
Master Computer Science

Adapting and Applying Evolutionary Algorithms

to variable length Representations of Optimization

Problems

Name: Matthijs de Zeeuw
Student ID: s2705028

Date: 23-04-2025

Specialisation: Artificial intelligence

1st supervisor: Prof.dr. T.H.W. Bäck
2nd supervisor: Dr. A.V. Kononova

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Traditional optimization problems often assume a fixed dimensionality for the solu-
tion space, which limits their applicability to real-world scenarios. There, the optimal
structure and length of solution vectors are often not predetermined. variable-length
optimization algorithms address this issue by allowing both the structure and length of
potential solutions to be dynamically optimized. In this work, we adapt certain evolu-
tionary algorithms to deal with variable-length problem representations. First, existing
work on variable length optimization is reviewed. Then, adaptations of classical binary
evolutionary algorithms are introduced that can deal with variable length search spaces.
To evaluate these algorithms, a variable length version of the OneMax problem is intro-
duced. Additionally, a popular continuous evolutionary algorithm, CMA-ES, is extended
to a variable length form (VL-CMA-ES) and tested on a simple continuous optimiza-
tion problem called FunctionMatch. The experiments that were done show that these
adaptions are able to solve the test problems.

2

Contents

1 Introduction 1

2 Related work 1
2.1 Metameric representation . 2
2.2 Selection operators . 2

2.2.1 Constraints . 3
2.2.2 Parsimony pressure . 3
2.2.3 Tournament selection . 3
2.2.4 Niche selection . 3

2.3 Crossover operators . 4
2.3.1 Cut-and-splice crossover . 4
2.3.2 Spatial crossover . 5
2.3.3 Synapsing variable length Crossover 6
2.3.4 Similarity crossover . 8

2.4 Mutation . 8

3 Test problems 8
3.1 Variable-Length OneMax . 10
3.2 FunctionMatch . 11

4 Fixed-dimensional pseudo-boolean and continuous algorithms 11
4.1 Greedy Hill Climber . 12
4.2 Randomized Local Search . 12
4.3 p1 ` λq EA with static mutation rates . 13
4.4 fGA . 13
4.5 Two-rate p1 ` λq EA with adaptive mutation rates 14
4.6 p1 ` λq EAnorm . 15
4.7 p1 ` λq EAvar . 15
4.8 p1 ` λq EAlog´n . 16
4.9 Self-adjusting p1 ` pλ, λqq GA . 16
4.10 vGA . 17
4.11 CMA-ES . 17

5 Variable-dimensional algorithms 19
5.1 Variable-Length greedy Hill Climber . 19
5.2 Variable-Length Random Local Search . 20
5.3 Various Variable-Length Evolutionary Algorithms 20
5.4 Variable-Length self-adjusting Genetic Algorithm 20
5.5 VL-vGA . 21
5.6 VL-CMA-ES . 21

6 Experiments 23
6.1 Comparing VL-gHC and VL-LRS . 23

6.1.1 Results . 23
6.2 Comparing VL-EA algorithms . 24

6.2.1 Results . 24

6.3 Comparing VL-saGA and VL-vGA . 26
6.3.1 Results . 28

6.4 Comparing VL-vGA with VL-vGA Mutation Only 28
6.4.1 Results . 31

6.5 VL-CMA-ES . 31
6.5.1 Results . 33

7 Conclusions 33

1 Introduction

Most optimization problems assume that the dimensionality of the solution space is fixed.
However, for some real-world problems, the optimal length of the solution vector cannot be
known a priori. In such cases, variable length problem representations can be useful. In variable
length optimization problems, the length of potential solutions can change. The variable length
optimization problem can be defined as follows:

minimize fpx, nq,

subject to xi,L ď xi ď xi,U , i “ 1, ..., n,

1 ď n ď nmax

(1)

Where U and B are the lower and upper bounds for the variable xi, and nmin and nmax are
the minimum and maximum dimensionality of the search space.
The aim of this project is to investigate how evolutionary algorithms can be applied to variable-
length representations of optimization problems. We limit our investigation to single-objective
optimization and focus on classic evolutionary algorithms. Section 2 provides an overview of
previous work on variable-length optimization. In Section 3, the variable length version of the
OneMax problem (VL-OneMax) is introduced and the variable length continuous Function-
Match problem is described. Section 4 gives a description of various classical binary evolu-
tionary algorithms, as described in [2], and of a popular continuous evolutionary optimization
algorithm (CMA-ES). In Section 5 the variable length adaptations of all algorithms described
in the previous section are presented. In the experimental section 6, the binary evolutionary
algorithms are tested on the VL-OneMax problem. For testing VL-CMA-ES, a simple contin-
uous optimization problem called FunctionMatch is used. Section 7 concludes the paper and
outlines directions for future research.

2 Related work

For Evolutionary Algorithms (EAs), solutions are typically represented as vectors of variables
of a fixed length. These vectors are often referred to as genomes or chromosomes. Research
into variable-length problem optimization has been ongoing for about six decades. One of
the first experiments on a variable-length problem was conducted by Schwefel [11]. The aim
was to find an optimal two-phased nozzle design using an evolutionary strategy. The nozzle
designs consisted of a sequence of cone-shaped segments with varying diameters. Mutation
was effected by making small random adjustments to the nozzle length and diameters of the
segments. This involved manually replacing segments with others of different diameters and
adding new segments. By repeatedly mutating the initial nozzle design and evaluating its
performance, the optimal shape and number of segments could be found. Since then, various
methods for dealing with variable-length problem representations have been proposed. These
include methods that allow some variables to remain unexpressed. Sprave and Rolf [12] used a
problem representation that encodes each solution as two vectors: one with the values of each
variable and one encoding which of the variables are active. The advantage of this approach
is that the solution-vectors are fixed-length, allowing the use of existing length-preserving
operators.
variable length methods have been used to tackle multi-objective problems. Yu [14] used the
Non-dominated Sorting Genetic Algorithm (NSGA-II) with variable length chromosomes for

1

vehicle maneuver planning, employing a variation of the one-point crossover operator that
chooses separate crossover points for each parent. This way, the crossover operator produces
offspring of different lengths from the parents. The mutation step consists of three operations:
gene mutation, gene deletion, and gene copying. Each variable in the solutions is duplicated,
deleted, or mutated with a certain probability. The algorithm also uses a reduction operator
that removes redundant variables from solutions (variables that do not have a significant effect
on the solution’s fitness), which saves computational resources.
Much of the more recent work on variable length optimization problems focuses on so-called
metameric representations. This term is used in biology to refer to organisms whose
anatomy consists of many similar but not identical segments [9].

2.1 Metameric representation

The metameric representation is inspired by metamerism in nature. That is to say: a metameric
solution-vector consists of multiple metavariables. The wind farm problem, as described in [9],
is an example of such a metameric problem representation. The aim is to place a number of
wind turbines within a finite area, in such a way that the total amount of energy produced
is optimized. The optimal number of wind turbines is not known in advance and can vary
during the optimization process, making this a variable-length problem. A solution-vector for
the wind farm problem consists of a number of metavariables representing the wind turbines.
Each metavariable consists of a number of design variables. In the case of the wind farm
problem, there are two design variables: the x- and y-coordinate denoting its location. For
a given metameric problem the metavariables all have the same design variables. Only the
values of the design variables differ between metavariables. A metameric solution vector can
be defined as follows: a solution vector x consists of n metavariables, each of which contains
v design variables such that xi,j represents the jth design variable of the ith metavariable.
The number of metavariables in a solution can vary, but the number of design variables within
a metavariable is fixed [8]. Ryerkerk et al. [9] provide an overview of previous research on
metameric optimization problems.

2.2 Selection operators

Many variable length Evolutionary Algorithms (VL-EAs) use the same selection operators com-
monly found in fixed-length evolutionary algorithms. However, there are downsides to using
these types of operator for variable-length optimization. One problem is uncontrolled bloat.
This occurs when the solution-length within the population increases rapidly without a cor-
responding rise in population-fitness. Evaluating unnecessarily long solution vectors wastes
computational resources [9]. Another problem is premature convergence. In variable-length
optimization, the aim is not only to find the optimal solution but also to find the optimal
solution length. A lack of length diversity within a population can lead to a premature con-
vergence of the algorithm. Fixed-length selection operators select individuals based on their
fitness. The length of an individual does not influence it’s chances of being selected. However,
taking solution-length into account during the selection step can be helpful in dealing with the
problems of uncontrolled bloat and premature convergence in variable length problems. There
are different ways of dealing with these problems [8].

2

2.2.1 Constraints

One simple way of dealing with the problem of uncontrolled bloat is to apply constraints to
the solution-length. However, this only limits the effect of uncontrolled bloat. The solution-
length may still increase uncontrollably, resulting in a population consisting almost entirely of
solutions of maximum length [9].

2.2.2 Parsimony pressure

Another way of preventing uncontrolled bloat is to apply parsimony pressure. This works
by adding a term to the evaluation function that penalizes longer solutions. When applying
parsimony pressure, bloated solutions are less likely to be selected because shorter solutions
with a similar fitness value will be penalized less [9].

2.2.3 Tournament selection

Length diversity within the population can be ensured in multiple ways. One way is to use
tournament selection with small tournament sizes [9]. Small tournament sizes mean less se-
lection pressure. This will increase the chances of weaker individuals being selected, but it will
also result in more length diversity in the population, which is the desired effect.

2.2.4 Niche selection

Niche selection works by performing local selection on subsets of the population. A subset
or niche consists of solutions of similar lengths. The local selection is done by applying a
selection operator (e.g. tournament selection) to each niche. Within each niche, a subset of
individuals is selected. These subsets are then combined to form the new generation. The
number of individuals to be selected for each niche is determined by the population size and
the number of niches (e.g. for 10 niches and a population size of 100, 10 individuals must
be selected for each niche). If the number of individuals within a niche is smaller then the
number that needs to be selected at each niche, all individuals in that niche are selected. This
means that, after combining all the subsets, the size of the new population PG`1 might be
smaller than the required population-size. In such cases, the local selection operator is ap-
plied to the entire population PG until the size of PG`1 matches the required population-size.
Niches are created for only a subset of each possible solution length within the population. A
window function determines which lengths are considered. This results in a selection window
W, where W “ tLlb, Llb ` 1, . . . , Lubu. There are different ways of determining the upper
and lower bounds Llb and Lub.

Fixed-length window This assumes that the optimal solution length l˚ is already known,
i.e., Llb “ Lub “ l˚. Since only one niche is created, no niche selection occurs. Since, for
variable-length problems the optimal solution-length is not known a priori, this option is not
useful for variable-length problems.
Static window The static window requires some knowledge of the optimal solution length.
Niches are created for a range of lengths, i.e., Llb ă Lub. Niches ar created for each length
l, with Llb ă l ă Lub. Using a static window ensures that the new population PG`1 contains
individuals of all lengths within the specified window.
Moving window When using a moving window, niches are created for all lengths close to

3

the length of the best solution l˚G in a generation G. Here Llb “ l˚G ´ w
2
and Lub “ l˚G ` w

2
.

The width w of the window is defined by the user. No prior knowledge of the optimal solution
length is required.

Biased window The biased window determines the lower and upper bounds based on l˚G
and a bias factor BG.

Llb “ min
`

l˚G ´ w{2 ` BG, l
˚
G

˘

Lub “ max
`

l˚G ` w{2 ` BG, l
˚
G

˘ (2)

BG is the bias term. When BG increases, the window widens. BG “ 0 at initialization. It is
updated for each new generation according to:

BG “ l˚G ´ l˚G´1 ` BG´1 ¨ expp´λ
a

BG´1q (3)

Here, BG´1 is the value of B for the previous generation. The exponential part of the equation
ensures that BG moves to l˚G ´ l˚G´1. The decay rate is determined by the decay factor λ and
BG´1 [9].

2.3 Crossover operators

It is not absolutely necessary for variable-length algorithms to use length-varying crossover
operators. Some algorithms use traditional fixed-length crossover operators and rely on the
mutation operator to change solution lengths [13, 7]. There are also methods that do not use
crossover at all [5, 10]. An issue that needs to be considered is the disruptive effect of crossover
operators. For many evolutionary algorithms, the success of the crossover operator depends
on its ability to preserve so-called building blocks present in the parent solutions. A building
block is a subsequence that positively affects the fitness of a solution. Disruption occurs when
the crossover operator fails to preserve these building blocks [9]. Various crossover operators
have been proposed:

2.3.1 Cut-and-splice crossover

A simple variable length crossover method is cut-and-splice crossover. It is a n-point crossover
method where the crossover points do not have to match between the parents. The number of
metavariables exchanged can also differ for each parent, so the lengths of both children might
differ from the lengths of either parent solution. Cut-and-splice crossover can be very disruptive
when used in metameric problem representations, as it exchanges metavariables based on their
location in the solution vector and the crossover points [9].

4

(a)

(b)

Figure 1: Example of a cut-and-splice crossover operation. A random point is selected on
each parent. The parents are split up and recombined to form the offspring

2.3.2 Spatial crossover

Spatial crossover operates largely in the phenotype space. To decide which variables will be
exchanged in the crossover operation, the spatial crossover method maps all solutions onto a
lower-dimensional space. The split is made by dividing the space into two parts via a random
line, in the 2-dimensional case, or a n´1 dimensional plane. Here n is the number of dimensions.
In this way, the spatial relationships between the variables are preserved [1]. Spatial crossover is
useful when the spatial location strongly influences the fitness function. For example, consider
the metameric representation of the wind farm problem, where the aim is to create a layout
of a wind farm with an unknown number of wind turbines. Each turbine is represented as a
metavariable with an x- and y-coordinate [9]. The split can be made on the basis of the x-
and y-coordinates, preserving the spatial relationship between the different wind turbines.

5

(a)

(b)

Figure 2: Example of a spatial crossover operation. The red, dotted line represents the
separating line.

2.3.3 Synapsing variable length Crossover

Synapsing variable length Crossover (SVLC) tries to find similar sequences within the parent
solutions. It was proposed by Hutt and Warwick [4]. First, the operator identifies similar
sequences of values. An adapted version of the Needleman-Wunsch algorithm is used to do
this. It works as follows. The algorithm locates the Longest Common Subsequence (LCS) in
both parents. Splits are made at the beginning and end of the LCS on both parents. This
results in two new pairs: the parts of the parent solutions that came before the LCS and the
parts that came after the LCS. These can then be treated as two new problems. By repeating
this process (until the remaining parts are smaller than a predetermined minimum length),
a set of common subsequences is found. The variables within the identified regions are then
linked or ’synapsed’ together. Then, the parent solutions are realigned in such a way that
the parts that are linked are opposite to each other. Crossover points are randomly chosen
within the synapsed regions. This way, only the differences between the two parent solutions
are exchanged [8]. Figure 3 gives an example of such an operation.

6

(a)

(b)

(c)

(d)

(e)

Figure 3: Example of a SVLC crossover operation: The Longest Common Subsequences
between the two parents are identified (3a) The variables within the identified regions are
linked or ’synapsed’ together (3b) and realigned in such a way that the common subse-
quences are opposite each other (3c). Crossover points, denoted by the red, dotted lines,
are then chosen within the ’synapsed’ regions (3d). The variables between the crossover
points are swapped out to create the children (3e). This way the common sequences are
kept intact. The letters denote variables with the same values.

7

2.3.4 Similarity crossover

Like SVLC, similarity crossover tries to preserve common subsequences in the parent solutions.
However, unlike SVLC similarity crossover looks at the metavariables. It uses a dissimilarity
measure to identify pairs of similar metavariables in both parent solutions [8]. The dissimilarity
between two metavariables M1 and M2 (one from each parent) is given by:

D “
1

n

n
ÿ

i“1

|M1,i ´ M2,i|

Li

(4)

Where M1,i and M2,i are the values of the ith design variable of the metavariables M1 and
M2. Li represents the length of the domain of the ith design variable. D “ 0 means that the
metavariables are identical [8]. Similarity crossover begins by identifying similar metavariables
in both parents. Then, each metavariable in one parent is linked to its most similar counterpart
in the other parent and vice versa (see figure 4a). In most cases, this results in pairs of two
metavariables being mutually linked. However, in some instances, two or more metavariables
in one parent are linked to the same metavariable in the other parent. In the third step,
the metavariables are separated into groups of one or more metavariables based on the links
between them. This way, both solutions are segmented into subsets, where each subset of
metavariables is linked to a subset of similar metavariables in the other solution (figure 4b).
The number of subsets is the same for both parents, but the subsets do not always contain
the same number of metavariables. A random number of these paired subsets will then be
swapped between the parents to form the offspring (figure 4c). The advantage over spatial
crossover is that similarity crossover can be applied to all metameric problem definitions and
that the user does not have to choose which metavariables need to be considered. On the
other hand, similarity crossover is more likely to be disruptive than spatial crossover [9].

2.4 Mutation

There are various mutation operators that can be applied. These include design variable mu-
tation, metavariable-addition, metavariable deletion, and metavariable permutation. The op-
erators can be used together where each operator is applied to the solution with a certain
probability. [9]

3 Test problems

As described in Section 2, most work on variable-length optimization focuses on metameric
problem representations. Consequently, it is difficult to find any binary optimization problem
that is not metameric. We decided to adapt the OneMax problem since it is a simple test
problem well suited for evaluating adapted classic binary evolutionary algorithms. For the
continuous case, we chose to adapt the CMA-ES algorithm. To test whether the concept
works, we chose a simple continuous optimization function: the FunctionMatch problem. In
this section, we propose the adapted version of OneMax and describe the FunctionMatch
problem.

8

(a)

(b)

(c)

Figure 4: Example of a similarity crossover operation. 4a: each metavariable is linked to its
most similar counterpart in the other parent-solution. The solid lines represent the links
of each metavariable in parent1 to its most similar counterpart in parent2. The dotted
lines represent the links from metavariables in parent2 to their most similar counterpart
in parent1. These links do not have to mutual (e.g. both x1,1 and x1,4 are linked to x2,1

but x2,1 is linked only to x1,1. 4b: metavariables form subgroups based on the links. 4c: a
some of the subgroups are swapped out between the parents.

9

3.1 Variable-Length OneMax

The OneMax problem is a simple binary optimization problem that is defined as follows [2]:

fpxq “

n
ÿ

i“1

xi, x P t1, 0u
n (5)

(a) l˚ “ 50 (b) l˚ “ 20

Figure 5: VL-OneMax with lmin “ 1 and lmax “ 100.

To test binary variable length optimization algorithms we need a version of the OneMax
problem that takes two inputs: the solution x and the length of the solution lpxq. We will call
this new problem VL-OneMax. The VL-OneMax function should return 1 if lpxq equals the
target length l˚ and xi “ 1 for i “ 1, . . . , lpxq. First we define dpx,x˚q to be the distance
between lpxq and l˚.

dpx,x˚
q “ |l˚ ´ lpxq| (6)

The VL-OneMax function as a product of two terms:

fpxq “ wx ¨ sx (7)

The second term, sx, is defined similar to the original OneMax problem (equation 5), but is
multiplied by 1{n. This way 0 ď sx ď 1. The equation for sx is:

sx “
1

n

n
ÿ

i“1

xi, x P t1, 0u
n (8)

The first term in equation 7 is defined as follows:

wx “

$

’

&

’

%

1 ´
dpx,x˚q

l˚´lmin
if lpxq ď l˚

1 ´
dpx,x˚q

lmax´l˚
if lpxq ą l˚

(9)

Here lmin and lmax are the minimum and maximum solution length allowed. If dpx,x˚q “ 0
the weight wx “ 1. If lpxq “ lmin or lpxq “ lmax the weight will be wx “ 0.

10

3.2 FunctionMatch

(a) 5 variables (b) 9 variables

Figure 6: Example of a solution and a target function for Function-Match. The target-
function is: fpxq “ sin p2 ¨ xq. The figure on the left shows a solution with a length of 5
variables, the figure on the right shows a solution of 9 variables long. A longer solution
would allow for an even more accurate approximation of the target function.

The function-match problem consists of approximating the shape of a target function over
a certain interval. An approximation of the target function consists of several points with
various y-coordinates, equally distributed over the interval [4]. These points are connected
by lines. The number of points can vary. The higher the number of points, the more finely
grained the resulting approximation. The target function fpxq is specified within the range
xmin ď x ď xmax. The points in a solution are distributed equally along this range (e.g., for
a solution of length 4, xmin “ 0 and xmax “ 9, the x-coordinates would be 0, 3, 6, 9). The
optimization involves finding the optimal y-coordinates for each point and the optimal number
of points. Thus, a solution x consists of a list of variables, where each variable represents the
y-coordinate of a point. In this work, the target-function used is fpxq “ a ¨ sin pb ¨ xq where a
is the amplitude of the sine wave, b is the frequency, and x is between 0 and 2π.

4 Fixed-dimensional pseudo-boolean and continuous

algorithms

In this section, various binary evolutionary algorithms are described, taken from the IOHprofiler
[2] benchmarking platform, which provides implementations of a number of classic optimization
algorithms. In Section 5, we explain how these classic optimization algorithms can be adapted
to deal with variable-length optimization problems.

11

4.1 Greedy Hill Climber

Algorithm 1 greedy Hill Climber [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq.
for t =1,2,3,... do

d Ð 1 ` pt mod nq

x˚ Ð x
x˚
d Ð 1 ´ x˚

d

Evaluate fpx˚q

if fpx˚q ě fpxq then
x Ð x˚

end if
end for

The greedy Hill-Climber algorithm (gHC) works by flipping one bit each iteration. It starts
by initializing x Ð t0, 1un, where n is the solution-length. The algorithm goes through the
solution one bit at a time from left to right. Each iteration, one bit is flipped to create a
candidate-solution x˚. The candidate solution x˚ is compared to the old solution x. If x˚ has
a higher fitness-value than x, x is replaced by x˚ [2].

4.2 Randomized Local Search

Algorithm 2 Randomized Local Search [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq.
for t =1,2,3,... do

x˚ Ð flip1px
˚q

Evaluate fpx˚q

if fpx˚q ě fpxq then
x Ð x˚

end if
end for

Random Localized Search (RLS) is similar to the greedy Hill Climber algorithm, as it also flips
one bit in each iteration. However, the bit-flip mutation is no longer applied to each variable
in turn. Instead, in each iteration, the bit to be flipped is selected randomly [2].

12

4.3 p1 ` λq EA with static mutation rates

Algorithm 3 (1+λ) Evolutionary Algorithm with static mutation rates [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq.
for t =1,2,3,... do

for i = 1,...,λ do
Sample lpiq „ Binpn, 1

n
q

Create ypiq Ð fliplpiqpxq, and evaluate fpypiqq

end for
x˚ Ð argmaxtfpyp1q, ..., fpypλqu

if f˚ ě fpxq then
x Ð x˚

end if
end for

The p1 ` λq Evolutionary Algorithm with static mutation rates ((1+λ)EASMR) optimizes the
solution x by mutating and evaluating λ new solutions y0, . . . ,yλ. The best new solution is
selected as the candidate solution y˚. If y˚ has a higher fitness value than x, the old solution
is discarded and x Ð y˚ [2]. For the mutation step, the algorithm uses the flipl-operator, as
given in 4.

Algorithm 4 fliplpxq operation [2]

Input x P t0, 1un

l P N
Randomly select l bits ti1, ..., ilu P N to be mutated
y Ð x
for i0, ..., il do yi Ð 1 ´ xi

The flipl operator randomly selects l bits and flips them. EASMR samples the mutation
strength l for each iteration from a binomial distribution [2].

4.4 fGA

Algorithm 5 fast Genetic Algorithm [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq.
for t =1,2,3,... do

for i = 1,...,λ do
Sample lpiq „ Dβ

n{2

Create ypiq Ð fliplpiqpxq, and evaluate fpypiqq

end for
x˚ Ð argmaxtfpyp1q, ..., fpypλqu

if f˚ ě fpxq then
x Ð x˚

end if
end for

13

The fast Genetic Algorithm (fGA) also utilizes the flipl operator to generate λ new solutions.
The mutation strength is sampled from the power law Dβ

n{2, where n represents the length of

the solution. Doer et al. [2] used β “ 1.5. This means that large mutation strengths are used
frequently, while small mutation strengths are still used reasonably often [2].

4.5 Two-rate p1 ` λq EA with adaptive mutation rates

Algorithm 6 The two-rate p1 ` λq EA with adaptive mutation rates [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq.
for t =1,2,3,... do

for i = 1,...,λ{2 do
Sample lpiq „ Biną0pn, r{p2nqq

Create ypiq Ð fliplpiqpxq, and evaluate fpypiqq

end for
for i “ λ{2 ` 1,...,λ do

Sample lpiq „ Biną0pn, 2r{nq

Create ypiq Ð fliplpiqpxq, and evaluate fpypiqq

end for
x˚ Ð argmaxtfpyp1q, ..., fpypλqu

if f˚ ě fpxq then
x Ð x˚

end if
if x˚ has been created with mutation rate r{2 then s Ð 3{4 else s Ð 1{4
Sample q P [0,1] uniformly at random.
if q ď s then r Ð max{r{2, 2} else r Ð min{2r, n{4}

end for

The two-rate p1 ` λq EA with adaptive mutation rates uses two different mutation rates to
create new solutions. Half of the offspring are created using a mutation rate of r{2n, while
the other half are created using a mutation rate of 2r{n. The variable r is updated after each
iteration. There are two possible updates: r Ð maxtr{2, 2u and r Ð mint2r, n{4u. Which of
the two updates occurs is decided by a random decision, which is biased toward the mutation
rate that was responsible for creating the best-performing offspring [2].

14

4.6 p1 ` λq EAnorm

Algorithm 7 (1+λ) EAnorm [2]

Sample x P t0, 1un uniformly at random fpxq

for t =1,2,3,... do
for i “ 1, ..., λ do

lpiq „ mintNą0pr, rp1 ´ r{nqq, nu

Create ypiq Ð fliplpiqpxq and evaluate fpypiqq

end for
i Ð mint j | fpypjqq “ maxtfpypkqq | k P rλsuu

r Ð lpiq

if fpypiqq ě fpxq then x Ð ypiq

end for

The (1+λ) EA with normalized mutation rate samples the mutation strength from a normal
distribution with mean r and variance rp1 ´ r{nq. The variable r is updated in each iteration
according to the mutation strength used to create the best-performing offspring [2]. The
pseudocode is provided in 7.

4.7 p1 ` λq EAvar

Algorithm 8 p1 ` λq EAvar [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq

for t “ 1, 2, 3, ... do
for i “ 1, ..., λ do

lpiq „ mintNą0pr, F
crp1 ´ r{nqq, nu

Create ypiq Ð fliplpiqpxq and evaluate fpypiqq

end for
i Ð mint j | fpypjqq “ maxtfpypkqq | k P rλsuu

if r “ lpiq then c Ð c ` 1 else c Ð 0
r Ð lpiq

if fpypiqq ě fpxq then x Ð ypiq

i Ð mint j | fpypjqq “ maxtfpypkqq | k P rλsuu

if r “ lpiq then c Ð c ` 1 else c Ð 0
r Ð lpiq

if fpypiqq ě fpxq then x Ð ypiq

end for

The p1`λq EA with normalized standard bit mutation and controlled variance (p1`λq EAvar)
is similar to EAnorm. However, it adapts not only the mean r but also the variance during the
optimization process [2].

15

4.8 p1 ` λq EAlog´n

Algorithm 9 1+λ EAlog´n [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq

for t “ 1, 2, 3, ... do
for i “ 1, ..., λ do

ppiq “ p1 `
1´p
p

¨ exp p0.22 ¨ N p0, 1qqq´1

lpiq „ biną0pn, ppiqq

Create ypiq Ð fliplpiqpxq and evaluate fpypiqq

end for
i Ð mintj|fpypjqq “maxtfpypkqq|k P rysuu

p Ð ppiq

x˚ Ð argmax tfpyp1qq, ..., fpypλqqu

if fpypiqq ě fpxq then x Ð ypiq

end for

The EAlog´n uses log-normal self-adaptation on the mutation strength [2].

4.9 Self-adjusting p1 ` pλ, λqq GA

Algorithm 10 self-adjusting (1 + pλ, λq) GA [2]

Sample x P t0, 1un uniformly at random and evaluate fpxq

for t =1,2,3,... do
for i “ 1, ..., λ do

lpiq „ biną0pn, λ{nq

Create ypiq Ð fliplpiq(x) and evaluate fpypiqq

x˚ Ð argmaxtfpypiqq, ..., fpypiqqu

end for
for i “ 1, ..., λ do

create ypiq Ð crosscpx, x˚q and evaluate fpypiqq

y˚ Ð argmaxtfpypiqq, ..., fpypiqqu

end for
for i “ 1, ..., λ do

if fpy˚q ą fpxq then x Ð y˚;λ Ð maxtλ{F, 1u

if fpy˚q “ fpxq then x Ð y˚;λ Ð mintλF 1{4, nu

if fpy˚q ă fpxq then λ Ð mintλF 1{4, nu

end for
end for

The self-adjusting (1 + pλ, λq) Genetic Algorithm (saGA) adapts the number of offspring λ
after each iteration based on whether better-performing solutions are found. For the mutation
step the flipl operator is used with mutation strength lpiq „ biną0pn, λ{nq The saGA algorithm
also uses crossover. In the crossover step, λ offspring are created by repeatedly recombining
x and x˚. Here, x˚ is the best solution that was generated during the mutation step. For the
crossover phase, the algorithm uses the biased crossover operator crossc 11.

16

Algorithm 11 crosscpx,x
˚q [2]

y Ð x
Sample l „Biną0pn, cq
select l different positions ti1, ..., ilu P rns

for j P l do yj Ð x˚
j

The crossc operator produces one offspring. First, the original solution x is copied (y Ð x).
Then l positions are randomly selected. For each of these positions, the value is replaced with
the value of x˚. The bias value c determines the probability of each bit being selected for
crossover. The offspring is evaluated, and the best one, y˚, is compared with x. If an improved
offspring has been created, λ is decreased; if not, λ is increased [2].

4.10 vGA

Algorithm 12 ”vanilla” Genetic Algorithm [2]

for i “ 1, ..., µ do
Sample xpiq P t0, 1un uniformly at random

end for
for t =1,2,3,... do

Apply roulette-wheel selection to txp1q, ..., xµu to select µ parent individuals
typ1q, ..., ypµqu

for i “ 1, ..., µ{2 do
with probability pc apply one-point crossover to ypiq and yp2iq at random crossover

point j P rns

end for
for i “ 1, ..., µ do

Sample lpiq „ Binpn, pmq

ypiq Ð fliplpiqpypiqq

Evaluate fpypiqq

end for
for i “ 1, ..., µ do

Replace xpiq by ypiq

end for
end for

The vanilla Genetic Algorithm (vGA) starts with a population of µ individuals. It has a selec-
tion, a crossover and a mutation step. The algorithm uses roulette-wheel selection, allowing
individuals to be selected multiple times. One-point crossover is applied to µ{2 pairs of indi-
viduals. The resulting individuals are then mutated using the flipl-operator 4, where each bit
has a probability of pm “ 2{n of being flipped [2].

4.11 CMA-ES

Lastly, we will consider a popular algorithm for continuous optimization problems. The Covari-
ance Matrix Adaptation Evolutionary Strategy (CMA-ES) samples candidate solutions from
a multivariate normal distribution [6]. The multivariate probability distribution is specified by

17

the mean m and covariance matrix C. During the optimization process, the covariance matrix
and mean of the distribution are adapted in such a way that the sampled solutions become
optimal (see algorithm 13). The algorithm works as follows: First, λ individuals are sampled
from the probability distribution. An individual k of generation g ` 1 is given by:

xg`1
k „ mpgq

` σpgqyk for k “ 1, ..., λ (10)

Wherempgq is the mean of the population at generation g, σpgq is the overall standard deviation
or step size, and yk „ N p0, Cpgqq is the mutation direction sampled from a normal distribution
with zero mean and covariance matrix Cpgq. The variable λ represents the population size [3].
In the selection step, the candidate solutions are ranked based on their fitness scores. The
best µ candidate solutions are selected. The next step is the recombination step. The mean
is updated using the weighted average of the means of the µ best solutions. The mean of the
next generation mpg`1q is given by:

mpg`1q
“ mg

` cm

µ
ÿ

i“1

wipx
pg`1q

i:λ ´ mg
q (11)

Where cm is the learning-rate. The index pi : λq denotes the ith best point, such that
fpxi:λq ď fpxi`1:λq ď, ...,ď fpxλ:λq [3]. In the last step the step-size and the covariance
matrix are adapted. For both updates CMA-ES uses so-called evolution paths. The evolution
paths accumulate search-directions from previous steps in the optimization process [6]. CMA-
ES constructs two separate evolution paths. One, pσ, is used for step-size adaptation, while
the other, pc is used for updating the covariance-matrix. Both are updated each iteration. The
update for pσ is given by:

pσ “ p1 ´ cσqpσ `

b

cσp2 ´ cσqµeffC
´1{2
g

mpg`1q ´ mpgq

σpgq
(12)

Where (1-cσ) and (
a

cσp2 ´ cσqµeff) are normalization terms.

C´1{2
g

mpg`1q ´ mpgq

σpgq
(13)

Represents the direction of the current search-step. µeff is the variance selective sample mass
given by µeff “ p

řµ
i“1w

2
i q´1 [3]. The evolution path pσ exploits correlations between previous

search directions. If most previous search steps were in a similar direction, the step-size is
likely to increase. If there is little correlation among previous search-steps, the step-size tends
to decrease. The adaptation of the covariance matrix is done with both a rank-one and a rank-
µ update. The rank-µ update uses the µ best candidate solutions to estimate the parameters
of Cpg`1q. The rank-µ update is given by:

Cpg`1q
“ p1 ´ cµqCpgq

` cµ

µ
ÿ

i“1

wiy
pg`1q

i:λ ypg`1qJ

i:λ (14)

Where cµ is the learning rate for the rank-µ update of the covariance matrix, and y is the
mutation direction (see 10). The rank-1 update uses the evolution path pc to update the
covariance-matrix. One of the reasons for this is that, for a given mutation direction y, the
outer product yyJ “ ´yp´yqJ. This means that the sign information is lost when calculating

18

the covariance matrix Cpg`1q. To preserve this information, the evolution path pc is used. The
update for pc is given by:

pg`1
c “ p1 ´ ccqp

pgq
c `

b

ccp2 ´ ccqµeff
mpg`1q ´ mpgq

σpgq
(15)

Where cc is the decay-rate [3]. The rank-1 and rank-µ updates are then combined in the
update rule for the covariance matrix C [3]:

Cpg`1q
“ p1 ` c1δphσqq ´ c1 ´ cµ

λ
ÿ

i“1

wiqC ` c1pcp
J
c ` cµ

µ
ÿ

i“1

wiy
pg`1q

i:λ ypg`1qJ

i:λ (16)

Algorithm 13 CMA-ES [3]

Set Parameters
Set parameters λ,wi“1...λcm, cσ, dσ, cc, c1 and cµ [3]

Initialization
pσ “ 0, pc “ 0, C “ I and g “ 0
Choose m P Rn and σ P Rą0

while termination criteria not met do
Sample new population of search points, for k “ 1, .., λ

zk „ N p0, Iq

yk “ BDzk „ N p0, Cq

xk “ m ` σyk „ N pm,σ2Cq

selection and recombination
m Ð m ` cmσ

řµ
i“1wiyi:λ

Step-size control
pσ Ð p1 ´ cmqpσ `

a

cσp2 ´ cσqµeff
mpg`1q´mpgq

σpgq C´ 1
2

σ Ð σ ¨ exp p cσ
dσ

p
∥pσ∥

E∥N p0,Iq∥ ´ 1qq

Covariance-matrix adaption
pc Ð p1 ´ ccq + hc

a

ccp2 ´ cσqµeff
mpg`1q´mpgq

σpgq

w˝
i “ wi ¨ p1 if wi ě 0 else n{∥C´ 1

2yi:λ∥2q
C Ð p1 ` c1δphσq ´ c1 ´ cµ

ř

wiqC ` c1pcp
J
c ` cµ

řλ
i“1w

˝
i yi:λy

J
i:λ

end while

5 Variable-dimensional algorithms

Due to the similarity between some of the algorithms described in Section 4, most of them can
be adapted in the same way. The first thing to consider is the initialization step. Because the
dimensionality is no longer predetermined, it becomes necessary to specify an initial solution
length n. There are different options. n can be initialized as 1

2
pnmax ´ nminq, or it could be

selected randomly from rnmin, nmaxs. In this work, the latter option is used.

5.1 Variable-Length greedy Hill Climber

To adapt the gHC algorithm, the mutation step is changed. Instead of only flipping one bit
in each iteration, the selected bit can now be flipped, copied, or deleted. The variables pdup,

19

pdel, and pm represent the probabilities of a duplication, a deletion, and a bit-flip mutation,
respectively.

5.2 Variable-Length Random Local Search

Since the LRS algorithm uses the flipl-operator (see algorithm 4) with solution strength
l “ 1, it is necessary to adapt this operator. In the case of LRS, where l “ 1, this is quite
straightforward. Two extra options are added (i.e. deleting and duplicating). Based on the
specified probabilities pm, pdup and pdel the randomly selected bit is flipped, duplicated, or
deleted. In the general case where l ě 1, we must consider whether we choose to perform one
type of mutation for all l bits, or decide for each bit separately which type of mutation will
be used. In the latter case, there may be multiple bit-flips, bit-duplications, and bit-deletions
in the same mutation step. The pseudocode for the length-varying version of flipl (VL-flipl) is
given below 14.

Algorithm 14 VL-fliplpxq operation

Input x P t0, 1un

l P N Ź number of bits to be flipped
Randomly select l bits ti1, ..., ilu P N,
y Ð x
for all j P ti1, ..., ilu do

m „ Up0, 1q

if m ă pm then
yj Ð 1 ´ xj

else if m ă pdel then
Delete bit yl.

else if m ă pdup then
Duplicate bit yl.

end if
end for

5.3 Various Variable-Length Evolutionary Algorithms

To adapt fGA, two-rate EA with adaptive mutation rates, EAnorm, EAvar, and EAlog´n, the
only requirement is to replace the flipl operator with the VL-flipl operator 14.

5.4 Variable-Length self-adjusting Genetic Algorithm

saGA can be adapted by replacing the mutation operator with VL-flipl 14. The crossover
operator must also be adapted. It can either be replaced with a length-varying operator (for
this work, cut-and-splice crossover is used) or adapted to handle solutions of unequal lengths
whilst remaining a fixed-length crossover operator. The cut-and-splice operator recombines x
and x˚ by randomly choosing a different crossover point for each solution. This results in two
offspring instead of the one offspring created by the crossc-operator. To deal with this problem,
the cut-and-splice operator was slightly changed. The operator randomly chooses one of the
offspring and returns it, discarding the other.

20

Algorithm 15 cut ´ and ´ splicepx,x˚q

Randomly select crossover point p1 on x and p2 on x˚

y1 Ð xr0 : p1s ` x˚rp2 :s
y2 Ð x˚r0 : p2s ` xrp1 :s

The other option would be to use the original crossc-operator. In that case, the crossc-operator
has to be adapted to account for x and x˚ not being the same length. The number of bits n
from which to sample is set to the length of the smallest solution. This results in the following
operator:

Algorithm 16 VL-crosscpx,x
˚q

y Ð x˚

n Ð min p|x|, |x˚|q

Sample l „Biną0pn, cq
select l different positions ti1, ..., ilu P rns

for j P l do yj Ð x˚
j

In Section 6, we will experiment with both versions.

5.5 VL-vGA

The variable length version of this algorithm uses tournament-selection instead of roulette-
wheel selection. As mentioned in 2.2, tournament-selection with small tournament sizes can
already help to ensure a certain measure of length diversity in the population. The mutation
operator flipl is again replaced by VL-flipl. The crossover method could also be changed to
cut-and-splice crossover. In Section 6.4, both the version using one-point crossover and the
version using cut-and-splice crossover are evaluated.

5.6 VL-CMA-ES

Since the population is sampled from a multivariate distribution, which is determined by the
Covariance Matrix C and the mean µ, duplicating a variable involves expending the Covariance
Matrix and the mean vector. If we want to duplicate the ith variable xi to create x˚

i , we need
to duplicate the corresponding mean and variance. The covariance values are not copied, but
initialized at zero. Deleting a variable is more straightforward. It means deleting the corre-
sponding row and column from the covariance matrix and deleting the corresponding mean
from the mean vector. After a deletion or duplication, a few variables have to be adapted. Con-
stants that depend on the solution-length are re-initialized. The matrices B and D are adapted
by performing eigen-decomposition on the new covariance matrix. The mutation step can be
either the normal mutation, a deletion, or a duplication. The duplication operation is applied
with probability pdup and the deletion with probability pdel. However, should the duplication
and deletion probabilities remain constant? Unlike the VL-vGA algorithm, all solutions in a
population will have the same length.
In VL-vGA the selection-operator can deal with detrimental length changes. Solutions who’s
fitness deteriorated after a change in length will likely not be selected into the next gener-
ation. In VL-CMA-ES, since the dimensionality changes for all solutions at the same time,
the selection-operator cannot influence the dimensionality of the next population in this way.

21

Figure 7: Example of a duplication of the second column and second row of the covariance
matrix. As can be seen, only the variance is copied; all the covariance-values of the new
variable are set to zero.

Figure 8: Example of the deletion of the second column and second row of the covariance
matrix.

Regardless of which solutions are selected the dimensionality of the next population will not
change. The only way of reversing a detrimental change in dimensionality is by another change
in length, determined by the probabilities pdup and pdel. This can prevent the algorithm from
converging, since length variations can occur at any point in the optimization process. It is true
for all VL-EAs, that length changes can occur at any point during optimization, but there the
selection-operator can discard detrimental length changes. When an optimal solution-length
has been found, most length-changes are detrimental and will result in solutions with lower
fitness scores. These solutions will not be selected. This way, unlike VL-CMA-ES, the process
can converge. There are different ways to deal with this problem. One option is, to let the
duplication probability pdup and the deletion probability pdel decay over time. This way, the
search for the correct solution length is essentially a random search during the first part of
the optimization-process. Another option is to adjust the probabilities pdup and pdel based on
the resulting fitness-values. If, after a duplication, the fitness of the highest-ranked individ-
ual is higher than that of the highest-ranked individual from the previous generation, pdup is
increased. If the fitness value is lower, the fitness value is decreased. Combining these two
approaches would result in the following update:

pdup “

$

’

&

’

%

ppdup ` aq ¨ pdecay if Lpx1q ą Lpxq

ppdup ´ aq ¨ pdecay if Lpx1q ă Lpxq

(17)

Where L is the loss that is to be minimized. For the FunctionMatch-problem this is the Mean
Squared Error (MSE). A similar update is used for adapting the deletion probability pdel.

22

6 Experiments

6.1 Comparing VL-gHC and VL-LRS

In the first experiment, the variable-length version of the genetic Hill Climber algorithm is
compared to Variable-Length Localized Random Search. The initial solution length linit is ran-
domly sampled between the minimum and maximum lengths plmin, lmaxq. For all experiments,
lmin “ 1 and lmax “ 1000.

Figure 9: The VL-gHC algorithm and the VL-LRS algorithm run on the VL-OneMax
problem with target length l˚ “ 500. All algorithms have been run with an evaluation
budget of 10.000. For each algorithm, the results have been averaged over 100 random
seeds. The standard-deviation is represented by the opaque areas. Both algorithms use
the same mutation, duplication, and deletion probabilities: pdup “ pdel “ pm “ 1{3.

6.1.1 Results

Both algorithms consistently find the optimal solution. VL-gHC slightly outperforms VL-LRS.
The only difference between the two algorithms is that VL-LRS chooses the bit to be mutated
randomly, whereas VL-gHC goes through the solution bit by bit. For this optimization problem,
that might be an advantage. However, there appears to be no significant performance difference
between the two algorithms.

23

Figure 10: VL-TwoRate-EA and VL-EASMR and VL-fGA on the VL-OneMax problem
using target length l˚ “ 500. All algorithms have been run with an evaluation budget of
10,000. For each algorithm, the results have been averaged over 100 random seeds. The
standard-deviation is represented by the opaque areas. All algorithms use λ “ 10 and the
same mutation, duplication, and deletion probabilities: pdup “ pdel “ pm “ 1{3.

6.2 Comparing VL-EA algorithms

Next, we consider VL-(1+λq EAnorm, VL-(1+λq EAlog-n, and VL-(1+λq EAvar. All algorithms
run with λ “ 10. The initial length linit is again sampled at random.

6.2.1 Results

Figure 10 shows the performance of VL-EASMR, VL-TwoRate-EA, and VL-fGA. The Algorithm
that performed best is VL-TwoRate-EA. Unlike VL-EA-SMR, it does not have one standard
mutation rate but can switch between two different mutation rates. This probably enables
the algorithm to learn faster than the other two on the VL-OneMax problem. VL-EA-SMR
requires more function evaluations to find the optimal solution. This could be because it uses a
standard mutation rate. Initially, a larger mutation rate can be beneficial as it allows for greater
exploration. As mentioned in section 4.4, using the power law with β “ 1.5 results in higher
mutation strengths occurring more often than smaller mutation strengths. VL-fGA outperforms
VL-EA-SMR but does not perform as well as VL-TwoRate-EA. As observed in Figure 11, VL-
(1+λ) EAlog-n and VL-(1+λq EAvar outperform the VL-EAnorm algorithm, demonstrating that

24

Figure 11: VL-EAnorm, VL-EAlog´n, and VL-EAvar on the VL-OneMax problem with
l˚ “ 500. Results have been averaged over 100 random seeds. The standard-deviation is
represented by the opaque areas. For all three algorithms pdel “ pdup “ pm “ 1{3. For
V:-EA-norm: r0 “ 1.5.

25

these algorithms better balance exploitation and exploration.

6.3 Comparing VL-saGA and VL-vGA

Next, the Variable-Length self-Adjusting p1`pλ, λqq GA is compared with the Variable Length
pµ, λq vGA. For both algorithms λ “ 10 and µ “ 10. VL-saGA uses the crossc operator and
VL-vGA uses one-point crossover. All algorithms have been run on an evaluation budget of
10,000.

Figure 12: The VL-fGA and VL-saGA run on the VL-OneMax problem with target length
l˚ “ 500. The results are averaged over 100 random seeds. The standard-deviation is repre-
sented by the opaque areas. For both algorithms the crossover and mutation probabilities
have been optimized. For VL-saGA: pdel “ pdup “ 1{3, pm “ 1{500, the crossover-strength
c “ 0.1 and Finit “ 1.1. For VL-vGA: pdel “ pdup “ 1{3 and pm “ 1{100 and the crossover
probability pc “ 0.7.

26

Figure 13: Two versions of the VL-saGA algorithm, one using fixed-length crossover and
one using length-varying crossover (cut-and-splice crossover 15), run on the VL-OneMax
problem with target length l˚ “ 500. The standard-deviation is represented by the opaque
areas. The parameter-settings are the same as the previous experiment 12.

27

Figure 14: Change in solution-lengths during optimization as shown in figure 13. The
opaque areas represent the length-distribution of the λ new candidate-solutions.

6.3.1 Results

Figure 12 shows VL-saGA and VL-vGA run on the VL-OneMax problem. VL-saGA and VL-
vGA need more function evaluations to reach the optimal solution than most of the other
algorithms. Replacing the crossc operator with cut-and-splice crossover negatively affects the
performance (see Figure 13). The cut-and-splice operator seems to be too disruptive. Figure 14
shows that VL-saGA with cut-and-splice crossover does not converge to a particular solution
length. This might be because cut-and-splice crossover creates so much length-variation within
the population that it counteracts the effect of the selection-operator on the average solution
length. Consequently, the optimization process does not converge to any particular solution-
length.

6.4 Comparing VL-vGA with VL-vGA Mutation Only

There are various parameter settings that can be used for the Variable Length vanilla Genetic
Algorithm. The first question is whether to use a length-varying crossover operator or to rely
on the mutation operator to vary the length of the solutions. The first version, VL-vGA, uses
cut-and-splice crossover in combination with length-varying mutation. Since cut-and-splice
crossover can result in offspring of vastly different lengths, one would expect that the variation
in length within each generation is greater than when using length-varying mutation with one-
point crossover. One could also choose to use no crossover whatsoever. The second question is

28

whether the performance of VL-vGA could be improved by using other methods such as niche-
selection or by adding parsimony pressure. These questions are investigated in the following
two experiments.

Figure 15: Different versions of the VL-vGA on the VL-OneMax problem with population
size µ “ 10. For each algorithm, the results have been averaged over 100 random seeds.
The standard-deviation is represented by the opaque areas. (For cut-and-splice crossover
see 15)

29

Figure 16: Change in solution-lengths during optimization as shown in figure 15. The
opaque areas represent the length-distribution of the λ new candidate-solutions.

30

Figure 17: VL-vGA with different selection operators. The standard-deviation is repre-
sented by the opaque areas. The other parameters have not been changed. The standard
VL-vGA uses tournament-selection with tournament-size k “ 3.

6.4.1 Results

As can be seen in Figure 15, the version of VL-vGA using cut-and-splice crossover performs
worse than the other versions. It seems that using a length-varying crossover operator is too
disruptive. Figure 16 shows that the cut-and-splice crossover operator causes each generation
to have a high level of length diversity. The mutation-only algorithm performs better, but not
as well as the version with one-point crossover. Figure 17 shows the VL-vGA with one-point
crossover for different selection operators. The version with roulette-wheel selection learns
rather slowly. Parsimony pressure performs better than tournament selection. VL-vGA with
niche-selection performance better than roulette-wheel selection but worse than tournament-
selection. This might be because premature convergence was not an issue for VL-vGA on the
VL-OneMax problem. Ensuring more length-diversity within the population would just drive
the algorithm to do less exploitation and more exploration.

6.5 VL-CMA-ES

In section 5.6, a description was given different options for regulating the duplication and
deletion probabilities. This section contains experiments with the various options. For the
FunctionMatch problem, increasing dimensionality should be beneficial since solutions with
more variables will be able to better approximate the target function. On the other hand,
duplicating or deleting variables can result in an increase in the mean squared error, especially
when the function approximation is already close to the target function. Probably, leaving out
the decay factor for the duplication and deletion probabilities will prevent the algorithm from
converging toward the end of the optimization process. In these experiments, the decay factor
will be pdecay “ 0.95 or pdecay “ 1, with the adaptation factor being a “ 0.05 or a “ 0.

31

Setting p to 1 and a to 0 means that there is no decay or adaptation of the duplication or
deletion probabilities occurs. The target function j will be:

jpxq “ sinp10 ¨ xq (18)

The initial dimensionality is set to dinit “ 10 for all the following experiments.

Figure 18: VL-CMA-ES on the function-match problem. p1 and p095 represent pdecay “ 1
(no decay takes place) and pdecay “ 0.95. a0 and a005 stand for the adaption factor a “ 0
and a “ 0.05 The target function is jpxq “ sinp10 ¨ xq.

32

Figure 19: The change in dimensionality for VL-CMA-ES on the function-match problem.

6.5.1 Results

As can be seen in figure 18, the version of VL-CMA-ES with pdecay “ 0.95 and a “ 0.05
performs best. However, apart from the version with pdecay “ 1 and a “ 0.05, the loss is only
slightly lower. Setting pdecay to pdecay “ 1 mainly affects the later stages of the optimization
process, causing the loss to fluctuate significantly. This is especially true if a “ 0.05. Looking
at figure 19, which shows how the solution length changes during optimization, it is clear that
choosing a “ 0.05 does increase the solution length significantly. The version with pdecay “ 1
and a “ 0.05 found a larger dimensionality; however, the performance was still worse than
the other three versions due to the lack of convergence towards the end of the optimization
process. Surprisingly, the performance of the other three versions is very similar, though the
version with pdecay “ 0.95 and a “ 0.05 did reach a significantly higher dimensionality. This
might be explained by the fact that, for the function-match problem, the benefit of adding
more variables gets smaller and smaller for each variable that is added.

7 Conclusions

In this work, we have presented adaptations of various classic evolutionary algorithms for binary
optimization and a variable-length version of the CMA-ES algorithm. The adapted binary
algorithms were able to find the optimal solutions for the variable length OneMax problem.
Adding length-varying crossover negatively affected the performance of VL-saGA and VL-vGA.

33

VL-vGA with niche-selection and Vl-vGA with parsimony-pressure did not perform as well as
the VL-vGA with tournament-selection. This might be because the VL-OneMax problem is
quite a simple problem and lack of population diversity and uncontrolled bloat were not a
problem. For more complicated problems, it might prove to be beneficial after all. The crossover
operators mentioned in the related works section, except cut-and-splice crossover, were not
taken into consideration. These operators are specific to metameric representations, which were
not considered in this work. As mentioned above, an overview of metameric algorithms can be
found in [9]. On the whole, we can conclude that generally length-varying mutation is sufficient
to deal with the length optimization part of variable-length optimization problems. Cut-and-
splice crossover seems to be too disruptive. Using more sophisticated crossover operators, like
SVLC might result in a better performance of VL-saGA and VL-vGA. However, at least for the
VL-OneMax problem, both algorithms can find the correct solution-length with only mutation
as a length-varying operator. The experiments show that VL-CMA-ES works on the simple
continuous optimization problem. The adaptation method for the deletion and duplication
probabilities does result in an increase in the number of dimensions for the Function Match
problem, and the decay factor helps to stabilize the optimization process towards the end of
the optimization process. Because of the nature of the FunctionMatch problem, there is no
target dimensionality. That is to say, a higher dimensionality is always better. Further testing
on other optimization problems is needed to see how well VL-CMA-ES can find the optimal
dimensionality of a given variable-length optimization problem. The experiment proves that
the concept works on simple problems. Whether and how well it works on more complicated
problems is a question for further research.

References

[1] David M Cherba and William Punch. “Crossover gene selection by spatial loca-
tion”. In: Proceedings of the 8th annual conference on Genetic and evolutionary
computation. 2006, pp. 1111–1116.

[2] Carola Doerr et al. “Benchmarking discrete optimization heuristics with IOHpro-
filer”. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 2019, pp. 1798–1806.

[3] Nikolaus Hansen. “The CMA evolution strategy: A tutorial”. In: arXiv preprint
arXiv:1604.00772 (2016).

[4] Benjamin Hutt and Kevin Warwick. “Synapsing variable-length crossover: Mean-
ingful crossover for variable-length genomes”. In: IEEE transactions on evolutionary
computation 11.1 (2007), pp. 118–131.

[5] Kyung-Joong Kim and Sung-Bae Cho. “Automated synthesis of multiple analog
circuits using evolutionary computation for redundancy-based fault-tolerance”. In:
Applied Soft Computing 12.4 (2012), pp. 1309–1321.

[6] Zhenhua Li and Qingfu Zhang. “What does the evolution path learn in CMA-ES?”
In: International Conference on Parallel Problem Solving from Nature. Springer.
2016, pp. 751–760.

[7] Guillermo Molina, Enrique Alba, and El-Ghazali Talbi. “Optimal sensor network
layout using multi-objective metaheuristics.” In: J. Univers. Comput. Sci. 14.15
(2008), pp. 2549–2565.

34

[8] Matthew L Ryerkerk et al. “Solving metameric variable-length optimization prob-
lems using genetic algorithms”. In: Genetic Programming and Evolvable Machines
18 (2017), pp. 247–277.

[9] Matthew Lee Ryerkerk. “Metameric representations in evolutionary algorithms”.
PhD thesis. Michigan State University, 2018.

[10] Yerbol A Sapargaliyev and Tatiana G Kalganova. “Open-ended evolution to discover
analogue circuits for beyond conventional applications”. In: Genetic Programming
and Evolvable Machines 13 (2012), pp. 411–443.

[11] Hans-Paul Schwefel. “Projekt MHD-Staustrahlrohr: Experimentelle optimierung einer
zweiphasendüse”. In: Teil I. Technischer Bericht 11.034/68. 35. AEG Forschungs
institute, 1968.

[12] Joachim Sprave and Susanne Rolf. “Variable-dimensional optimization with evolu-
tionary algorithms using fixed-length representations”. In: International Conference
on Evolutionary Programming. Springer. 1998, pp. 261–269.

[13] Tan Yew Teck and Mandar Chitre. “Direct policy search with variable-length genetic
algorithm for single beacon cooperative path planning”. In: Distributed Autonomous
Robotic Systems: The 11th International Symposium. Springer. 2014, pp. 321–336.

[14] Benjamin James Yu. “A Genetic Algorithm Framework using Variable Length Chro-
mosomes for Vehicle Maneuver Planning”. PhD thesis. Massachusetts Institute of
Technology, 2022.

35

