A4:E-¥% Universiteit
Y\ Leiden

Master Computer Science

Automating CUDA kernel optimizations: An LLM-
driven framework for transforming naive CUDA ker-
nels into optimized auto-tunable kernels

Name: Nikita Zelenskis
Student ID: 2622157
Date: 18/08/2025

Specialisation:
Advanced Computing and Systems

1st supervisor: Ben van Werkhoven
2nd supervisor: Michiel van der Meer

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Achieving optimal performance on Graphics Processing Units (GPUs) often requires
kernel tuning, a process of finding a set of parameters that have the highest possible
performance for the given kernel and GPU architecture. However, the manual refactor-
ing of standard, "naive” kernels into a form suitable for auto-tuning frameworks is a
significant barrier, requiring considerable expertise and labor. This thesis investigates
the potential of Large Language Models (LLMs) to automate this laborious task.

This thesis introduces a Python framework designed to make use of LLMs by gen-
erating optimized and auto-tunable CUDA kernels from the existing "naive” CUDA
kernels. Three distinct strategies have been created for this framework and compared
against each other: a "One-Prompt” approach, an "Explicit” strategy following a pre-
defined sequence of optimizations, and a multi-step "Autonomous” strategy where the
LLM first creates an optimization plan and then executes it iteratively. The effectiveness
of these strategies is benchmarked across a suite of simple and complex CUDA kernels
using various LLMs.

The results of experiments demonstrate that the iterative "Autonomous” strategy
consistently resulted in higher performance gain, outperforming the "One-Prompt” and
"Explicit” strategies. While LLMs can successfully apply standard CUDA optimizations,
such as tiling and memory prefetching, their effectiveness is highly variable even within
the same experiment. In particular, LLMs proved to be highly reliable for well-defined
and straightforward tasks such as generating test data and extracting kernel metadata.

In conclusion, while LLMs are not yet a complete replacement for human expertise
in High-Performance Computing, they can be a useful tool for implementing standard
optimizations for kernels.

1 Introduction

Achieving maximum computational performance on modern hardware, particularly Graphics
Processing Units (GPUs), is a common challenge in high-performance computing (HPC).
A critical optimization technique is kernel tuning, where the code is adapted with specific
parameters to match the underlying hardware architecture. While auto-tuning frameworks can
discover these optimal parameters, the manual process of refactoring a standard, or "naive,”
kernel into an auto-tunable form presents a significant barrier, often requiring substantial time
and expertise. This thesis investigates the potential of modern Large Language Models (LLMs)
to bridge this gap. This thesis will explore the feasibility of automating the transformation of
naive CUDA kernels into robust, auto-tunable code, examining different LLM-driven strategies
to generate correct and efficient solutions.

1.1 Motivation

CUDA kernels can experience a significant boost in performance by setting the right parameters
for specific hardware [RRBT08|. However, the search space can be rather large depending on the
number of parameters. This makes manual exploration of the entire search space impractical,
if not impossible. An auto-tuner can be used to automatically select the right parameters for
the kernel. However, many kernels are still tuned by hand. This is because it can be a tedious
and time-consuming task to rewrite a kernel to an auto-tunable kernel. Yet, it is practically
impossible to find the optimal kernel without auto-tuning it.

Figure [I| shows an example of how a kernel could be rewritten to be able to tune BLOCK _SIZE
and UNROLL parameters. After the code has been rewritten, the parameters need to be tuned.
One of the easiest ways to do this would be to use an auto-tuner such as the "Kernel
Tuner” [vW19]. Figure [2| shows an example Python code that uses Kernel Tuner to tune
the saxpy_tunable kernel.

Naive kernel

// yli] = axz[i] + y[i]; block size fized at 256

__global__ void saxpy(int n, float a, const float* x, float* y) {
int i = blockIdx.x * 256 + threadIdx.x;
if (i < n) yli]l = a * x[i] + y[il;

Auto-tunable kernel

__global__ void saxpy_tunable(int n, float a, const float* x, float* y) {
int base = (blockIdx.x * BLOCK_SIZE + threadIdx.x) * UNROLL;
#pragma unroll
for (int k=0; k<UNROLL; ++k) {
int idx = base + k * BLOCK_SIZE;
if (idx < n) y[idx] = a * x[idx] + yl[idx];

Figure 1: Refactoring a naive CUDA kernel into an auto-tunable variant with tunable
parameters (BLOCK_SIZE, UNROLL).

This example illustrates that, even for a very simple kernel, the effort required to tune it can
be relatively high. Evidently, this effort increases significantly with more complex kernels. This

import numpy as np
from kernel_tuner import tune_kernel

Problem setup

=1 << 20

np.float32(2.5)
np.random.rand(n) .astype (np.float32)

init = np.random.rand(n).astype(np.float32)

n
a
X
y-

Expected output for wverification
y_ref = a * x + y_init

tune_params = {"BLOCK_SIZE": [32, 64, 128, 256, 512], "UNROLL": [1, 2, 4]}
grid_div_x = ["UNROLL"]

args = [n, a, x, y_init.copy()]

answer = [None, None, None, y_ref.astype(np.float32)]

results, env = tune_kernel(
kernel_name="saxpy_tuned", kernel_source="saxpy_tunable_kernel.cu",
problem_size=n, arguments=args, tune_params=tune_params,
grid_div_x=grid_div_x, answer=answer, block_size_names=["BLOCK_SIZE"]

Figure 2: Kernel Tuner script exploring BLOCK_SIZE and UNROLL.

presents a challenge: while auto-tuning is essential for optimal performance, the manual effort
required to enable it often leads to it being neglected.

Recent advances in LLMs have demonstrated their potential in code generation. This code gen-
eration might be useful for writing auto-tunable kernels. However, LLMs still lack correctness
while (re)writing the code [LXWZ23]|LLL™25].

1.2 Proposed solution

The main topic of this thesis is to explore the possibility of writing auto-tunable CUDA kernels
from naive CUDA kernels using LLMs. This thesis will also explore the generation of correct and
robust code with LLMs and test generation with LLMs. One promising approach to improve
LLMs' performance in reasoning tasks is using chain of thought (CoT).

This work introduces a Python frameworK'| that takes a naive kernel as input, iteratively
modifies it, and provides a tuned kernel as output with the best parameters. This thesis will
also look at different code generation strategies as well as which steps in the transformation
and tuning process had the most impact.

1.3 Findings
Experiments indicate that:

o An iterative, multistep "autonomous” strategy, where an LLM first creates an optimiza-
tion plan and then executes it step-by-step, yields significantly better performance gains
than a single-prompt approach.

e LLMs can successfully apply standard CUDA optimizations such as tiling and mem-
ory prefetching, though their effectiveness is inconsistent and highly dependent on the

!The framework reposetory can be found at: https://github.com/NikitaZelenskis/
LLM-Kernel-Tuner

https://github.com/NikitaZelenskis/LLM-Kernel-Tuner
https://github.com/NikitaZelenskis/LLM-Kernel-Tuner

specific kernel and LLM used.

o LLMs excel in simple, well-defined tasks such as generating test input data and extracting
output variables from a CUDA kernel.

1.4 Thesis layout

This thesis is structured as follows:

Section [2] will provide some fundamental knowledge required for this work. It covers GPU
programming, CUDA, kernel tuning, regression testing, some LLM concepts, and best practices.
Section 3] will discuss the current state-of-the-art in using LLMs for code generation, in
particular for HPC applications. This section will highlight the gap this thesis aims to fill
regarding automated kernel optimization.

Section [4] details the core contribution of this work: the design and implementation of the
framework that was built for this thesis. It describes the high-level framework architecture,
common challenges when working with LLMs, chosen solutions for these challenges, and the
three chosen tuning strategies that will be evaluated.

Section [5] outlines the experimental setup used to assess the effectiveness of the proposed
strategies. It specifies the hardware, the selected LLMs, the kernels that were benchmarked,
and the metrics used to measure performance improvements.

Section [0] presents and analyzes the experimental results. It compares the performance of the
different tuning strategies and LLMs across a set of benchmark kernels. This section will also
go through the successful steps LLMs took while transforming the kernel.

Section [7| summarizes the key findings of the thesis, reflects on the effectiveness of using
LLMs for kernel tuning, and discusses the overall contribution of this work.

Section (8] outlines potential directions for future research, including enhancements to the
framework, more advanced tuning strategies, and alternative ways to leverage LLM capabilities
for automatic kernel optimizations.

2 Background

This section will provide background knowledge for the main topics of this thesis. It will begin
by establishing the fundamental concepts of GPU computing. We will use NVIDIA’s CUDA to
demonstrate how this is applied in practice, comparing a naive matrix multiplication kernel with
an optimized version that uses shared memory. The challenge of achieving peak performance
extends to kernel tuning, where parameters such as block and tile sizes must be optimized
for specific hardware architectures. The vast search space makes manual tuning impractical,
which has led to the development of automated tools, or "auto-tuners,” to find these optimal
configurations. Finally, this section will discuss some principles of using LLMs for complex
tasks and how these techniques can be used to increase accuracy and robustness for code
generation.

2.1 Kernel functions

A typical function on a CPU is expected to execute sequentially, instruction by instruction, as
if it were run in a single thread.

To simplify, a CPU typically executes a single instruction per clock cycle on a single word,
where a word refers to the fixed bit size of data that the processor can handle in one operation,
such as 32 bits or 64 bits depending on the architecture.

This can be further improved with Single Instruction Multiple Data (SIMD), which allows
the execution of the same instruction on multiple words in the same clock cycle. A modern
CPU has the ability to execute SIMD instructions on various data sizes such as 128 bits, 256
bits, or even 512 bits. This concept can be extended by executing the same instruction on even
more words simultaneously. In principle, that is exactly what a GPU does. It executes the same
instruction on thousands or even hundreds of thousands of words. A function that executes a
large number of threads, each performing the same instruction in parallel on a GPU, is called
a kernel function.

A thread that executes an instruction on a single word is known as a kernel thread. Multiple
kernel threads form a thread block, and multiple thread blocks form a grid. This is illustrated
in [Figure 3, where the "add 2" instruction is executed in a single thread, in a single 4 x 1
block, and in a single 2 x 2 grid of 4 x 1 blocks.

Therefore, when launching a kernel, the number of threads must be specified by defining the
block size and the grid size.

Kernel thread

% —_—p o

Thread block 5+2
7+2

_> 7+2

9+2

Kernel grid r 102

—>

0+2 142

Figure 3: Illustration of how kernel threads form a thread block and thread blocks form
kernel grids. The instruction being used is "add 2”

2.2 GPU programming

To be able to write GPU kernels, a specific language or a framework is used in almost all
cases. At the moment, the most dominant language for writing GPU programs is CUDA.
CUDA was developed by NVIDIA specifically for writing programs that could run directly on
GPUs. CUDA is a C/C++ extension with a few added keywords specific for the GPU (e.g.
__global__, __shared).

shows an example of a naive matrix multiplication CUDA kernel. This kernel takes
three matrix elements as arguments: A, B, and C. A and B are the input matrices and C is the

output matrix where the final result will be stored, all of these variables reside in the global
memory of the GPU. The code in will launch BLOCK_SIZE x BLOCK_SIZE threads per
block in parallel (in our case, 16 x 16 = 256 threads per block) and the total number of threads
is determined by the grid dimensions (blocksPerGrid), where each thread is responsible for
a single element of the output matrix C. Each thread accumulates the value in the variable
cValue by looping over the common dimensions of A and B. After the loop, the computed
cValue is stored in the corresponding element of the C matrix.

#define BLOCK_SIZE 16

__global__ void matMulNaiveKernel(Matrix A, Matrix B, Matrix C){
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

// Each thread accumulates one element of C by accumulating results into clValue
float cValue = 0;

// ClLi][5] = sum k A[4][k] * Blk][j]
// Iterates over common dimensions of A and B (k = A.width = B.height)
if (row < A.height &% col < B.width){
for (int k = 0; k < A.width; ++k){
cValue += A.elements[row * A.width + k] * B.elements[k * B.width + coll;
}

C.elements[row * C.width + col] = cValue;

dim3 threadsPerBlock (BLOCK_SIZE, BLOCK_SIZE);

dim3 blocksPerGrid((B.width + threadsPerBlock.x - 1) / threadsPerBlock.x,
(A.height + threadsPerBlock.y - 1) / threadsPerBlock.y);

matMulNaiveKernel<<<blocksPerGrid, threadsPerBlock>>>(A, B, C);

Figure 4: Naive matrix multiplication kernel in CUDA [Kum24].

The matMulNaiveKernel CUDA kernel shown in is expected to compute much faster
than an equivalent code for the CPU. However, matMulNaiveKernel could benefit from using
some common optimization techniques, such as using the shared memory of the GPU.

The loop in the naive kernel iterates over the full row and full column. The key observation
for optimization is that the elements of matrices A and B are read multiple times. In the
naive implementation, these repeated reads access global memory, and specifically for matrix
B, these accesses are non-coalesced, which is highly inefficient.

shows matMulKernelSharedMem CUDA kernel that utilizes shared memory of the
GPU by implementing loop blocking (also known as tiling). Instead of computing the full dot
product of each row and column, matMulKernelSharedMem computes the dot product of
each tile first. The threads in the thread block cooperate to fetch all the elements needed by
the thread block into shared memory once. This allows these elements to be accessed faster
by all other threads in the thread block.

The shared memory of a GPU acts as a programmer-managed cache or scratchpad. This is
why matMulKernelSharedMen is faster than matMulNaiveKernel, because it does not rely
on the GPU's caching and prefetching and instead does the caching manually by using shared
memory.

What is shown above is only one small optimization for a simple kernel. In reality, kernels can
become hundreds of lines of code for relatively simple tasks. The (re)writing of performant

#define TILE SIZE 16

__global__ void matMulKernelSharedMem(Matrix A, Matrix B, Matrix C){
__shared__ float shared_A[TILE_SIZE] [TILE_SIZE];
__shared__ float shared_B[TILE_SIZE] [TILE_SIZE];

int globalRow = blockIdx.y * blockDim.y + threadIdx.y;
int globalCol = blockIdx.x * blockDim.x + threadIdx.x;

float Cvalue = 0.0f;

int row = threadIdx.y;
int col = threadIdx.x;

for (int m = 0; m < (A.width + TILE_SIZE - 1) / TILE_SIZE; ++m){
if (row < A.height &% (m * TILE_SIZE + col) < A.width){
shared_A[row] [col] = A.elements[globalRow * A.width + m * TILE_SIZE + col];
Yelsed{
shared_A[row] [col] = 0.0f;
}

if (col < B.width && (m * TILE_SIZE + row) < B.height){

shared_B[row] [col] = B.elements[(m * TILE_SIZE + row) * B.width + globalCol];
Yelsed{

shared_B[row] [col] = 0.0f;
}

syncthreads();

for (int k = 0; k < TILE_SIZE; ++k)
Cvalue += shared_A[row] [k] * shared_B[k][coll];

__syncthreads();
}

if (globalRow < C.height && globalCol < C.width)
C.elements[globalRow * C.width + globalCol]l = Cvalue;

dim3 blockDim(TILE_SIZE, TILE_SIZE);
dim3 gridDim((C.width + TILE_SIZE - 1) / TILE_SIZE, (C.height + TILE_SIZE - 1) / TILE_SIZE);
matMulKernelSharedMem<<<gridDim, blockDim>>>(A, B, C);

Figure 5: Matrix multiplication kernel that utilizes tiling and shared memory [Kum24].

kernels is a laborious task that requires a lot of knowledge of the software and hardware, as
well as a lot of trial and error.

For example, "KernelBench: Can LLMs Write Efficient GPU Kernels?” [OGAT25] notes that
it took 5 years from the release of the Transformer architecture to obtain performant kernels.

2.3 Kernel tuning and auto tuning

Both [Figure 4] and [Figure 5| have parameters that could be tuned for performance, BLOCK_SIZE
and TILE SIZE respectively. But every GPU has a different architecture. As a result of that,
each kernel needs different parameters on different GPUs for optimal execution times. Having
an optimal BLOCK_SIZE and TILE SIZE ensures optimal performance of the kernel. The finding
of optimal parameters for a kernel is called tuning.

Although auto-tuners exist, the process of refactoring a kernel into a tunable kernel remains
largely manual, due to the high refactoring effort (see Section for an example). The search

space can be extremely large and can grow exponentially. This makes it impractical to explore
the entire search space manually.

Auto-tuners are designed to address this challenge of finding the optimal parameters for CUDA
kernels.

As the name suggests, auto-tuners adjust the kernel parameters automatically, either by brute-
forcing the whole search space or by using an optimization algorithm.

One such auto-tuner is "Kernel Tuner” [vW19], which will be used for all tests conducted in
this thesis. Kernel Tuner was chosen because of its ease of use, flexibility, and because it is
written in Python making it easy to work with LLMs as most frameworks and libraries are
written for Python or have bindings for Python.

2.4 LLMs and CoT

There are many techniques that can improve the quality and accuracy of the code generated by
LLMs. At the moment of writing, the most promising technique seems to be CoT [WWS™23].
CoT is a technique that tries to reason about a problem first before solving it. Often it does so
by breaking a step into smaller steps first. This technique works because LLMs demonstrate
greater proficiency in solving simpler problems, whereas they might struggle with larger prob-
lems. Furthermore, reasoning can sometimes be a way for LLMs to check their own correctness.

2.4.1 Manual CoT and context size accuracy

Most of the time, when a prompt is written for an LLM, it must adhere to multiple criteria,
thus creating multiple instructions for the LLM to execute. |Figure 6| shows an example of this
prompt.

Prompt:
1. Give a step by step recipe for a pizza.
Use only products that are available in dutch super markets.
The price of the pizza should not exceed 10 euros.
Rate the difficulty of each step on a scale from 1 to 10.
At the end of each step use an emoji.
Return only a JSON string with steps for recipe, prices per ingredient, the
amount of each ingredient needed and the difficulty per step.

S Gt N

Figure 6: An example prompt that has multiple instructions. The numbering is purely
for the ease of readability and would not exist in the final prompt.

Although this is an extreme example, it illustrates how an LLM can be overwhelmed by the need
to adhere to the whole prompt at once. Not only does each instruction increase the context
size, which can reduce the accuracy of LLMs. However, it also has multiple instructions, which
further reduces the accuracy of the models [MDD™25][LZLC24][YXJ"25][Lan24]. In addition,
multiple distinct instructions within a single prompt can make it harder for the model to
maintain consistent reasoning. Instead, a user who already knows the desired workflow can
split the task into several smaller prompts, interleaving model calls with deterministic, non-
LLM processing steps. This guided prompting approach allows the user to handle parts that

do not require the LLM to reason while ensuring that each model call has a focused and well-
scoped objective. This can be described as "manual” or "guided” CoT and has been shown
to be even better than normal CoT in various tasks[WWS*23). shows an example of
how the previous prompt could be split and made into such a workflow.

Workflow steps

Step 1:
input: Give a step by step recipe for pizza.
Use only products that are available in dutch supermarket.
The price of the pizza should not exceed 10 euro.
output: Here is how you can make a great pizza ...
Step 1: ...
Step 2: ...
Step 2:
input: Here are steps for making a pizza: ””” (output of step 1)”"”.
Rate the difficulty of each step on a scale from 1 to 10
output: Here is the breakdown of the difficulty for each step:
Step 1: ...
Step 2: ...
Step 3:
input: Add a fitting emoji after each step: ”””(output of step 1)”””
output: Step 1: ... :)
Step 2: ... >:-)
Step 4:
input: Return a JSON of the following format: ”””(json_schema)”””
from this text: 7”7”7 (output form step 2), (output form step 3)”””
output: { "steps”: [{ "step”: "...7, "difficulty”: ".." }, ...], "ingredients™:
["item”: "..", "amount”:{ "units”: "..”, "measurement”: "..”}] }
N J

Figure 7: Prompt chain workflow with LLM.

For a more difficult or critical task, a verification step could be added. Consider the workflow
shown in as an example. If it is critical that the price is not exceeded, a manual
confirmation without LLM could be added that verifies the price does not exceed 10 euros.
However, in some cases, this can be very difficult or even impossible. In the current example,
without a database of all possible products, it is impossible to estimate the price of all ingredi-
ents. Therefore, there could be a verification or repair prompt that would ask LLM to estimate
the cost of all the ingredients for a certain country.

The last step of the workflow in might seem redundant as most LLMs support struc-
tured output or function call natively. This however, is not the case for all LLMs, for example

10

DeepSeek models do not support structured output or function calling. Furthermore, structured
output can reduce the performance of LLMs. [CCN24] [TWT™24]

2.5 Regression testing

Because of the LLM hallucinations it is crucial to have reliable tests. Most sophisticated testing
techniques try to eliminate bugs in the original code. So in a sense, there is an assumption
that there is a bug in the original code. In our case, we are going to modify the original kernel
and assume that the original kernel code is always correct; thus, we cannot use this approach.
Regression testing, on the other hand, is a testing method that tries to prevent the creation of
future bugs as the code is modified. Even if the given kernel has a bug in it, the output of the
new kernel needs to stay the same for all inputs throughout the tuning process. Having the
assumption that the original code is always correct makes it easier to generate correct tests,
as we can evaluate correctness of the input and the output pairs from the original kernel.
However, generating all possible inputs of a kernel is practically impossible as the input space
of a typical kernel is virtually infinite.

This means that even if the generated input and output pairs are the same, the original kernel
and the newly generated kernel might still be different.

Consider the following example to illustrate how such a situation can arise in practice. Suppose
a simple max function which takes an array of integers as input and returns the largest integer
of the input array. Now imagine introducing a bug to this function where the first half of
the input array is ignored. In that case, there is the possibility that our test will not find this
bug if the largest integer happens to be in the second half of the input. This issue may arise
from an incorrect thread index calculation. Here is an extreme code example of how this can
occur: Instead of using int idx = threadIdx.x + blockDim.x * blockIdx.x; for the
index, when int idx = 1 + blockDim.x * blockIdx.x; is used instead, it would mean
that only one element inside the thread block is used. Regression testing would easily be able
to mitigate this bug if the test input includes the largest element in the first half of the array,
as the mismatch with the original kernel output would be detected.

However, this approach cannot guarantee that all such issues will be caught, as it is infeasible
to test every possible input. This is a fundamental problem that cannot be eliminated. However,
to maximize coverage, it is possible to generate multiple inputs as well as try to find the edge
cases.

3 Related work

It appears that there are peer-reviewed papers that would try to auto-tune kernels using LLMs.
There are, however, some papers that are closely related. This section reviews some relevant
literature within the topic of this thesis.

3.1 LLMs for writing GPU kernels

A paper that is the most closely related to our approach is by Ouyang et al. and describes
a method that they used to improve GPU kernels using LLMs. The paper introduces Kernel-
Bench [OGA™25]. A suite of 250 PyTorch tasks that focus on machine learning. The tasks in
this suite are written in PyTorch and LLMs are expected to improve them by either rewriting

11

some of the PyTorch functions in the workflow or by fusing multiple PyTorch functions into
one. For example, one of the tasks was the Softsign activation function that used the following
PyTorch code: x / (1 + torch.abs(x)). When this function is called, in the backend three
separate GPU kernels are being executed; first abs kernel then add kernel for adding one to the
tensor and lastly div kernel. Claude-3.5 Sonnet was able to create its own Softsign kernel that
fused these three kernels into one, which led to a 1.3x speedup. Even though this approach
generates some GPU kernel code, the main focus is on improving the PyTorch workflow, not
the underlying GPU kernel code. Furthermore, this approach does not perform any parameter
tuning, which is a crucial step in optimizing GPU kernels. In theory, their approach could at-
tempt to tune its generated kernels by iteratively trying multiple parameter configurations and
measuring their performance. However, such a process is highly unlikely to emerge without
explicit guidance and would be prohibitively expensive in terms of computational cost.

Lastly, tests for all tasks were already written, which in itself can be a tedious task.

3.2 LLMs in High Performance Computing

Several papers have looked at how LLMs can be utilized for use in HPC. One of such papers
introduces ParEval [NDX™*24], a benchmark that evaluates LLM's abilities of generating parallel
code. It showed that LLMs are worse at writing parallel code compared to writing serial code.
The highest success rate in writing the correct code (not necessarily a performant code)
was from GPT-4 and had a success rate of 60% for the OMP code, ~ 52% for Kokkos,
~ 23% for MPI and ~ 37% for CUDA. However, ParEval also tested the ability of LLMs to
"translate” code from one execution model to another. This approach had a higher success
rate than writing code from scratch. Translating the code from serial to OMP had a success
rate of =~ 70% and from serial to MPI =~ 50%. Unfortunately, ParEval did not test the code
translations to CUDA.

Another paper introduced HPC-GPT [DCE™23], a fine-tuned LLaMA model for specifically
HPC usage. The main purpose of this fine-tuning was to detect race conditions. Their approach
was to generate dataset by utilizing static and dynamic analysis tools to detect race conditions
on existing code samples. That was then used as an input-output pair for training.
Furthermore, Bowen Cui et al. [CRHZ25|] and William F. Godoy et al. [GVLT24] have built
systems that can automatically parallelize serial code using different prompting techniques and
utilizing agent approach.

Some of the ideas described above can be used to generate fine-tunable code. However, none
of those techniques focus on fine-tuning CUDA kernels using LLMs.

3.3 Code generation with LLMs

Prompt engineering is known to increase the correctness and robustness of code genera-
tion [DAKC23] [HV23] [WHET23].

Some techniques like COCO [YCZ"23] and SymPrompt [RJST24] that try to improve the per-
formance of the LLMs by utilizing abstract syntax tree or control flow of the program. Other
techniques like CodeT [CZN7T22] and AceCoder [LZL723| can improve the correctness and
robustness of the code by having better examples or by generating tests for a given prompt.
Lastly, there are techniques like RepoCoder [ZCZ723] that look at the code in the underlying
code base to provide a better context for the LLM to understand its task.

12

Although these techniques help with the performance of the code generation in the bench-
marks. Ultimately, performance comes from the underlying performance of the LLMs in use.
Although prompting techniques can enhance performance to some extent, the overall potential
remains in the strength and limitations of the underlying model. Therefore, this will not be
the main focus of the thesis.

3.4 Transpilation

Transpilation seems to be a close match for the problem at hand, where the original version of
a kernel needs to be rewritten into an alternative version such that for all inputs, both versions
produce the same output. Several papers have explored transpilation with LLMs, often focusing
on ensuring the correctness of the translated code. For example, VERT [YTPT24] transpiles
the code to rust. For correctness, it uses rust compiler errors as the first step to repair the code.
As the authors have pointed out themselves, rust compiler errors are much more verbose than
CUDA errors. Therefore, rust compiler errors are more useful to LLMs than CUDA compiler
errors.

Batfix [RLM™24| also uses compiler errors in the first phase and in the second phase it uses
control-flow to verify code correctness. This approach will not work for CUDA kernels because
the control flow can change significantly between each optimization step.

4 Methodology

To address the research gap identified in the previous section, this thesis introduces a frame-
work?| designed to automate the transformation and tuning of CUDA kernels using LLMs.
This framework was developed to support iterative LLM prompting with kernel auto-tuning
in between code generation steps that evaluate the kernel. The goal of the framework is to
make it easy to use different code and test generation techniques. To ease the future research
of auto-tuning kernels with LLMs considerable effort was made to ensure that the framework
remains maintainable and extensible.

4.1 Framework design

This section will describe some core framework design decisions, explain why the decisions
were made, and discuss the pros and cons of those decisions.

One of the core philosophies throughout the whole framework is the idea of extending CoT
and creating a manual CoT (see Section for explanation).

4.1.1 Used frameworks

One of guiding principles in the framework's design was to minimize the number of external
dependencies. However, re-implementing certain features from scratch would be impractical.
Therefore, a select few established frameworks were chosen for their specific capabilities:

e LangChain and LangGraph — LangChain and LangGraph were used for interactions
between the different components and LLM. LangChain already has integration with a

2The framework reposetory can be found at: https://github.com/NikitaZelenskis/
LLM-Kernel-Tuner

13

https://github.com/NikitaZelenskis/LLM-Kernel-Tuner
https://github.com/NikitaZelenskis/LLM-Kernel-Tuner

wide variety of APIs. This makes it easy to switch between different LLMs.
Likewise the use of LangGraph allows for more flexible workflows while generating kernel
code and test generation.

o Clang — To extract structural information about the kernel such as the name of the
kernel, argument names, and their types, clang was used.

o Kernel Tuner — For the execution, correctness verification, and performance tuning of
CUDA kernels, Kernel Tuner was used.

4.1.2 Context management

Instead of maintaining a running conversation history, each LLM call operates within a new
context window, discarding previous conversation history except in the cases where an exception
was raised. This strategy provides two main benefits. First, the context length, and thus the cost
per invocation, will be reduced. Second, this allows LLMs to focus specifically on the current
task, enhancing the accuracy of the task as described in Section . However, this method
has two drawbacks; the first drawback is that the LLM cannot see previous interactions. This
can lead to the generation of duplicate tasks as well as duplicate code. In the ideal scenario,
the LLM would be able to see its own previous attempts and only create new tasks and new
code; however, current LLMs lack the accuracy when the context size increases. The second
drawback is that the KV cache cannot be utilized, which could increase the cost and time it
takes to process each invocation. And last drawback is that the LLM will not be able to see the
bigger picture, it will lack awareness of its previous optimization attempts and the rationale
for choosing those specific optimizations. This can lead to performance degradation.

4.1.3 Fault management

By the nature of LLMs it is expected that they will generate code that might crash, code that
might run in an infinite loop, or not generate any code at all. Therefore, safeguards must be
in place to ensure that the main process does not crash and can continue to execute even if
the code generated by an LLM is faulty. The following things have been implemented for this
purpose:

1. Executing all generated code by LLMs in a separate process. This ensures that the
main process does not crash. Even if some unrecoverable state has been reached, the
subprocess should be able to be killed without any issues.

2. Timeouts were implemented to prevent processes from hanging indefinitely, especially
when executing LLM-generated code that might contain infinite loops or be unexpectedly
slow. If the execution of a generated code segment exceeds a predefined time limit, the
subprocess is terminated. This ensures that the system remains responsive and can
proceed, potentially by updating the state and reporting timeout to the LLM.

3. Retry mechanism in the form of a retry wrapper. The retry wrapper describes how
the underlying function or the LangGraph workflow should be rerun, how the state
should change between reruns, and how many times to retry. In the retry wrapper,
each exception is mapped to a specific handler. A handler is a function that describes
how the state needs to be changed before retrying. It is therefore expected to have

14

custom exceptions in place to be able to handle each exception separately. If the caught
exception is not specified in the retry wrapper, the retry wrapper executes the default
handler. Here is an example of how an retry policy might look like:

def timeout_handler(state: Dict[str, Anyl, error: Exception) -> Dictl[str, Any]:
#add a retry message to the current context
state["messages"] .append (HumanMessage (retry_prompts.timeout_prompt))
return state

retry_policy = RetryPolicy(
max_retries=3,
handlers={

TimeoutError: timeout_handler,

b

And this is how to wrap a function into a retry wrapper with the newly created retry

policy:

def 11lm_invokation(state: State) -> State:
...
raise TimeoutError("Timeout reached")
...

retry_llm_invokation = create_retry_wrapper (
1lm_invokation,
retry_policy

retry_llm_invokation.invoke(...) # will call llm_tinvokation

4.1.4 Helper functionality

Structured output As described in Section not all LLMs support structured JSON
output, and forcing it can reduce performance. To address this, the framework provides two al-
ternative methods. That can be invoked similar to the LangChain's built in .with_structured
_output ().

The first is the "separate request” method, which uses two LLM invocations to generate
structured output. The answer is generated by the LLM without structured output in the first
invocation, and in the second invocation, the LLM is asked to jsonify the output into a certain
JSON schema.

The second method is a "hybrid” approach and is similar to the first method where LLM is
invoked multiple times, with the difference being that the second invocation is called with
structured output enabled. Both of these methods remove the restriction of reasoning, which
should increase the accuracy of the answer.

The first method is useful for when the model does not have a built-in structured output
available such as DeepSeek-R1. The second method is useful for allowing the model to "think”
in the first invocation and only then generate structured output in the second invocation. The
second method uses fewer tokens and is therefore faster and cheaper.

Thinking stripper Thinking models produce <think> </think> tokens for their reason-
ing before giving the answer. For when these tokens are in the output of the LLM, thinking
stripper can be used. When the thinking stripper is enabled, all requests will be sanitized with
the thinking stripper, removing those thinking tokens and everything that is in between these
tokens, leaving only the main output.

15

Test generation Test generation is a part of any transformation process, as there needs
to be a guarantee that the code still produces the same output between transformations. For
this purpose a general helper function called get_test_from_code exists in the BaseTesting
Strategy. This function helps to generate test input and output pair for the kernel from the
provided Python code by executing it in a separate thread and extracting the produced input.

Testing the kernel LLM generated code needs to be tested. For this purpose, the frame-
work has a helper function called _run_tests inside the BaseTuningStrategy class. It tunes
the first test to get the best tuning parameters for the provided kernel and compares the
output of the remaining tests with those tuning parameters to save time. Additionally, a sim-
ple caching was added that skips the testing process if the provided kernel code and tuning
parameters are exactly the same.

Tunable parameter restrictions Some kernels have restrictions on the combination of
the tunable parameters with which the kernel can work. shows one of such kernels,
matmul kernel will have invalid memory accesses if the block size is not a square. Kernel
Tuner has built-in functionality for this purpose, it can take restrictions in the form of a list
of strings for example: ["block_size x==block_size y"] for the matmul kernel. As this
is a common case for all tuning strategies, a helper function was built that would ask LLM to
generate such restriction in the form of an array of strings.

__global__ void matmul_kernel(float *C, float *A, float *B) {
__shared__ float sA[block_size_y] [block_size_x];
__shared__ float sB[block_size_y] [block_size_x];

int tx threadIdx.x;
int ty = threadldx.y;
int x = blockIdx.x * block_size_x + tx;
int y = blocklIdx.y * block_size_y + ty;

float sum = 0.0;
int k,kb;

for (k=0; k<WIDTH; k+=block_size_x) {
__syncthreads() ;
sA[tyl [tx] = A[y*WIDTH+k+tx];
sB[ty] [tx] = B[(k+ty)*WIDTH+x];
__syncthreads() ;
for (kb=0; kb<block_size_x; kb++) {
sum += sA[ty] [kb] * sB[kb] [tx];
}

}

C[y*WIDTH+x] = sum;

Figure 8: CUDA kernel with restrictions on block size

4.1.5 Framework architecture

The transformation process, illustrated in [Figure 9| is executed as a multistage LangGraph
workflow. This workflow structure allows for a clear separation of concerns, with a shared state

16

Stage 1

,,,,,,,,,,

TunableKernel

-Kernel code
-Kernel info:

TunableKernelInfo

1
I
I
|
I
I
I

I I

e - workflow.invoke(...) | D
LLMKernelTransformer workflow
77777777 -Kernel name .

- - > :
| \.
| .
I
I
I
I
I

~ -Output variables

,,,,,,,,, -Tests: empty
-Best tune params:

empty

,,,,,,,,,,

Stage 2

,,

State

|
I
|
|
‘ 1
|
-TunableKernel | : -TunableKernel (transformed)
-Tests: <filled in> - Tuning Strategy -Tests: <filled in>
-Best tune params: empty ! | -Best tune params: <filled in>
I
|
|
|
|
I
7 AN

[Final kernelj [Final tune parametersj

Figure 9: High-level overview of the framework’s LangGraph workflow.

(Stage 1) Initial kernel code is analyzed using static tools (clang, pycuda) and an LLM
to populate a TunableKernel object in the shared state.

(Stage 2) A TestingStrategy uses the initial kernel information to generate a suite of
tests, which are added to the state.

(Stage 3) A TuningStrategy iteratively transforms and evaluates the kernel, using the
tests for verification, until an optimal version is found. The final outputs are the optimized
kernel and its tuning parameters.

being passed and modified between stages. The LLMTransformer class serves as the primary
orchestrator, which takes user input such as the initial kernel code, a chosen TestingStrategy,
and a TuningStrategy, and then instantiates and runs the workflow.

Stage 1: Static and Semantic Analysis The workflow begins by populating the kernel’s
metadata. As shown in Stage 1 of the figure, static analysis tools such as pycuda and clang are
used to extract concrete information such as the target GPU architecture in which the test will
be run and the kernel name. Concurrently, an LLM is engaged to extract more abstract, seman-
tic information that is difficult to parse automatically, such as a natural language description
of the kernel's purpose, the problem size variables (critical for tuning), and the primary output
variables. All of this information is aggregated into a singular TunableKernellnfo object. This
object is then referenced by the initial TunableKernel instance, which holds the kernel’s code.
Throughout the transformation process, new TunableKernel instances representing different
code versions will be created, but they will all reference this same TunableKernellnfo object,
ensuring metadata consistency without duplication. At the end of this stage, the state contains
a fully annotated TunableKernel but lacks any tests or tuning results.

Stage 2: Test Generation The workflow then transitions to the Test Generation Phase.
The state from Stage 1 is passed to a TestingStrategy component. The responsibility of this
component is to generate a set of KernelTest objects. Each KernelTest defines a specific test

17

case with concrete input data, expected output, and problem size. These tests are crucial
for verifying the correctness of all subsequent kernel transformations. The generated tests are
added to the workflow's state, which is then passed to the final stage.

Stage 3: Transformation and Tuning The final major stage is the Kernel Transforma-
tion and Tuning Phase, managed by the selected TuningStrategy. This stage operates as an
iterative loop. In each iteration, the TuningStrategy applies a transformation to the current
TunableKernel and discovers new tuning parameters. The transformed kernel is then compiled
and evaluated against the test cases generated in Stage 2 to ensure correctness and measure
performance. The results are used to update the state, which may include a new TunableKernel
instance with the transformed code and its measured execution time.

Upon completion of the workflow, the final state yields the two primary artifacts: the best-
performing, verified kernel code and the set of final tuning parameters that produced it.

4.2 Testing strategy

A testing strategy generates tests. As described in Section [2.5] most sophisticated testing
techniques will not work. What is needed is a regression testing method that would ensure
that the output stays the same for all inputs of the kernel between code transformations. This
means that a test for our purposes should describe an input and an output pair. The input and
output pairs will also be used for performance evaluation purposes. This is done by comparing
the execution time of the kernel for a specific input. This means that the time to execute
the input for a kernel should be large enough to be able to see the execution time difference,
in most cases in a scale of a few million elements. Generating such large input and output
data directly by an LLM is impractical and even impossible due to context length and costs.
Therefore, a test is generated using Python code. Figure [10] shows an example code that is
expected to be generated by an LLM for a simple add kernel. This code will be placed in a
Python template and executed in a separate thread, and the input is then extracted by the
main thread. After that, the input is passed to the original kernel to generate the output. The
kernel is timed while it is generating the output. If the time to generate the output is too
small, it cannot be used as a benchmark because the GPU will be underutilized. On the other
hand, if the time to generate the output is too large, it would take a lot of time to run the
parameter tuning. For this purpose, a minimum and maximum duration of a test can be set,
as well as the data size of the test. If the test time or the data size exceeds these bounds, the
LLM will be prompted to adjust the input size accordingly.

size = 10000000

np.random.randn(size) .astype(np.float32)
np.random.randn(size) .astype(np.float32)
np.zeros_like(a)

np.int32(size)

B o ooe

input_data = [c, a, b, nl]

Figure 10: Example code that is expected to be generated by test generation strategy
By default, the current strategy generates 3 such tests by executing the LLM-generated Python

18

code 3 times without any sophisticated techniques. This number was chosen as a trade-off:
it ensures that multiple test cases are available to reduce the risk of coincidental correctness,
while keeping execution time manageable. However, the framework does allow the user to
change the number of test generated or to create a custom testing strategy implementation,
and provides functionality to aid with test generation.

4.3 Chosen tuning strategies

The built framework provides three strategies for optimizing the kernel: a one-prompt strategy,
the autonomous tuning strategy, and an explicit tuning strategy. These will also be used to
test which of the strategies performs better.

4.3.1 One-Prompt strategy

The one-prompt strategy will use only a single LLM call to generate code, after which the
generated code will be immediately tested and tuned. The prompts for this strategy are either
zero-shot or have a few examples, making it few-shot prompts. This strategy can be seen as
a baseline against the autonomous strategy and the explicit strategy.

4.3.2 Autonomous tuning strategy

As the name suggests, the autonomous tuning strategy is autonomous in the sense that it
creates its own planning. It is inspired by Plan-and-solve idea [WXL723] where an LLM first
generates a plan and then executes the generated plan. This forces LLM to generate a CoT
for each task. Unlike the original Plan-and-Solve, which executes the whole plan in one LLM
call, our method executes each step in a different LLM call. This is done because many steps
generated by LLMs have errors or cannot be applied for tuning.

illustrates the decision tree of the autonomous strategy. Below is a more detailed
explanation of the key components (numbers correspond to the nodes labeled in [Figure 11)):

1. The first step in the strategy is called "planning” as it plans out the steps that will be
taken to optimize the kernel. This step is expected to generate a list of optimization
steps that will improve the performance of the kernel.

2. The second step in the strategy looks at the remaining optimization steps and chooses
the first optimization step in the array as the current optimization step to execute. If
there are no optimization steps remaining, it goes to the re-planning step (6).

3. Often the LLMs return a non-valid optimization step. For example, one of the optimiza-
tion steps might include profiling or changing the host code. These optimization steps
will be skipped as they are considered out of the scope of the framework.

So this step effectively double checks the validity of the optimization step and filters
out the list of planned optimizations. This strategy step is separated from the initial
planning step to increase correctness and accuracy as described in Section [2.4.1]

4. This strategy step will ask LLM whether the current optimization step needs to be broken
down into smaller optimization steps.
If the optimization step is broken down then all new optimization steps are added to the

19

beginning of the optimization steps list. The first step of the optimization steps list is
then chosen as the new current optimization step and we go back to (3) the verification
step in the strategy.

If the current optimization step does not need to be broken down workflow proceeds to
the next step (5).

5. This strategy step generates a new kernel and potentially new tuning parameters by
applying the current optimization step to the kernel. The output of the newly generated
kernel is compared with the output of the previous kernel to ensure the correctness of
the newly generated kernel.

5.1. LLMs can have difficulty adhering to use tuning parameters or often introduce pa-
rameters with similar names (e.g. block_size and BLOCK_SIZE_X). Therefore, there
is a step that "fixes” the tuning parameters to always have the tuning parameter
in code and not introduce parameters with similar names.

6. This strategy step decides whether to attempt new optimization steps or not by analyzing
the kernel that was generated and optimization steps that have been taken thus-far.
If new optimization steps are generated, workflow goes back to step (2).
If no new optimization steps have been generated, the workflow is done.

Note: Breakdown (4) and replan (6) steps are optional and can be disabled before the
execution of the strategy.

When the breakdown step (4) is disabled, the validation step (3) proceeds directly to the
execution step (5) if the step is valid.

Likewise, when the replan step is disabled, "next step” (2) transitions to the end instead of
the replan step if there are no more steps to execute.

4.3.3 Explicit tuning strategy

Explicit tuning strategy has all the optimization steps predefined. An example of a step could
be implementing loop blocking or implementing prefetching. The idea of the explicit tuning
strategy is that it tries as many optimizations as possible and sees which of them improve the
performance of the kernel. Each optimization can be seen as a step in a long sequence of CoT.
The explicit tuning strategy keeps a list of optimization steps that need to be executed and
executes them one after another while keeping track of the best-performing kernel thus far.
Some of the optimization steps can have dependencies between them; this allows for more
granularity and a more navigable CoT (see Section .

For example, instead of asking an LLM to use n elements per thread immediately, it can be
asked to first process 2 elements per thread, and after that it can be asked to process n
elements per thread with a tunable parameter.

Before each step is executed, the necessity of the step is evaluated by asking LLM whether or
not it is a good idea to implement the step. This can be disabled per step if it is deemed that
a step is always necessary.

5 Evaluation

The main goal of the experiments is to find the strategy that produces the most efficient kernel
functions. For this purpose, multiple strategies and multiple settings for these strategies have

20

(1)
Initial
planning

Array of steps is
generated

All steps are done

Done with
current step

(5)
Execute
current step

New steps

Chose next
step

Step does not
need breakdown

Current step

No ne lan
is not valid WP

Step needs
breakdown

(4)
Breakdown
current step

(3)
Validate
current step

Current step
is valid

Figure 11: Overview of autonomous tuning strategy. Numbered nodes correspond to the
detailed strategy steps described in the text above.

been tested.

5.1 Experimental setup

All experiments have been conducted on two clusters provided by LIACS called: "saronite”
and "ceratanium”. Both clusers are identical and have the following specifications: 2 x 32 Intel
Xeon Gold 6438M cores @ 2.20GHz, 512GB of main memory and 4 x NVIDIA L40S GPU (48
GB memory each).

One of the main limitations of this thesis is the cost of running the models. Therefore, a small
selection of handpicked proprietary and open-source models has been chosen from WebDev
Arena created by LMArena [CZS724]. The following models have been chosen:

o OpenAl — gpt-4.1-2025-04-14
» Google — gemini-2.5-pro [Goo25]
o DeepSeek — DeepSeek-R1-0528-UD-TQ1-0 [DA25] by unsloth

« Alibaba Cloud — Qwen3-235B-A22B-fp8-tput [YLY"25] (through Together.ai)

21

All of these models were released in mid-2025 and represent recent state-of-the-art LLMs. They
differ in architecture, size, and licenses. Nonetheless, they provide a diverse set of models for
evaluating LLM-assisted kernel tuning.

DeepSeek R1 was deployed directly onto the cluster, and all other models were used through
an APL. Initially, Qwen3-235B-A22B_UD-Q5_K_XL was deployed directly on the cluster and
not through an API. However, this resulted in poor performance of the model. It would often
result in syntax errors or would end up in degenerative text loop until the context window was
full. This is due to the quantization of the model; therefore, the decision was made to run the
model through the API as the 8fp or 16fp models do not fit into the cluster's VRAM.

The inference for DeepSeek R1 was done on each cluster separately through Llama.cpp as this
is the best way to run GGUF at the moment.

All models were run with a maximum context length of 10000 and their default recommended
inference settings such as temperature, top-p, and top-k. Although leaving these parameters at
default introduces some stochasticity between runs, these configurations represent the vendor-
recommended usage of the models and thus reflect their expected performance in realistic
scenarios. To mitigate stochasticity, each experiment was repeated 3 times, and averaged
results are reported. The models were run with the following structured output types (see
4.1.4):

1. GPT-4.1 — json_schema

2. Gemini-2.5-Pro — JSON output

3. DeepSeek-R1 — Separate request

4. Qwen3-235B-A22B — JSON schema

All experiments were run through SLURM with each job having a maximum of 260 minutes
to run; if the execution was longer than 260 minutes, the job was terminated. API timeout
was set to 15 minutes for each request; such a high timeout was set because some models
take a long time to generate thinking output, with thinking time exceeding 10 minutes on
some occasions. Initially, Qwen3-235B-A22B was run with hybrid mode structured output (see
Section but most experiments hit the SLURM time wall, therefore, it was decided to run
Qwen3-235B-A22B with JSON schema mode instead. This significantly reduced the execution
time of Qwen3-235B-A22B.

5.1.1 Evaluated kernels

Experiments were conducted on two sets of kernels, which were deliberately left unoptimized
to observe how the LLMs would perform the optimization. The first list contains four "simple”
kernels that are small general-purpose kernels that are commonly used, the selected kernels
are matrixAdd, matrixMultiply, matrixTranspose and sigmoidActivation

The second list contains four "longer” kernels that are a bit more nuanced and are more special-
ized compared to "simple” kernels. The list consists of the following kernels: assign _clusters,
mandelbrot_kernel, game of life and verlet_integration.

The idea is that LLMs have seen the "simple” kernels more often than the "longer” kernels, and
thus might have better performance for the "simple” kernels. Moreover, the "simple” kernels
are much simpler and should be easier to tune. Both lists were generated synthetically by LLMs
and checked manually. Both "simple” and "longer” kernels can be found in the Appendixes

and [A2] respectively.

22

5.1.2 Kernel performance measurement

To evaluate the performance of each generated kernel, the mean execution time has been
chosen for the evaluation of the generated kernels. This metric provides a measurement to
compare the kernels with each other.

To better understand the performance characteristics of the naive kernels and establish a base-
line for potential improvement, the memory bandwidth and arithmetic intensity were measured
on the naive version of the kernels.

It was not possible to measure these metrics through NVIDIA's Nsight Compute CLI as the
security settings of the cluster do not allow for root access that is needed to profile CUDA
binaries. Therefore, these metrics have been manually derived by running the kernels directly
on the cluster and measuring their execution times using the following formulas: GB/s = %ﬁf‘:
and TFLOP/s = Fl'a?fss where s is the measured execution time in seconds. The maximum
possible memory bandwidth claimed for Nvidia L40S is 864 GB/s and the claimed peak FP32
throughput is 91.6 TFLOP/s.

Table 1] shows the measured memory bandwidth in GB/s and the arithmetic intensity in
TFLOP/s. Four of the tested kernels were near theoretical maximum memory bandwidth
namely; matrixAdd, sigmoidActivation, verlet_integration and game of _life. At the
same time, none of the kernels were arithmetically bound. This indicates that the kernels that
are near memory bandwidth bound will not get as much performance gain as the ones that

are note bound. However, some slight performance gains should theoretically be possible.

Kernel Problem size Achieved BW Achieved FP32

(GB/s, % of peak) (TFLOP/s, % of peak)
Matrix Addition 16384 x 16384 665.92 (77.1%) 0.06 (0.1%)
Matrix Multiply M=16384, K=4096, N=8192 [4.12, 19278.82]* 4.82 (5.3%)
Matrix Transpose 32768 x 16384 352.41 (40.8%) Not meaningful (no FLOPs)
Sigmoid Activation — n = 1.5 x 10° 666.32 (77.1%) Not meaningful (special ops)
K-means Assignment 32M pts, 128 clust., 32 dims [10.84, 2691.93]* 1.01 (1.1%)
Mandelbrot 32768 x 16384, 2000 iters 42.10 (4.9%) Not meaningful (iter-dependent)
Game of Life 32768 x 16384 [645.62, 3228.08]* Not meaningful (logic ops)
Verlet Integration 100M particles 641.44 (74.2%) 0.26 (0.3%)

Table 1: Memory bandwidth and arithmetic intensity of the naive CUDA kernels on an
NVIDIA L40S.

*For some kernels, bandwidth is shown as a range ‘[optimistic, pessimistic]. The optimistic value assumes
perfect data reuse in cache (reading data only once), while the pessimistic value assumes no cache reuse.
The true performance lies between these bounds. Percentages over 100% reflect this pessimistic byte
count.

5.1.3 Evaluating the tuning strategies

Before executing the main experiment, it was helpful to assess the importance of the optional
parameters of the tuning strategies. Namely, the breaking down of a step and the replanning
step for the autonomous tuning strategy. And the step evaluation of explicit tuning strategy.
It might turn out that they are redundant and do not improve or even hurt the performance.
For this purpose a smaller scale experiment has been conducted on four hand-selected ker-
nels: matrixAdd and matrixMultiply (see Section [A.I), as well as modelbrot and verlet

23

_integration (see Section . These experiments were carried out using ChatGPT 4.1,
DeepSeek-R1-0528, and Qwen3-235B-A22B. Each configuration has been repeated three times
to try to mitigate stochasticity. The number of repetitions was limited to three due to the
high cost of running the models. For the same reason, Gemini-2.5-Pro was excluded from this
experiment as it is significantly more expensive than other used models.

For the autonomous tuning strategy, the following configurations of the autonomous tuning
strategy have been used:

1. Step breakdown on, replanning on
2. Step breakdown off, replanning on
3. Step breakdown on, replanning off
4. Step breakdown off, replanning off

Replanning was set to be a maximum of 3 replans, and step breakdown was set to be a max-
imum of 1 breakdown per step.

For the explicit tuning strategy, an experiment was conducted that would look at how often
LLMs would choose to skip or include steps. This experiment was conducted because of an
observation that was made during testing the framework to which certain LLMs would consis-
tently answer only true or only false depending on the strictness of the prompt.

5.1.4 Main experiment

There are three different strategies that have been tested; the one-prompt strategy, the au-
tonomous strategy, and the explicit strategy. These three strategies were compared against
baseline, where baseline is the original CUDA kernel without any optimizations. The perfor-
mance of each kernel was measured by taking the average execution time of a kernel through
7 iterations. Each strategy has been evaluated 3 times with a different LLM for each kernel.

6 Results

This section will provide a summary of all the experiments conducted. A more detailed overview

of the results can be found in [Appendix B]

It should be noted that for all experiments conducted in all kernels, a speedup of 0.5% was
measured even when there was no change to the code or tuning parameters. This is most likely
due to the reuse of the L2 cache at the GPU level, although operating system-level caching
or other forms of caching may also contribute. This is a problem that cannot easily be solved
without adding a significant amount of overhead to the transformation time.

6.1 Tuning strategies settings evaluation

Before conducting the main experiments, it was necessary to determine the optimal configura-
tion for each tuning strategy. This subsection details the preliminary evaluation performed to
identify the settings that offer the best trade-off between performance gain and transformation
time. The analysis begins with exploration of various configurations of the autonomous tuning

24

strategy, followed by an examination of LLM's ability to determine whether a tuning step is
necessary that will be used in the explicit tuning strategy.

6.1.1 Autonomous tuning strategy

The results of different configurations of the autonomous tuning strategy are detailed in
[ble 2| [Table 3}, and [Table 4] for GPT-4.1, DeepSeek-R1-0528, and Qwen3-235B-A22B, respec-
tively. The tables show the average performance gain and the average transformation time for
each combination of step breakdown and replanning settings.

For GPT 4.1, the base settings without breakdown and without replanning resulted in an
average of 4.22 4 4.22 performance gain that took 252 4 38 seconds on average to transform
the kernel. Replanning on average increased the performance gain with a minimal increase in
transformation time. At the same time, breaking down the steps significantly increased the
average transformation time while not providing much if any performance gain.

Settings Avg Performance Gain | Avg Transformation Time
(T)rue (F)alse (percent) (seconds)
Breakdown: F, Replan: F 4.22 +£4.22 252 £+ 38
Breakdown: F, Replan: T 6.58 £ 7.73 266 £ 90
Breakdown: T, Replan: F 1.96 £1.24 658 + 343
Breakdown: T, Replan: T 7.23 +6.06 721 £ 321

Table 2: Performance and transformation time of Autonomous Tuning Strategy settings
for GPT-4.1 averaged across all test kernels tested.

For DeepSeek-R1-0528 the breakdown of the steps and the replanning of the steps had a
negative impact on the performance of the kernels and an increase in transformation time.
This is most likely due to the fact that DeepSeek-R1-0528 is a thinking model. Moreover, with
both breakdown and replanning enabled, DeepSeek-R1-0528 would sometimes hit the SLURM
time wall that was set to 260 minutes.

Settings Avg Performance Gain | Avg Transformation Time
(T)rue (F)alse (percent) (seconds)
Breakdown: F, Replan: F 6.72 £ 11.37 5942 4+ 1307
Breakdown: F, Replan: T 4.61 +6.54 6964 + 1800
Breakdown: T, Replan: F 5.65 = 5.55 9467 £ 3940
Breakdown: T, Replan: T 0.91£1.02 9853 + 4887

Table 3: Performance and transformation time of Autonomous Tuning Strategy settings
for DeepSeek-R1-0528 averaged across all test kernels tested.

For Qwen3-235B-A22B both breakdown and replanning had a positive impact on the per-
formance of the kernel. In particular, the replanning step had the most positive impact on
performance. The combination of step breakdown and replanning both set to true had the
highest performance gain. At the same time, this configuration increased the average trans-
formation time more than six fold compared to the next-best configuration and led to a lot of
SLURM timeouts.

25

Settings Avg Performance Gain | Avg Transformation Time

(T)rue (F)alse (percent) (seconds)
Breakdown: F, Replan: F 3.75 4+ 3.99 567 £ 262
Breakdown: F, Replan: T 12.51 £ 18.70 1919 £+ 1012
Breakdown: T, Replan: F 7.65 +8.24 2486 + 1855
Breakdown: T, Replan: T 19.50 £ 17.79 11636 £ 3797

Table 4: Performance and transformation time of Autonomous Tuning Strategy settings
for Qwen3-235B-A22B averaged across all test kernels tested.

It is important to note that the standard deviation was high, indicating a high variety in
performance gain; this will be discussed later in Section [6.2]

In summary, replanning slightly increases the transformation time for GPT-4.1 and DeepSeek-
R1 and by a factor of 3.4x to 4.7x for Qwen3-235B-A22B depending on whether step breakdown
was enabled. Nonetheless, replanning was highly effective for GPT-4.1 and Qwen3-235B-A22B
in terms of performance gain. In contrast, step breakdown sometimes increased the perfor-
mance but sometimes made it worse while increasing transformation time multiple fold.

6.1.2 Explicit tuning strategy

shows how LLMs answered to the question "Is tuning step necessary?” for the
explicit tuning strategy (see Section . It might seem like the answers from DeepSeek-R1
and GPT-4.1 are random, as the "yes" / "no” ratio is around 1.0. But on a closer look the
consistency of the answers for the same question is > 70%, which shows that the answers
were not random.

Qwen3-235B-A22B, on the other hand, shows a higher bias towards answering "yes" compared
to DeepSeek-R1 and GPT-4.1. This confirms that some models do indeed have a higher bias
towards the same answer for slightly different questions. However, it is not 100% "yes” or
100% "no". This validation step is therefore a meaningful guardrail, preventing the frame-
work from blindly applying every possible optimization or never applying any optimization at
all. This makes the explicit strategy more intelligent than a simple hard-coded sequence of
transformations.

6.2 Main experiment

From the previous experiment, the following settings have been chosen for autonomous tuning
strategy: step breakdown set to false and replanning set to true for GPT-4.1, Qwen3-235B-
A22B and Gemini-2.5-Pro. For DeepSeek-R1 both the breakdown of steps and the replanning
were set to false. The choice to disable step breakdown for Gemini-2.5-Pro was made due to the
high cost of enabling the breakdown. At the same time, replanning showed high effectiveness
with little overhead for two out of three models tested; therefore, it was kept enabled.

shows a detailed overview of the performance gain per kernel for each strategy and
LLM. The exact numbers and transformation times can be found in Appendix [B.2]

On average, the autonomous tuning strategy had the highest performance gain of 9.82 +
21.10% followed by the explicit tuning strategy with 5.67 & 12.50% followed by the one-
prompt strategy with 1.39 &+ 7.78%.

Some kernels had a high performance gain, while others had near zero performance gain.

26

"Is tuning step necessary?" Yes/No Ratio by LLM

3.0 1

2.5 1

N
o
1

Ratio (Yes / No)
-
"

=
o
1

0.5 1

0.0 -

DeepSeek-R1 GPT-4.1 Qwen3-235B-A22B

Figure 12: How often LLMs answer to question ”Is tuning step necessary” with yes and
with no.

All LLMs could optimize the matrixMultiply kernel to get better performance with at least one
of the strategies. This has two reasons; first, matrix multiplication is one of the most used
kernels to teach CUDA optimizations and, therefore, is probably often included in the training
set of LLMs. The second reason is that matrix multiplication benefits the most from block
size tuning. In fact, all models successfully tuned the block size. More advanced optimizations
were also observed; for instance, Qwen3-235B-A22B implemented prefetching in one of the
runs while Gemini-2.5-Pro achieved a speedup through tiling in one run and vectorized memory
operations by casting the global memory pointers to float4 in an other run.

The second best kernel that could be optimized by most LLMs was assign_clusters. All suc-
cessful optimizations for assign_clusters included some form of prefetching or coalescing global
memory access. What is noteworthy is that GPT-4.1 did this optimization consistently across
all runs for assign_clusters kernel.

Beyond these more common successes, Gemini-2.5-Pro was the only model capable of opti-
mizing the mandelbrot and matrixTranspose kernels. Mandelbrot kernel was speeded up by
Cardioid and period-2 Bulb checking optimizations in two of the three autonomous tuning
strategy runs. And matrixTranspose was speedup using tiling for both one-prompt and au-
tonomous strategies with nearly identical code.

The near-zero performance gain for matrixAdd, sigmoidActivation, verlet_integration
and game_of _life kernels could be as a result of these kernels being close to the maximum
memory bandwidth.

A recurring and critical observation across all experiments was that the standard deviation
was high across all experiments, often in the same magnitude as the mean. It implies that a
user cannot expect a successful optimization on every attempt; a single run might yield no
improvement, while another might produce a significant speedup. This variance could partially

27

Mean Performance Gain per Kernel

Il DeepSeek-R1

Model

Im GPT-4.1 B Gemini-2.5-Pro

9 I Qwen3-235B-A22B
£ Kernel: assign_clusters Kernel: game_of life Kernel: mandelbrot
©
©}
v 75 1
% 60 b
45 1
£
5 30 b
Tt 15 b
g O T = T i| =
c X X S X X 23 X X o
3 O(QQ <§O 6‘00 O@Q S ¢ @0\) O&Q §\\O (000
s ,Q(Q;\' (\o ,Q& (</+ (\o gﬂ (&\- QO
(\0 &0 O(\e &O OQQ/ &0
9 © A ks ¥
<
£ Kernel: matrixAdd Kernel: matrixMultiply Kernel: matrixTranspose
©
O
o 75 A .
% 60 A b
45 - -
g 30 - m
O
T 15 . I
()
a 0 = T T T
c X X o X X) X X S
8 o‘(\Q Q&&\ 6‘0\\, o&Q Q\\C &0\) o&Q Q © 6‘0\)
s 9& <</+ (\o Qﬁ <</+ (\o QL <</+ (\0
OQQ/ &0 OQ \.)@ 0(\ 0&0
3 ks A A
=
£ Kernel: sigmoidActivation Kernel: verlet_integration
©
©}
v 75 A
% 60
45 +
£
5 30 A
T 15
g o T T T T T i T
c X X S X N S
8 o((\Q Q\\O @00 O@Q Q\\O ((\o\)
= & <" S 13 <" O
N N4 IS <9
) v}} (@) v?

Figure 13: Mean Performance Gain by Kernel (averaged across three runs)

be eliminated by changing LLM's parameters, such as temperature and top-k. This would make
LLMs less stochastic and more deterministic; however, this is not necessarily positive for LLM's
ability to find unique solutions, as it might cause the model to repeatedly generate a common
but suboptimal solution, missing opportunities for more creative and impactful optimizations.

6.3 Discussion

Restrictions are an essential part of kernel tuning. Even though the method for choosing
restrictions was very simple, it was highly effective for the kernels that needed it. However, it

28

does have some small issues.

The first issue is that LLMs would try to use sizeof (float) function even though the prompt
said not to use it. However, this would often be resolved in the retry after LLM received the
error message.

The second is that most of the restrictions were useless, for example, it would often gen-
erate restriction block_size_r <= 1024 while block_size_x = {32,64,128,256,512}. While
this does not have an impact on the execution time of the kernel, it could have an impact on
the transformation time if there is a significant amount of constraints that need to be resolved.

Another essential part of kernel tuning is test generation. Like discussed in previous sections,
no sophisticated test generation strategy has been created for the framework. It was uncertain
whether this would be sufficient enough to generate comprehensive tests. However, for the
tested kernels, the chosen test generation strategy was sophisticated enough to generate tests
with high accuracy while not letting through any obvious bugs in the newly generated code.
This is explained by the fact that it is sufficient to check the output of the generated kernel
against the newly generated kernel for the same input.

7 Conclusion

This thesis presents a robust LLM-driven framework designed to automate the tuning and
optimization of naive CUDA kernels into auto-tunable optimized CUDA code.

Three tuning strategies were created and tested against each other: autonomous tuning strat-
egy, explicit tuning strategy, and one-prompt tuning strategy.

The autonomous tuning strategy, which first creates a plan and executes it, showed the highest
ability to increase kernel performance. For the autonomous tuning strategy, replanning can be
costly in terms of time and compute, but crucial to increase performance. Breaking down of
a step into even smaller steps does not always result in better performance but increases the
cost several-fold.

Some LLMs do have a slight bias towards "yes” or "no” when asked whether they find a tuning
step necessary; this however does not seem to be an issue when transforming the kernel.

No single LLM is universally superior; each LLM's performance is kernel-dependent, for ex-
ample, GPT 4.1 could consistently increase the performance of assign_clusters kernel while
Gemini-2.5-Pro was the only model that succeeded optimizing mandelbrot and matrixTrans-
pose kernels.

However, LLMs are inherently nondeterministic, even kernels that had a speedup could not
get the speedup consistently.

At the same time, tasks such as test creation, finding problem size, finding output variables,
and creating restrictions were highly reliable and had a near 100% success rate with retries
enabled for the tested kernels.

To conclude, LLMs are not yet autonomous HPC experts and lack consistency for CUDA code
generation, but they can serve as an initial step in automating common, straightforward tasks
such as test input and output generation or standard optimizations, including tuning block
size, implementing loop unrolling, implementing tiling.

29

8 Further research and development

While this work successfully demonstrates the feasibility of the approach, several avenues for
future work could enhance its capabilities. This section will provide some information about
some ideas that were out of scope for this thesis and some other ideas that can be improved
upon but have not been implemented for this thesis for various reasons.

8.1 Grid divisor

Grid divisor is a tuning parameter used to dynamically determine the size of the grid (i.e.,
the number of blocks) based on the problem size. Grid divisor has not been implemented into
the framework. The main reason being the complexity it adds to the prompt or the workflow.
Additionally, from a small test run, the LLMs sometimes had trouble understanding what a
grid divisor is in terms of auto-tuning.

8.2 Kernel recompilation

With the current implementation, when the kernel is being tested, it is recompiled each time
before the test. This is not needed, as the kernel stays the same and only the input of the
kernel changes.

Depending on the number of tests and the complexity of the kernel, this compilation time
can add up. What could be done instead is to compile the kernel once and run all tests for
that kernel. To implement this, it would mean either changing the internals of Kernel Tuner
or compiling and tuning the kernel manually without a framework. Therefore, this was not
implemented as it was not a bottleneck.

8.3 Fully autonomous tuning strategy

The current autonomous strategy does not choose when to tune and test the kernel, it is done
after each successful code transformation. The main reason for this architecture is that, at the
start of the writing of the thesis, LLMs were not natively trained with tool usage. This meant
that most LLMs hesitated to use the tools or did not use them properly. The best workaround
at the time was to use Plan-and-solve [WXL723] or ReAct [VBK24]. But the field of LLMs
has improved a lot in a short amount of time to the point where LLMs can intelligently choose
when and how to utilize the tools at hand. So, naturally, one of the ideas that could further
be improved upon is the creation of a fully autonomous tuning strategy that would choose
when to tune and test the kernel on its own and maybe even profile the kernel to determine
what optimizations to focus on. The main advantage would be that it could be made aware
of the environment in which it was running and given the full signature of the Kernel Tuner
functions. Subsequently, some overhead might be removed as the LLM could choose when to
tune on its own and not tune after every step.

8.4 More context aware strategy

The current implementation uses a new context window for each new request. For example, the
new kernel code is generated by an LLM in the first context window, tunable parameters are
generated with a second context window, and restrictions are generated with a third context

30

window. This could be done within a single context window. For example, kernel code is
generated in the first prompt of the context window, and subsequently after the kernel code
generation, tunable parameters could be generated in the second prompt of the same context
window, ect. This approach has its theoretical benefits and drawbacks; the benefit is that the
LLM would be more aware of the previous interactions and the final goal. The drawbacks
are the costs and a bigger context window, possibly making the LLM attention and thus the
accuracy worse. It should therefore not be seen as an inherent improvement but as an idea for
further research.

8.5 Multiple outputs per prompt

In almost all experiments conducted, the standard deviation was high, often higher than the
mean. This shows that there is a high variance in performance and accuracy in LLMs. This
comes from the fact that LLMs inherently are non-deterministic. This, however, is not a bad
thing as it could be exploited to generate multiple outputs, testing all the outputs, and choosing
the best performing one for the next step. This could even be done in parallel, eliminating
overhead.

However, this approach would increase the cost multiple fold depending on the number of
outputs generated.

31

References

[CCN24]

[CRHZ25]

[CZN*22]

[CZS+24]

[DA25]

[DAKC23]

[DCE*23)]

[Goo25]

[GVLT+24]

[HV23]

[Kum24]

[Lan24]

KuanChao Chu, Yi-Pei Chen, and Hideki Nakayama. A better llm evaluator
for text generation: The impact of prompt output sequencing and optimiza-
tion. Findings of the Association for Computational Linguistics: ACL 2024, 2024.
arXiv:2406.09972v1; accepted to ACL Findings 2024, updated metadata as of
May 25, 2025.

Bowen Cui, Tejas Ramesh, Oscar Hernandez, and Keren Zhou. Do large language
models understand performance optimization?, 2025.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. Codet: Code generation with generated tests, 2022.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos,
Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E.
Gonzalez, and lon Stoica. Chatbot arena: An open platform for evaluating Ilms
by human preference, 2024.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025.

Jean-Baptiste Doderlein, Mathieu Acher, Djamel Eddine Khelladi, and Benoit
Combemale. Piloting copilot and codex: Hot temperature, cold prompts, or black
magic?, 2023.

Xianzhong Ding, Le Chen, Murali Emani, Chunhua Liao, Pei-Hung Lin, Tristan
Vanderbruggen, Zhen Xie, Alberto Cerpa, and Wan Du. Hpc-gpt: Integrating
large language model for high-performance computing. In Proceedings of the SC
'23 Workshops of the International Conference on High Performance Computing,
Network, Storage, and Analysis, SC-W 2023, page 951-960. ACM, November
2023.

Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities, 2025.

William F. Godoy, Pedro Valero-Lara, Keita Teranishi, Prasanna Balaprakash,
and Jeffrey S. Vetter. Large language model evaluation for high-performance
computing software development. Concurrency and Computation: Practice and
Experience, 36(26):€8269, 2024.

Jingxuan He and Martin Vechev. Large language models for code: Security hard-
ening and adversarial testing, 2023.

Harshit Kumar. Matrix multiplication in cuda. https://kharshit.github.io/
blog/2024/06/07/matrix-multiplication-cuda, June 2024. Adapted under
CC BY-NC 4.0.

LangChain. Multi needle in a haystack, 2024.

32

https://kharshit.github.io/blog/2024/06/07/matrix-multiplication-cuda
https://kharshit.github.io/blog/2024/06/07/matrix-multiplication-cuda

[LLL*25]

[LXWZ23]

[LZL*23]

[LZLC24]

[MDD*25]

[NDX*24]

[OGA*25]

[RJS+24]

[RLM+24]

[RRBT08]

[TWT24]

[VBK24]

Zike Li, Mingwei Liu, Anji Li, Kaifeng He, Yanlin Wang, Xin Peng, and Zibin
Zheng. Enhancing the robustness of IIm-generated code: Empirical study and
framework, 2025.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Sys-
tems, volume 36, pages 21558-21572. Curran Associates, Inc., 2023.

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. Acecoder: Utilizing existing
code to enhance code generation, 2023.

Mo Li, Songyang Zhang, Yunxin Liu, and Kai Chen. Needlebench: Can lims do
retrieval and reasoning in 1 million context window?, 2024.

Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Trung Bui, Ryan A.
Rossi, Seunghyun Yoon, and Hinrich Schiitze. Nolima: Long-context evaluation
beyond literal matching, 2025.

Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun Rajaram, and Abhinav
Bhatele. Can large language models write parallel code? In Proceedings of the 33rd
International Symposium on High-Performance Parallel and Distributed Comput-
ing, HPDC '24, page 281-294. ACM, June 2024.

Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher
Ré, and Azalia Mirhoseini. Kernelbench: Can lims write efficient gpu kernels?,
2025.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Mu-
rali Krishna Ramanathan, and Baishakhi Ray. Code-aware prompting: A study of
coverage-guided test generation in regression setting using llm. Proc. ACM Softw.
Eng., 1(FSE), July 2024.

Daniel Ramos, Inés Lynce, Vasco Manquinho, Ruben Martins, and Claire Le Goues.
Batfix: Repairing language model-based transpilation. ACM Trans. Softw. Eng.
Methodol., apr 2024. Just Accepted.

Shane Ryoo, Christopher |. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen-mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded gpu using cuda. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
'08, page 73-82, New York, NY, USA, 2008. Association for Computing Machin-
ery.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung yi Lee, and
Yun-Nung Chen. Let me speak freely? a study on the impact of format restrictions
on performance of large language models, 2024.

Mudit Verma, Siddhant Bhambri, and Subbarao Kambhampati. On the brittle
foundations of react prompting for agentic large language models, 2024.

33

[VW19]

[WHF+23]

[WWS+23]

[WXL*23]

[YCZ+23]

[YLY*25]

[YTP124]

[YXJ*25]

[ZCZ+23]

Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner.
Future Generation Computer Systems, 90:347-358, 2019.

Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C.
Schmidt. Chatgpt prompt patterns for improving code quality, refactoring, re-
quirements elicitation, and software design, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits
reasoning in large language models, 2023.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and
Ee-Peng Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought
reasoning by large language models, 2023.

Ming Yan, Junjie Chen, Jie M. Zhang, Xuejie Cao, Chen Yang, and Mark Harman.
Coco: Testing code generation systems via concretized instructions, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu,
Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou,
Jingren Zhou, Junyang Lin, Kai Dang, Keqgin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yugiong Liu, Zekun Wang, Zeyu Cui,
Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025.

Aidan Z. H. Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel
Kroening. Vert: Verified equivalent rust transpilation with few-shot learning, 2024.

Yijiong Yu, Ma Xiufa, Fang Jianwei, Zhi Xu, Su Guangyao, Wang Jiancheng,
Yongfeng Huang, Zhixiao Qi, Wei Wang, Weifeng Liu, Ran Chen, and Ji Pei.
Long-context language models are not good at all retrieval tasks without sufficient
steps, 2025.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan,
Yi Mao, Jian-Guang Lou, and Weizhu Chen. Repocoder: Repository-level code
completion through iterative retrieval and generation, 2023.

34

Appendices

A Tested kernels

A.1 Simple kernels

// 1. Matriz Addition
__global__ void matrixAdd(float *A, float *B, float *C, int width, int height) {
int col = threadIdx.x + blockDim.x * blockIdx.x;
int row = threadIdx.y + blockDim.y * blockIdx.y;
if (col < width && row < height) {
int idx = row * width + col;
Clidx] = A[idx] + B[idx];

// 2. Matriz Multiplication
__global__ void matrixMultiply(float *A, float *B, float *C, int A_width, int A_height, int B_width) {
int col = threadIdx.x + blockDim.x * blockIdx.x;
int row = threadIdx.y + blockDim.y * blockIdx.y;
if (col < B_width && row < A_height) {
float sum = O;
for (int k = 0; k < A_width; ++k) {
sum += A[row * A_width + k] * B[k * B_width + coll;
}

Clrow * B_width + col] = sum;

// 3. Matriz Transpose
__global__ void matrixTranspose(float *in, float *out, int width, int height) {
int col = threadIdx.x + blockDim.x * blockIdx.x;
int row = threadIdx.y + blockDim.y * blockIdx.y;
if (col < width && row < height) {
int idx_in = row * width + col;
int idx_out = col * height + row;
out [idx_out] = in[idx_in];

// 4. Element-wise Sigmoid Function
__global__ void sigmoidActivation(float *in, float *out, int n) {
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx < n) {
out[idx] = 1.0f / (1.0f + expf(-in[idx]));
}

35

A.2 Longer kernels

// 1. K-Means Clustering Assignment Step

__global__ void assign_clusters(
const float *data_points, // Data points (num_points x dims)
const float *centroids, // Centroids (num_clusters = dims)
int xlabels, // Output labels (num_points)
int num_points,
int num_clusters,
int dims) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < num_points) {
float min_dist = INFINITY;

int min_idx = -1;
for (int ¢ = 0; c < num_clusters; ++c) {
float dist = 0.0f;

for (int d = 0; d < dims; ++d) {
float diff = data_points[idx * dims + d] - centroids[c * dims + dl;
dist += diff * diff;

}

if (dist < min_dist) {
min_dist = dist;
min_idx = c;

}

}

labels[idx] = min_idx;

// 2. Mandelbrot Set Fractal Generation
__global__ void mandelbrot(
int *output, int width, int height,
float x_min, float x_max, float y_min, float y_max, int max_iter) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;

if (idx < width &% idy < height) {
float x0 = x_min + idx * (x_max - x_min) / width;
float yO = y_min + idy * (y_max - y_min) / height;
float x = 0.0f;
float y = 0.0f;
int iter = 0;

while (x * x + y * y <= 4.0f && iter < max_iter) {
float x_temp = x * x - y * y + x0;
y = 2.0f x x xy + y0;
X = x_temp;
iter++;
}
output[idy * width + idx] = iter;

// 3. Cellular Automaton (Game of Life)
__global__ void game_of_life(
const int *current_grid, int #*next_grid,
int width, int height) {

int x blockIdx.x * blockDim.x + threadldx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

if (x < width &% y < height) {
int count = 0;
for (int dx = -1; dx <=1; ++dx) {
for (int dy = -1; dy <=1; ++dy) {
if (dx == 0 && dy == 0) continue;
int nx = (x + dx + width) % width;
int ny = (y + dy + height) 7 height;

36

count += current_grid[ny * width + nx];

}

}

int state = current_grid[y * width + x];

if (state == 1 && (count < 2 || count > 3)) {
next_grid[y * width + x] = 0;

} else if (state == 0 && count == 3) {
next_grid[y * width + x] = 1;

} else {
next_grid[y * width + x] = state;

}

// 4. Particle Simulation with Verlet Integration

__global__ void verlet_integration(
float3 *positions, float3 *velocities, float3 *accelerations,
float dt, int num_particles) {
int idx = blockIdx.x * blockDim.x + threadldx.x;

if (idx < num_particles) {
float3 pos = positions[idx];
float3 vel = velocities[idx];
float3 acc = accelerations[idx];

pos.x += vel.x * dt + 0.5f * acc.x * dt * dt;
pos. vel.y * dt + 0.5f * acc.y * dt * dt;
pos.z += vel.z * dt + 0.5f * acc.z * dt * dt;

<
+
I

vel.x += acc.x * dt;
vel.y += acc.y * dt;
vel.z += acc.z * dt;

positions[idx] = pos;
velocities[idx] = vel;

B Results

B.1 Tuning the tuning strategies

37

Impact of Settings on Performance Gain

Kernel
mm mandelbrot
40 - matrixAdd
B matrixMultiply
’@ mmm verlet_integration
<
£
© 30
(G}
]
o
c
©
£20
S
t
o]
a
10

Breakdown: False Breakdown: False Breakdown: True Breakdown: True
Replan: False Replan: True Replan: False Replan: True

Settings

(a) Autonomous tuning strategy performance
gain ChatGPT 4.1 with different settings

Impact of Settings on Performance Gain

40 Kernel
mmm mandelbrot
. matrixAdd
35 B matrixMultiply
I = verlet_integration
30
£
©
025
[
g
S 20
£
515
‘t
&
10
5

Breakdown: False Breakdown: False Breakdown: True Breakdown: True
Replan: False Replan: True Replan: False Replan: True

Settings

(c) Autonomous tuning strategy performance
gain DeepSeek-R1-0528 with different settings

Impact of Settings on Performance Gain

Kernel
70 mmm mandelbrot
. matrixAdd
60 =W matrixMultiply
;\3 E verlet_integration
c 50
‘©
O
40
[v]
c
©
€30
(<]
€
&20
10

0 Breakdown: False Breakdown: False Breakdown: True Breakdown: True
Replan: False Replan: True Replan: False Replan: True

Settings

(e) Autonomous tuning strategy performance
gain Qwen3-235B-A22B with different settings

Impact of Settings on Transformation Time

Kernel
1400| mmm mandelbrot
- matrixAdd
1200{ ™= matrixMultiply
m mmm verlet_integration
2
© 1000
o
Q
2
o 800
£
=
o 600
£
c
2 400
200

Breakdown: FalseBreakdown: FalseBreakdown: True Breakdown: True
Replan: False Replan: True Replan: False Replan: True

Settings

(b) Autonomous tuning strategy transforma-
tion time ChatGPT 4.1 with different settings

Impact of Settings on Transformation Time

17500 Kernel
mm mandelbrot
15000, ™™ matrixAdd
B matrixMultiply
m Bl verlet_integration
B 12500
o
Iv]
& 10000
g
= 7500
o
£
c 5000
2
2500
0

Breakdown: FalseBreakdown: FalseBreakdown: True Breakdown: True
Replan: False Replan: True Replan: False Replan: True

Settings
(d) Autonomous tuning strategy transforma-
tion time DeepSeek-R1-0528 with different
settings

Impact of Settings on Transformation Time

Kernel
16000| mmm mandelbrot
s matrixAdd
14000 mmm matrixMultiply
m = verlet_integration
212000
<]
|93
& 10000
o
£ 8000
=
o
£ 6000
S
F 4000
2000

Breakdown: FalseBreakdown: FalseBreakdown: True Breakdown: True
Replan: False Replan: True Replan: False Replan: True

Settings

(f) Autonomous tuning strategy transforma-
tion time Qwen3-235B-A22B with different
settings

Figure 14: Autonomous tuning strategy with different settings and different LLM models

B.2 Main experiments

Table 5: Aggregated Results for DeepSeek-R1

Kernel Strategy Mean Gain (%) Std Gain (%) Mean Time (s) Std Time (s)
assign_clusters Autonomous 0.279568 0.484225 3556.733471 4419.612258
assign_clusters Explicit 0.315399 0.146543 6378.461056 1176.486835
assign_clusters One-Prompt 22.044356 38.181944 1523.187860 744.704308
game_of life Autonomous 0.235147 0.407287 7504.285347 1705.648829
game_of _life Explicit 0.217583 0.228529 6735.184510 4682.661644
game _of_life One-Prompt 0.000000 0.000000 1124101291 637.139091
mandelbrot Autonomous 0.000000 0.000000 1832.275001 120.867794
mandelbrot Explicit 1.961112 2.174973 4342997849 2365.577918
mandelbrot One-Prompt 0.000000 0.000000 2077.394579 237.167338
matrixAdd Autonomous 3.797245 4.252472 2163.660222 1297.699680
matrixAdd Explicit 0.192768 0.333884 4663.707581 3626.968040
matrixAdd One-Prompt 0.115671 0.200349 1715.489979 1016.726230
matrixMultiply Autonomous 0.000000 0.000000 1433.725701 264.988450
matrixMultiply Explicit 31.242265 23.283803 11508.723905 3094.056814
matrixMultiply One-Prompt 0.000000 0.000000 1991.529615 468.057958
matrixTranspose Autonomous 0.000000 0.000000 258.819719 3.123933
matrixTranspose Explicit 0.000000 0.000000 258.214715 4.426743
matrixTranspose ~ One-Prompt 0.000000 0.000000 256.030666 1.375975
sigmoidActivation Autonomous 0.273059 0.388099 3101.619619 1313.121549
sigmoidActivation Explicit 0.074354 0.128785 4182.230334 778.414701
sigmoidActivation One-Prompt 0.000000 0.000000 1396.966711 879.493077
verletintegration ~ Autonomous 0.602489 1.043542 4317.669410 1988.222310
verletintegration Explicit 0.799958 1.385567 4538.189099 4701.925657
verletintegration ~ One-Prompt 0.000000 0.000000 1592.374564 104.872715
Table 6: Aggregated Results for GPT-4.1
Kernel Strategy Mean Gain (%) Std Gain (%) Mean Time (s) Std Time (s)
assign_clusters Autonomous 82.214962 2.253149 570.584819 146.354120
assign_clusters Explicit 8.492476 14.230472 170.388118 49.613140
assign_clusters One-Prompt 0.000000 0.000000 62.071927 4.309950
game _of_life Autonomous 0.926509 0.605984 486.273998 224.553352
game _of life Explicit 0.674148 0.590703 345.080341 89.400404
game _of life One-Prompt 0.000000 0.000000 101.820469 26.524840
mandelbrot Autonomous 1.614902 1.577308 453.183856 195.858135
mandelbrot Explicit 1.348476 0.935226 278.267788 249.655749
mandelbrot One-Prompt 0.000000 0.000000 42.981476 4.198659
matrixAdd Autonomous 5.625702 1.606441 475.678119 288.649559
matrixAdd Explicit 7.537059 0.132157 523.676393 485.092864
matrixAdd One-Prompt 2.295309 2.023325 136.582887 92.427575
matrixMultiply Autonomous 34.211754 28.417527 251.377483 48.689702
matrixMultiply Explicit 16.435990 25.644090 327.621312 13.425517
matrixMultiply One-Prompt 0.000000 0.000000 74.059945 45.583129

39

(continued)

Kernel Strategy Mean Gain (%) Std Gain (%) Mean Time (s) Std Time (s)
matrixTranspose ~ Autonomous 0.312058 0.540501 538.218976 341.592016
matrixTranspose Explicit 0.837029 0.103545 765.409431 137.801622
matrixTranspose ~ One-Prompt 0.000000 0.000000 96.817200 21.674325
sigmoidActivation Autonomous 0.570279 0.798098 222.814414 97.863986
sigmoidActivation Explicit 0.277235 0.480185 164.888735 37.836029
sigmoidActivation One-Prompt 0.209729 0.363261 94.804297 44.241062
verletIntegration ~ Autonomous 0.148150 0.031920 296.460523 75.789721
verletIntegration Explicit 0.782440 1.273720 66.491377 32.488909
verletIntegration ~ One-Prompt 0.000000 0.000000 50.483573 10.461688
Table 7: Aggregated Results for Gemini-2.5-Pro
Kernel Strategy Mean Gain (%) Std Gain (%) Mean Time (s) Std Time (s)
assign_clusters Autonomous 1.069626 1.852647 2524511306 1658.830870
assign_clusters Explicit 1.980288 1.646518 1604.381334 200.129660
assign_clusters One-Prompt 0.000000 0.000000 395.907880 205.458764
game _of _life Autonomous 0.167636 0.224115 1692.468731 407.127153
game_of _life Explicit 0.653606 0.594297 3412.463488 1834.312674
game _of_life One-Prompt 2.633667 0.405741 319.546674 91.964855
mandelbrot Autonomous 48.682679 40.461352 1641.358905 1144.379009
mandelbrot Explicit 1.227757 1.288697 736.390801 282.091449
mandelbrot One-Prompt 1.902900 1.721659 332.744497 139.141658
matrixAdd Autonomous 2.458515 2.184966 1934.051095 1379.009273
matrixAdd Explicit 6.279494 0.962079 636.142024 252.513581
matrixAdd One-Prompt 1.317891 2.282655 444267184 166.441315
matrixMultiply Autonomous 33.656960 23.656926 3451.310371 1985.490147
matrixMultiply Explicit 33.989001 25.689162 2142964458 277.010955
matrixMultiply One-Prompt 0.000000 0.000000 480.361210 62.322367
matrixTranspose Autonomous 27.937517 23.777062 2002.734115 1072.755064
matrixTranspose Explicit 0.243963 0.422556 1678.397802 480.900974
matrixTranspose ~ One-Prompt 12.780950 22.137255 444 426174 177.627470
sigmoidActivation Autonomous 1.215179 0.187501 3563.343401 3317.702919
sigmoidActivation Explicit 0.711584 0.727987 523.246186 69.317180
sigmoidActivation One-Prompt 0.000000 0.000000 379.185996 05.391158
verletintegration ~ Autonomous 0.112893 0.087530 2057.317174 414.322675
verletintegration Explicit 4. 548874 2.113432 567.882943 73.384343
verletIntegration ~ One-Prompt 0.000000 0.000000 425.209929 46.457839
Table 8: Aggregated Results for Qwen3-235B-A22B
Kernel Strategy Mean Gain (%) Std Gain (%) Mean Time (s) Std Time (s)
assign_clusters Autonomous 17.453584 29.801164 1133.472087 878.288873

40

(continued)

Kernel Strategy Mean Gain (%) Std Gain (%) Mean Time (s) Std Time (s)
assign_clusters Explicit 6.994705 11.326297 476.818959 421.318361
assign_clusters One-Prompt 0.000000 0.000000 88.188580 10.170280
game _of _life Autonomous 2.927852 1.269779 3074.160420 540.222623
game_of_life Explicit 1.243072 1.150984 716.289460 709.813217
game _of life One-Prompt 0.000000 0.000000 111.528347 15.212996
mandelbrot Autonomous 4.325296 4.446058 1710.819749 880.003685
mandelbrot Explicit 0.201489 0.261381 787.927830 458.258855
mandelbrot One-Prompt 1.184812 2.052155 162.907589 147.249406
matrixAdd Autonomous 3.645648 3.004099 1013.542307 434.535239
matrixAdd Explicit 7.733767 0.075712 865.591007 305.159081
matrixAdd One-Prompt 0.000000 0.000000 92.411257 12.192384
matrixMultiply Autonomous 39.238767 3.485601 1277.991449 597.179345
matrixMultiply Explicit 42.249553 0.328153 512.439309 84.900355
matrixMultiply One-Prompt 0.000000 0.000000 78.648626 65.372053
matrixTranspose ~ Autonomous 0.000000 0.000000 1094.358655 269.410454
matrixTranspose Explicit 0.000000 0.000000 427.191536 31.819225
matrixTranspose ~ One-Prompt 0.000000 0.000000 102.138937 5.666874
sigmoidActivation Autonomous 0.013971 0.024198 665.211632 56.748214
sigmoidActivation Explicit 0.895762 0.920193 365.223592 262.524793
sigmoidActivation One-Prompt 0.000000 0.000000 88.317037 8.651471
verletintegration ~ Autonomous 0.412190 0.390706 1140.291782 383.758958
verletIntegration Explicit 1.358510 1.505074 478.593559 155.323905
verletIntegration ~ One-Prompt 0.000000 0.000000 69.870552 7.808637

41

	Introduction
	Motivation
	Proposed solution
	Findings
	Thesis layout

	Background
	Kernel functions
	GPU programming
	Kernel tuning and auto tuning
	LLMs and CoT
	Manual CoT and context size accuracy

	Regression testing

	Related work
	LLMs for writing GPU kernels
	LLMs in High Performance Computing
	Code generation with LLMs
	Transpilation

	Methodology
	Framework design
	Used frameworks
	Context management
	Fault management
	Helper functionality
	Framework architecture

	Testing strategy
	Chosen tuning strategies
	One-Prompt strategy
	Autonomous tuning strategy
	Explicit tuning strategy

	Evaluation
	Experimental setup
	Evaluated kernels
	Kernel performance measurement
	Evaluating the tuning strategies
	Main experiment

	Results
	Tuning strategies settings evaluation
	Autonomous tuning strategy
	Explicit tuning strategy

	Main experiment
	Discussion

	Conclusion
	Further research and development
	Grid divisor
	Kernel recompilation
	Fully autonomous tuning strategy
	More context aware strategy
	Multiple outputs per prompt

	References
	Appendices
	Tested kernels
	Simple kernels
	Longer kernels

	Results
	Tuning the tuning strategies
	Main experiments

