemprop GNN models, the molecular fingerprint conversion step is not needed due to its message-passing capability
on the molecular graphs [27].

4Only ECFP is compatible with the Python package of XGBoost to encode the SMILES strings. For the Chemprop
GNN package encoding is not needed, as explained later in Chapter 6.2.1.

5In this project, we adopted the 2,048-bit encoding and 3 iterations of the ECFP encoding to process SMILES strings.

13



Related Work on Synthesizability Scoring

2.7 Related Work on Synthesizability Scoring

Ertl and Schuffenhauer gave the definition of synthetic accessibility score (denoted as SAScore) in 2010
[14], which quantified the molecular synthetic difficulty level for the first time. In 2021, Thakker et al.
leveraged machine learning to perform binary classification of the possibility of a molecule’s synthesizability6

as Retrosynthetic accessibility score (RAScore) [59]. In 2022, Liu el al. introduced a regression GNN
model as the synthesizability predictor [36]. Cost estimation in synthetic route scoring has been carried
out by Seifrid et al. in 2022 with their work Routescore: Punching the Ticket to More Efficient Materials
Development and by Han and Peng et al. in the paper GNN-Retro: Retrosynthetic Planning with Graph
Neural Networks in 2021 [53, 24]. One of the most recent advances in such endeavor is Estimating the
synthetic accessibility of molecules with building block and reaction-aware SAScore by Chen and Jung in
2024 that further expanded the scope of application of SAScore [8]. These research works paved the way
to approximate synthetic route planning based in CASP.

6The ability to find a synthetic route in a CASP software
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Chapter 3

Research question

As being motivated by the prior researches based on synthesizability estimation [59, 36] and synthetic route
scoring [14, 24, 53, 8] introduced in Chapter 2.7, we aim to determine the feasibility of using machine learning
to predict the synthetic route properties calculated by the CASP tool AiZynthfinder [18]. Specifically,
experiments will be carried out to investigate if the shortest synthetic route lengths of molecules solved by
AiZynthfinder could be predicted directly from SMILES strings with machine learning models trained
using algorithms XGBoost and GNN, which is the core research question of this thesis.
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Chapter 4

Methodology

4.1 Task formulation

The research question presented in Chapter 3 necessitates the need for a formulation of the machine learn-
ing task. Conventionally, a supervised machine learning task can be carried out in either classification or
regression based on the nature of the task. In this thesis, with consideration of data interpretability and
chemical intuition, both machine learning paradigms are experimented with.

4.1.1 Multiclass classification for synthetic route length prediction

The multiclass classification, as introduced in Chapter 2.2.1, takes the molecular structure in the format of an
encoded SMILES [62] string as input, which was covered in Chapter 2.6. It then outputs the predicted class
that the target molecule belongs to with the highest level of probability. The class segregation is designed
to incorporate the synthetic difficulty of the input target molecule based on chemical convention. Generally,
being able to synthesize a molecule in 1-2 steps is considered easy. Completing the synthesis in 3-5 steps
is considered a normal difficulty level. And for a synthetic route longer than 6 steps, it is perceived as a
hard chemical practice that will likely negatively impact the output amount and quality of the final product.
There is an additional "unsolved" class alongside those three synthesizable classes for target molecules that
the CASP tool AiZynthfinder [18] is unable to find a route for, making the multiclass classification task
have 4 classes in total.

4.1.2 Regression for synthetic route length prediction

Similar to the multiclass classification task, an encoded SMILES [62] string is also needed as the input
for the regression task. Chemically speaking, in nature, organic molecules grow in size by establishing and
concatenating carbon-carbon bonds continuously on top of a base molecule [10]. Hence, the growth of organic
compounds could be seen as a continuous process based on discrete amounts of atoms, of which the length
of the synthetic route could be predicted by machine learning using a regression model.
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4.2 Experiment framework

In this section, the software framework, design patterns, and related technical details for this project are
outlined. The development environment is configured leveraging the convenience of remote access to the
ALICE HPC (as introduced in Chapter 2.5) cluster of Leiden University [34] via Microsoft Visual Studio
Code [40], where all development work and experiments were completed. Development of the experiment
framework1 was achieved via Python 3.7.12 [43]. A virtual environment was created via Anaconda [2].

4.2.1 Design patterns

During the development, design patterns were followed such that modularity, code reuse, and automation
were made possible for faster troubleshooting and easier functionality expansion. The parameter passing was
configured through the instantiation of an Experiment object, where relevant parameters for an individual
experiment to take place were passed and set, namely, the size of the training data set partitions (introduced
in Chapter 4.3.4), the choice of machine learning model, the specification of multiclass classification and
regression, etc. Crucial and repetitive steps in individual experiments were extracted out as encapsulated
into helper functions. Additionally, data as a product of overlapping intermediate steps of multiple individual
experiments were saved and reused to further reduce computation time and energy consumption. Below is
a design diagram illustrating such considerations:

Figure 4.2.1.1: Flowchart of the design pattern and the interaction of modules. Arrows in this graph indicate
the direction of flow of files and data from one module to another. Modules that serve the same purpose are labeled
with the same color. This figure demonstrated the modular design patterns taken into account during the software
development process and the flow of data among modules.

4.2.2 Experiment pipeline

As stated in Chapter 4.2.1, to achieve faster experiment completion, modular design and code reuse were
incorporated into the experiment framework, which enables the implementation of experiment pipelines.

1Code is available at: https://github.com/penguin9360/master_thesis
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Data preparation

Specifically, an experiment pipeline consists of modules of the experiment framework such that by specifying
the experiment name, size, model name, learning task, and the option to enable or disable model training and
data evaluation in file start.py, corresponding components of the framework are called and executed based
on the user’s selection. It enables one-click-run-everything with visualization of all individual experiment
results in one go, which significantly accelerated the scaled-up experiments after the proof-of-concept (POC)
stage. Below is an abstract flowchart of the experiment pipeline:

Figure 4.2.2.1: This figure shows the experiment pipeline abstracted as a flowchart, with modules that serve the
same purpose labeled with the same color. From the top left and bottom right, raw SMILES data serving as the
first layer of the input are processed to become training and generalizability evaluation data sets, thereby entering
the corresponding pipelines of machine learning model training, testing, generalizability evaluation, figures plotting,
and metrics exporting.

Similar to the experiment pipeline, at a certain point in the project, cross-validation of one machine
learning model on another validation data set is needed. Thus, an expansion of the experiment framework is
carried out, namely, the inference framework. Utilizing the modular design pattern, the inference framework
enables any trained models to be evaluated for generalizability and performance on larger datasets than their
own evaluation sets.

4.3 Data preparation

The nature of this project, prediction from raw SMILES [62] to the shortest synthetic route length computed
by AiZynthfinder [18], demands a massive quantity of data for model training and evaluation. Therefore,
data preparation is a key step to ensure data quality and thus lead to convincing performance metrics of
machine learning models.

18



Methodology

4.3.1 CASPYrus 50k

The CASPYrus50k dataset is a clustered data set constituting 50,000 bio-active molecules derived from
Papyrus: a large-scale curated dataset aimed at bioactivity predictions [6], that has been further curated into
a standalone CASP data set by Hassen et al. in 2025 in their publication Generate what you can make:
achieving in-house synthesizability with readily available resources in de novo drug design [25].

In this project, the source of training data of all machine learning models were derived, either as a part
or a whole, from the CASPYrus50k dataset.

4.3.2 ChEMBL 200k

The ChEMBL 200k is originated from the ChEMBL database, a database for drug-like, bio-active
small molecules [64]. Hassen et al. converted the extracted 200,000 molecules and developed it into a
CASP data set [25]. It consists of 200,000 bio-active molecules with calculated chemical properties and is
used as the universal evaluation data set for all trained machine learning models for their generalizability
and performance metrics.

4.3.3 Slurm job submission and automation

The Slurm Workload Manager was introduced in Chapter 2.5.2. Since this project requires a large
amount of data to be generated for training, validating, and testing models, we adopted parallelism paradigm
of embarrasingly parallel (introduced in Chapter 2.5) to speed up the process. Up to 1,000 instances of
AiZynthfinder were created in parallel on the ALICE cluster, coordinated by Slurm [18, 34, 29].

To initiate a Slurm job, a script is needed to submit the job to the ALICE HPC cluster [34] as intro-
duced in Chapter 2.5.1. Conventionally, to perform one batch experiment, the following steps are required.
First, raw csv files consist of thousands of SMILES need to be split into groups of smaller chunks, with
each chunk carrying 1/1,000 of the amount of the original SMILES entries2. Next, a modification of the
Slurm file is needed to specify Slurm job properties such as file chunk location, the beginning and end
indices, and the partitions.

This process, if done manually, is highly complex and error-prone. Thus, automation was applied to
speed up the Slurm job submission workflow. Python scripts were developed to automatically allocate
the size, location, and amount of file chunks before the first step of data splitting. Afterwards, a series of
interactive prompts will be displayed in the command line to instruct the users with the choice of partitions,
resource allocation, and time limits. Finally, to avoid manual overhead, it offers the option to overwrite the
Slurm file and submit the batch job to the ALICE HPC cluster automatically via the Python script.

4.3.4 Training data partition and cleaning

As introduced in Chapter 4.3.1, smaller partitions of the CASPYrus50k data set are taken as the training
data for smaller, proof-of-concept models. Experiments were conducted with smaller models first to verify
feasibility and then moved on with scaled-up training data consisting of more SMILES entries.

2The amount of 1,000 concurrent instances was a design consideration due to the rules on the ALICE cluster [34].
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CASPyrus 1k

The training of machine learning models began with extracting the first 1,000 SMILES entries of the
CASPYrus 50k data set, hence the name of CASPyrus 1k for the data set. This data set is crucial for
setting up the data processing pipeline and all proof-of-concept experiments for all modules of the experiment
framework.

CASPyrus 10k

Similar to CASPyrus 1k introduced in Chapter 4.3.4, CASPyrus 10k constitutes the first 10,000

SMILES entries from CASPyrus 50k. The purpose of having a data set in such proportion is to es-
tablish an in-between argument of the models’performance metrics from CASPyrus 1k to CASPyrus
50k, as it is expected that the model’s performance would increase as the size of the training data grows.

CASPyrus 50k

The vast majority of CASPyrus 50k is used as training data in the end to demonstrate the performance
of machine learning models. It is worth mentioning that during the data generation phase using Slurm,
as stated in Chapter 4.3.3, there were occasional unrecognizable molecules that prevented the execution of
the Slurm batch process. Those incompatible SMILES were removed to ensure successful data generation,
leading to a slight loss of training data for the models trained on CASPyrus 50k.

4.3.5 Split of train, test, and validation

The last step of data preparation is to split the training data, in every partition, into a training set, a
validation set, and a test set, as a convention of machine learning tasks. All raw CASPYrus partitions was
further divided into three data sets of train, test, and validation that are ready to be consumed by machine
learning models in a ratio of:

train : test : validation = 0.8 : 0.1 : 0.1

Partition CASPYrus Training CASPYrus validation CASPYrus Test Generalizability Evaluation
CASPYrus 1k 800 100 100 ChEMBL 200k
CASPYrus 10k 8,000 1,000 1,000 ChEMBL 200k
CASPYrus 50k 40,000 5,000 5,000 ChEMBL 200k

Table 4.3.5.1: Splits of training, validation, testing, and additional generalizability evaluation of data sets. Num-
bers in the table denote how many molecules are used to formulate one data set.

4.4 Metrics

Before we proceed with result evaluation, we first determine what exact metrics should be used to evaluate
the training, validation, and testing performances of the various models based on the learning tasks of mul-
ticlass classification and regression. Table 4.4.0.1 offers a brief overview of the choices of training objectives
and evaluation metrics being used during the experiment.
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Task Model Training Objective Evaluation Metric
Regression GNN MSE RMSE

Classification GNN Categorical Cross Entropy F1 - MCC
Regression XGBoost RMSE RMSE

Classification XGBoost Categorical Cross Entropy F1 - MCC

Table 4.4.0.1: Overview of training and evaluation metrics

4.4.1 Training objectives

In this experiment, we have chosen different training objectives based on different types of learning tasks. For
multiclass classification tasks, categorical cross entropy (CCE) is widely adopted as the default training
objective in many open-source machine learning frameworks. CCE measures the discrepancy between
the true label distribution and the predicted probabilities generated by the trained model. It penalizes
deviations in predicted probabilities from ground-truth labels, making it effective for guiding optimization
during training [4].

The categorical cross-entropy loss for a batch of N samples and C classes is computed as follows. For
each sample i, let yi ∈ RC represent the one-hot-encoded true label, and pi ∈ RC denote the predicted class
probabilities from the model. The CCE loss L is defined as:

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(pi,c), (4.1)

where yi,c and pi,c correspond to the c-th element of yi and pi, respectively. Minimizing this loss en-
courages the model to align its predictions with the true distribution [19].This loss is typically minimized
using gradient-based optimization methods such as stochastic gradient descent (SGD) or Adam [31], where
gradients are computed via backpropagation to update model parameters iteratively.

For regression tasks, the Root Mean Squared Error (RMSE) was initially selected as the primary eval-
uation metric due to its sensitivity to large errors and interpretability in the target variable’s units. However,
due to software compatibility constraints encountered during implementation, Mean Squared Error (MSE)
was ultimately employed as the training objective for the regression component of the GNN experiments.

MSE measures the average squared difference between predicted and actual values, providing a differen-
tiable loss surface that facilitates gradient-based optimization [26]. The RMSE counterpart represents the
square root of MSE, maintaining identical unit dimensions as the target variable [7].

In the format of mathematical formula, the MSE is calculated as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.2)

For completeness, RMSE is just the square root of the MSE:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.3)

Where yi represents the true value, ŷi denotes the predicted value, and n is the number of observations.
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4.4.2 Evaluation metrics

The metrics chosen for evaluation differ from the training objectives to analyze the performance of machine
learning models. the model. For multiclass classification, two additional metrics are used for result evalua-
tion: F1 and Matthews Correlation Coefficient (MCC). RMSE remains the evaluation metric for the
regression tasks.

The F1 score, first introduced by Cornelis Van Rijsbergen in 1979, is often used to evaluate classification
models by combining precision and recall [60]. Given an input, a true prediction or a false prediction could
be performed by a classification model, which are denoted by TP and FP , respectively. Precision assesses
the proportion of correctly identified positive instances among all predicted positives. This metric reflects
the model’s ability to minimize false positives and ensure the reliability of its predictions. Recall, in contrast,
evaluates the model’s capacity to quantify the proportion of true positives that the model successfully detects
out of the total actual positives. It emphasizes the effectiveness of the model in capturing the complete set of
relevant outcomes. Together, these two metrics give the F1 score an advantage to be used in an unbalanced
data set. The formula of F1 is as follows:

F1 = 2× Precision× Recall
Precision + Recall

(4.4)

where:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

The Matthews Correlation Coefficient (MCC), first introduced by Brian W. Matthews in 1975,
provides a comprehensive perspective using confusion matrix elements [39]. Its formula

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.5)

yields values in [−1, 1], where 1 indicates perfect prediction and -1 completely false classification. Unlike
F1, MCC considers true negatives and remains reliable for both balanced and unbalanced data.

4.5 Training

Chapter 4.3.5 outlined the data split for training, validation, and testing for each trained dataset-task
combination. Chapter 4.1 discussed the intuition of the formulation of machine learning tasks that involve
both multiclass classification and regression. With two machine learning algorithms of interest, Graph
Neural Network from the package Chemprop [28] (referred to as "GNN " from now) and XGBoost [9]
as introduced in Chapter 2.2, a comprehensive list of 12 training tasks is enumerated below:

1. Training on CASPYrus1k (referred to as "1k" from now)

(a) 1k GNN Multiclass classification

(b) 1k GNN Regression

(c) 1k XGBoost Multiclass classification

(d) 1k XGBoost Regression
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2. Training on CASPYrus10k (referred to as "10k" from now)

(a) 10k GNN Multiclass classification

(b) 10k GNN Regression

(c) 10k XGBoost Multiclass classification

(d) 10k XGBoost Regression

3. Training on CASPYrus50k (referred to as "50k" from now)

(a) 50k GNN Multiclass classification

(b) 50k GNN Regression

(c) 50k XGBoost Multiclass classification

(d) 50k XGBoost Regression

After training, models are tested on their individual test sets created during the train-test-validation split
from the raw data sets, as specified in Chapter 4.3.5. Performance metrics during training are collected,
visualized, and presented in Chapter 5.

4.5.1 Initial Choice of hyperparameters

During initial training tasks, it is observed that most models in Chapter 4.5 exhibited the characteristics
of underfitting to their designated training sets. Therefore, as a measure of improving training quality, the
parameters were set higher than their default values before the final round of training for both GNN and
XGBoost models.

Due to the intrinsic difference of architecture between GNN and XGBoost models, not all hyperparam-
eters could be mapped in between the two models on a one-to-one basis. As such, only two hyperparameters
are chosen as they are shared by both models.

Parameters Chosen values Default value for GNN Default value for XGBoost
Number of epochs 150 50 100

Max depth 6 3 6

Table 4.5.1.1: Selected metrics for model training

4.6 Evaluation

The evaluation steps are carried out after the training tasks specified in Chapter 4.5 completed. The purpose
of evaluation is to verify generalizability of the trained models. Two sets of evaluation tasks were performed
to address both areas of concern: inference of the trained models on the ChEMBL 200k data set and
smaller CASPyrus models on larger CASPYrus models’ test sets. For the experiment setup, since the
most relevant evaluation to the generalizability argument is the robustness of the model’s performance on
an unforseen data set with unknown data distributions, hence we only discuss the evaluation that took place
on the ChEMBL200k dataset.

In order to preserve the authenticity of the performance metrics, an automated scan and removal of any
potentially duplicated SMILES entries in training and inference sets were carried out before the evaluation
tasks.
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4.6.1 Inference on ChEMBL200k as the universal validation set

The ChEMBL 200k data set, as stated in Chapter 4.3.2, is used as a universal evaluation set for all trained
models for their generalizability. As neither the SMILES were known to the models trained on CASPYrus
50k data sets nor the distribution of them, the generalizability of the model’s performance metrics is thus
ensured. Below is an enumeration of each trained dataset-task combination that are evaluated on the
ChEMBL 200k data set:

1. Generalizability Evaluation of 1k models

(a) 1k GNN Multiclass classification model inferred on ChEMBL 200k

(b) 1k GNN Regression model inferred on ChEMBL 200k

(c) 1k XGBoost Multiclass classification model inferred on ChEMBL 200k

(d) 1k XGBoost Regression model inferred on ChEMBL 200k

2. Generalizability Evaluation of 10k models

(a) 10k GNN Multiclass classification model inferred on ChEMBL 200k

(b) 10k GNN Regression model inferred on ChEMBL 200k

(c) 10k XGBoost Multiclass classification model inferred on ChEMBL 200k

(d) 10k XGBoost Regression model inferred on ChEMBL 200k

3. Generalizability Evaluation of 50k models

(a) 50k GNN Multiclass classification model inferred on ChEMBL 200k

(b) 50k GNN Regression model inferred on ChEMBL 200k

(c) 50k XGBoost Multiclass classification model inferred on ChEMBL 200k

(d) 50k XGBoost Regression model inferred on ChEMBL 200k

4.7 Hyperparameter Optimization

Hyperparameter optimization, as introduced in Chapter 2.4, is a key process for validating the effective-
ness and robustness of hyperparameters applied to models during training [16]. In essence, hyperparameter
optimization operates by repeatedly training a machine learning model with various combinations of hyper-
parameter values, with the aim of searching for the combination that provides the most robust performance.
Two prominent search algorithms are: grid search and random search. Grid search intuitively operates by
specifying candidate datapoints in a list for each hyperparameter that forms a "grid," where each grid point
corresponds to a combination of different specified values of hyperparameters. Random search, in contrast,
automatically selects random combinations of hyperparameter values from the given distribution within the
chosen upper and lower boundaries for each hyperparameter.
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Figure 4.7.0.1: Illustration of Grid Search vs. Random Search by Feurer & Hutter in their publication Hyperpa-
rameter Optimization

In this project, we performed a hyperparameter optimization random search for the 50k Chemprop

GNN models to verify the robustness of our chosen (and package-default) hyperparameter values used to train
the models. An embarrassingly parallel random search approach has been implemented using Slurm to
accelerate the process, due to the nature of random searches and the fact that each individual evaluation
is independent of another. Considering that hyperparameter optimization is an extremely time-consuming
process, we had to make compromises. First, due to time constraints, the scale has been limited to 100 evalu-
ations in total from 2 separate random search runs. Second, we do not seek to search for the best combination
of hyperparameters that could potentially yield the best performance metrics, but rather demonstrate the
robustness of the chosen and default hyperparameter values. The table below demonstrates the experiment
setup for the hyperparameter optimization experiments:

Parameters HPO run #1 HPO run #2
Number of parallel instances 5 10

Number of evaluations per instance 10 5
Epochs boundary (50, 250) (10, 200)
Depth boundary (3, 9)

Initial learning rate boundary (5× 10−5, 1.5× 10−4)
Max learning rate boundary (7.5× 10−4, 1.25× 10−3)

Batch size boundary (48, 96)

Table 4.7.0.1: Setup of parallel random search HPO experiments. Here we outline the training hyperparameters
we used to perform random searches on, namely, epoch, depth, initial learing rate, maximum learning rate, and batch
size. For each hyperparanmeter, a search boundary is defined to limit the scope of the search.
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Chapter 5

Results

5.1 Training

This section presents all the figures and tables of metrics obtained during the final1 training run of the
machine learning models based on the CASPYrus datasets2. The configurations and partitions applied
during training are shown in Table 4.3.5.1. This section presents graphic results of the prediction based on
their learning tasks, namely, confusion matrices for the multiclass classification tasks and box plots for the
regression tasks. In addition to the outcomes of the learning tasks, the metrics of the training objectives,
as presented in Chapter 4.4.1, were collected and visualized throughout the training epochs. For each
experiment, the graphs of the training results from both the GNN and XGBoost models will be shown
first, followed by their corresponding learning curves reflecting the change in the values of the training
objectives throughout the training.

5.1.1 Training results of Caspyrus 1k

The CASPYrus 1k partition is the smallest partition tested among all. The primary purpose of having
such a partition is to make it a fail-fast, proof-of-concept experiment to verify the functionality of the
machine learning and data processing pipelines. Given this configuration, 800 molecules were used to train
the models, with 100 molecules reserved for the validatoin step and the last 100 serving as a test set. Note
that all models from all partitions during experimentation went through self-testing and universal testing to
ensure generalizability. Self-test uses the reserved 10% of the molecules in any partition, while the universal
test utilizes the ChEMBL 200k data set that is introduced in detail in Chapter 4.3.2.

1Note that during the experimentation phase, a number of training and evaluation runs were performed for various trou-
bleshooting reasons. All figures and tables presented in this section are obtained from the final run when reliable program
execution was achieved from data parsing to result visualization. HPO experiments are carried out afterwards.

2Both models of multiclass classification and regression from the same size of the CASPyrus partition share the same
training, validation, and test data sets for consistency. All trained models will be evaluated on the same ChEMBL 200k
universal evaluation data set.
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CASPYrus 1k multiclass

Figure 5.1.1.1: Confusion matrices of the 1k multiclass Chemprop GNN (left) and XGBoost (right) models tested
on CASPYrus 1k test set. These preliminary models, trained from 800 molecules and validated/tested by 100
molecules each, paved the way for further large-scale multiclass classification experiments.

Figure 5.1.1.2: Validation cross-entropy vs. training epochs of CASPYrus 1k multiclass Chemprop GNN (left)
and XGBoost (right) models validated on CASPYrus 1k validation set.

Metrics GNN XGBoost
Accuracy 0.559 0.843

F1 0.556 0.844
MCC 0.383 0.782

Precision 0.441 0.757
Recall 0.559 0.843

Table 5.1.1.1: Table of multiclass classification training metrics for CASPYrus 1k models
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CASPYrus 1k regression

Figure 5.1.1.3: Box plots of the 1k regression Chemprop GNN (left) and XGBoost (right) models tested on
CASPYrus 1k test set, trained from 800 molecules and validated/tested by 100 molecules each. The dashed gray
line indicates an ideal fit of route lengths predicted from SMILES.

Figure 5.1.1.4: Validation RMSE vs. training epochs of CASPYrus 1k regression Chemprop GNN (left) and
XGBoost (right) models validated on CASPYrus 1k validation set.

Metrics GNN XGBoost
RMSE 2.91 1.49
MAE 2.40 0.69

R-squared 0.22 0.80

Table 5.1.1.2: Table of regression training metrics for CASPYrus 1k models

The training results from CASPYrus 1k multiclass classification and regression models indicate that using
machine learning to approximate the mapping from molecular structure to synthetic route lengths is feasible
with multiclass classification tasks. In regression, only the XGBoost model seems to perform rather well
after being trained on only 800 molecules. This, however, could also be an indicator of XGBoost models’
vulnerability to overfitting.
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5.1.2 Training results of Caspyrus 10k

After the experiments with the CASPYrus 1k partitions were completed, the feasibility of the concept was
noticed, and a scaled-up experiment was planned as a follow-up. The result is the Caspyrus 10k partition
introduced in Chapter 4.3.4. This partition has proven to be valuable as an in-between argument for the
effectiveness of the experiment setup.

CASPYrus 10k multiclass

Figure 5.1.2.1: Confusion matrices of the 10k multiclass Chemprop GNN (left) and XGBoost (right) models
tested on CASPYrus 10k test set. These models serve as scaled-up multiclass classification from what’s shown in
Figure 5.1.1.1, are trained from 8,000 molecules, validated by 1,000, and tested by 1,000.

Figure 5.1.2.2: Validation cross-entropy vs. training epochs of CASPYrus 10k multiclass Chemprop GNN (left)
and XGBoost (right) models validated on CASPYrus 10k validation set.
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Metrics GNN XGBoost
Accuracy 0.625 0.885

F1 0.621 0.885
MCC 0.495 0.845

Precision 0.493 0.815
Recall 0.625 0.885

Table 5.1.2.1: Table of multiclass classification training metrics for CASPYrus 10k models

CASPYrus 10k regression

Figure 5.1.2.3: Box plots of the 10k regression Chemprop GNN (left) and XGBoost (right) models tested on
CASPYrus 10k test set, scaled up from Figure 5.1.1.3. This time the regression models are trained from 8,000
molecules, validated by 1,000, and tested by 1,000.

Figure 5.1.2.4: Validation RMSE vs. training epochs of CASPYrus 10k regression Chemprop GNN (left) and
XGBoost (right) models validated on CASPYrus 10k validation set.

Metrics GNN XGBoost
RMSE 2.64 1.63
MAE 2.06 1.22

R-squared 0.23 0.70

Table 5.1.2.2: Table of regression training metrics for CASPYrus 10k models
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From the results of CASPYrus 10k models, a positive effect is observable from scaled-up training with
more data by improvement of training metrics. In multiclass classification, both models exhibit remarkably
better accuracy, F1, and recall scores than those trained with CASPYrus 1k data set. As for regression, the
GNN model in this partition is starting to recognize a pattern in the shorter route lengths, particularly from
1 to 4 (and approximating the inability for a CASP software to solve a molecule). The XGBoost models,
both in multiclass classification and regression tasks, continue to yield remarkable training metrics, which
will be later evaluated for their generalizability. It is noticeable that the learning objective of the GNN
multiclass classification model starts to rise after being trained for around 25 epochs (see Figure 5.1.2.2).
This is likely due to the limited diversity of data distribution on the training dataset CASPYrus, as the
original data set Papyrus itself was a curated data set centralizing on bio-active molecules, as introduced in
Chapter 4.3.1. This speculation will be discussed in detail in Chapter 6.6.
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5.1.3 Training results of Caspyrus 50k

Here we present the result of the training based on the entirety of the Caspyrus 50k data set, as described
in Table 4.3.5.1. This series of experiments marks the biggest and most sophisticated models trained during
the experimentation phase of the project.

CASPYrus 50k multiclass

Figure 5.1.3.1: Confusion matrices of the 50k multiclass Chemprop GNN (left) and XGBoost (right) models tested
on CASPYrus 50k test set. These multiclass classification models were trained, validated, and tested utilizing the
full CASPYrus 50k data set with 40,000 molecules for training and 10,000 each for validation and testing.

Figure 5.1.3.2: Validation cross-entropy vs. training epochs of CASPYrus 50k multiclass Chemprop GNN (left)
and XGBoost (right) models validated on CASPYrus 50k validation set.
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Metrics GNN XGBoost
Accuracy 0.687 0.776

F1 0.685 0.775
MCC 0.579 0.700

Precision 0.563 0.668
Recall 0.687 0.776

Table 5.1.3.1: Table of multiclass classification training metrics for 50k models

CASPYrus 50k regression

Figure 5.1.3.3: Box plots of the 50k regression Chemprop GNN (left) and XGBoost (right) models tested on
CASPYrus 50k test set. These regression models were trained, validated, and tested utilizing the full CASPYrus
50k data set with 40,000 molecules for training and 10,000 each for validation and testing.

Figure 5.1.3.4: Validation RMSE vs. training epochs of CASPYrus 50k regression Chemprop GNN (left) and
XGBoost (right) models validated on CASPYrus 50k validation set.

Metrics GNN XGBoost
RMSE 2.01 2.08
MAE 1.44 1.66

R-squared 0.49 0.46

Table 5.1.3.2: Table of regression training metrics for 50k models
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Results in this partition demonstrate the best training performance we achieved utilizing the CASPYrus
50k data set. In multiclass classification tasks, both models now demonstrate good training metrics with F1
scores of 0.685 and 0.775. In regression tasks, the GNN model begins to outperform the XGBoost model
by achieving a 0.07 lower RMSE and a 0.03 higher R-squared value than the XGBoost model.
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5.2 Evaluation

This section details the generalizability experiments, namely, evaluations, for all CASPYrus models trained
during the final training run, as described in Chapter 5.1. As the models have not been trained with the
ChEMBL 200k data [64], and due to the amount of unseen molecules, the evaluation results aim to provide
an argument for the generalizability of the predictive models.

In this section, the results are presented with respect to the size of the experiment partition – 1k, 10k
and 50k. For each experiment, multiclass classification results from the GNN and XGBoost models will be
presented first, followed by regression results. Since the evaluation procedures did not involve the training
of new models, this section will not include learning curves as shown in Chapter 5.1.

5.2.1 CASPYrus 1k models evaluated on ChEMBL 200k evaluation set

Figure 5.2.1.1: Confusion matrices of CASPYrus 1k multiclass models (trained from 800 molecules) from
Chemprop GNN (left) and XGBoost (right) evaluated on ChEMBL 200k universal evaluation data set to verify
the models’ generalizability.

Metrics GNN XGBoost
Accuracy 0.490 0.407

F1 0.474 0.406
MCC 0.302 0.196

Precision 0.377 0.340
Recall 0.490 0.407

Table 5.2.1.1: Table of multiclass classification evaluation metrics for CASPYrus 1k models on ChEMBL 200k
evaluation set.
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Figure 5.2.1.2: Box plots of CASPYrus 1k regression models (trained from 800 molecules) from Chemprop
GNN (left) and XGBoost (right) evaluated on ChEMBL 200k universal evaluation data set to verify the models’
generalizability.

Metrics GNN XGBoost
RMSE 2.78 3.16
MAE 2.31 2.57

R-squared 0.09 -0.17

Table 5.2.1.2: Table of regression evaluation metrics for CASPYrus 1k models on ChEMBL 200k evaluation set

Generalizability of the CASPYrus 1k models on the ChEMBL 200k data set generally did not yield
promising results in either classification or regression tasks. Nonetheless, in confusion matrices shown in
Figure 5.2.1.1, both GNN and XGBoost models could recognize the unsolvable class with a rather clear
distinction from the rest. Besides, in both models, the true positive prediction of the route length class 3−5

seems to stand out among all predicted classes.
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5.2.2 CASPYrus 10k models evaluated on ChEMBL 200k evaluation set

Figure 5.2.2.1: Confusion matrices of CASPYrus 10k multiclass models (trained from 8,000 molecules) from
Chemprop GNN (left) and XGBoost (right) evaluated on ChEMBL 200k universal evaluation data set to verify
the models’ generalizability.

Metrics GNN XGBoost
Accuracy 0.571 0.491

F1 0.564 0.489
MCC 0.417 0.309

Precision 0.445 0.392
Recall 0.571 0.491

Table 5.2.2.1: Table of multiclass classification evaluation metrics for CASPYrus 10k models on ChEMBL 200k
evaluation set
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Figure 5.2.2.2: Box plots of CASPYrus 10k regression models (trained from 8,000 molecules) from Chemprop
GNN (left) and XGBoost (right) evaluated on ChEMBL 200k universal evaluation data set to verify the models’
generalizability.

Metrics GNN XGBoost
RMSE 2.64 2.83
MAE 2.02 2.24

R-squared 0.19 0.06

Table 5.2.2.2: Table of regression evaluation metrics for CASPYrus 10k models on ChEMBL 200k evaluation
set

Following the findings from the generalizability evaluation experiments of the CASPYrus 1k models on the
ChEMBL 200k data set, the pattern that the models are only capable of correctly identifying unsolvable
molecules among all molecules evaluated continues to be observable from the results above. The CASPYrus
10k GNN multiclass classification model outperforms the CASPYrus 10k XGBoost multiclass classification
model with a 16.3% higher classification accuracy. Nonetheless, in terms of regression, neither models appear
to be able to effectively generalize their learned mapping between the molecular structure and synthetic route
lengths from the training sets of CASPYrus 10k partition with only slightly improved regression RMSE.
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5.2.3 CASPYrus 50k models evaluated on ChEMBL 200k evaluation set

Figure 5.2.3.1: Confusion matrices of 50k multiclass models (trained from 40,000 molecules) from Chemprop
GNN (left) and XGBoost (right) evaluated on ChEMBL 200k universal evaluation data set to verify the models’
generalizability.

Metrics GNN XGBoost
Accuracy 0.628 0.546

F1 0.625 0.539
MCC 0.496 0.384

Precision 0.501 0.442
Recall 0.628 0.546

Table 5.2.3.1: Table of multiclass classification evaluation metrics for 50k models on ChEMBL 200k evaluation
set

Figure 5.2.3.2: Box plots of 50k regression models (trained from 40,000 molecules) from Chemprop GNN (left) and
XGBoost (right) evaluated on ChEMBL 200k universal evaluation data set to verify the models’ generalizability.
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Metrics GNN XGBoost
RMSE 2.47 2.68
MAE 1.73 2.12

R-squared 0.29 0.16

Table 5.2.3.2: Table of regression evaluation metrics for 50k models on ChEMBL 200k evaluation set

The CASPYrus 50k models demonstrate noticeably better generalizability on the ChEMBL 200k data
set than the models trained on two other smaller partitions. From the confusion matrices, patterns are clearly
visible on the diagonal on both models (see Figure 5.2.3.1). The GNN models continue to deliver better
generalizability evaluation performance compared to the XGBoost models in both multiclass classification
and regression tasks. Regarding regression tasks, in contrast to the previous two generalizability evaluations,
the GNN model successfully aligned its prediction with the ideal fitting line in shorter route lengths 1 − 4,
along with the correctly identified group of unsolvable molecules. The XGBoost regression model, however,
was not able to generalize from the CASPYrus 50k training set.
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5.3 Hyperparameter Optimization

The figures below present the result overlay of 100 individual random hyperparameter optimization searches
for both the 50k GNN multiclass classification and regression models3.

Figure 5.3.0.1: Distribution of hyperparameter optimization (random search) results for the GNN50k multiclass
model. Note that the purple, dashed lines stand for the mean performance of each metric, and the light yellow-colored
regions denote the distribution of 1 Std.dev of each metric from their mean values. Data points colored in green and
grey indicate different runs the results were obtained from, as documented in Chapter 4.7. The epoch boundaries in
blue serve only for the experiment carried out in 10 parallel runs, as detailed in the legend.

3The 100 random searches consist of 50 runs each from two different configurations of embarrassingly parallel experiments.
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Figure 5.3.0.2: Distribution of hyperparameter optimization (random search) results for the GNN 50k regression
model. Interpretation of visual elements has been documented in the caption of Figure 5.3.0.1. Together with Figure
5.3.0.1, these figures demonstrate the distribution of our hyperparameters during the HPO experiments, which further
reinforced the robustness of our initial and chosen values.

In Figures 5.3.0.1 and 5.3.0.2, the top rows reflect the distribution of test metrics (RMSE and cross-
entropy) collected from all individual random search trainings, followed by distributions of the five hyperpa-
rameters selected to perform hyperparameter optimization: training epochs, network depth, initial learning
rate, maximum learning rate, and batch size. The dashed red lines marked on each row denote the default or
initially chosen values of all metrics and hyperparameters (for metrics, the default values refer to the results
obtained during the final training run). The distributions of Mean± 1Std.dev are colored in light yellow.

42



Chapter 6

Discussion

In this chapter, various dimensions of arguments will be raised and discussed regarding the results obtained
and their indications. The aspects of learning methods, machine learning models, training data, generaliz-
ability, training parameters, and limitations will be discussed in detail.

6.1 Learning methods

To begin with, we analyze the results based on the machine learning methods, namely, the comparison of
multiclass classification and regression methods for their effectiveness in predicting synthetic route lengths
given an input of molecular structure1.

6.1.1 Multiclass classification

Overall, the classification tasks has proven their effectiveness at predicting the synthetic route length groups.
From the training results of the CASPYrus 50k models in Chapter 5.1.3, the CASPYrus 50k multiclass
classification models were able to achieve more than 0.500 classification accuracy and F1 scores. Notice-
ably, the 50k GNN model has accomplished a classification accuracy of 0.687 and a F1 score of 0.685 from
the 5,000 CASPYrus molecules training set. The evaluation results, as detailed in Chapter 5.2.3, further
demonstrated the model’s generalizability potentials. With a classification accuracy of 0.628 and an F1 score
of 0.625 from inference on the ChEMBL 200k dataset, where the model was evaluated on 200,000 unseen
molecules from the ChEMBL database (introduced in Chapter 4.3.2). Moreover, the confusion matrices
indicate that the multiclass classification models are capable of identifying the underlying pattern that maps
from the molecular structures to the synthetic route length classes.

Based on the results, one can argue that the multiclass classification tasks successfully demonstrated
their potentials at mapping the underlying patterns from the molecular structures to synthetic route lengths.
However, the learning curves of the multiclass classification tasks indicate that some models overfit. Starting
with the validation cross-entropy of the 1k GNN model as shown in Figure 5.1.1.2, the value of the learning
objective reduced and converged to near 1.1 for the first 20 epochs but increased from there on, reaching
near 3.50 at the end of the 150 epochs of training. Such a pattern on a greater scale could also be observed in
the validation cross-entropy learning curve of the 10k GNN model shown in Figure 5.1.2.2 with the learning

1For XGBoost models, the input data is in the format of the molecular fingerprint ECFP, as detailed in Chapter 2.6.4. The
Chemprop GNN models extract features from SMILES automatically
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objective. The 50k reaching near 7.0 at the end. 50k GNN model’s validation cross-entropy experienced a
less radical change in value than that from the 10k model, as shown in Figure 5.1.3.2, but still reaches near
5.0 in the end. As this finding occurs primarily on the GNN models, it will be discussed more in detail in
Chapter 6.2 where the models themselves will be analyzed.

6.1.2 Regression

Compared to the multiclass classification models, the regression models tend to generate less expressive pre-
dictions overall, except for the shorter routes on the CASPYrus 50k regression models. Box plots for the
generalizability evaluations displayed in Chapter 5.2 demonstrated such observations. Only Figure 5.1.3.3
has shown the 50k GNN model’s potential to predict route lengths from "unsolvable" up to 4, which none of
the other CASPYrus regression models have yet been able to demonstrate. The analysis for this observation
is that the underlying relationship between the molecular structure denoted in SMILES and the discrete
route lengths in numerical values may not be so expressive, which is especially the case for all XGBoost
models, as the evaluation box plots barely show any patterns that could be found in the generalizability
experiment (see Figures 5.2.1.2, 5.2.2.2, and 5.2.3.2). Training box plots, however, seem to indicate that
models tend to overfit when using regression, as the "patterns" learned could not be reflected in the latter
generalizability evaluations (see Figures 5.1.1.3, 5.1.2.3, and 5.1.3.3).

Despite the fact that the regression tasks did not excel in learning the underlying pattern between molec-
ular structures and discrete route lengths in most cases, the CASPYrus 50k GNN regression model still
demonstrated its capability to generalize its learned pattern to some extent. From route lengths 1 to 4, in-
cluding unsolved molecules, the model’s prediction roughly corresponds to the diagonal line in Figure 5.2.3.2,
which indicates that the regression approach might be effective when, first, the model must be trained com-
prehensively with a large amount of data (50k in this case), and second, the predictive capabilities using
regression have to be limited to the shorter route lengths mentioned previously. This is likely due to the
abundance of the route lengths of 1 to 4 that exist in the training set, which led to a more comprehensive
training coverage for the molecules with such synthetic route lengths. A better generalizability as a result of
a larger training data set may also contribute to this finding, which will be discussed in detail in Chapter 6.4.

6.1.3 Summary of machine learning methods

In general, the regression method experimented with during this project did not prove its effectiveness
at answering the research question but served as a valuable attempt to outline what may be needed to
increase its predictive performance for future experiments. Multiclass classification models, in contrast,
have demonstrated decent performance and generalizability in classifying synthetic route lengths based on
molecular structure, thus being the recommended formulation for such machine learning tasks.

6.2 Machine learning models

Following the comparison of learning paradigms, this section continues to outline the comparison between the
two machine learning models experimented with during this project. A brief comparison of the characteristics
of the two types of machine learning models will be conducted, followed by a detailed evaluation of their
performances for the machine learning tasks.
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6.2.1 GNN models vs. XGBoost models

Chapter 2.3.1 and Chapter 2.3.2 introduced the two algorithms in detail. From the training and generaliz-
ability evaluation results demonstrated in Chapter 5, models trained on larger CASPYrus partitions via
GNN exhibit in general better training and generalizability metrics. Such findings can be observed on Tables
5.2.3.1 and 5.1.3.1. One may wonder if the intrinsic difference between the two algorithms could lead to such
performance differences. The table below incorporates the architectural characteristics of the two algorithms
with respect to this project setting.

Chemprop GNN models XGBoost models
Preferred data type Graph-like data such as molecular

structures
Structured, independent data, such
as tables

Noise Robustness Sensitive to noisy edges/features Handles noisy features via regular-
ization

Multiclass model
performance

Message passing captures topologi-
cal patterns in graphs but requires
hyperparameter tuning for optimal
performance

Native Softmax objective support
handles high-dimensional data effi-
ciently but struggles with implicit
relationships in graph formats

Regression model
performance

Captures topological relationships
through message passing. Effec-
tive for graph regression but requires
edge noise handling for optimal per-
formance

Built-in support for capturing non-
linear patterns but struggles with
graph-structured data dependencies

Feature engineering Needs graph topology preprocessing Automatic feature interaction detec-
tion

Regularization Requires explicit techniques like
dropout

Built-in (L1/L2, column subsam-
pling)

Table 6.2.1.1: Comparison of GNN and XGBoost Models [50, 27, 9], detailing characteristics exhibited by machine
learning models trained via these two algorithms in the scope of this project.

With that comparison, it is easily observed that models trained via GNN in this project have an advan-
tage due to its affinity to graph-like data structures, such as molecular graphs. An additional support to
this finding is the 2021 study of Jiang et al. that further demonstrated the performance advantage of GNN
models and their variants in learning intricate relationships between structures and properties [13].

From the experimental results, such observations are consolidated by the fact that on all regression
tasks, GNN outperforms XGBoost by exhibiting lower test and evaluation RMSE values. Figure 5.2.3.2 also
demonstrates a better generalizability of the GNN 50k regression model when evaluated on the ChEMBL
200k evaluation set, exhibiting an R-squared value that surpasses its XGBoost counterpart by 81.25%. Such
performance advantages also hold true in the multiclass classification tasks with a margin of 15.02%.

Interestingly, if we focus on the 1k results of GNN and XGBoost, it is noticed that the XGBoost model
is overfitting with a small amount of training data on both multiclass classification and regression tasks
(see Figures 5.1.1.1 and 5.1.1.3). This demonstrated that XGBoost is more sensitive to smaller training
data set as compared to GNN. This may also be due to the fact that, with no explicit specification of data
structures, the XGBoost model was initially treating the molecular fingerprints as structured, table-like
inputs and learned incorrect, ungeneralizable features, as demonstrated by the ChEMBL 200k evaluation
results. The bigger the training data becomes, the less unstable XGBoost models perform, though it rarely
surpasses the performances that the GNN models offer, either during training or evaluation.
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6.3 Training data

In this section, we aim to post-hoc uncover the adequate amount of data needed to carry out the machine
learning task of estimating synthetic route lengths from molecular structures. Intuitively, the more training
data is available, the better (and more generalizable) the models will be trained, assuming similar data
distribution. In reality, such ideal scenarios of datasets with appropriate quality of data distribution are
often major bottlenecks in the realm of machine learning, which must be taken into consideration. Thus, it
necessitates the finding of a proper amount of training data that offers enough diversity and depth for the
model to learn generalizable patterns.

As for this project, the amount of the training data has always been a major challenge. Despite that, the
early experiments of 1k and 10k partitions have proven the feasibility of the research question: predicting the
route lengths given the molecular structures. Starting with the 1k models, even though the XGBoost models
significantly overfit on the CASPYrus dataset, the learned ’unsolved’ class and the lengths ’3-5’ class in
the multiclass classification task are still somewhat generalizable on the ChEMBL 200k data set, as shown
in Figure 5.2.1.1. GNN offered similar performance to XGBoost in the 1k partition as well. Thus, the 1k
partition is sufficient as a starting point, with 800 molecules being used to train the models and still being
able to achieve a clear classification of the "unsolvable" class. As a result, the 1k partition could potentially
offer acceptable performance on binary synthesizability prediction similar to the RAScore by Thakker and
Amol et al. [59], despite its rather poor performance on multiclass synthetic route length group predictions.

The 10k partition, as introduced in Chapter 4.3.4, serves as an in-between argument from 1k to 50k.
In the context of this section, the 10k partition serves the purpose of demonstrating the effect of upscaling
the magnitude of the amount of training data. The results align with our initial intuition, especially among
multiclass classification models, as shown in Figure 5.2.2.1. Even though the regression results do not offer
strong interpretability, comparing Figure 5.2.2.2 to Figure 5.2.1.2, the improvements in RMSE, MAE, and
R-squared values and the outlook of the plot are visible when upscaling the amount of the training data.

The 50k partition primarily serves the purpose of testing the best performance of all models when utiliz-
ing the CASPYrus 50k training data set to the maximum extent. The multiclass classification evaluation
results obtained are significantly better than those for the 10k partition, which could be interpreted by
comparing Table 5.2.3.1 with Table 5.2.2.1. However, the 50k regression tasks do not provide such insights,
except for the smaller route length classes described in Chapter 6.1.2. Regardless, from the generalizability
evaluation metrics, the results obtained from the 50k partition surpass the ones from 10k in ChEMBL
200k evaluations by considerable margins, as shown in Table 6.3.0.1.

Metric Model 10k Value 50k Value Percent Difference (%)
RMSE GNN 2.64 2.47 -6.44

XGBoost 2.83 2.68 -5.30
MAE GNN 2.02 1.73 -14.36

XGBoost 2.24 2.12 -5.36
R-squared GNN 0.19 0.29 +52.63

XGBoost 0.06 0.16 +166.67

Table 6.3.0.1: Percent difference of the generalizability evaluation metrics as a result of scaled-up training (50k vs.
10k regression experiments). The effect of scaled-up training is visible from the increase in the values of evaluation
metrics from a smaller portion of training data to a bigger one.
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As we have concluded that the results from the regression tasks do not express enough predictive perfor-
mance, it would make sense to use the results from the multiclass classification experiments as a deterministic
factor to decide what can be a minimal adequate quantity of training data that is necessary for the machine
learning task. If we look at the GNN models’ evaluation accuracies, from 0.490 for 1k partition to 0.571 for
10k, to eventually 0.628 for 50k, we can notice that the increase in accuracy is not linear with the growth
in model size but rather somewhat logarithmic. That indicates a limit of such accuracy growth in between
our best experimental value 0.628 and the theoretical perfect performance of 1.000. Detailed mathematical
modeling of such a relationship is out of the scope of this project, but an educated speculation could be
100, 000 training molecules to reach a multiclass classification accuracy near 0.7002.

Meanwhile, the classification accuracy 0.628 achieved by 50k partition is still relatively acceptable, as the
next steps of this project, if moving on towards production, would involve fine-tuning the models to provide
insights to the lab chemists. A likelihood of whether or not a molecule could be synthesized within certain
steps (or not possible at all) of chemical reactions with a prediction accuracy of around 60%− 70% can be
seen as helpful. Aside from evaluation accuracy, training costs should also be taken into account. Therefore,
a key takeaway on such an aspect is that 50k molecules as a starting point is satisfying the needs for this
project.

6.4 Generalizability

In this section, we aim to answer the question, "How well do scores generalize to a different data distribution?"
As Hastie et al. explained in Chapter 7 of their 2009 book The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, the amount of training data plays a vital role in the model’s generalizability [26].
Thus, we could look into our biggest and most performing models, the 50k multiclass, and compare its
performance metrics during training and evaluation. The table below gathered training and evaluation
metrics for both GNN and XGBoost models for their generalizability analysis.

Metric GNN XGBoost
Training Evaluation Training Evaluation

Accuracy 0.687 0.628 0.776 0.546
F1 Score 0.685 0.625 0.775 0.539
MCC 0.579 0.496 0.700 0.384
Precision 0.563 0.501 0.668 0.442
Recall 0.687 0.628 0.776 0.546

Table 6.4.0.1: Generalizability evaluation metrics of 50k GNN vs. XGBoost multiclass models on the
ChEMBL200k data set. Generally speaking, the less the drop in metric values from training to evaluation, the
better the generalization capability the model has. Note that the Accuracy and Recall scores appear identical in
this table. This is likely due to the default adoption of the micro-averaged recall in the Python package Scikit-learn,
which leads to a mathematically identical calculation of Recall as to accuracy scores in multiclass classification
[42, 55].

From Table 6.4.0.1, GNN exhibits a performance deviation between training and evaluation ranging
from 8.59% to 14.34%, with the smallest drop in Accuracy and Recall (8.59%) and the largest in MCC
(14.34%). In contrast, XGBoost shows a significantly larger deviation, ranging from 29.64% to 45.14%, with
the smallest drop in Accuracy and Recall (29.64%) and the largest in MCC (45.14%). Both models exhibit
the best metric preservation in precision where GNN experienced an 11.01% drop and XGBoost a 33.83%

2This prediction remains as an approximation to a CASP software’s solution of synthetic route lengths to a target molecule.
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drop. Arguably, our multiclass classification models generalize well, with GNN demonstrating more stable
performance compared to XGBoost.

Metric GNN XGBoost

Training Evaluation Training Evaluation

RMSE 2.01 2.47 2.08 2.68
MAE 1.44 1.73 1.66 2.12
R2 0.49 0.29 0.46 0.16

Table 6.4.0.2: 50k GNN vs. XGBoost regression generalizability comparison on the ChEMBL200k data set,
similar to the comparison as detailed in Table 6.4.0.1.

From Table 6.4.0.2, GNN exhibits a relative performance deviation between training and evaluation with
an RMSE increase of 22.89%, an MAE increase of 20.14%, and an R2 drop of 40.82%. In contrast, XGBoost
shows a larger deviation, with an RMSE increase of 28.85%, an MAE increase of 27.71%, and a significant
R2 drop of 65.22%. As the regression models were not highly performant during training, their rather low
generalizability is expected, with GNN demonstrating better generalization compared to XGBoost.

Overall, with better generalizability evaluation metrics, we conclude that for the synthetic route length
prediction tasks, the GNN models have an advantage over XGboost models on generalizability of learned
mappings from molecular structures to synthetic route lengths.

6.5 Training parameters

In this section, we discuss whether or not the chosen and default hyperparameters make sense, or, in other
words, are within a certain range that assures the model’s optimal performance. Figures 5.3.0.1 and 5.3.0.2
presented the result overlay of 100 individual random hyperparameter optimization searches for both the
50k GNN multiclass classification and regression models3. On the graphs, for each parameter, the optimal
parameters found along with their mean values and standard deviations are plotted. As explained in Chapter
4.7, the hyperparameter optimization experiments conducted in this project consist of multiple individual,
independent runs, thus leading to multiple sets of optimal parameters. Therefore, to visualize all the results
in a meaningful way, distributions of the parameters were made to better scrutinize the effectiveness of
our chosen parameters that were used to train the models. Evidently, our chosen parameters (as stated
in Table 4.5.1.1) are all within the range of ±1Std.dev from the mean optimal values, obtained from 100
hyperparameter optimization runs in total4. The following tables demonstrate the chosen values, the mean
values, and the percent difference for each parameter:

3The 100 random searches consist of 50 runs each from two different embarrassingly parallel configurations. One of them
has 5 parallel processes of 10 random searches, while the other consists of 10 parallel processes of 5 random searches, as detailed
in Table 4.7.0.1

4Data obtained in the hyperparameter optimization experiments serve for the arguments in this project only, as generalizing
one specific set of hyperparameters from the designated scenario to another rarely yields positive impacts on training results.
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Hyperparameters Chosen values Mean optimal values Relative difference (%)
Epochs 150 117 +28.21
Depth 6 7 -14.29

Initial learning rate 8.49e-05 1.00e-04 +17.79
Max learning rate 1.00e-03 1.03e-03 -2.91

Batch size 64 70 -8.57
Test cross-entropy 0.857 0.866 -1.04

Table 6.5.0.1: Comparison of chosen and mean optimal hyperparameter values for 50k GNN multiclass from in
total 100 hyperparameter optimization random searches.

Hyperparameters Chosen values Mean optimal values Relative difference (%)
Epochs 150 117 +28.21
Depth 6 6 0.00

Initial learning rate 1.00e-04 1.07e-04 -6.54
Max learning rate 1.00e-03 9.07e-04 +10.25

Batch size 64 66 -3.03
Test RMSE 2.350 2.351 -0.04

Table 6.5.0.2: Comparison of chosen and mean optimal hyperparameter values for 50k GNN regression from in
total 100 hyperparameter optimization random searches.

From Tables 6.5.0.1 and 6.5.0.2, the chosen epochs, both multiclass classification and regression, are
somwhat higher than the average value of 117 as a result of the hyperparameter optimization searches. The
chosen initial learning rate in multiclass classification and the chosen max learning rate for regression are
also slightly above average. The chosen depth in multiclass classification, however, was slightly less than
that of the average, with the rest of the chosen or default hyperparameters not off by more than 10% from
the mean optimal values from the random searches. Moreover, if we look at the mean value of the optimal
test metrics (cross-entropy for multiclass and regression for RMSE), we notice that from the several runs,
the impact of having a different combination of parameters did not exert a remarkable impact on the model’s
performance. Therefore, an argument can be made that the chosen (and default) hyperparameters that were
used to train the machine learning models were within reasonable ranges of optimality.

However, certain limitations did come in our way while conducting hyperparameter optimization exper-
iments. The first and most significant was timing, as running one hyperparameter optimization random
search evaluation is essentially the same as re-training one model given a set of randomly sampled param-
eters. Throughout this project, it was noticed that training one 50k model (with the chosen and default
hyperparameters), regardless of the algorithms used, takes around 3–5 hours. As a convention, the hyper-
parameter optimization experiment was designed with 50 evaluations in total, thus completing one single
run of the HPO could take from 150 hours to 250 hours, which usually led to timeout errors on the ALICE
cluster. Therefore, to save time and to increase the chance of success to complete such evaluations, HPO
tasks were broken down to multiple smaller runs with their results combined, as the random searches are
supposed to be mututally independent of each other given the same search boundaries. That ultimately led
to a range of "optimal parameters" instead of a single set as we presented, which makes it impossible to
evaluate the potential performance increase of applying a optimal set of hyperparameters to the machine
learning models after our HPO runs. Nevertheless, we managed to collect the test metrics at the end of each
random search evaluation and plot all of them on Figures 5.3.0.1 and 5.3.0.2. Hence, the results demonstrate
that the test metrics rarely fluctuated before and after hyperparameter optimization runs (see Tables 6.5.0.1
and 6.5.0.2 ).
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6.6 Limitations

Finally, we would like to highlight some limitations and bottlenecks experienced during this project. To
begin with, the research question and its novelty were entirely built on top of predictions from simulations of
chemical processes. In other words, the potential error propogation began from the step where the SMILES
strings were given to AiZynthFinder to solve for their routh lengths. As a chemical validation of the exact
route length is extremely difficult and time-consuming, which is also out of the scope of this master’s thesis,
such limitations should be addressed.

Moreover, regarding the performance of the models, it was observed that XGBoost tends to overfit a
lot and generalize poorly on partitions smaller than 50k, which in the early stage of the experiment provided
some false sense of confidence. The choice of this algorithm as a starting point was due to its straightforward
interpretability and relatively easier hands-on features for predictive and modeling tasks, but as Table 6.2.1.1
indicates, XGBoost may not be a very good fit for the nature of this machine learning task due to its affinity
to structured data instead of graph-like molecules. As a mitigation, we introduced the Chemprop GNN
model, which was proven to be the right choice.

Depite that measure, overfitting was still a common unsolved issue between the two algorithms, likely due
to the nature of the data source, since molecules still bear certain chemical structures and functional groups
that appear more often than the others, which is an inevitable source of overfitting. Moreover, as introduced
in Chapter 4.3.1, the original Papyrus dataset, that the CASPYrus 50k is derived from, is itself a curated
dataset centralizing bioactive, drug-like molecules. That centralization essentially created an unbalanced
data distribution that inevitably propagated to our model training, thus causing models to overfit. On top
of that, the results from the HPO experiments also suggested that the chosen hyperparameters may cause
overfitting due to higher chosen values of the training epochs.

Another bottleneck was the computation capacity of ALICE. As mentioned in Chapter 2.5.1, it is a
shared supercomputing cluster of Leiden University, of which the availability of GPU nodes was not always
guaranteed. There was also a hard stopping point of 7 days for long-running tasks, which our hyperparame-
ter optimization experiments oftenly exceeded. Therefore, compromises were made to break down a single,
long HPO run into multiple smaller runs, which led to a less interpretable result.
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Chapter 7

Conclusions and Future Work

7.1 Overview

This project focuses on applying machine learning and predictive modeling to the traditional chemical
simulation in the field of CASP on modern high-performance computing (HPC) clusters. Professional CASP
software and databases AIZynthFinder, CASPYrus, and ChEMBL are extensively studied and utilized
to generate training and evaluation datasets. Machine learning models based on two algorithms, XGBoost
and GNN, were trained and evaluated to predict synthetic route lengths of organic molecules encoded in
SMILES. Results show that the GNN 50k multi-class classification model offers the best prediction and
generalization capabilities, while the 50k regression model was effective only at approximating shorter route
lengths (1 − 4) or recognizing unsolvable molecules. The XGBoost models, in contrast, suffered from
overfitting issues likely due to their natural affinity to structured, tabular data types rather than chemical
molecules. Hyperparameter optimization experiments were conducted. The results indicate that the default
and chosen training hyperparameters are within reasonable ranges. In the end, certain limitations and
possible causes of the overfitting are analyzed and discussed.

7.2 Answer to research question

To some extent, with comprehensive training and tuning, a machine learning model that is able to work
with graph-like data structures is capable of predicting the lengths of the synthetic route lengths originated
from the CASP software AIZynthFinder. Our most performing model, 50k GNN multiclass classification,
achieved a classification accuracy of 0.628 in generalizability evaluation (see Figure 5.2.3.1), which proved the
feasibility of applying machine learning to direct synthetic route length estimation given only the chemical
structures, in contrast to running resource-intensive CASP workflows.

7.3 Future work

As inspired by many related works and discoveries came across during this project, future works could be
carried out to further push the boundary of human knowledge in this field. For instance, future studies
may range from using synthesizability scores in a de novo drug design setting to generate easy-to-synthesise
molecules that do not express a lot of side chains against targets of interest to uncertainty estimation of
molecular synthetic route prediction. Also, the feasibility of predicting synthetic route lengths also sheds
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light on the possibilities of predicting other molecular or reaction properties based on molecular structures,
such as reaction cost [23], reaction greenness, toxicity estimation, and so on.
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Chapter 8
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a fitting model for a certain task. In addition, better project planning could be helpful for future efforts to
reduce the trial-and-error part of the time spent and improve productivity. Now I have learned that knowing
what to do, where to start, and whom to ask contributes to at least 50% of the eventual success of any project.
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that has led me to it. Not everyone is lucky enough to face these challenges and overcome them, and I am
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Volare, meaning The Dream of Flight in English. What goes up must come down, as flight as a process has
to overcome gravity, which is doomed to never take place for free. But if there is a chance for me to jump off
the ground and have a view from an angle that I would never be able to imagine from the surface to revisit
myself, my past, my area of interest, and my future, that is the price I will not mind paying. I would like
to thus conclude this project and my master’s journey with my favorite quote from my favorite video game
that always gives me some energy boost when reading:

"From the first stirrings of life beneath water... to the great beasts of the Stone Age... to man taking his
first upright steps, you have come far. Now begins your greatest quest: from this early cradle of civilization
on towards the stars."
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