
A Model Counting Approach
to Depth-Optimal Quantum
Circuit Synthesis

Master Computer Science

Name: Dekel Zak
Student ID: s4016599
Date: 18/07/2025
Specialisation: Foundations of Computing
1st supervisor: Dr. Alfons Laarman
2nd supervisor: Dr. Jean-Marie Lagniez
daily supervisor: Jingyi Mei, MSc

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Quantum circuit synthesis is fundamental in compiling quantum algorithms into executable
programs on real-world quantum hardware. It involves translating a high-level specification
into a sequence of quantum gates while respecting hardware constraints such as native gate
sets and qubit connectivity. The resulting circuit is optimized for specific metrics (e.g., depth
or gate count) and targets either exact synthesis (functional equivalence) or approximate
synthesis within a defined error threshold.
In this thesis, we introduce a novel application of Maximum Weighted Model Counting
(MWMC) for quantum circuit synthesis. While MWMC is a well-established technique in
symbolic reasoning and combinatorial optimization, its potential in quantum compilation has
remained largely untapped. Prior work has shown the success of using Weighted Model Count-
ing (WMC) for quantum circuit simulation and equivalence checking. We build on that and
propose to leverage MWMC for constructive synthesis. Our central idea is to encode quantum
synthesis tasks — both exact and approximate — as MWMC problems, where the goal is to
find the optimal circuit configuration of a given depth that maximizes equivalence with the
input specification. By incrementally increasing the allowed circuit depth, our approach also
yields depth-optimal synthesis results.
We present an open-source implementation of our approach, Quokka#, a unified encoding
framework that represents quantum computations using weighted Boolean formulas, support-
ing simulation, equivalence checking, and synthesis. We have developed two complementary
encoding bases: one based on the Pauli basis, leveraging algebraic properties of the Clifford
group, allowing for compact encoding variations; and another in the computational basis,
which requires fewer variables at the price of needing complex-valued weights. Lastly, to sup-
port Quokka#, we extended existing model counters (GPMC, d4Max) to handle complex weights.
Extensive experiments compare the proposed approach against other state-of-the-art tools.
Results demonstrate that our method achieves competitive performance and offers formal
guarantees on circuit equivalence and approximation fidelity. This work establishes a novel
reduction of the quantum circuit synthesis problem to model counting, offering a foundation
for future research to enhance both the scalability and generality of the method. Moreover, it
demonstrates a new application of MWMC with complex weights, motivating further devel-
opment of solvers to better handle such expressive symbolic encodings.

Acknowledgements

I want to thank everyone who supported me throughout the course of this thesis.
First, I am especially grateful to Jingyi Mei, my daily supervisor. Her patience, encouragement,
and thoughtful guidance were essential at every stage of this project. She was always willing to
take the time to answer questions, discuss ideas, and help me move forward when I encountered
challenges. I truly appreciate the clarity and calm she brought to the process, and the genuine
support she offered throughout.
I would also like to thank Dr. Alfons Laarman, whose guidance helped shape the direction
of the research. His insights, feedback, and timely interventions were invaluable, particularly
when key decisions needed to be made or when we found ourselves at difficult points in the
work.
Towards the end of the project, Dr. Jean-Marie Lagniez joined as my second supervisor. I
appreciate his involvement and look forward to his role in the defence.
Finally, I am grateful to my friends and family for their support and encouragement during
this journey. Your belief in me made all the difference.

1

Disclaimer on the Use of AI Tools

Writing has always been the most difficult part of academic work for me. While all the ideas,
reasoning, and conclusions in this thesis are entirely my own, I used AI tools — specifically
ChatGPT and Grammarly — to help me communicate those ideas more clearly and profes-
sionally.
This support was mostly in text-centered sections, such as the introduction and conclusion,
where expressing ideas in natural language is key. I did not use AI tools for technical content
like the preliminaries, formal definitions, proofs, or mathematical reasoning.
In practice, I often begin by writing down core ideas in a rough or list format (much like how
I’m writing this disclaimer) and then use ChatGPT to help turn those into well-structured para-
graphs. This was usually an iterative process, with multiple rounds of editing and refinement
to ensure the result matched what I intended to say. I also used Grammarly and, at times,
ChatGPT, to review and improve the grammar and style of the text I had written myself.
Crucially, I always carefully checked the correctness of ChatGPT’s suggestions before including
them. I reviewed, fact-checked, and edited every suggestion from these tools before inclusion.
As a rule of thumb, I only use AI for tasks I consider NP-complete: problems where finding
a good solution can be hard, but verifying one is easy. I see large language models as decent
heuristics — they’re good at suggesting plausible candidates, even if they can’t guarantee
correctness. Since LLMs tend to hallucinate with confidence, I limited their use to areas where
I could easily check the output myself. In short: no AI-generated theorems, just AI-assisted
phrasing.

2

Contents

Acknowledgements 1

Disclaimer on the Use of AI Tools 2

1 Introduction 5
1.1 Context and Motivation . 5
1.2 Problem Statement . 6
1.3 Scope and Objectives . 7
1.4 Contributions . 8
1.5 Overview of the Thesis . 10

2 Preliminaries 12
2.1 Quantum Computing . 12
2.2 Maximum Weighted Model Counting . 18
2.3 Encoding Quantum Computing in Pauli basis 19

3 Problem Statement 23

4 Exact Synthesis 24
4.1 Encoding Gate Layers for Synthesis . 24
4.2 Exact Equivalence Checking . 26
4.3 Encoding Exact Synthesis . 28

5 Approximate Synthesis 30

6 Synthesis in the Computational Basis 32
6.1 Computational Basis Encoding . 32
6.2 Encoding Equivalence Checking in CB . 35
6.3 Encoding Synthesis in CB . 36

3

7 Comparing the Encodings 37
7.1 Comparing the Encoding Bases . 37
7.2 Encoding Complexity . 39

8 Implementation: Quokka# 41
8.1 Design of Quokka# . 41
8.2 Usage of Quokka# . 42
8.3 Repository Structure . 43

8.3.1 Encoding optimization . 44

9 Related Work 45
9.1 Simulation and Equivalence Checking . 45
9.2 Synthesis . 47

10 Experimental Evaluation 48
10.1 Simulation . 49
10.2 Equivalence Checking . 50
10.3 Synthesis . 52

11 Conclusion 57
11.1 Summary . 57
11.2 Key Findings . 58
11.3 Future Directions . 59

4

Chapter 1

Introduction

1.1 Context and Motivation

The primary goal in quantum computing today is to demonstrate quantum supremacy—that is,
to solve a computational problem that is infeasible for any classical computer to solve within
a reasonable amount of time. [93, 94]. Achieving this milestone is widely seen as the first
step toward realizing quantum advantage for meaningful, real-world applications of societal
importance. These include secure quantum communication and cryptography [15], efficient
simulation of quantum systems for drug discovery and materials science [29, 80], financial
modeling [88], and large-scale combinatorial optimization [42, 53].
Encouraging progress has been made. For instance, Arute et al. [10] demonstrated that a
noisy quantum processor could solve a sampling problem considered intractable for classical
supercomputers. IBM responded with alternative results and interpretations [90]. Still, many re-
searchers believe that true quantum advantage requires quantum error correction (QEC) [105],
which enables the realization of ideal quantum computation as formalized in quantum Turing
machines [17] or families of quantum circuits [2].
QEC alone, however, is only one component of a larger vision: full-scale fault-tolerant quan-
tum computing. Fault tolerance builds on QEC to ensure that quantum operations — gates,
measurements, and state preparations — can be performed reliably even in the presence of er-
rors, enabling robust execution of large and complex quantum algorithms. With fault-tolerant
quantum hardware, the full arsenal of quantum algorithms becomes practically accessible.
Nonetheless, significant software challenges remain. One of the challenges is compiling high-
level quantum algorithms into circuits that are compatible with the constraints of real hardware.
Different quantum architectures — such as photonic systems [44], superconducting qubits [67],
and neutral atoms [55] — introduce platform-specific constraints including qubit connectivity,
native gate sets, limited gate fidelities, and limited coherence times [75, 113]. Effective circuit
compilation must therefore bridge the gap between abstract algorithm design and the realities
of physical hardware.
Given these constraints, it is essential to optimize not only for correctness, but also for circuit
width (number of qubits used) and especially depth (sequential gate layers), which directly
affects the probability of decoherence during execution [6, 37]. Those considerations become
particularly critical on early quantum hardware, where resources are scarce and noise levels are

5

high. As a result, depth-optimal synthesis — synthesis that guarantees a minimal-depth circuit
— can play an important role in improving the practicality of quantum computations on early
devices.
To meet these optimization requirements, we can draw inspiration from classical formal meth-
ods that have long been applied to synthesis and verification tasks. Classical program synthesis
methods exhibit doubly exponential worst-case complexity in particular cases [71], motivating
the need for good heuristics. For quantum circuit synthesis, some recent tools use heuristics [79]
and do not guarantee optimality. Others, that do guarantee optimality, use algebraic decom-
position [89] or meet-in-the-middle strategies [7], but result in limited scalability: 4 qubits with
T -depth 3 (i.e., three layers containing T gates) and depth 4 respectively. In parallel, symbolic
methods from AI — successful across many domains — have also shown strong performance in
quantum circuit analysis. For example, techniques based on decision diagrams [116, 25, 107],
tree automata [34], and Boolean satisfiability (SAT) [103].
SAT solving is one of the central problems in computer science, and although NP-complete in
general, modern SAT solvers have seen remarkable advances over the past two decades [20].
These advances are not only theoretical but also practical: SAT solvers now routinely han-
dle real-world instances with millions of variables, thanks to innovations in conflict-driven
clause learning [77], heuristics [74], preprocessing [21], and parallelization [52]. One striking
demonstration of this progress is the so-called Time Leap Challenge [43], in which benchmark
instances from SAT competitions in the early 2000s can now be solved orders of magnitude
faster, sometimes within milliseconds, using modern solvers. This kind of exponential improve-
ment underlines the value of SAT-based methods in synthesis workflows, especially when paired
with domain-specific encodings for quantum circuits.
Building on this foundation, recent research has highlighted the utility of weighted model count-
ing (WMC) as a powerful extension of SAT for quantum circuit analysis. Unlike SAT, which
asks whether a satisfying assignment exists, model counting considers the number of such
assignments, potentially weighted, making it applicable to probabilistic and quantum domains.
Recent applications of WMC have demonstrated promising results in quantum circuit simula-
tion [81] and exact equivalence checking [82], tackling problems that are #P-complete [41].
These approaches often leverage off-the-shelf solvers and carefully engineered encodings to
achieve scalable performance.
Encouraged by this progress, we explore whether WMC can also be leveraged for the quantum
circuit synthesis problem. While exact synthesis is already hard, universal quantum circuit
synthesis is even more challenging, as it inherently involves approximation: no finite gate
set can exactly generate all unitary operators. This brings the problem into the realm of
QMA, the quantum analogue of NP, since approximate equivalence checking is known to be
QMA-complete [58]. Fortunately, the Solovay-Kitaev theorem [39] guarantees that any target
unitary can be approximated to arbitrary precision using circuits of polylogarithmic depth in
1/ϵ, providing a theoretical foundation for practical synthesis via approximation.

1.2 Problem Statement

Quantum circuit synthesis translates a desired quantum specification — defined by a unitary
matrix, high-level algorithm, or behavioral description — into a low-level quantum circuit that

6

can be executed on a physical device. The synthesis process can take different forms depending
on the task and the constraints involved.
Exact synthesis aims to generate a circuit that implements a given unitary exactly (often
over a finite gate set). Approximate synthesis produces circuits that approximate the target
operation within a specified error tolerance ϵ. Approximate synthesis is necessary when the
target operation cannot be exactly (or within reasonable depth) expressed over the discrete gate
set, for instance, when implementing arbitrary single-qubit rotations [69] or irrational angles.
Foundational results like the Solovay-Kitaev theorem [39] ensure that approximate synthesis
is always possible with polylogarithmic overhead in gate depth, assuming access to a universal
gate set. However, this guarantee is largely asymptotic and does not ensure efficiency in
practice. In real-world settings, synthesis must balance accuracy, resource usage, and hardware
compatibility, especially given the severe limitations of current quantum hardware.
Optimization-aware synthesis focuses on producing circuits that minimize certain cost metrics,
such as depth, gate count, or T -count (the number of T gates, which is especially important for
fault-tolerant quantum computing). These tasks are often further constrained by the available
gate set and whether ancilla qubits are allowed. Depending on the setting, synthesis may
also involve mapping to hardware topologies, decomposing unitaries into primitive gates, or
restructuring circuits to meet platform-specific constraints.
Quantum circuit synthesis tools that provide optimality guarantees remain limited in scope,
with current methods typically unable to scale beyond 4 qubits and circuits of 6 layers or
T -depth 3. While WMC has succeeded in circuit simulation and exact equivalence checking,
it has yet to be leveraged for synthesis, despite being a general-purpose tool designed for
propositional reasoning and combinatorial optimization.
This thesis addresses this gap: Can weighted model counting techniques be extended beyond
simulation and equivalence checking to support synthesis, particularly depth-optimal and ap-
proximate synthesis for universal gate sets?

1.3 Scope and Objectives

The overarching goal of this work is to explore the feasibility and utility of model counting for
quantum circuit synthesis. We phrase the guiding question as follows:

Main Research Question: Can quantum circuit synthesis be effectively achieved using
SAT-based techniques?

To address this question, we first examine how model counting can be leveraged to perform
quantum circuit synthesis. Since synthesis inherently depends on the ability to check circuit
equivalence, we build on recent work using weighted model counting for equivalence check-
ing [82], assessing how these techniques must be adapted or extended to support synthesis. In
particular, we consider how to support not only exact, but also approximate synthesis, where
the goal is to generate circuits that implement a target operation within a specified error tol-
erance. This introduces new challenges in defining suitable notions of approximate equivalence
that are amenable to SAT-based encoding. In addition to ensuring functional correctness, we
also aim to optimize the circuit representation, with a specific focus on achieving depth-optimal

7

synthesis. This allows us to generate circuits that are not only correct (or approximately cor-
rect), but also as shallow as possible under given constraints. Finally, we seek to develop a
synthesis method that is efficient and scalable, enabling the solution of increasingly complex
circuits and more challenging synthesis instances as the problem size grows.
Another key component of this effort is selecting an appropriate encoding basis. Each basis
introduces trade-offs between expressiveness, encoding complexity, and solver performance.
We investigate two distinct bases for encoding quantum computations: the Pauli basis, which
represents quantum operations through the Pauli decomposition of density matrices and has
a particularly efficient encoding variant for exact equivalence checking; and the computational
basis, which encodes quantum states as vectors and is more intuitive and concise, allowing for
better scalability. By evaluating both approaches, we aim to clarify their respective strengths
and determine their suitability for exact and approximate synthesis scenarios.

1.4 Contributions

This thesis makes the following contributions to the field of quantum circuit synthesis and
SAT-based reasoning:

• One-Shot Equivalence Checking: We build on the encoding of [82], modifying it
to enable equivalence checking with only a single call to a WMC solver. This one-shot
variation is essential for integration with synthesis workflows, where repeated solver calls
can not be supported. The various Equivalence Checking encodings are presented in
Theorem 4.1 in Chapter 4.

• Fidelity-Based Approximate Equivalence Checking: We further extend the equiv-
alence checking encoding to support approximate reasoning by computing the fidelity
between quantum circuits — a quantitative measure of how similar their outputs are.
This allows us to go beyond exact synthesis and reason about approximate synthesis
within a controlled error tolerance. Details are provided in Chapter 5.

• SAT-Based Synthesis Encoding: Building on the equivalence checking framework
described above, we propose a novel method for reducing quantum circuit synthesis
to a model counting problem. The key idea is to generalize the equivalence checking
encoding to allow not just fixed circuits, but entire families of circuits as candidates. As
shown in Figure 1.1, we encode a parameterized synthesis circuit of depth d, consisting
of layers, each capable of representing all possible gate applications at that step. Each
layer is controlled by a set of gate selection variables, which determine which gates are
applied. This allows us to encode all candidate circuits within a single Boolean formula.
We prepend the inverse of the specification, and impose equivalence constraints on
the resulting composite transformation to evaluate correctness. These constraints are
designed so that the weight reflects the similarity between the synthesized circuit and
the specification. The full encoding is then solved using Maximum Weighted Model
Counting (MWMC), which seeks an assignment to the gate selection variables that
satisfies the constraints while maximizing the total assigned weight. This formulation

8

supports both exact and approximate synthesis using SAT-based solvers. Details of the
encoding and its variations are presented in Chapter 4 and Chapter 5.

• Depth-Optimal Synthesis: Our synthesis approach achieves depth optimality by query-
ing the SAT-based solver for increasing circuit depths. This strategy guarantees minimal-
depth circuits by systematically exploring and ruling out shallower candidates. We cover
this in Chapter 4.

Figure 1.1: A high-level illustration of the structure of the synthesis encoding. A parame-
terized synthesis circuit of depth d is encoded using gate selection variables, allowing all
candidate circuits of that depth to be represented within a single Boolean formula. The in-
verse of the specification circuit is prepended to enable equivalence checking. Constraints
are imposed on the combined transformation to ensure functional correctness (either ex-
act or approximate), and the encoding is solved via Maximum Weighted Model Counting
(MWMC), which searches for the highest-weight satisfying assignment corresponding to
a valid synthesized circuit.

• Alternative Encoding Bases for Quantum Computation: We explore two distinct
encoding bases for representing quantum computation: the Pauli basis and the compu-
tational basis. The Pauli basis, used in prior work [81, 82], enables efficient encoding for
exact equivalence checking via density matrix decomposition. However, it is not as well-
suited to approximate reasoning. To address this, we introduce a new encoding scheme
based on the computational basis, which directly represents quantum states as vectors
in Hilbert space. This basis enables a more intuitive and compact encoding that reduces
the number of variables and constraints, leading to improved scalability and solver per-
formance on more complex benchmarks, and naturally supports approximate reasoning.
This is explained in detail in Chapter 6, and the different encodings are compared at
length in Chapter 7. We display a high-level comparison in Table 1.2.

• Implementation of Quokka#, a SAT-Based Quantum Computing Tool: We realize
the proposed synthesis method in a functional prototype, Quokka#, an open-source tool
integrating a full pipeline for depth-optimal exact and approximate synthesis. In addition
to synthesis, Quokka# supports quantum circuit simulation as well as both exact and
approximate equivalence checking. These functionalities share much of their underlying
structure, as they all leverage the same encoding bases and implement the corresponding

9

Basis Pauli computational

State Encoding 2n variables n variables

Weights real values complex values

Approx. Equivalence Checking 2n initial states 2n initial states

Exact Equivalence Checking 4n initial states 2n initial states

Table 1.2: A high-level comparison of the encoding bases.

functionalities, which build upon each other (for instance, synthesis incorporates equiva-
lence checking within its pipeline). By unifying these capabilities within a single tool and
shared codebase, Quokka# provides a coherent framework for quantum circuit reason-
ing. To support this, we extend existing SAT-based solvers to handle complex weights
required by parts of the encoding. Chapter 8 outlines the tool’s functionalities and how
to access and use it.

Based on these contributions, a peer-reviewed paper has been accepted to the 31st Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2025) [124].
This paper primarily presents the theoretical synthesis approach developed in this thesis, along
with the corresponding model encodings and evaluation results. A second paper, submitted to
the 37th International Conference on Computer Aided Verification (CAV 2025) as a tool pa-
per, showcases Quokka#. This paper focused on the implementation of the complete synthesis
workflow and, for the first time, integrated several novel SAT-based encodings for quantum
reasoning into a working tool [81, 82]. However, despite acceptance of the written paper,
the submission was ultimately rejected during the artifact evaluation phase due to missing
components in the supplementary materials.

1.5 Overview of the Thesis

The structure of this thesis follows a systematic development from fundamental concepts to
novel contributions and empirical evaluation.
The thesis begins in Chapter 2 by providing the necessary mathematical background on quan-
tum computing, including formal definitions of circuit simulation and fidelity as a measure of
circuit closeness. It then introduces SAT-based tools such as Model Counting (MC), Weighted
Model Counting (WMC), and Maximum Weighted Model Counting (MWMC). The chapter
concludes with an overview of the encodings presented in prior quantum circuit encoding
methods from [81, 82].
In Chapter 3, we formally define the central problems addressed in this thesis: quantum circuit
equivalence checking and synthesis, both in exact and approximate forms. These definitions
lay the groundwork for the development of new encoding techniques in the following chapters.
Chapter 4 presents our first major technical contribution: a detailed encoding method for

10

exact synthesis using MWMC. This chapter includes rigorous correctness proofs and explains
how circuit structure and gate selection can be encoded within a SAT-based framework for
synthesis. Building on that, Chapter 5 extends these results to show how one of the encodings
can be adapted to perform approximate synthesis, leveraging the fidelity metric introduced
earlier.
In Chapter 6, we present an alternative encoding based on the computational basis representa-
tion of quantum computation. This approach reduces encoding size in several cases and unifies
exact synthesis, approximate synthesis, and equivalence checking within a single framework.
Chapter 7 provides a detailed comparative analysis of the two quantum encoding bases —
Pauli basis and the computational basis — as defined throughout the preceding chapters. It
systematically examines their structural and representational differences and evaluates their
asymptotic encoding size across all core functionalities: simulation, equivalence checking, and
synthesis. The chapter offers concrete guidance on choosing the most suitable encoding strat-
egy based on the problem.
In Chapter 8 we introduce Quokka#, the implementation of our methods as an open-source
tool that integrates all the different functionalities for quantum circuits: simulation, as well as
both exact and approximate equivalence checking and synthesis. This chapter describes how
to obtain and use the tool, offers usage examples, and provides an overview of the codebase.
In Chapter 9, we situate our approach within the broader research landscape, reviewing re-
lated work in quantum compilation, SAT-based reasoning, and synthesis, and positioning our
contributions in relation to the current state of the art.
Chapter 10 evaluates our techniques empirically. Using Quokka#, we benchmark the various
encodings across multiple tasks and compare their performance against existing state-of-the-art
tools for simulation, equivalence checking, and synthesis.
Finally, Chapter 11 summarizes the contributions of the thesis, reflects on the implications of
our results, and outlines promising directions for future work.
Together, these chapters provide a comprehensive journey from fundamental concepts to novel
synthesis methods, their implementation, evaluation, and positioning within the broader quan-
tum computing landscape.

11

Chapter 2

Preliminaries

2.1 Quantum Computing

Qubits. Similar to bits in classical computing, a quantum computer operates on quantum
bits, namely qubits. A bit is either 0 or 1, while a qubit can be in states |0⟩, |1⟩ or a superposition
of both, |ψ⟩ = α |0⟩ + β |1⟩ such that α, β ∈ C and |α|2 + |β|2 = 1. Here ‘|⟩’ is the Dirac
notation, representing a unit column vector, i.e., |ψ⟩ = [α, β]T, while ⟨ψ| denotes the complex
conjugate and transpose of |ψ⟩, that is a row vector: ⟨ψ| = |ψ⟩† = [α∗, β∗].

Quantum States. The quantum states describe the state of the qubits in the system.
For an n-qubit system, the computational basis states are |b⟩ for each bitstring b ∈ {0, 1}n,
a vector of dimension 2n with all entries set to 0 except at index b, which is set to 1. A
general quantum state is a superposition of the computational basis states, defined as a
normalized vector |ψ⟩ = ∑

b∈{0,1}n αb |b⟩ = [α0..0, ..., α1...1]T (∀b ∈ {0, 1}n : αb ∈ C and∑
b∈{0,1}n |αb|2 = 1). Alternatively, a quantum state |ψ⟩ can be represented by its density

operator |ψ⟩⟨ψ|. A density operator is a Hermitian positive semi-definite operator with unit
trace.

Inner Product. The inner product between two states |ψ⟩ = [α0...0, ..., α1...1]T and |ψ′⟩ =
[β0...0, ..., β1...1]T is denoted as ⟨ψ′|ψ⟩ and is defined as the vector product:

⟨ψ′|ψ⟩ ≜ [β∗
0...0, ..., β

∗
1...1] ·

[α0...0
...

α1...1

]
=

∑
b∈{0,1}2

β∗
b · αb

Note, that for any state |ψ⟩ = [α0...0, ..., α1...1]T, it holds that ⟨ψ|ψ⟩ = 1 since state vectors
are normalized. Additionally, we have ⟨b|ψ⟩ = αb for all b ∈ {0, 1}2.
In this work, we fix n to be the number of qubits, and write [m] for the set {0, . . . ,m− 1}.

Example 2.1. The two-qubit state |01⟩ = [0, 1, 0, 0]T has the density operator:

|01⟩ ⟨01| =
[0

1
0
0

]
· [0, 1, 0, 0] =

[0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
. △

12

Kronecker Product. To combine states or operators of different subsets of qubits, we
use the tensor (or Kronecker) product, which is defined as follows. Given rA × cA matrix A
and rB × cB matrix B, the rArB × cAcB matrix A⊗B is

A⊗B =


A00B A01B ... A0cA

B

A10B A11B ... A1cA
B

...
ArA0B ArA1B ... ArAcA

B

 .
For example, a two-qubit computational basis state can be expressed as the Kronecker product
of the individual qubit states, e.g., |01⟩ = |0⟩ ⊗ |1⟩.

Matrix Trace. The trace of a square matrix A, denoted Tr(A), is defined as the sum of
its diagonal entries, i.e., Tr(A) = ∑

iAii. It follows from the definition of the trace that for
two matrices A,B we have Tr(A⊗B) = Tr(A) · Tr(B).

Quantum Gates. Operations on quantum states are given by quantum gates. For an n-
qubit quantum system, a quantum gate G is a function described by an 2n × 2n unitary
matrix G, i.e., with the property that GG† = G†G = I⊗n, where I⊗n is the identity matrix of
dimensions 2n × 2n. Applying a quantum gate G to a state |ψ⟩ is computed as G · |ψ⟩, and
if the quantum state is represented by a density matrix |ψ⟩⟨ψ|, then the density matrix after
applying G is given by conjugation of |ψ⟩⟨ψ|, i.e., G |ψ⟩⟨ψ|G†. Gates can be combined via the
Kronecker product to be applied in parallel; for instance, X ⊗ Z applies X to the first qubit
and Z to the second. In most cases, we limit quantum operations to a specific set of gates,
which we call a gate set, denoted by G.

Quantum Gate Layers. A quantum gate layer (or simply a layer) is a set of quantum
gates applied simultaneously to specific qubits, such that each qubit is acted on by at most
one non-identity gate. If no gate is applied to a qubit in the layer, the identity operator I is
implicitly used. As a result, all gates within a layer are mutually parallel and can be executed
in the same time step. We will denote layers by D. To indicate that a single-qubit gate G is
applied to qubit i ∈ [n], we write Gi. Similarly, Gi,j denotes a two-qubit gate applied to qubits
i and j, and so on. The unitary form of Gi can be constructed by Gi = I⊗i ⊗ G ⊗ I⊗n−i−1.
For two-qubit gates, we do not explicitly construct the full matrix form in most cases. Instead,
we assume that Gi,j denotes a unitary that acts as G on qubits i and j, and as the identity
on all other qubits.
Since the gates in a layer act on disjoint sets of qubits, their unitaries commute and can be
safely composed via a product (in any order). Thus, the overall unitary UD of a layer D is
given by UD = ∏

U∈D U where the product denotes a composition of parallel, non-overlapping
gate operations.

Example 2.2. Let us apply the Hadamard gate H = 1√
2 · [1 1

1 −1] on the first qubit in the

13

state |01⟩, i.e., apply the layer D = {H0} represented by the unitary

UD = (H ⊗ I)

= 1√
2

·
([

1 1
1 −1

]
⊗
[
1 0
0 1

])
·
([

1 0
0 1

]
⊗
[
1 0
0 1

])
= 1√

2
·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .
We compute the new state by doing the vector-matrix multiplication as follows:

UD |01⟩ = 1√
2

·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 ·


0
1
0
0

 = 1√
2

·


0
1
0
1

 = 1√
2

· (|01⟩ + |11⟩).

If we do the computation on the density operator of the same state, we will get the
corresponding density operator of the new state:

UD |01⟩ ⟨01|U †
D = 1√

2
·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 ·


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 · 1√
2

·


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



= 1
2 ·


0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

 ,
which is exactly 1√

2 · (|01⟩ + |11⟩) · 1√
2 · (⟨01| + ⟨11|). △

Pauli Basis. An important set of quantum gates is Pauli gates:

X ≜

[
0 1
1 0

]
, Y ≜

[
0 −ı̇
ı̇ 0

]
, and Z ≜

[
1 0
0 −1

]
.

Let Pn denote the set of all n-fold tensor products of single-qubit Pauli gates with the identity
gate, commonly referred to as Pauli strings, i.e, Pn = {I,X, Y, Z}⊗n. The Pauli strings form
an orthonormal basis, referred to as the Pauli basis, for the full complex matrix space [61].
Hence, we can decompose any 2n × 2n complex matrix M as M = ∑

P∈Pn
γP · P . Since the

Pauli basis is orthonormal, we have for P, P ′ ∈ Pn that Tr
(
P ′† · P

)
= 0 if and only if P ′ ̸= P .

In addition, since P is unitary, we have Tr
(
P † · P

)
= Tr(I) = 2n. Thus, the Pauli coefficients

γP can be computed by γP = 1
2n Tr

(
P † ·M

)
, and further as γP = 1

2n Tr(P ·M) as P is also
Hermitian (P † = P). In general, the coefficients γP are complex numbers, but for Hermitian
matrices, such as density operators and quantum gates, they are real [82, 47].
Let us define the multiplicative Pauli basis as the local Pauli matrices X,Z, i.e., Pn =
{X0, Z0 . . . , Xn−1, Zn−1}. The Pauli strings can be described as the multiplicatively closed
set of the multiplicative Pauli basis, i.e., Pn = {∏P∈Pn

MP | MP ∈ {I, P}}. This definition
reflects the fact that I = X · X = Z · Z and Y = i(X · Z) so all Pauli strings can be
constructed using only X, Z, and their products, up to a global phase.

14

Example 2.3. Given a density operator ρ = 1
2 · (|00⟩+ |11⟩)(⟨00|+ ⟨11|), we can calculate

its coefficients in Pauli basis by going over all Pauli matrices in P2. We get that the
non-zero coefficients are:

1
21 Tr((I ⊗ I)ρ) = 1

2 ,
1
21 Tr((Z ⊗ Z)ρ) = 1

2 ,
1
21 Tr((X ⊗X)ρ) = 1

2 ,
1
21 Tr((Y ⊗ Y)ρ) = −1

2
It is straightforward to verify that these are ρ’s Pauli real coefficients, since

1
2(I ⊗ I) + 1

2(Z ⊗ Z) + 1
2(X ⊗X) − 1

2(Y ⊗ Y)

= 1
2

([1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
−
[

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

]
+
[0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

]
−
[

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

])
= 1

2 ·
[1 0 0 1

0 0 0 0
0 0 0 0
1 0 0 1

]
,

which is the matrix representation of ρ. Additional examples are:

|0⟩⊗n ⟨0|⊗n = (I + Z

2)⊗n , |1⟩⊗n ⟨1|⊗n = (I − Z

2)⊗n,

|+⟩⊗n ⟨+|⊗n = (I +X

2)⊗n , |−⟩⊗n ⟨−|⊗n = (I −X

2)⊗n. △

Clifford Group. An important set of quantum gates is the Clifford group, as it can describe
interesting quantum mechanical phenomena such as entanglement, teleportation, and super-
dense encoding. More importantly, it is widely used in quantum error-correcting codes [28, 108]
and measurement-based quantum computation [98]. The Clifford group is the set of unitary
operators that map the Pauli group to itself through conjugation, i.e., all the 2n × 2n unitary
matrices U such that UPU † ∈ {λP ′ | P ′ ∈ Pn, λ ∈ {±1,±ı̇}} for all P ∈ Pn. It can be
generated by the Hadamard gate H, the phase gate S, and the two-qubit control-not gate
CX:

H ≜
1√
2

[
1 1
1 −1

]
, S ≜

[
1 0
0 ı̇

]
, and CX ≜

[1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

By extending the Clifford gate set with any non-Clifford gate, we obtain a universal gate set,
in the sense that any unitary operator can be approximated to arbitrary accuracy using only
gates from this set [39, 65, 66]. Examples of such gates are the T =

√
S or Toffoli = CCX

gates defined as:

T ≜

[
1 0
0 eı̇π/4

]
, Toffoli ≜

[
I⊗2 0
0 CX

]
,

where 0 represents the zero matrix of suitable dimensions. Other examples are arbitrary rotation
gates such as:

RX(θ) ≜

[
cos θ

2 −ı̇ sin θ
2

−ı̇ sin θ
2 cos θ

2

]
, RY (θ) ≜

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, or RZ(θ) ≜

[
e−ı̇θ/2 0

0 eı̇θ/2

]
.

Quantum Circuit. The evolution of a quantum system is modeled by a quantum circuit,
a sequence C ≡ (D0, . . . , Dm−1) of quantum gate layers Dt, applied to all qubits at time step
t ∈ [m]. We can construct the unitary UC of a circuit C from the uniteries UDt of the layers
as UC = UDm−1 · · ·UD0 . We define the circuit’s depth as its number of layers.

15

For two circuits C1 ≡ (D0
1, . . . , D

m1−1
1) and C2 ≡ (D0

2, . . . , D
m2−1
2) we define there compo-

sition (applying C1 and then C2) to be C = C2 · C1 = (D0
1, . . . , D

m1−1
1 , D0

2, . . . , D
m2−1
2). It is

thus represented by the unitary UC = UC2 · UC1 .
A circuit can be drawn with a line to represent each qubit () and a labeled square to represent
gates (G). Control gates are represented by a dot (•) for the control qubit with a line to the
target gate. For CX (controlled-X), the X is represented by an ⊕. We use vertical dashed
lines () to denote intermediate states between layers.

Example 2.4. Let us consider the circuit C = ({H0}, {CX0,1}). It is drawn as follows:

|0⟩ H •

|0⟩
|φ0⟩ |φ1⟩ |φ2⟩

The unitary of the circuit C is given by multiplying the matrices of CX0,1 and H0:

UC = CX0,1 ·H0 =
[1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

]
· 1√

2
·
[

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
= 1√

2
·
[

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

]
.

And the output state |φ2⟩ is obtained by computing:

|φ2⟩ = UC · |00⟩ = 1√
2

·
[

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

]
·
[1

0
0
0

]
= 1√

2
·
[1

0
0
1

]
= 1√

2
· (|00⟩ + |11⟩). △

Measurements. A linear operator M is a projector if and only if MM = M. A projective
measurement is defined by a set of projectors {M0, . . . ,Mk−1} — one for each measurement
outcome in [k] — satisfying ∑j∈[k] Mj = I⊗n. The probability of getting the outcome j when
measuring a state |ψ⟩ is ⟨ψ| Mj |ψ⟩. If a projector satisfies M† = M, we say the projector
is orthogonal. For a two-qubit system, measuring under the two-qubit computational basis is
given by the measurement { |00⟩⟨00| , |10⟩⟨10| , |10⟩⟨10| , |11⟩⟨11| }. Note that for a projector
M = |ψ′⟩⟨ψ′| we have ⟨ψ| M |ψ⟩ = | ⟨ψ′|ψ⟩ |2.

Simulation. There exist multiple definitions of how a quantum computation can be sim-
ulated. In this work, we use the following definition, referred to as strong simulation in the
literature:

Definition 2.5 (Strong Simulation [33]). Given an n-qubit quantum circuit C applied to
an initial state |ψ⟩ and a projector M, a strong simulation computes the value ⟨ψ| C†MC |ψ⟩.

Example 2.6. Continuing with example Example 2.4, a strong simulation of the projector
M = |11⟩⟨11| for the circuit C = ({H0}, {CX0,1}) applied to the initial state |00⟩ will give
us the probability:

p = ⟨00| C† |11⟩⟨11| C |00⟩ = | ⟨11| · CX0,1 ·H0 · |00⟩ |2

= | ⟨11|φ2⟩ |2 = | ⟨11| · 1√
2

· (|00⟩ + |11⟩)|2

= | 1√
2

(0 + 1)|2 = 1
2 △

16

Jamiołkowski Fidelity. The fidelity between two quantum states |ψ⟩ and |ϕ⟩ is defined
as

Fid(|ϕ⟩ , |ψ⟩) ≜ Tr(|ψ⟩⟨ψ| · |ϕ⟩⟨ϕ|) = Tr(⟨ϕ|ψ⟩ · ⟨ψ|ϕ⟩) = | ⟨ψ|ϕ⟩ |2.

In the equation above, we use the fact that the trace is invariant under cyclic permutations.
That is, for any matrices A,B,C (of compatible dimensions) it holds that: Tr(ABC) =
Tr(CAB) = Tr(BCA). The fidelity between states can be extended to measure the distance
between unitary operators with the help of Choi-Jamiołkowski isomorphism, that maps a
n-qubit operator U to a 2n-qubit state |ΨU⟩ = (U ⊗ I⊗n) |Ψn⟩, where |Ψn⟩ is the 2n-
qubit maximally entangled state 1√

2n

∑
i∈{0,1}n |ii⟩ and |ii⟩ is short for |i⟩ ⊗ |i⟩. Then, the

Jamiołkowski fidelity [97] between two n-qubit unitary operators U and V can be formally
defined as:

FidJ(U, V) ≜ Fid(|ΨU⟩ , |ΨV ⟩). (2.1)

and in Chapter 6, we further show that:

FidJ(U, V) = 1
4n
∣∣∣Tr
(
V †U

)∣∣∣2
In particular, when FidJ(U, V) = 1, it follows that the uniterities are equal up to a global
phase, i.e., U = λV for some λ such that |λ|2 = 1. For circuits C1, C2, we will define the
Jamiołkowski fidelity between them to be the Jamiołkowski fidelity of their unitaries, i.e.,
FidJ(C1, C2) ≜ FidJ(UC1 , UC2), and denote |ΨC⟩ ≜ |ΨUC ⟩.

Example 2.7. Let us compute the Jamiołkowski fidelity between the single qubit circuits
C2 = (T) and C1 = (RZ(π8)):

|ΨC1⟩ = (UC1 ⊗ I) |Ψ⟩

= (T ⊗ I)
(

1√
2

(|00⟩ + |11⟩)
)

= 1√
2
(
|00⟩ + eı̇

π/4 |11⟩
)

|ΨC2⟩ = (UC2 ⊗ I) |Ψ1⟩

=
(
RZ

(
π

8

)
⊗ I

)(1√
2

(|00⟩ + |11⟩)
)

= 1√
2
(
e−ı̇π/16 |00⟩ + eı̇

π/16 |11⟩
)

FidJ(C1, C2) = |⟨ΨC2|ΨC1⟩|2

=
∣∣∣∣∣ 1√

2
(
eı̇

π/16 ⟨00| + e−ı̇π/16 ⟨11|
)

· 1√
2
(
|00⟩ + eı̇

π/4 |11⟩
)∣∣∣∣∣

2

= 1
4
∣∣∣eı̇π/16 + e−ı̇π/16 · eı̇π/4

∣∣∣2 = 1
4
∣∣∣e−ı̇1π/16 + eı̇

1π/16
∣∣∣2 = 2

4 sin2 (1π/16) =

= 0.962 △

17

2.2 Maximum Weighted Model Counting

Let B = {0, 1} denote the Boolean domain. A Boolean formula over a finite set of variables A
is an expression built by combining literals using logical operators such as ∧, ∨, and ¬. Each
variable a ∈ A gives rise to two literals: the positive literal a, which is satisfied when a = 1,
and the negative literal a, which is satisfied when a = 0.
Syntactic Boolean formulas define Boolean functions F : BA → B, which map variable assign-
ments to output values. An assignment τ ∈ BA gives a value to each variable in A. We often
write such assignments using cube notation, i.e., as a conjunction of literals — for example,
a ∧ b, or more compactly, ab.
A Boolean formula F is said to be satisfiable if there exists an assignment τ ∈ BA such that
F (τ) = 1. The set of all satisfying assignments is defined as

SAT (F) ≜ {τ ∈ BA | F (τ) = 1}.

Example 2.8. Given the formula F = bc∧ bc over A = {a, b, c}, there are four satisfying
assignments: SAT (F) = {abc, abc, abc, abc}. △

A model counting problem (MC) counts the number of satisfying assignments, i.e.,

#SAT (F) ≜ |SAT (F)|.

Example 2.9. For the formula F , from Example 2.8, we have #SAT (F) = 4. △

A weighted model counting problem (WMC) extends model counting by assigning each solution
a weight, which has applications in areas like Bayesian inference and network analysis [101, 30].
Allowing the user to specify an arbitrary weight function would hinder most heuristics typically
used in WMC. Therefore, we define the weight function on literals, following [83]. We use a
function W : A × B → R which maps each variable and its Boolean assignment to a real-
valued weight. Given an assignment τ , the weight of this assignment, written W (τ), is the
product of the weight of each variable with its assignment W (τ) = ∏

a∈AW (a, τ(a)). For
notational convenience, we write the weights of literals, such that for a variable a ∈ A, we
denote W (a) = W (a, 1) and W (ā) = W (a, 0). We say a variable a is unbiased if and only
if W (a) = W (a) = 1. If the weight of a literal is not stated, it is assumed to be 1. For a
propositional formula F over variables in A and weight function W , weighted model counting
sums the weights of the satisfying assignments, denoted as:

#SATW (F) ≜
∑

τ∈SAT (F)
W (τ).

Example 2.10. For the formula F , from Example 2.8, we define the weight function W
as W (a) = 1

4 , W (a) = −3
4 , W (b) = −1

2 , W (b) = 1
3 , and c remains unbiased (W (c) =

W (c) = 1).
Then the weight of the assignment abc ∈ SAT (F) can be computed as:

W (a)W (b)W (c) = 1
4 · (−1

2) · 1 = −1
8

By summing up the weights of all satisfying assignments, we get #SATW (F) = 1
12 . △

18

A maximum weighted model counting problem (MWMC) extends WMC by giving an assign-
ment to a subset of the variables to maximize the WMC over the given formula. The problem
can be formally defined as follows:

Definition 2.11 (MWMC[11]). Given a formula F (A,B) over disjoint sets of variables
A and B with a weight function W over B(A∪B), the MWMC problem is to determine an
assignment τ to A that maximizes #SATW (F (τ, B)).

For notation, we define an oracle Max#SATW , which takes the Boolean formula F (A,B)
with the weight function W and returns an assignment τ to A that maximizes the WMC of
F and the maximum weight wmax it achieves, i.e., Max#SATW (F (A,B)) = (τ, wmax).

Example 2.12. For the formula F with its weighted function W from Example 2.10, we
consider the MWMC of the formula F ({a, c}, {b}). We assign the variables a to be false
and c to be true to achieve the maximum weight wmax = W (a)W (b)W (c) = 3

8 . Thus, we
have:

Max#SATW (F ({a, c}, {b})) = (ac, 3
8). △

2.3 Encoding Quantum Computing in Pauli basis

In this section, we will describe the encoding of quantum computing in the Pauli basis, based
on the work in [81], denoted by PB. In Chapter 6, we will present an alternative encoding in
the computational basis, denoted by CB.

Encoding Pauli Strings. To encode one Pauli matrix, we reserve two Boolean variables x
and z, and define Boolean formulas such that the satisfying assignments represent the matrix.
Let us denote a formula encoding a matrix M as FM . Then we encode the Pauli matrix as
FX(x, z) = xz, FZ(x, z) = xz, FY (x, z) = xz and FI(x, z) = xz. A Pauli string can thus be
encoded by 2n Boolean variables {x1, z1, . . . , xn, zn}.

Example 2.13. P = X ⊗ Y ⊗ Z is encoded by:

FP (x0, z0, x1, z1, x2, z2) = x0z0x1z1x2z2. △

Encoding Quantum States. In the PB encoding, we encode the density matrix of the
state. Since density matrices of quantum states are Hermitian, they can be decomposed into
a linear combination of Pauli strings P ∈ Pn with real coefficients. The density matrices are
thus represented by a Boolean formula, such that each satisfying assignment represents a Pauli
string, and the weight of the assignment corresponds to its coefficient. To that end, for each
qubit i ∈ [n] we reserve two variables qi = (xi, zi) to encode states, and add weighted auxiliary
variables where needed. We will omit the auxiliary variables in the notation, i.e., write F (q),
for q = (q0, . . . , qn−1), since all the auxiliary variables are fully determined by q.

Example 2.14. Let us consider the all-zero quantum state |0⟩⊗n ⟨0|⊗n = (Z+I
2)⊗n. The

Pauli string decomposition of this state consists of all tensor products in {I, Z}⊗n. This
is encoded by xi for i ∈ [n] (zi is left free), allowing for xizi and xizi, corresponding to

19

I and Z. To add the coefficients, which are all 1
2n in this case, we introduce an auxiliary

variable, w, with the weight W (w) = 1
2n (W (w) = 1), and add w to the encoding, to

ensure the weight is applied to all assignments. Thus, we have:

F|0⟩⊗n(q) = x0x1 . . . xn−1w. △

Encoding Quantum Gates. Quantum gates map each Pauli string to one or more Pauli
strings, with possible coefficients. The encoding of a quantum gate G is written as FG(q, q′),
where q and q′ respectively represent the Pauli strings before and after applying the gate.
Thus, FG(q, q′) should limit the before and after Pauli string combination to correspond to
the operator, and when needed, an auxiliary variable with a weight will be introduced to
encode the coefficients. We omit auxiliary variables from the signature, as they are uniquely
generated per instance. In this manner, we can represent the state |ψ′⟩ = G |ψ⟩ by the encoding
F|ψ′⟩(q′) ≡ F|ψ⟩(q) ∧ FG(q, q′). The encoding for the H, T , and CX gates is displayed in
Table 2.1.

Gate Action Encoding Weights

I = [1 0
0 1] IXI† = X, IZI† = Z (x′ ⇔ x) ∧ (z′ ⇔ z)

H = 1/
√

2 [1 1
1 −1] HXH† = Z, HZH† = X (x′ ⇔ z) ∧ (z′ ⇔ x) ∧ (r ⇔ xz) W (r) = −1

T =
[1 0

0 i+1√
2

] TXT † = 1√
2(X + Y), (x′ ⇔ x) ∧ (x ∨ (z′ ⇔ z))∧ W (r) = −1

TZT † = Z (r ⇔ xzz′) ∧ (u ⇔ x) W (u) = 1√
2

CX =
[1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

] CX(I ⊗X)CX† = (I ⊗X), (x′
c ⇔ xc) ∧ (x′

t ⇔ xc ⊕ xt)∧ W (r) = −1
CX(I ⊗ Z)CX† = (Z ⊗ Z), (z′

c ⇔ zc ⊕ zt) ∧ (z′
t ⇔ zt)∧

CX(X ⊗ I)CX† = (X ⊗X), (r ⇔ xczt(xt ⊕ zc))
CX(Z ⊗ I)CX† = (Z ⊗ I)

Table 2.1: Overview of the PB encoding for the gates I,H, T , and CX. The Gate Ac-
tion column shows how each gate transforms the multiplicative Pauli basis states under
conjugation. The Encoding column describes the PB encoding, with Weights describ-
ing the weight on the relevant variables. For a gate G we show the encoding of FG(q =
(x, z), q′ = (x′, z′)) if it is single-qubit and of FG(q = (xc, zc, xt, zt), q′ = (x′

c, z
′
c, x

′
t, z

′
t)) if

it is two-qubit. Unless otherwise stated, literals are assigned a weight of 1.

Encoding Quantum Layers. A layer is encoded by concatenating all the gate encodings,
such that each is applied to the relevant state variables. Recall that each qubit has exactly
one gate applied to it in a layer, including I gates. So for a layer D, if we denote for a gate
Gindxes ∈ D with var(indxes) the state variables corresponding to the qubits G is applied to,
the encoding for D is FD(q) = ∧

Gindxes∈D FG(var(indxes)).

Encoding Quantum Circuits. A quantum circuit C = (D0, . . . , Dm−1) is encoded by
conjoining the layer encodings, such that each is applied to consecutive state variables, i.e.,
FC(q0, . . . , qm) = ∧

j∈{0,...,m−1} FGj (qj, qj+1). Each circuit instance introduces new interme-
diate state variables, which are omitted from the signature, i.e., write FC(q0, qm) or even
FC(q, q′).

20

Figure 2.2: An illustration for encoding the circuit from Example 2.15. Formulas are de-
fined over the variables they overlap with. The rectangles represent: Red - state variables;
Orange - weighted auxiliary variables; Blue - the circuit formula; Cyan - gate formulas;
Purple - state formulas.

Example 2.15. Let us show the formula for the circuit C = ({H0}, {CX0,1}) from Ex-
ample 2.2, applied on the state |00⟩, and compute the satisfying assignments representing
the output state. Figure 2.2 illustrates the encoding.
The formula for this problem is

FC|00⟩(q2) = F|00⟩(q0) ∧

FC(q0,q1,q2)︷ ︸︸ ︷
FH(q0

0, q
1
0) ∧ FI(q0

1, q
1
1) ∧ FCX((q1

0, q
1
1), (q2

0, q
2
1))

where qti = (xti, zti) represents qubit i in the density operator |φt⟩⟨φt| and:

F|00⟩(q0) = x0
0x

0
1w

0

FH(q0
0, q

1
0) = (x1

0 ⇔ z0
0) ∧ (z1

0 ⇔ x0
0) ∧ (r1

0 ⇔ x0
0z

0
0)

FI(q0
1, q

1
1) = (x1

1 ⇔ x0
1) ∧ (z1

1 ⇔ z0
1)

FCX((q1
0, q

1
1), (q2

0, q
2
1)) = (x2

0 ⇔ x1
0) ∧ (x2

1 ⇔ x1
0 ⊕ x1

1)
∧ (z2

0 ⇔ z1
0 ⊕ z1

1) ∧ (z2
1 ⇔ z1

1)
∧ (r2

0 ⇔ x1
0z

1
1(x1

1 ⊕ z1
0))

W (v) =


1
22 , if v = w0

-1, if v ∈ {r1
0, r

2
0}

1, otherwise

For this formula, we have:

SAT (F (q2)) = {x2
0z

2
0x

2
1z

2
1, x

2
0z

2
0x

2
1z

2
1 , x

2
0z

2
0x

2
1z

2
1, x

2
0z

2
0x

2
1z

2
1}

such that for τ ∈ SAT (F (q2)) we have:

W (τ) =
−1

4 , if τ = x2
0x

2
1z

2
0z

2
1

1
4 , otherwise

Note that we are only interested in the assignment to the variables in q2. If multiple
satisfying extensions of this assignment exist, we sum the weights of all such complete
assignments.
The weighted assignments represent to the density operator:

ρ = 1
4 ((I ⊗ I) + (Z ⊗ Z) + (X ⊗X) − (Y ⊗ Y))

21

Based on Example 2.2 the expected output is

|φ2⟩ = 1√
2

· (|00⟩ + |11⟩)

for which we have ρ = |φ2⟩⟨φ2| based on Example 2.3. △

Encoding Strong Simulation. To encode a simulation, we begin by encoding projectors.
Since a projector is a matrix, it can be represented using the same encoding method as the
density matrix of states. Note that since we use only real weights in the encoding, we can only
encode orthogonal projectors (M† = M). Given encodings for states, circuits, and projectors,
we can then compute the probability of measuring the outcome corresponding to an orthogonal
projector M, for a given circuit C applied to an initial state |ψ⟩, as follows:

Proposition 2.16 (Strong Simulation in PB [81]). Let C be an n-qubit quantum cir-
cuit, |ψ⟩ a state over n-qubit, and M an orthogonal projector. We will denote their PB
encodings F|ψ⟩, FC, and FM respectively, with an according weight function W . It holds
that:

⟨ψ| C†MC |ψ⟩ = #SATW (F|ψ⟩(q) ∧ FC(q, q′) ∧ FM(q′)).

In this formulation, the conjunction F|ψ⟩(q) ∧FC(q, q′) encodes the entire output distribution
of the circuit applied to the input state. The structure of this encoding compactly represents all
possible measurement outcomes and their associated amplitudes. To extract a specific probabil-
ity or measurement statistic, we simply conjoin the corresponding projector encoding FM(q′)),
and evaluate the result using WMC. Moreover, note that a wide variety of measurements can
be simulated in this fashion, including measurements on subsets of the qubits.

22

Chapter 3

Problem Statement

The quantum circuit synthesis problem aims to find a circuit that implements a desired spec-
ification. The desired specification is defined by either a circuit in a different gate set or a
unitary operator. A key component is to determine if the desired specification is equivalent to
the synthesized circuit, as formalized in Definition 3.1.

Definition 3.1 (Equivalence checking). Let C1 and C2 be n-qubit circuits. Then the
circuits are ϵ-equivalent for an accuracy parameter ϵ ∈ [0, 1], denoted by C1 ≃ϵ C2, if and
only if FidJ(C1, C2) ≥ 1 − ϵ. The circuits are equivalent, denoted by C1 ≡ C2, if and only
if FidJ(C1, C2) = 1.

In the above definition, we use the Jamiołkowski fidelity, defined in Equation 2.1, to measure
the distance between two quantum functionalities. Note that in this work, we define equivalence
up to a global phase [86], i.e., C1 ≡ C2 if and only if UC1 = λUC2 for some λ such that |λ|2 = 1.
Using the definition of equivalence checking, Definition 3.2 now defines synthesis.

Definition 3.2 (Synthesis). Let Cin be a quantum circuit implementing a specification in
a gate set Gin, and let Gout be a target gate set. Given an accuracy parameter ϵ ∈ [0, 1], the
synthesis problem asks for a circuit Cout over Gout such that UCin

≃ϵ Cout. When ϵ = 0, this
is referred to as exact synthesis; for ϵ ∈ (0, 1], it is an instance of approximate synthesis.

We consider Clifford+T as the elementary target gate set for synthesis due to its universality
and its central role in error-corrected quantum computing [46, 4]. A unitary operator can be
exactly synthesized using Clifford+T gates if and only if its matrix entries lie in the ring Z[1√

2 , i],
possibly requiring the use of ancilla qubits in the resulting circuit [49]. More generally, however,
any unitary can be approximately synthesized to arbitrary precision using only Clifford+T gates
and without the need for ancillae [39].
In this work, we consider both exact and approximate synthesis and, for the first time, show
that both problems can be reduced to MWMC. Moreover, we achieve depth-optimal synthesis.

23

Chapter 4

Exact Synthesis

This chapter presents our reduction of the quantum circuit synthesis problem to the MWMC
problem. From Definition 3.2, the exact synthesis problem has the following components:

• Input: A quantum circuit Cin in a gate set Gin and a target gate set Gout.

• Output: If possible, a depth-optimal circuit Cout in the Gout gate set such that Cout ≡ Cin.

Given the output gate set Gout, we define Dn to be the set of all possible layers for n qubits,
such that on each qubit exactly one gate is applied, including I gates. The problem can be
expressed as exhaustively searching over all possible layers Dn for each layer in Cout. To achieve
depth-optimality, we increment the depth d until the following holds:

∃D0, . . . , Dd−1 ∈ Dn : Cin ≡ Cout where Cout = (D0, . . . , Dd−1). (4.1)

In the following sections, we begin by encoding exact equivalence checking in WMC, which
serves as a basis for exact synthesis. Then, to explore the space of possible gate layers, we
encode the complete set Dn by introducing gate-selecting variables — once these variables are
fixed, they uniquely determine a specific gate layer within the set. Lastly, we merge those and,
by searching for solutions of increasing depths, synthesize a circuit equivalent to the given one.

4.1 Encoding Gate Layers for Synthesis

To encode a general gate layer Dn, we introduce gate-selection variables representing all
possible gate choices within the layer. Note that we always include the identity gate Ii, even
if it is not explicitly listed in the target gate set, to allow for qubits left unaffected in a
given layer. We will describe the encoding for a general gate set G. For example, for the gate
set GCT = {CX,H, T, T †}, a layer D ∈ Dn is a maximal set of parallel gates such that
D ⊆ {Ii, Hi, Ti, T

†
i , CXi,j | i, j ∈ [n], i ̸= j}.

Let G(k) ⊆ G be a subset of gates applied to k ∈ [n] qubits, such that G(1) is the set
of single-qubit gates, G(2) is the set of two-qubit gates, and so on. For example, we have
GCT (1) = {I,H, T, T †} and GCT (2) = {CX}. In this encoding, we assume the gate set

24

has no gates applied to more than two qubits, but if there are, the definition is expanded
accordingly.
We first consider single-qubit gates G(1). For each gate G ∈ G(1) and each qubit i ∈ [n], we
define the Boolean variable pG,i. The variable is true if and only if gate G is applied to qubit
i, i.e., Gi is in the layer if and only if pG,i is assigned 1. Thus, we can encode the single-qubit
gates of the layer as:

FG(1)(q, q′,p(1)) =
∧
i∈[n]

∧
G∈G(1)

(pG,i ⇒ FG(qi, q′
i)), (4.2)

where the variables q and q′ encode the states before and after the layer respectively, and
p(1) = {pG,i | G ∈ G(1), i ∈ [n]} are the single-qubit gate-selecting variables.
Similarly, for the two-qubit gates G(2) ⊆ G, we introduce a variable for each gate for each
pair of qubits: p(2) = {pG,i,j | G ∈ G(2), i, j ∈ [n], j ̸= i}. The encoding is then defined as
follows:

FG(2)(q, q′,p(2)) =
∧

i,j∈[n],j ̸=i

∧
G∈G(2)

(pG,i,j ⇒ FG(qi, qj, q′
i, q

′
j)), (4.3)

This gives us the set of gate-selecting variables p = p(1) ∪ p(2) of the synthesis layer.
Lastly, let us remember the requirement to have exactly one gate applied to each qubit within
a layer. To that end, we define :

EXO(V) =
(∨
v∈V

v

)
∧

 ∧
u,v∈V,u̸=v

(v ∨ u)
 , (4.4)

a constraint ensuring that exactly one variable in the set V is assigned 1, and apply it for all
qubits:

FEXO(p) =
∧
i∈[n]

EXO(pi), (4.5)

where pi = {pG,i | G ∈ Gout(1)} ∪ {pG,i,j, pG,j,i | G ∈ Gout(2), j ∈ [n], j ̸= i}.

Combining the three constraints in Equations 4.2, 4.3 and 4.5 gives us the layer encoding:

FD,G(q, q′,p) = FG(1)(q, q′,p(1)) ∧ FG(2)(q, q′,p(2)) ∧ FEXO(p) (4.6)

For the universal gate set GCT the encoding of a layer is as follows:

FD,GCT
(q, q′,p) =

∧
i∈[n]

(
(pI,i ⇒ FI(qi, q′

i)) ∧ (pH,i ⇒ FH(qi, q′
i))∧

(pT,i ⇒ FT (qi, q′
i)) ∧ (pT †,i ⇒ FT †(qi, q′

i))
)

∧
∧

i,j∈[n],j ̸=i

(
pCX,i,j ⇒ FCX((qi, qj), (q′

i, q
′
j))
)

∧
∧
i∈[n]

EXO(pi),

(4.7)

where pi = {pI,i, pH,i, pT,i, pT †,i} ∪ ⋃j∈[n],j ̸=i{pCX,i,j, pCX,j,i} and p = ⋃
i∈[n] pi .

Note that, by construction, each satisfying assignment to the gate-selection variables p cor-
responds to exactly one valid gate configuration in the layer. That is, there is a one-to-one
correspondence between such assignments and valid gate layers.

25

Extending this to full circuits, we can encode a generic circuit of depth d as follows:

FCsyn,G,d(q0, qd,p) =
∧
t∈[d]

FD,G(qt, qt+1,pt). (4.8)

where p = ⋃
t∈[d] pt. In this formulation, each satisfying assignment to p encodes exactly one

valid quantum circuit composed of d layers. Figure 4.1 illustrates this encoding for 3 layers.
Thus, the encoding induces a bijection between satisfying assignments to the gate-selection
variables and the space of d-depth circuits over the gate set G.

Figure 4.1: An illustration for encoding a synthesis circuit with 3 layers, as described in
Equation 4.8. Formulas are defined over the variables they overlap with. The rectangles
represent: Maroon - gate-selecting variables; Red - state variables; Orange - weighted
auxiliary variables; Dark Green - the synthesis circuit formula; Light Green - synthesis
layers formulas (Equation 4.7).

4.2 Exact Equivalence Checking

Due to the unitarity of quantum circuits, verifying the equivalence of the circuits Cin and Cout
is reducible to checking if the circuit C = Cout · C†

in is equivalent to the identity. The exact
equivalence checking problem is efficiently tackled with WMC in [82], using a so-called linear
encoding. It depends on the PB encoding, and consists of 2n WMC calls. In Theorem 4.1,
we extend this encoding to cyclic encoding and linear-cyclic encoding, two new encodings
that solve the problem with a single call to the weighted model counter, as we require in the
proposed synthesis approach.

Theorem 4.1 (Exact Equivalence Checking in PB). Let C be an n-qubit circuit encoded
by FC in the PB, with the corresponding weight function W . Then, the following four
statements are equivalent:

• C ≡ I⊗n

• Linear encoding [82] (L):

∀P ∈ Pn : #SATW (FP(q) ∧ FC (q, q′) ∧ FP(q′)) = 1 (4.9)

• Linear-Cyclic encoding (LC):

#SATW (FPn(q) ∧ FC (q, q′) ∧ FI⊗n(q, q′)) = 2n (4.10)

26

• Cyclic encoding (C):

#SATW (FC (q, q′) ∧ FI⊗n(q, q′)) = 4n (4.11)

where FI⊗n(q, q′) = ∧
i∈[n]((xi ⇔ x′

i) ∧ (zi ⇔ z′
i)), FPn(q) = ∨

P∈Pn
FP(q), and FP is the

PB encoding of a multiplicative Pauli basis string P ∈ Pn = {Xj, Zj | j ∈ [n]}.

Proof. From [82, Cor. 1], C and I⊗n are equivalent if and only if Equation 4.9 holds. We
now show that Equation 4.10 and Equation 4.11 are both equivalent to Equation 4.9.
For Equation 4.10, as stated in Corollary 1 and the proof of Lemma 2 in [82], we have

#SATW (FP(q) ∧ FC (q, q′) ∧ FP(q′)) ≤ 1.

for all P ∈ Pn, and the WMC is 1 if and only if C is equivalent to I⊗n over P . Thus, we
infer that ∑

P∈Pn

#SATW (FP(q) ∧ FC (q, q′) ∧ FP(q′)) ≤ 2n,

where the value achieves 2n if and only if each of the summands achieves 1. Therefore
Equation 4.10 is true if and only if Equation 4.9 is true, as demonstrated in [82, Prop. 1].
For Equation 4.11, the idea is similar. Since the state variables q and q′ are equivalent
but free, they can be assigned any Pauli string P ∈ Pn = {I,X, Y, Z}⊗n. Thus, for
Equation 4.11 we have

#SATW (FC (q, q′) ∧ FI⊗n(q, q′)) =
∑

P∈Pn

#SATW (FP(q) ∧ FC (q, q) ∧ FP(q)),

As stated before, each of the summands can contribute at most 1 to the summation,
so the summation achieves 4n if and only if each summand achieves 1. Since Pn ⊆ Pn,
we have Equation 4.11 ⇒ Equation 4.9. From [110], if two unitaries are equivalent over
Pn, they are equivalent over Pn. Thus, we have Equation 4.9⇒ Equation 4.11. Therefore
Equation 4.9⇔ Equation 4.11.

Example 4.2. Consider two single-qubit circuits Cin = (S) and Cout = (T, T). To check
their equivalence, we first encode the circuit C = Cout · C†

in:

FC = FC(q, q′) = FC(q0, q3) = FS†(q0, q1) ∧ FT (q1, q2) ∧ FT (q2, q3)

For readability, we let F = F (q), F ′ = F (q′) and FI = FI(q, q′) Then we check if C ≡ I
in one of the following ways:

• The linear encoding: #SATW (FP ∧ FC ∧ F ′
P) = 1 for P ∈ {X,Z} .

• The linear-cyclic encoding: #SATW ((FX ∨ FZ) ∧ FC ∧ FI) = 2.

• The cyclic encoding: #SATW (FC ∧ FI) = 4. △

27

4.3 Encoding Exact Synthesis

We now show the encoding of exact synthesis, using the encoding of exact equivalence checking
and the gate layers given above. The main idea is to determine a minimal sequence of gate
layers Cout = (D1, . . . , Dd) such that Cout ≡ Cin. For a depth d, we can encode the layers with
the cyclic encoding for the equality check as follows:

SynC,PB,Gout,Cin,d(P,Q) =
Cout·C†

in︷ ︸︸ ︷
FC†

in
(q, q′) ∧ FCsyn,Gout,d(q′, q′′,p) ∧

FI⊗n︷ ︸︸ ︷
(q ⇔ q′′), (4.12)

where C denotes the encoding is cyclic, PB denotes the Pauli basis encoding is used, Gout is
the target gate set for the synthesis, P = p is the set of gate-selecting variables, and Q is the
set of all other variables, consisting of the state variables (q, q′, q′′, and intermediate states)
and auxiliary variables (within the gate encodings). For linear-cyclic checking, denoted by LC,
the encoding is done by adding constraints to the initial variables

SynLC,PB,Gout,Cin,d(P,Q) = FPn(q) ∧ SynC,PB,Gout,Cin,d(P,Q). (4.13)

Figure 4.2 illustrates the cyclic and linear-cyclic synthesis encodings.

(a) Cyclic synthesis encodings (b) Linear-Cyclic synthesis encodings

Figure 4.2: An illustration for the synthesis encodings, as described in Equation 4.12 and
Equation 4.13. Formulas are defined over the variables they overlap with. The rectangles
represent: Maroon - gate-selecting variables; Red - state variables; Orange - weighted
auxiliary variables; Light Green - synthesis layers formulas (Equation 4.7); Dark Green -
the synthesis circuit formula; Blue - the circuit formula; Cyan - gate formulas; Purple -
state formula; Pink - equality formulas.

Proposition 4.3 shows how the exact synthesis problem is reduced to the MWMC problem by
finding an assignment for the gate-selecting variables that maximizes the fidelity between the
input and output circuits. As noted earlier, each satisfying assignment to the gate-selection
variables corresponds to a unique circuit of depth d. For each such assignment, the encoding
represents exactly that circuit. This establishes a one-to-one correspondence between assign-
ments and possible circuits, ensuring the completeness of the construction. The correctness of
the proposition follows directly from the cyclic and linear cyclic cases of Theorem 4.1.

28

Proposition 4.3 (Exact synthesis in PB). Given a quantum circuit Cin in a gate set Gin
and an integer d, there exists a d-depth circuit Cout in gate set Gout such that Cin ≡ Cout
if and only if, for the PB encoding, it holds that

Max#SATW
(
SynE,PB,Gout,Cin,d(P,Q)

)
= (c, τ(P)),

such that c = 2n when E is LC and c = 4n when E is C. When the maximum value is
achieved, Cout is directly defined by the satisfying assignment τ(P).

By checking for incremental depths d, we can synthesize a depth-optimal quantum circuit.
The following shows an example.

Example 4.4. Let us consider the circuit Cin = (S). Since it is a single-qubit circuit, the
encoding of the general layer is:

FD,GCT
(q, q′,p) =

(
pI,0 ⇒ FI(q0, q

′
0) ∧ pH,0 ⇒ FH(q0, q

′
0)∧

pT,0 ⇒ FT (q0, q
′
0) ∧ pT †,0 ⇒ FT †(q0, q

′
0)
)

∧
∧
i∈[n]

EXO(p0),

where p = p0 = {p0
I,0, p

0
H,0, p

0
T,0, p

0
T †,0}. We synthesize the circuit by calling an MWMC to

find an optimal assignment for the gate-selection variables:

Max#SATW (SynLC,PB,GCT ,Cin,1(P,Q)) = (0.8535533906, τ1 = {p0
I,0p

0
H,0p

0
T,0p

0
T †,0})

Max#SATW (SynLC,PB,GCT ,Cin,2(P,Q)) = (1, τ2 = {p0
I,0p

0
H,0p

0
T,0p

0
T †,0,

p0
I,0p

1
H,0p

1
T,0p

1
T †,0})

As we can see, for one synthesis layer, we achieve a fidelity of less than 1, proving that
there is no circuit of depth one (or less) equivalent to the input circuit. On the other hand,
for two synthesis layers we achieve a fidelity of 1 with the synthesized circuit Cout = (T, T)
and we can conclude that (S) ≡ (T, T). △

29

Chapter 5

Approximate Synthesis

In this chapter, we focus on approximate synthesis as given in Definition 3.2. The input and
output of the problem are now as follows:

• Input: A quantum circuit Cin in a gate set Gin, a target gate set Gout, and an accuracy
parameter ϵ ∈ (0, 1].

• Output: A depth-optimal circuit Cout in the Gout gate set such that Cout ≃ϵ Cin.

Since synthesis relies on equivalence checking, our first aim is to lift the latter to approxi-
mate equivalence checking. Theorem 5.1 shows that the cyclic encoding in PB computes the
Jamiołkowski fidelity between two circuits, thus implementing Definition 3.1.

Theorem 5.1 (Approximate Equivalence Checking in PB). Given two n-qubit circuits
Cin and Cout, their Jamiołkowski fidelity is computed by the PB cyclic encoding for C =
Cout · C†

in as follows:

FidJ(Cin, Cout) = 1
4n · |#SATW (FC(q, q′) ∧ FI⊗n(q, q′))|

Proof. To compute the Jamiołkowski fidelity of two n-qubit circuits Cin and Cout, one
takes the maximally entangled state |Ψn⟩ as input and computes the fidelity between the
output states (UCin

⊗ I⊗n) |Ψn⟩ and (UCout ⊗ I⊗n) |Ψn⟩.
We start by representing |Ψn⟩ and the Jamiołkowski fidelity in the Pauli basis. We will
then demonstrate how the computations correspond to the representations.
As shown in [31], the density operator of the maximally entangled state can be decomposed
in the Pauli basis as:

|Ψn⟩⟨Ψn| = 1
2n

∑
i∈[n],j∈[n]

|ii⟩⟨jj| = 1
4n

∑
P∈{X,Y,Z,I}⊗n

P ⊗ PT

It follows that, for |ΨC⟩ = (UC ⊗ I⊗n) |Ψn⟩, we have:

|ΨC⟩⟨ΨC| = (UC ⊗ I⊗n) |Ψn⟩⟨Ψn| (U †
C ⊗ I⊗n) = 1

4n
∑

P∈{X,Y,Z,I}⊗n

UPU † ⊗ PT

30

Thus, the Jamiołkowski fidelity for Cin and Cout can be defined in the Pauli basis as:

FidJ(Cin, Cout) = FidJ(C†
in, C

†
out) = Tr

(∣∣∣ΨC†
in

〉〈
ΨC†

in

∣∣∣ ∣∣∣ΨC†
out

〉〈
ΨC†

out

∣∣∣)
= 1

16n
∑

P,P ′∈{X,Y,Z,I}⊗n

Tr
(
U †

Cin
PUCin

U †
Cout

P ′UCout

)
· Tr

(
PTP ′T

)

= 1
8n

∑
P∈{X,Y,Z,I}⊗n

Tr
(
UCoutU

†
Cin

PUCin
U †

Cout
P
) (5.1)

where the equality FidJ(Cin, Cout) = FidJ(C†
in, C

†
out) will be proven in detail in Theorem 6.2.

Based on Proposition 1 in [82], for UC = UCoutU
†
Cin

each of the summands 1
2n ·Tr

(
U †

CPUCP
)

can be computed by the weighted model counting of FP(q)∧FC(q, q′)∧FP(q′), or equiva-
lently, FP(q)∧FC(q, q′)∧(q ⇔ q′). Since the summation is over all possible Pauli strings, it
can be computed by leaving the variables in q to be free. Hence, the Jamiołkowski fidelity
is obtained by the cyclic encoding:

FidJ(Cin, Cout) = 1
4n#SATW (FC(q, q′) ∧ FI⊗n(q, q′)).

Since the cyclic encoding computes the Jamiołkowski fidelity, we can decide approximate
equivalence checking according to Definition 3.1. Thus, we can reuse the exact synthesis cyclic
encoding from Equation 4.12 for approximate synthesis, as is shown in Proposition 5.2. Simi-
larly to Proposition 4.3, the completeness follows from the constructions, and the correctness
from Definition 3.1.

Proposition 5.2 (Approximate synthesis in PB). Given a quantum circuit Cin, an integer
d and an accuracy parameter ϵ ∈ (0, 1], there exists a d-depth circuit Cout in gate set G
such that Cout ≃ϵ Cin if and only if, for the PB encoding, it holds that

Max#SATW
(
SynC,PB,G,Cin,d(P,Q)

)
= (c, τ(P))

such that c
4n ≥ 1 − ϵ. In that case, Cout is directly defined by the satisfying assignment

τ(P).

Like in exact synthesis, to get the depth-optimal ϵ-approximate circuit, we apply the above
Proposition 5.2 for an increasing depth d. Example 5.3 demonstrates approximate synthesis.

Example 5.3. Consider the circuit Cin = (RZ(π8)) with ϵ = 0.05. Synthesizing one gate
layer, we get:

Max#SATW (SynC,PB,GCT ,Cin,1(P,Q)) = (3.848, τ1 = {p0
I,0p

0
H,0p

0
T,0p

0
T †,0})

From the above result, we can determine the output circuit is Cout = (T) and the fidelity
FidJ(Cin, Cout) = 1

4 × 3.848 = 0.962 > 1 − ϵ. Thus, the synthesis procedure stops and
outputs the circuit (T). △

31

Chapter 6

Synthesis in the Computational
Basis

In addition to the previous encoding in the Pauli basis (PB), we introduce a new encoding
that represents quantum states directly in the computational basis (CB). The new encoding
is more comprehensible and requires fewer variables, but utilizes complex weights.

6.1 Computational Basis Encoding

Encoding Quantum States. In CB, an n-qubit quantum state |ψ⟩ is encoded by a
Boolean formula F|ψ⟩ on n distinct variables q = {q0, . . . , qn−1} and some auxiliary variables
(which we will specify later) together with a weight function W on those variables. Semanti-
cally, F|ψ⟩ should be defined such that when projected onto a bitstring b ∈ {0, 1}n, its weighted
model count is precisely the amplitude ⟨b|ψ⟩. To express this, we write:

#SATW (F|ψ⟩(q) ∧G|b⟩(q)) = ⟨b|ψ⟩ (6.1)

where G|b⟩ = ∧n
j=1 lj such that lj = qj if bj = 1 and lj = qj if bj = 0 and the weights of the

variables are unbiased.
To build the construction for F|ψ⟩ and W , we start with the simplest case: an n-qubit state
|ψ⟩ = |b⟩ for some bitstring b ∈ {0, 1}n. This state is encoded using a Boolean formula F|ψ⟩
on n distinct variables q = {q0, . . . , qn−1}. Because the inner product between |b⟩ and |b′⟩
equals 1 only if b = b′ and 0 otherwise, we infer from Equation 6.1 that the formula F|ψ⟩
should only allow for qj = bj for j ∈ [n], i.e., that the variable qj is assigned 1 if bj = 1 and
0 if bj = 0. We will denote such an assignment by q = b. For this reason, we can choose
F|ψ⟩ to be a cube dictating this assignment, namely F|ψ⟩ = G|b⟩. For example, the state |0⟩
is encoded as F|0⟩(q = (q0)) = q0 and the state |1⟩ as F|1⟩(q = (q0)) = q0. For the 2-qubit
state |10⟩, we have F|10⟩(q = (q0, q1)) = q0q1.
For a general quantum state, which is a superposition of computational basis states, we
define F|ψ⟩ such that each term in the summation corresponds to an assignment describing a
basis state, and use auxiliary variables to encode the weight such that it corresponds to the
relevant coefficient. We will consider for example the state |+⟩ = 1√

2 |0⟩ + 1√
2 |1⟩. We want

to construct F such that each term in the state corresponds to a satisfying assignment of

32

F , i.e., both q1 = 0 and q1 = 1 are satisfying assignments of F (corresponding to the terms
|0⟩ and |1⟩, respectively). To encode the weight 1√

2 , we introduce an auxiliary variable h with
weight W (h) = 1√

2 . Now, the formula F (q1, h) = h encodes |+⟩, because the amplitude 1√
2

belonging to |0⟩ is found as the weighted model count of F (q1, h) ∧ q1 ≡ F (q1 = 0, h), which
equals W (q1) · W (h) = 1 · 1√

2 . Similarly, the amplitude 1√
2 of |1⟩ is found as the weighted

model count of F (q1, h) ∧ q1 ≡ F (q1 = 1, h). By extending the weight function on h as
W (h) = − 1√

2 , we can encode for example |−⟩ = 1√
2 |0⟩ − 1√

2 |1⟩ as F (q1, h) = q1 ↔ h.
Two-qubit states are encoded similarly, e.g., 1√

2 |01⟩ − 1√
2 |10⟩ is encoded by F (q1, q2, h) =(

q1 ∧ q2 ∧ h
)

∨ (q1 ∧ q2 ∧ h).

Encoding Quantum Gates. To encode the action of a gate G in CB, we construct a
formula FG dictating the relation between q, the state before applying the gate, and q′, the
state after applying the gate. Namely, for for each state |ψ⟩ and gateG, for whichG |ψ⟩ = |ψ′⟩,
the following holds:

F|ψ′⟩(q′) ≡ F|ψ⟩(q) ∧ FG(q, q′) (6.2)

To this end, FG(q, q′) restricts the allowed combinations of assignments to q and q′, intro-
ducing a constant number of auxiliary variables to assign weights to specific combinations of
before and after states where the gate contributes factors.

Gate Action Encoding Weights

I = [1 0
0 1] I |0⟩ = |0⟩, I |1⟩ = |1⟩ q′ ⇔ q

H = 1√
2 [1 1

1 −1] H |0⟩ = 1√
2(|0⟩ + |1⟩),

h ⇔ qq′ W (h) = − 1√
2 ,

H |1⟩ = 1√
2(|0⟩ − |1⟩) W (h) = 1√

2

T =
[1 0

0 i+1√
2

] T |0⟩ = |0⟩ , (q′ ⇔ q)∧ W (h) = 1+i√
2

T |1⟩ = i+1√
2 |1⟩ (h ⇔ q) W (h) = 1

CXc,t =
[1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

]
CX |00⟩ = |00⟩ , CX |01⟩ = |01⟩ (q′

c ⇔ qc)∧
CX |10⟩ = |11⟩ , CX |11⟩ = |10⟩ (q′

t ⇔ (qc ⊕ qt))

Table 6.1: Overview of the CB encoding for the gates I,H, T , and CX. The Gate Action
column shows how each gate transforms the computational basis states. The Encoding
column describes the CB encoding, with Weights describing the weight on the relevant
variables. For a gate G we show the encoding of FG(q, q′) if it is single-qubit and of
FG(q = (qc, qt), q′ = (q′

c, q
′
t)) if it is two-qubit.

The encodings of the GCT gates are summarized in Table 6.1. We now describe in detail the
construction of these encodings, illustrating how each gate in the set is handled. The encodings
of additional gates can be derived using similar principles.

• I gate: The gate does not affect the state, and no factors are applied. Thus, we have
the encoding of I:

FI(q = (q), q′ = (q′)) = q ⇔ q′

• H gate: The gate allows for all combinations of before and after states, and factors
are applied. If the before and after states are both |1⟩ the factor is − 1√

2 , and otherwise

33

it is 1√
2 . Thus, we will introduce an auxiliary variable h, with the weights W (h) =

− 1√
2 ,W (h) = 1√

2 , and define:

FH(q = (q), q′ = (q′)) = h ⇔ qq′ with W (h) = − 1√
2
,W (h) = 1√

2

• T gate: While the gate does not affect the state of the qubit, a factor is applied if the
qubit is in the |1⟩ state. We will define an auxiliary variable h and encode the factor
into it by defining its weight to be W (h) = 1+i√

2 ,W (h) = 1. Then we encode the weight
to be applied if and only if the qubit is in the |1⟩ state by defining h ⇔ q. Thus, the
encoding of the T gate is:

FT (q = (q), q′ = (q′)) = (q ⇔ q′) ∧ (h ⇔ q) with W (h) = 1 + i√
2

• CX gate: The gate operates on two qubits: a control qubit, denoted qc, and a target
qubit, denoted qt. The control qubit remains unchanged, i.e., q′

c ⇔ qc. The target qubit
flips its value if and only if the control qubit is in state 1, which is captured by the
equivalence: q′

t ⇔ (qc ⊕ qt). Since the CX gate introduces no weighting factors, no
auxiliary variables are required. Thus, the full encoding of the CX gate is given by:

FCX(q = (qc, qt), q′ = (q′
c, q

′
t)) = (q′

c ⇔ qc) ∧ (q′
t ⇔ (qc ⊕ qt))

Note. Each gate and state instance introduces new auxiliary variables with weights when
necessary, which are omitted from the function signature. Moreover, as stated before, if the
weight of a literal is not explicitly mentioned, it should be assumed to be 1.

Encoding Quantum Layers and Circuits. As with the PB encoding, a layer is en-
coded by concatenating all the gate encodings, such that each is applied to the relevant state
variables, and a circuit is encoded by conjoining the layer encodings, such that each is applied
to consecutive state variables.

Encoding Strong Simulation. Let us start by encoding a projector M. Since M is a
matrix, we can encode it like a gate, in the form FM(q, q′). Given the encoding of states,
circuits and projectors, we can compute the probability of measuring the output for a projector
M, for a given circuit C applied to the initial state |ψ⟩, as follows:

Proposition 6.1 (Strong Simulation in CB). Let C be an n-qubit quantum circuit and
|b⟩ a computational basis state over n qubits, and M a projector. We will denote their PB
encodings F|b⟩, FC, and FM respectively, with an according weight function W . It holds
that:

⟨b| C†MC |b⟩ = #SATW (F|b⟩(q) ∧ FC(q, q′) ∧ FM(q′, q′′) ∧ FC†(q′′, q′′′) ∧ F|b⟩(q′′′)).

In the case of M = |b′⟩⟨b′|, we have:

⟨b| C†MC |b⟩ = | ⟨b′| C |b⟩ |2 = |#SATW (F|b⟩(q) ∧ FC(q, q′) ∧ F|b′⟩(q′))|2.

34

Proof. From Equation 6.2 we have that F|b⟩(q) ∧ FC(q, q′) = FC|b⟩(q′) and from Equa-
tion 6.1 we have that #SATW (FC|b⟩(q′) ∧ F|b′⟩(q′)) = ⟨b′| C |b⟩. Similarly,

#SATW (F|b⟩(q) ∧ FC(q, q′) ∧ FM(q′, q′′) ∧ FC†(q′′, q′′′) ∧ F|b⟩(q′′′))
= #SATW (FC†MC|b⟩(q′′′) ∧ F|b⟩(q′′′))
= ⟨b| C†MC |b⟩ .

6.2 Encoding Equivalence Checking in CB

As with the PB encoding, equivalence checking and computation of the Jamiołkowski fidelity
in the CB can be carried out using the Cyclic encoding. However, since the computational
basis lacks a linear multiplicative structure like that of the Pauli basis, there are no counterparts
to the Linear encoding or Linear-Cyclic encoding in this setting.

Theorem 6.2 (Equivalence Checking in CB). Given two n-qubit circuits Cin and Cout
encoded in CB by FCin

and FCout respectively, with the corresponding weight function
W , their Jamiołkowski fidelity can be computed using the cyclic encoding (C) on C =
Cout · C†

in:
FidJ(Cin, Cout) = 1

4n · |#SATW (FC (q, q′) ∧ FI⊗n(q, q′))|2 (6.3)

where q and q′ are state variables encoding the initial and final quantum state of C
respectively, and FI⊗n(q, q′) = ∧

i∈[n](qi ⇔ q′
i). Thus, Cin ≡ Cout if and only if:

|#SATW (FC
(
q0, qm

)
∧ FI⊗n(q0, qm))| = 2n (6.4)

Proof. The Jamiołkowski fidelity computations are as follows:

FidJ (Cin, Cout) = Fid
(
(UCout ⊗ I⊗n) |Ψn⟩ , (UCin

⊗ I⊗n) |Ψn⟩
)

=
∣∣∣⟨Ψn| (UC†

out
⊗ I⊗n)(UCin

⊗ I⊗n) |Ψn⟩
∣∣∣2

=
∣∣∣⟨Ψn| (UC†

out
UCin

⊗ I⊗n) |Ψn⟩
∣∣∣2

=
∣∣∣∣∣∣ 1
2n

∑
b,b′∈{0,1}n

⟨bb| (UC†
out
UCin

⊗ I⊗n) |b′b′⟩

∣∣∣∣∣∣
2

= 1
4n

∣∣∣∣∣∣
∑

b,b′∈{0,1}n

⟨b|UC†
out
UCin

|b′⟩ · ⟨b| I⊗n |b′⟩

∣∣∣∣∣∣
2

= 1
4n

∣∣∣∣∣∣
∑

b∈{0,1}n

⟨b|UC†
out
UCin

|b⟩

∣∣∣∣∣∣
2

= 1
4n
∣∣∣Tr
(
UC†

out
UCin

)∣∣∣2

Similarly, we have FidJ
(
C†
in, C

†
out

)
= 1

4n

∣∣∣Tr
(
UCoutUC†

in

)∣∣∣2.

35

Since a matrix and its transpose have the same trace, and the matrices in the trace of a
product can be switched without changing the result, we have:

Tr
(
UC†

out
UCin

)
= Tr

(
UC†

in
UCout

)
= Tr

(
UCoutUC†

in

)
Thus, we can conclude that:

FidJ (Cin, Cout) = FidJ
(
C†
in, C

†
out

)
= 1

4n |Tr(UC)|2

Based on Proposition 6.1, we have that:

#SATW (FC(q, q′) ∧ FI⊗n(q, q′)) =
∑

b∈{0,1}n

#SATW (FC(q, q′) ∧ F|b⟩(q) ∧ F|b⟩(q′))

=
∑

b∈{0,1}n

⟨b|UC |b⟩ = Tr(UC),

giving us, as we wanted to show, that:

FidJ(Cin, Cout) = 1
4n · |#SATW (FC (q, q′) ∧ FI⊗n(q, q′))|2.

Lastly, Cin ≡ Cout if and only if FidJ(Cin, Cout) = 1, giving us the exact equivalence checking
condition:

|#SATW (FC
(
q0, qm

)
∧ FI⊗n(q0, qm))| = 2n.

6.3 Encoding Synthesis in CB

Using the same construction as in the PB synthesis encoding, we can represent general gate
layers using the CB gate encodings. By combining this with the CB circuit encoding and the
CB cyclic equality encoding, we define the synthesis formula SynC,PB,G,Cin,d(P,Q). We then
propose the following:

Proposition 6.3 (Synthesis in CB). Given a quantum circuit Cin, an integer d and
an error bound ϵ ∈ [0, 1], there exists a d-depth circuit Cout in gate set G such that
UCout ≃ϵ UCin

iff
Max#SATW

(
SynC,CB,G,Cin,d(P,Q)

)
= (c, τ(P))

such that |c|2
4n ≥ 1 − ϵ. In that case, Cout is directly defined by the satisfying assignment

τ(P).

Similarly to Proposition 4.3, the completeness follows from the constructions of the encoding,
and the correctness from Theorem 6.2. By gradually increasing the depth d, we can find a
depth-optimal approximate synthesis, and by choosing ϵ = 0, we get exact synthesis.

36

Chapter 7

Comparing the Encodings

In this chapter, we provide a detailed comparison of the two encoding bases — the Pauli basis
(PB) and the computational basis (CB). We examine their representational differences and
present the asymptotical encoding sizes across the different functionalities. This comparison
reveals tradeoffs between encoding, offering practical guidance for selecting the most suitable
encoding depending on the functionality and circuit characteristics.

7.1 Comparing the Encoding Bases

While the PB and CB encodings represent the same quantum computations and share many
similarities, there are a few key differences between them that we highlight below.

State Representation. The most fundamental difference lies in how each basis represents
quantum states. In the PB encoding, a quantum state is represented by decomposing its
density matrix into a linear combination of Pauli strings. In contrast, the CB represents
quantum states as computational basis vectors, encoding the state vector directly, which offers
a more intuitive and natural representation. To encode an n-qubit quantum state, the PB
requires 2n Boolean variables — one for each X and Z component in the Pauli string — while
the CB requires only n variables, corresponding to the computational basis indices.
Weight Types. The choice of encoding basis directly impacts the type of weights used in the
model counting formulation. The PB encodes quantum states through real-valued Pauli co-
efficients, requiring only real weights. In contrast, the CB must represent complex amplitudes
from the state vector, introducing the need for complex weights. This distinction has important
implications for solver compatibility. Our encodings fall under the framework of algebraic model
counting (AMC) [62], a generalized approach where weights are combined using customizable
addition and multiplication rules. While AMC provides a flexible foundation, complex-weighted
formulations are significantly more difficult to support, as most existing solvers are optimized
for real, non-negative weights (as commonly used in probabilistic inference). Enabling complex
arithmetic in this context requires either extending current tools or designing new solvers with
native complex support — posing both theoretical and engineering challenges, essential for
supporting the CB representation.
Gate Encodings. The size of the n-qubit gate encodings is also impacted by the number of

37

variables used to represent the quantum state. Since the PB requires 2n state variables (one
for each X and Z component), compared to n in the CB, the number of clauses needed to
define the effect of each gate in the PB is naturally about twice as large. This contributes to a
higher clause count in PB encodings, especially in deep circuits. Moreover, for specific gates,
the encoding cost can differ dramatically between representations: for instance, the Toffoli
(CCX) gate can be encoded very compactly in the CB, but leads to a large and complex
encoding in the PB [82].
Gate-Induced Branching. Solver performance is influenced by how individual gates affect
the structure of the encoding and, in particular, the number of satisfying assignments. Since
circuits are encoded step by step over time, each gate introduces new constraints that evolve
the quantum state. Some gates cause a “branching” effect, where a single assignment to the
previous time step can lead to multiple consistent extensions in the next step — effectively
increasing the model count. In the PB, this behavior occurs primarily with the T gate, which
introduces a superposition in the Pauli basis, as seen in Table 2.1. In the CB, it is the
H gate that leads to such branching, due to mixing computational basis states, as seen in
Table 6.1. This structural difference has significant implications: circuits with many branching
gates result in a rapidly growing space of satisfying assignments, which typically increases the
solver’s workload. As a result, the gate distribution in the input circuit can influence solver
performance differently depending on the encoding used, as is shown in Section 10.1.
Simulation Handling. Another implication of the state representation is how simulation is
implemented. In the PB, measurement outcomes are naturally expressed via inner products
in the density matrix formalism, allowing simulation to be performed with a single circuit
traversal. In contrast, the CB typically requires encoding the circuit twice — once for the
state and once for its adjoint — when handling measurements that are not of the form |b⟩⟨b|,
as discussed in Proposition 6.1. This duplication increases the encoding size and leads to
higher solver overhead. However, while this duplication may be necessary in the CB, the
measurement operator itself can often be encoded far more compactly in one basis than in
the other, depending on how naturally it decomposes in that basis. As a result, the relative
efficiency of simulation can vary significantly with the type of measurement being performed.
Exact Equality Constraints. An important distinction between the bases lies in how circuit
equality is encoded. In the PB, we can apply a linear identity check, as presented in Theo-
rem 4.1, which constrains the initial state to a carefully chosen subset of the basis with only
2n possible satisfying assignments, as opposed to full 4n assignments. While the clause-level
encoding is somewhat larger, this approach dramatically reduces the search space and improves
performance, as presented in Section 10.2. In contrast, the CB lacks a similar multiplicative
structure and must evaluate circuit equivalence over the entire computational basis, comprising
2n satisfying assignments to the initial state variables.

In conclusion, these structural trade-offs between the two bases — compactness versus weight
complexity, linear versus exponential bases for equality checking, and differing gate-induced
branching behavior — help explain the solver performance variations observed in Chapter 10.
They also offer practical guidance for choosing the most suitable encoding basis depending on
the functionality and circuit characteristics.

38

7.2 Encoding Complexity

To better understand the trade-offs between the two encoding bases, this section analyzes the
complexity of encoding various circuit components and functionalities. We summarize these
trends asymptotically in Table 7.1.
State. As discussed earlier, the CB uses n variables to represent the quantum state, while the
PB requires 2n variables, to capture both the X and Z components. In most scenarios, state
variables do not contribute clauses on their own. For example, in a circuit, intermediate state
variables between layers are implicitly constrained by adjacent gate encodings, rather than
being directly assigned. When the state is explicitly fixed — as in simulation — the typical
choice is the all-zero state |0⟩⊗n. In that case, both encodings require n single-variable clauses:
all state variables are set to 0 in CB, and all X variables are set to 0 in PB. However, in the
worst case, restricting a state can require exponentially many clauses, with complexity varying
significantly between bases depending on the decomposition.
Gate. Gates that act on a constant number of qubits contribute only a constant number of
clauses in either basis. However, the actual encoding size for a given gate can differ substantially
between the two, depending on how it decomposes in each basis. More generally, gates in PB
often incur a ×2 overhead due to the doubled number of state variables. Furthermore, for
gates acting on multiple qubits, the encoding can grow exponentially with qubit count, and
the efficiency of the decomposition can differ sharply between bases.
Circuit. At the circuit level, both encodings scale linearly with the number of qubits and
non-identity gates. This is because identity operations are typically implemented as variable
equalities like x ⇔ y, which are resolved via direct variable reuse rather than through explicit
clause generation, avoiding unnecessary overhead.
Simulation. Simulation involves encoding an initial state, the circuit, and the measurement
projector. When the projector corresponds to a simple measurement, such as the All Zero
projector (checking whether the output state is |0⟩⊗n), the encoding remains linear in both
bases. In even simpler cases —like the First Zero projector, which only checks if the first
output qubit is |0⟩ — the encoding may even be constant. On the other hand, projectors with
complex decompositions can require exponentially many clauses, and the size can vary greatly
depending on the basis. Notably, the same measurement may admit a compact encoding in
one basis but not the other. Additionally, CB incurs extra overhead when the projector is not
a computational basis state |b⟩⟨b|: in such cases, such as with the First Zero projector, the
entire circuit must be duplicated.
Equivalence Checking. Equivalence checking involves encoding two circuits and asserting
constraints that enforce their functional equality. In cyclic and cyclic-linear encodings, this
includes an identity constraint between the initial and final states, which is linear in the number
of qubits even when written explicitly. Additionally, in the cyclic-linear encoding, the initial state
space is restricted to 2n assignments using the EXO constraint (Equation 4.4) on the 2n
variables, requiring O(n2) clauses. This contrasts with the cyclic encodings, which evaluate
the circuit over the entire basis: 4n initial state assignments in PB and 2n in CB. In the linear
PB encoding, the WMC is called 2n times, once per assignment to the initial state variables,
each requiring 2n single-variable clauses enforcing the assignment.
Synthesis. Synthesis builds on equivalence checking by encoding d synthesis layers in place

39

of the second circuit, as described in Section 4.1. Each layer introduces a new set of state
variables — n in CB and 2n in PB— and O(n2) clauses, assuming a gate set composed
of only single-qubit and two-qubit gates (otherwise the cost is polynomial in n). These are
combined with the input circuit encoding and equivalence constraints described earlier.
In summary, these comparisons illustrate key trade-offs between the two encoding bases. PB
typically incurs higher clause and variable counts but enables more efficient encodings for
equality checks and certain measurements. In contrast, CB uses fewer variables and can be
more efficient for circuits with simple measurements, but struggles with non-basis projections.
Consequently, the choice of encoding should be informed mostly by the intended functionality
and the specific gate set used.

PB CB

State 2n variables n variables

Gate* O(1)

Circuit O(n+m)

Simulation** O(n+m)

Equivalence Checking O(n+m1 +m2)

(cyclic) 4n i.s.a. 2n i.s.a.

Equivalence Checking O(n2 +m1 +m2) —

(linear-cyclic) 2n i.s.a.

Equivalence Checking O(n+m1 +m2) —

(linear) 1 i.s.a., 2n calls

Synthesis*** O(n ·m+ n2 · d)

Table 7.1: Encoding complexity across components and functionalities. Notations: n =
number of qubits; m (m1, m2) = number of gates in the circuit (compared circuits); d =
synthesis depth; i.s.a. = the number of valid assignments to the initial state variables. *
Assuming gates are applied to a constant number of qubits. ** Assuming simple projectors,
such as the All Zero and First Zero, and initial state |0⟩⊗n. *** Assuming that the target
gate set consists of single-qubit and two-qubit gates.

40

Chapter 8

Implementation: Quokka#

This chapter introduces Quokka#, a comprehensive software library developed to realize the
SAT-based quantum circuit synthesis techniques described throughout this thesis. While syn-
thesis is the central goal, Quokka# also incorporates related functionalities such as circuit
simulation and equivalence checking, which share a great deal in common and even build
upon one another. Simulation encodes a given quantum circuit to analyze the probabilities of
different measurement outcomes for a specified input state. Equivalence checking builds on
this by comparing the behaviors of two circuits to determine whether they produce the same
outcomes under all inputs. Synthesis further generalizes both tasks by encoding a partially
specified output circuit and using equivalence constraints to ensure it behaves like the input
circuit (or given specification) across all relevant inputs. Crucially, each of these functionalities
reduces its respective problems to instances of Weighted Model Counting (WMC) or Maxi-
mum Weighted Model Counting (MWMC), enabling Quokka# to leverage powerful SAT-based
solvers for practical quantum circuit analysis and synthesis. This chapter describes the design
of Quokka# and how its different functionalities can be used.

8.1 Design of Quokka#

The design of the Quokka# is shown in Figure 8.1, displaying a high-level sketch for the
simulation, equivalence checking, and synthesis modules.
In all modules, Quokka# takes as input a circuit U (and V) in QASM format [38]. The circuit
encoder then transforms the QASM circuit to a Boolean formula with weights on literals as
explained in Section 2.3. In a post-processing phase, Quokka# takes extra inputs to augment
the encoding depending on the functionality, as will be elaborated in Section 8.2.
Finally, the encodings are translated into weighted CNF (wCNF) in (weighted) DIMACS for-
mat [1] via the Python library SymPy and given to an (M)WMC solver. From the solver’s
output, the results are concluded either directly (for simulation and equivalence checking) or
after a simple post-processing (for synthesis).

41

Figure 8.1: The architecture of Quokka#.

8.2 Usage of Quokka#

This section gives an overview of how to use the Quokka# library for simulation, equivalence
checking, and exact and approximate synthesis.
Quokka# is implemented as a Python library and is publicly available through Python’s pip
package manager under the name ‘quokka-sharp’. The full source code, along with additional
resources such as benchmark datasets, experiment scripts, and comprehensive usage instruc-
tions, can be found on on GitHub1.
To use Quokka#, a WMC solver is required for all functionalities, except for synthesis, which
requires an MWMC solver. Since the computational basis encoding involves complex numbers,
and no existing tool supports them, we extended the WMC solver GPMC2 [54] and the MWMC
solver d4Max3 [57] for this cause. Depending on the functionality being used, either a WMC or
an MWMC solver is a prerequisite for running Quokka#. A configuration file must be provided
to specify the paths to the required solvers.
In Figure 8.2, we show how to import Quokka# and demonstrate how to invoke each function-
ality. In all invocations, the first parameters are the circuits, provided as paths to QASM files,
along with the basis in which to encode them ("comp" for CB and "pauli" for PB). For
each functionality, the additional inputs and the corresponding outputs are detailed as follows.

Simulation. The simulation functionality is invoked using the function sim, as shown in
Line 3. It returns the probability of measuring a specific outcome, specified via the measurement
parameter. The measurement can be one of the following: "allzero" (all qubits in the |0⟩
state), "firstzero" (the first qubit in the |0⟩ state), or a dictionary mapping qubit indices
to their expected values, representing a computational basis state on a subset or all of the
qubits.

1Available at https://github.com/System-Verification-Lab/Quokka-Sharp
2Available at https://github.com/System-Verification-Lab/GPMC.
3Available at https://github.com/crillab/d4v2.

42

https://github.com/System-Verification-Lab/Quokka-Sharp
https://github.com/System-Verification-Lab/GPMC
https://github.com/crillab/d4v2

1 import quokka_sharp . functionalities as qk_funcs
2
3 probability = qk_funcs .sim("path/to/circ.qasm", "comp",

measurement =" allzero ")
4 are_equal = qk_funcs .eq("path/to/circ.qasm",

"path/to/ alternative_circ .qasm",
"pauli", check=" liniar ", N=16)

5 syn_results = qk_funcs .syn("path/to/circ.qasm", "pauli",
cyc_lin_encoding =True , fid=1)

Figure 8.2: Importing Quokka# and examples invoking its functionalities on circuits defined
in QASM format in files path/to/circ.qasm and path/to/alternative_circ.qasm.

Equivalence Checking. The equivalence checking functionality is invoked using the func-
tion eq, as demonstrated in Line 4. The function returns a Boolean value: True if and only if
the two circuits are equivalent. The check parameter specifies the encoding used for equality
checking and can be set to "cyclic", "linear", or "cyclic-linear". Note that with CB,
only "cyclic" can be used.

Synthesis. The synthesis functionality is invoked using the function syn, as demonstrated
in Line 5. The function returns a tuple with four elements: (1) the synthesis outcome, which
can be "FOUND", "TIMEOUT", or "CRASH"; (2) the weight of the best synthesized circuit; (3) a
QASM representation of the synthesized circuit; and (4) the number of layers in the synthesized
circuit. The user can specify the fidelity threshold via the fid parameter and, if using the Pauli
basis, enable the cyclic-linear encoding with the cyc_lin_encoding parameter.

8.3 Repository Structure

The main folders and files in the codebase that users can test, modify, and expand upon to
enhance the tool are as follows:

• experiment folder: containing the source code to test the tool and experiment with it.

– benchmark folder: containing multiple benchmarks to test on, including the folder
modifications with scripts to create the benchmark modifications.

– run_benchmarks folder: containing files for running experiments, such as scripts
to create the results in this work.

• quokka_sharp folder: containing the source code of the tool.

– encoding folder: containing files defining core classes to encode quantum states,
gates, and circuits.

– eq.py, sim.py, syn.py files: implement the functionalities of equivalence check-
ing, simulation, and synthesis, respectively.

– functionalities.py file: contains a function for each of the functionalities, defin-
ing the user interface for the tool.

43

8.3.1 Encoding optimization

While the encoding in Equation 4.8 allows for any circuit of depth d, many encoded circuits are
redundant as they fall in the same equivalence class. For example, two consecutive Hadamard
gates can be reduced to the identity. So if the H is applied to the j-th qubit at depth t, we
can safely exclude the case where another H is applied to the same qubit at depth t + 1. In
the encoding, this corresponds to enforcing that if ptHj

is set to 1, then pt+1
Hj

must be 0. We
apply similar reasoning to patterns like T 8 = I and CXi,jCXi,j = I⊗2, which are never part
of an optimal circuit. Eliminating such cases does not affect optimality and helps reduce the
search space. The corresponding rules are as follows:

• Rule 1: No two H gates in a row on the same qubit, since HH = I:

F d
R1(P) =

∧
k∈[d−1]

∧
i∈[n]

(pkH,i ∨ pk+1
H,i)

• Rule 2: No 8 T gates in a row on the same qubit since T 8 = I:

F d
R2(P) =

∧
k∈[d−7]

∧
i∈[n]

∨
j∈[8]

pk+j
T,i

• Rule 3: No two CX gates in a row on the same qubits since CXi,j · CXi,j = I:

F d
R3(P) =

∧
k∈[d−1]

∧
i,j∈[n],j ̸=i

(pkCX,i,j ∨ pk+1
CX,i,j)

In addition to the constraints in the rules above, we aim to have a canonical representation
for a given set of gates. Our guideline is that every non-I is pushed forward as far as possible.
This means not allowing any single qubit gate to follow an I gate, other than I itself. For
two-qubit gates, we do not allow following I on both qubits. The corresponding rules are as
follows:

• Rule 4: No single qubit gates other than I after an I gate:

F d
R4(P) =

∧
k∈[d−1]

∧
i∈[n]

(pkI,i ⇒ (pk+1
I,i ∨

∨
j∈[n],j ̸=i

(pk+1
CX,i,j ∨ pk+1

CX,j,i)))

• Rule 5: No CX gate following I gate on both qubits:

F d
R5(P) =

∧
k∈[d−1]

∧
i,j∈[n],j ̸=i

(pk+1
CX,i,j ⇒ (pkI,i ∨ pkI,j))

44

Chapter 9

Related Work

In this chapter, we provide an overview of related work on classical simulation, equivalence
checking, and synthesis in quantum computing, with a focus on methods that employ SAT-
based solvers. Table 9.1 summarizes the functionalities supported by Quokka# and compares
them to those offered by other tools.
Table 9.1 displays seven different functionalities. Of those, simulation, exact and approximate
equivalence checking, and exact and approximate synthesis are all defined and discussed in
depth throughout this thesis. The two remaining functionalities, partial equivalence and Hoare
verification, are included in the table to provide a comprehensive comparison of tool capabilities,
but are not covered in detail in this work.
Partial equivalence, as formally defined in [32], refers to a relaxed notion of circuit equiva-
lence: two circuits are partially equivalent if, for every possible input state, they yield the same
probability distribution over measurement outcomes. Consequently, partial equivalence allows
phase differences to vary across different input-output combinations. Moreover, because mea-
surements may be restricted to a subset of qubits, differences on unmeasured qubits can be
ignored, and the circuits may even differ in the total number of qubits.
Hoare verification refers to a method of program correctness checking based on Hoare triples
of the form {P} C {Q}, where P is a precondition, C is a program (or circuit, in our context),
and Q is a postcondition. This asserts that if P holds before executing C, then Q will hold
afterward. In quantum circuit verification [125], this approach is adapted to reason about how
certain input conditions (often on individual qubits or subspaces) affect the outputs, allowing
one to verify correctness properties of quantum programs in a structured, modular way.
We can see from Table 9.1 that Quokka# offers a much more varied tool set than most, and is
the only one to support universal optimal synthesis that can be both exact and approximate.
We see in Chapter 10, how the performances of the tools compare.

9.1 Simulation and Equivalence Checking

SAT-Based. SAT-based solvers have proven successful in navigating the huge search spaces
encountered in various problems in quantum computing [119, 84]. For instance, [16] imple-
ments a simulator for Clifford circuits based on a SAT encoding (our encoding of H,S,CX in

45

Tool Quokka# MQT SliQSim SliQEC Quasimodo AutoQ QuiZX Synthetiq MITMS

Simulation ✓ ✓ [127] ✓ [112] × ✓ [107] ✓ [34] ✓ [64] × ×

Exact Eq. Check. ✓ ✓ [25] × ✓ [118] ✓ [106] ✓ [34] × × ×

Approx. Eq. Check. ✓ ✓ [23] × ✓ [118] × × × × ×

Partial Eq. Check. × ✓ [24] × ✓ [32] × × × × ×

Hoare Verification □ × × × × ✓ [34] × × ×

Exact Synthesis ✓ ⃝ [103] × × × × × △ [89] ✓ [7]

Approx. Synthesis ✓ × × × × × × △ [89] ×

Table 9.1: Functionalities supported by Quokka# compared with other related state-of-the-
art tools, where ✓ (resp. ×) denotes the tool and functionality combination is (resp. is
not) supported. MQT only supports optimal Clifford circuit synthesis, not universal, which
is denoted by ⃝. Synthetiq supports non-optimal (exact and approximate) synthesis,
which is denoted by △. While both Quokka# and AutoQ support Hoare-style verification,
Quokka# imposes stricter limitations on the expressiveness of pre- and postconditions,
denoted by □.

Table 2.1 is similar to theirs). The authors also discuss a SAT encoding for universal quantum
circuits, which, however, requires exponentially large representations, making it impractical.
Berent et al. [16] realize a Clifford circuit simulator and equivalence checker based on a SAT
encoding. The equivalence checker was superseded by the deterministic polynomial-time algo-
rithm proposed and implemented in [110]. Amy [5] uses path integrals to check the equivalence
of circuits, which is complete for Clifford circuits and can prove the equivalence of Clifford+T
and Clifford+R circuits.

Decision Diagram-Based Methods. Another method is based on decision diagrams
(DDs) [3, 22], which represent many Boolean functions succinctly, while allowing manipu-
lation operations without decompression. DD methods for pseudo-Boolean functions include
Algebraic DDs (ADD) [12, 35, 114] and various “edge-valued” ADDs [72, 109, 120, 102]. The
application of DDs to quantum circuit simulation, by viewing a quantum state as a pseudo-
Boolean function, was pioneered with QuiDDs [115] and further developed with Quantum
Multi-valued DDs [85], Tensor DDs [56] and CFLOBDDs [106]. All but CFLOBDD are essen-
tially ADDs with complex numbers. They have also been used for checking the equivalence [25]
and synthesis [126] of quantum circuits. Jimenez et al. use bisimulation for circuit reduction,
reducing simulation time compared to DDs in some cases [59].

Abstract Interpretation and Stabilizers. Yu and Palsberg [123] use an abstract in-
terpretation to simulate and automatically verify quantum circuits. Abstraqt [18] defines a
different abstract interpretation using the stabilizer basis. SAT solvers have proven successful
in quantum compilation [111], e.g., for reversible simulation of circuits [119] and optimizing
space requirements of quantum circuits [84, 96].

ZX-Calculus. Another way is to translate quantum circuits into ZX-diagrams [36], which
is a graphical calculus for quantum circuits equipped with powerful rewrite rules. It offers a
diagrammatic approach to manipulate and analyze quantum circuits. A circuit is almost trivially
expressible as a diagram, but the diagram language is more powerful and circuit extraction

46

is consequently #P-complete [40]. It has proven enormously successful in applications from
equivalence checking [91, 92], to circuit optimization [63] and simulation [64].

Verification. Classical simulation is commonly used for the verification of quantum circuits,
with extensive research focused on their equivalence checking [117, 9, 8]. It can also be
applied in bug hunting in quantum circuits. In [34], the authors proposed a tree automaton to
compactly represent quantum states and gates algebraically, framing the verification problem
as a Hoare triple.

9.2 Synthesis

Clifford Circuit Synthesis. Synthesis of Clifford circuits is substantially simpler than
that of universal quantum circuits due to the ability to exploit the algebraic structure of
the symplectic group, which significantly constrains the search space. Any Clifford operation
on n qubits can be efficiently represented by a 2n × 2n symplectic matrix, rather than the
exponentially larger 2n × 2n unitary matrix typically required for general quantum operations
[27]. Building on this, Maslov and Roetteler [78] employ the Bruhat decomposition of the
symplectic group to generate shorter Clifford circuits. Similarly, Rengaswamy et al. [99] develop
Clifford synthesis algorithms via symplectic geometry, targeting logical-level Clifford operations
with an emphasis on practical implementations on physical qubits. While these approaches
produce efficient Clifford circuits, they do not guarantee optimality in terms of depth or gate
count. To address this limitation, Schneider et al. [103] reformulate Clifford synthesis as a
satisfiability problem. This encoding enables the use of SAT and MaxSAT solvers to identify
optimal Clifford circuits for a fixed depth, providing a rigorous method for achieving minimality.

Exact Clifford+T Circuit Synthesis In error-corrected quantum computing, the rele-
vant universal gate set is Clifford+T. There are many works considering the exact synthesis of
quantum circuits in the gate set Clifford+T[7, 79, 49, 50, 68, 87], i.e., the desired specification
is realized without any rounding errors. Approaches like [49, 87] synthesize the unitary matrix
representing the specification in a local fashion, i.e., column by column. However, they do not
give the optimal solution and leave significant room for improvement. To achieve optimality,
the meet-in-the-middle algorithm [79, 50] performs an exhaustive search over the space of all
Clifford+T circuits up to a given depth.

Approximate Clifford+T Circuit Synthesis. Since not all unitaries can be imple-
mented exactly in the Clifford+T gate set, other works have focused on synthesizing circuits
under different approximation metrics. Most of these works [69, 100, 104, 45] focus on single-
qubit operators, especially rotation gates, while [48, 89] consider multi-qubit operators.

47

Chapter 10

Experimental Evaluation

In this chapter, we evaluate the performance of our approach as implemented in Quokka#,
focusing on its scalability and effectiveness across the core functionalities of simulation, equiv-
alence checking, and synthesis. Our goal is to understand how different encoding strategies
and design choices affect overall performance, and to identify the strengths and limitations of
the approach in practical settings.
For each functionality, we begin by evaluating our proposed encodings on randomly generated
circuits to establish a baseline for understanding their relative behavior in a controlled setting.
We then proceed to compare them with existing state-of-the-art approaches on established
benchmarks, in order to assess their practical effectiveness and competitiveness in real-world
scenarios.
We first compare the two supported basis representations, the Pauli basis (PB) and the
computational basis (CB), using simulation on random circuits. This offers initial insight into
the practical trade-offs between different encoding choices. We then examine the performance
of our equivalence checking methods across all proposed encodings: linear, cyclic, and linear-
cyclic encodings in the PB, as well as the cyclic encoding in the CB. This analysis highlights
the computational cost associated with each representation strategy. Next, we assess exact
synthesis performance across these encodings, again using random circuits to isolate the effect
of the encoding independent of external complexity.
After establishing these baseline results, we compare our approaches against state-of-the-
art tools for each functionality. These evaluations are carried out using circuits from the
MQTBench benchmark suite [95]. Additionally, we explore the impact of different weighted
model counters to better understand their role in optimizing circuit-level tasks.
Through this layered analysis, we aim to provide a comprehensive picture of how well the
maximum weighted model counting supports the core tasks of quantum circuit synthesis and
where further improvements might be most impactful.

Random Circuit Generation. For the experiments, we generate random circuits for a
given number of qubits n and a specified depth d, using a predefined probability distribution
over the gate set GCST = {CX,H, S, S†, T, T †}. Each layer is constructed by iteratively
selecting gates according to the distribution and assigning them to randomly chosen unassigned
qubits. The two-qubit gate CX is only selected when at least two unassigned qubits remain.

48

This process continues until all qubits in the layer are assigned a gate — no identity (I) gates
are inserted, and every qubit receives exactly one gate per layer.

Model Counters. For simulation and equivalence checking, a WMC is required, while
synthesis relies on an MWMC. We use GPMC and d4Max for these purposes, respectively, in
the random circuit experiments. Both tools were extended to support complex numbers, as
discussed in Section 8.2.

10.1 Simulation

To compare the different basis encodings, we generate random circuits with 1 and 5 qubits
and depths ranging from 5 to 50 in increments of 5, using a uniform probability distribution
over the gate set GCST . We conduct simulations using both the PB and the CB, evaluating
performance under two projectors: (1) First Zero — measuring the probability that the first
qubit of the output state is in the |0⟩ state, and (2) All Zero — measuring the probability
that the entire output state is |0 . . . 0⟩. The results appear in Figure 10.1. The data shows
that CB scales better than PB, outperforming it as circuit depth and qubit count increase.
Notably, this holds even with the First Zero projector, which is more challenging for CB, as
explained in Section 7.1.

(a) First Zero Projector (b) All Zero Projector

Figure 10.1: Runtime as a function of circuit depth for Simulation of circuits with 1 and
5 qubits with First Zero and All Zero projectors.

One aspect of the circuits that we believe influences performance is their gate composition. As
discussed in Section 7.1, the PB is presumed to be sensitive to the presence of T gates, while
the CB is affected by H gates. To investigate this, we conducted additional experiments on
random circuits generated with varying probabilities of applying H versus T gates. Specifically,
for a ratio r, the probability of applying a T or T † gate is 2∗r times the probability of applying
an H gate, such that for r = 0.5, this corresponds to a uniform probability distribution over
the GCST gate set. The results of these experiments are shown in Figure 10.2. We observe
that the performance of the CB deteriorates as the proportion of T gates increases, while the
PB exhibits a less consistent behavior, with performance surprisingly improving for r > 0.5.

49

This irregularity can be explained by the structure of the Pauli basis. A T gate only causes a
branching in satisfying assignments when the X component is active. However, since we use
the all-zero measurement projector, the initial state is represented using only I and Z terms
— meaning the X component is inactive at the outset. It is the H gate that introduces X
terms into the state. Therefore, the impact of T gates in the PB becomes significant only
when preceded or accompanied by a sufficient number of H gates. As a result, the most
challenging configurations arise when both H and T gates are present in balanced quantities
(e.g., r = 0.5). In contrast, when the ratio skews heavily toward T gates with fewer H gates to
activate X components, the T gates become less disruptive, leading to a slight improvement
in performance.

Figure 10.2: Runtime of simulation with All Zero measurements as a function of T gates
to H gate probability ratio in random circuits with 5 qubits.

Comparison with State of the Art.

We empirically evaluated Quokka# on the MQTBench benchmark with the All Zero projector,
as is typical in most quantum algorithms. We compare Quokka#, using both CB and PB,
with two state-of-the-art tools for simulation: QuiZX [64] based on ZX calculus [36] and
Quasimodo [107] based on CFLOBDD [106]. We present a representative subset of results in
Table 10.3. Across all cases, Quokka# with the computational basis consistently outperforms
Quasimodo. Moreover, Quokka# CB also outperforms both QuiZX and Quokka# PB in most
scenarios. When it does, the performance gains are often substantial; in the few cases where
it does not, the runtime differences are relatively minor.

10.2 Equivalence Checking

As proposed in Theorem 4.1 and Theorem 6.2, there are multiple techniques to compare
the equivalence of two circuits. Before proceeding with synthesis testing, we aim to gain a
better understanding of the performance of equivalence checking on its own. To compare
the performance of the different techniques, we run experiments on random circuits and their
modified copies. Two types of modifications are performed. The first, referred to as Optimized,
is an optimization of the circuit — equivalent to the original — generated using the Python
library PyZX [63]. The second modification, referred to as Gate Missing, removes a random gate

50

Algorithm n
Quokka#

(PB)
Quokka#

(CB) QuiZX Quasimodo

Grover’s
(noancilla)

5 8.626 0.025 0.019 0.104
6 > 300 0.052 0.495 0.25
7 > 300 0.089 4.345 0.517

QAOA
7 0.15 0.025 0.026 0.087
9 1.356 0.034 0.031 0.05

11 1.086 0.038 0.033 0.06

QFT
16 0.067 0.026 > 300 7.826
32 0.261 0.069 > 300 > 300
64 0.11 0.15 0.57 > 300

QNN
16

> 300
51.83

✕

57.36
32 > 300 > 300
64 > 300 > 300

VQE
5 0.059 0.022 1.005 7.368

10 0.119 0.030 0.031 9.905
15 0.191 0.036 > 300 40.233

W-state
16 0.107 0.023 33.619 15.241
32 0.279 0.032 32.947 > 300
64 0.878 0.041 33.552 > 300

Table 10.3: Simulation runtime (sec) comparison for Quokka#, QuiZX, and Quasimodo.
> 300 represents a timeout (5 min) and ✕ means that the result was ‘unknown’.

from the Optimized circuit, ensuring that the resulting circuit is not equivalent to the original
one. Figure 10.4 shows the performance of the different equivalence checking encodings on
circuits compared with their modified counterparts. As with simulation, we observe that CB
scales better than the PB encoding overall. That said, among the PB variants, the linear
encoding performs significantly better than the others and is only outperformed by CB at
large depths (around 100).

(a) Optimized Modification (b) Gate Missing Modification

Figure 10.4: Runtime as a function of circuit depth for equivalence checking of 5-qubit
circuits against their modified counterparts. For data points with at least one timeout,
the average excludes timeouts and is marked with a smaller dot.

51

Comparison with State of the Art.

We now compare the PB and CB encodings to a state-of-the-art tool that performs the same
task. For the PB, we select the linear encoding, as it was the fastest based on the results from
the random circuit experiments. The state-of-the-art reference is QCEC[26] from the Munich
Quantum Toolkit (MQT), which integrates decision diagrams (DDs) and ZX-calculus. In QCEC
(v2.2.4), the ZX-calculus can be disabled to yield a purely DD-based variant, which we denote
as QCEC (DD).
For consistency, we use the same benchmark suite, MQTBench[95], as in the simulation ex-
periments to compare the two Quokka# encodings against both variants of QCEC. As with
the random experiments, for each benchmark we construct a modified version to compare to.
The modification here, referred to as Phase shift, takes the optimized circuit, generated by
PyZX [63], and inserts a error of 10−4 to the rotation angle of a randomly chosen rotation
gate. So, by construction, the circuits are not equivalent.
The performance on equivalence checking is shown in Table 10.5. Regarding running time,
Quokka# is mostly faster than QCEC and QCEC (DD) for circuits that feature rotation gates,
such as W-state and QFT. Overall, the linear PB encoding performs better than the CB,
where the differences are significant (QAOA, QFT, VQE). This can be explained by the 2n
separate calls of the linear PB to WMC, allowing it to stop when it finds a non-equivalent
case, while the computational basis method always has to range over all basis states. However,
it is worth noting that Quokka# is always more accurate than QCEC when it comes to phase
shift error. QCEC reports many wrong results, and there are results of unknown due to the
decision diagram method and the ZX-calculus method giving different results.

10.3 Synthesis

Exact Synthesis.

To evaluate the scalability and performance of our proposed synthesis method, we run the
different encodings on random circuits with 2 to 6 qubits. The random circuits are generated
with a uniform distribution over the target gate set GCT = {H,CX, T, T †}. Since a random
circuit of depth d could be equivalent to a shallower circuit, we retain only those circuits
that did not produce a shallower result when synthesized, until we obtain 10 samples. We
synthesize those 10 samples, using each of the three encodings presented in Proposition 4.3
and Proposition 6.3, with a time limit of 300 seconds. We report the success rate, defined as
the ratio of samples solved within the time limit, the average runtime of the solved samples,
and the average memory usage for those runs as reported by d4max. For each encoding, we
increase the circuit depth until the success rate drops below 0.5. The results are displayed in
Table 10.6.

It is important to note that when the success rate is below 1, the reported run times and
memory usage in the table are naturally lower than the average required to solve all cases, as
failed instances, which would exceed the time limit, are excluded from the averages. Further-
more, since the maximum weight corresponding to a successful synthesis is known (as shown

52

Algorithm n
Quokka#
(LPB)

Quokka#
(CB)

QCEC
(DD) QCEC

Grover’s
(noancilla)

5 24.37 11.8 0.12 0.04
6 > 300 > 300 6.04 ✕

7 > 300 > 300 > 300 1.97

QAOA
7 0.15 0.04 0.03 ✕

9 0.29 283.41 wrong ✕

11 0.33 > 300 0.12 0.1

QFT
2 0.02 0.007 0.01 0.01
8 0.2 283.54 wrong ✕

16 0.79 > 300 wrong ✕

QNN
2 0.04 0.009 wrong wrong
8 > 300 > 300 0.24 wrong

16 > 300 > 300 > 300 ✕

VQE
5 0.15 0.06 wrong wrong

10 0.79 19.94 wrong wrong
15 0.63 66.16 0.15 0.15

W-state
16 0.33 0.07 12.85 ✕

32 1.55 0.17 > 300 ✕

64 5.4 0.55 > 300 > 300

Table 10.5: Equivalence checking runtime (sec) comparison for Quokka# in the CB cyclic
encoding and PB linear encoding (LPB) with QCEC in the regular mode and DD only
mode (QCEC (DD)). > 300 represents a timeout and ✕ means that the result was ‘un-
known’.

in Theorem 4.1), Quokka# provides a threshold to the MWMC solver, allowing it to terminate
as soon as the optimal value is reached. As a result, when a circuit can be synthesized within
the given depth, i.e., in the successful cases used to produce the data in Table 10.6, the solver
may terminate early. Conversely, in unsuccessful cases, where no circuit of the given depth
exists, the solver must exhaustively explore the search space, resulting in longer run times. For
example, for the cases with 3 qubits and depth 4, when running the same sample circuits as
in Table 10.6 without the threshold using the linear-cyclic encoding in the PB, the average
runtime is 30.865 ± 11.479 instead of 11.26 ± 4.95.

Approximate Synthesis.

Important gates that often need to be synthesized approximately in Clifford+T are the general
rotation gates: Rx, Ry, Rz [69]. In our encoding, these gates correspond to fixed Boolean
formulas, with the rotation angle only influencing the weight function [81]. Thus, different
rotation angles do not significantly affect the performance per depth of the approximate syn-
thesis. To demonstrate the use of approximate synthesis, we consider the rotation gate

Rz

(
π

8

)
=
(
e−iπ/16 0

0 eiπ/16

)
.

We choose to use the CB with the cyclic encoding as it outperforms the PB with the cyclic
encoding, according to the results in Table 10.6 and Figure 10.4 (recall that PB with the
linear-cyclic encoding cannot perform approximate synthesis).

53

#Qb Depth Rate Time (s) Memory (GB)
CB LPB PB CB LPB PB CB LPB PB

2 1 1.0 1.0 1.0 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 < 2 < 2 < 2
2 1.0 1.0 1.0 0.07 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 < 2 < 2 < 2
3 1.0 1.0 1.0 0.11 ± 0.01 0.11 ± 0.01 0.14 ± 0.02 < 2 < 2 < 2
4 1.0 1.0 1.0 0.29 ± 0.09 0.22 ± 0.07 0.40 ± 0.10 < 2 < 2 < 2
5 1.0 1.0 1.0 2.46 ± 1.51 1.46 ± 0.72 4.53 ± 3.16 2.13 ± 0.03 2.09 ± 0.00 2.11 ± 0.02
6 1.0 1.0 1.0 21.25 ± 12.54 14.26 ± 10.33 55.69 ± 42.54 2.46 ± 0.28 2.16 ± 0.07 2.38 ± 0.27
7 0.9 0.9 0.3 115.31 ± 64.99 97.28 ± 46.98 206.37 ± 17.36 3.84 ± 1.31 2.48 ± 0.21 3.41 ± 0.54
8 0.0 0.0 ◦ - - ◦ - - ◦

3 1 1.0 1.0 1.0 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 < 2 < 2 < 2
2 1.0 1.0 1.0 0.08 ± 0.01 0.10 ± 0.01 0.10 ± 0.02 < 2 < 2 < 2
3 1.0 1.0 1.0 1.43 ± 0.97 0.44 ± 0.24 2.45 ± 1.91 2.11 ± 0.02 < 2 2.11 ± 0.01
4 1.0 1.0 1.0 51.56 ± 57.11 11.26 ± 4.95 105.40 ± 64.98 3.15 ± 1.25 2.15 ± 0.04 2.87 ± 0.67
5 0.1 0.7 0.0 145.96 147.37 ± 49.30 - 5.08 3.20 ± 0.53 -
6 ◦ 0.0 ◦ ◦ - ◦ ◦ - ◦

4 1 1.0 1.0 1.0 0.05 ± 0.00 0.06 ± 0.00 0.05 ± 0.00 < 2 < 2 < 2
2 1.0 1.0 1.0 0.37 ± 0.20 0.30 ± 0.14 0.62 ± 0.48 2.09 < 2 2.09 ± 0.01
3 1.0 1.0 0.5 102.55 ± 85.73 22.65 ± 16.03 85.70 ± 42.76 4.44 ± 2.07 2.26 ± 0.13 2.69 ± 0.34
4 0.0 0.2 0.0 - 246.80 ± 21.38 - - 4.51 ± 0.20 -

5 1 1.0 1.0 1.0 0.05 ± 0.00 0.06 ± 0.01 0.06 ± 0.00 < 2 < 2 < 2
2 1.0 1.0 1.0 2.93 ± 2.17 3.01 ± 1.62 11.85 ± 11.15 2.14 ± 0.04 2.11 ± 0.02 2.18 ± 0.10
3 0.0 0.1 0.0 - 243.71 - - 4.67 -

6 1 1.0 1.0 1.0 0.05 ± 0.00 0.12 ± 0.06 0.06 ± 0.00 < 2 < 2 < 2
2 0.9 1.0 0.7 70.49 ± 82.13 54.47 ± 44.75 72.71 ± 69.85 3.74 ± 2.03 2.69 ± 0.61 2.80 ± 0.81
3 0.0 0.0 0.0 - - - - - -

Table 10.6: Synthesis benchmarks for random circuits using the target gate set
{CX,H, T, T †}. We report the success rate, average runtime, and average memory us-
age of the optimal circuit synthesized within 300 seconds. CB and PB denote the cyclic
encoding in each basis; LPB refers to the linear-cyclic encoding in the PB. Memory usage
is reported by d4max; for short runtimes where no value is reported, we estimate usage to
be under 2GB and denote this with < 2. Averages are shown with ± standard deviation;
if all 10 samples failed, the average is marked as -. Untested depths (due to low success
rate in the previous depth) are marked with ◦.

We report statistics for each synthesis layer where an improvement in the achieved fidelity is
observed. The results are presented in Figure 10.7. We also present the runtime of the MWMC
for each layer in Figure 10.9. The corresponding output circuits are as follows:

• 1 Layer: Cout = (T)

• 10 Layer: Cout = (T †, H, T †, H, T †, H, T †, H, T †, H)

• 15 Layer: Cout = (H,T †, H, T,H, T,H, T †, H, T,H, T,H, T †, H)

Comparison with State of the Art.

As discussed in Chapter 9, there are numerous synthesis tools available, but they differ sig-
nificantly in the specific tasks they address. Some focus only on a subset of quantum circuits
— for example, restricting to single-qubit or Clifford-only circuits. In addition to differences in
input types, there is also variation in the desired output. This can include targeting different
gate sets, different optimality metrics, or, in the case of approximate synthesis, differing ap-
proximation metrics. Furthermore, some tools sacrifice optimality in favor of faster runtimes
and better scalability.

54

depth 1 10 15 24
#variables 11 92 137 218
#clauses 37 382 577 928
#literals 90 960 1460 2360
#Selecting variables 4 40 60 96
fidelity 0.962 0.975 0.997 -
Time (s) 0.023 0.092 2.715 > 1543.246
mem (GB) < 2 < 2 2.14 > 33.31

Figure 10.7: Synthesis performance for approximating RZ(π/8) using the cyclic encoding
in CB. The data is given for each MWMC call, for incremental target depths, until the
program crashes at 24 layers due to limited resources. Memory usage for short runtime is
not given (< 2). Only iterations where the fidelity improved are shown.

5 10 15 20

10−1

100

101

102

103

Number of Synthesis Layers

Ru
n

T
im

e
(s

ec
on

ds
)

Figure 10.8

Figure 10.9: Runtimes as a function of target depth, for approximate synthesis of RZ(π/8),
using the cyclic encoding in CB. The data is given for each MWMC call, for incremental
target depths, until the program crashed at 24 layers, due to limited resources.

As a result, identifying a tool for comparison that performs exactly the same task — and thus
allows for a fair evaluation — is not straightforward.
One tool that performs a task similar to the synthesis functionality in Quokka# is MITMS,
which targets the gate set {H,CX, S, S†, T, T †}. However, we were unable to compile MITMS
in our experimental setup due to its reliance on outdated libraries. Instead, we refer to the
performance data reported in [7] as a comparative reference.
The results taken from [7], and the corresponding data form Table 10.6, are shown in Ta-
ble 10.10. While the comparison is not entirely fair — due to differences in gate set, benchmark
design, and platform — we observe that Quokka# uses more memory, but achieves lower run
times, compared to MITMS.

55

#Qubits 2 3 4
Depth Time (s)
1 0.002 0.027 1.173
2 0.019 1.409 194.386
3 0.188 53.238 31,583.809
4 1.602 2311.023 -
5 12.433 85,055.065 -
6 84.622 - -
Depth Mem (MB)
1 0.002 0.006 0.013
2 0.016 0.175 1.580
3 0.143 6.580 277.9256
4 0.990 210.907 -
5 6.103 7557.210 -
6 32.00 - -

(a) MITMS results from [7]
#Qubits 2 3 4
Depth Time (s)
1 0.05 ± 0.00 0.05 ± 0.00 0.06 ± 0.00
2 0.08 ± 0.00 0.10 ± 0.01 0.30 ± 0.14
3 0.11 ± 0.01 0.44 ± 0.24 22.65 ± 16.03
4 0.22 ± 0.07 11.26 ± 4.95 (246.80 ± 21.38)
5 1.46 ± 0.72 (147.37 ± 49.30) -
6 13.26 ± 10.33 - -
7 (97.28 ± 46.98) - -
Depth Mem (MB)
1 < 2000 < 2000 < 2000
2 < 2000 < 2000 < 2000
3 < 2000 < 2000 2314.24 ± 133.12
4 < 2000 2201.60 ± 40.96 (4618.24 ± 204.8)
5 2140.16 ± 0.00 (3276.8 ± 542.72) -
6 2211.84 ± 71.68 - -
7 (2539.52 ± 215.04) - -

(b) corresponding Linear Pauli Basis results from Table 10.6. Where success
rate is < 0.1 (timeout of 300 seconds) we denote the results with parentheses.

Table 10.10: Comparison of runtime and memory usage between (a) MITMS and (b) our
synthesis results using the Linear Pauli Basis encoding.

56

Chapter 11

Conclusion

11.1 Summary

As quantum computing pushes toward demonstrating real-world utility, the ability to generate
optimized, hardware-compatible quantum circuits becomes increasingly vital. Circuit synthesis
— the process of converting a desired quantum behavior into a low-level gate sequence —
is essential for bridging high-level quantum algorithms with the physical realities of quantum
hardware. However, existing methods that guarantee optimality remain highly limited in scale.
Motivated by the recent successes of SAT-based methods in quantum simulation and verifica-
tion, this thesis explored whether these symbolic techniques could also be used to synthesize
quantum circuits. In particular, we focused on leveraging maximum weighted model count-
ing (MWMC) to support exact and approximate depth-optimal synthesis over the Clifford+T
universal gate sets.
We began by extending the recent SAT-based equivalence checking technique [82], adapting it
to operate within a single call to a weighted model counter and further to compute the fidelity
between quantum circuits. This allows us to support not only exact reasoning but also enable
approximate equivalence checking by quantifying how similar two circuits are under fidelity.
Crucially, we showed that cyclic encodings naturally support this functionality, as they directly
compute the trace overlap between two circuits.
Building on these foundations, we formulated quantum circuit synthesis as a model counting
problem, enabling us to construct candidate circuits and verify their correctness (or proximity)
to a specification via a single MWMC call. We introduced a depth-bounded synthesis strategy
that incrementally searches for optimal solutions by increasing the circuit depth. This synthe-
sis framework supports both exact and approximate settings by tuning the required fidelity
threshold.
In addition, we explored an alternative encoding basis, the computational basis (CB), to
the Pauli basis (PB) used in [82], and analyzed their respective strengths and limitations.
While the PB offers the multiplicative basis for streamlined equality checking encodings, we
investigated whether the CB could provide advantages due to its smaller variable count. Our
comparative analysis reveals trade-offs in expressiveness, overhead, and solver performance
across tasks like simulation, equivalence checking, and synthesis.

57

These ideas were implemented in a prototype tool, Quokka#, which unifies SAT-based sim-
ulation, equivalence checking, and synthesis into a single framework. It supports both exact
and approximate reasoning, allows toggling between encoding strategies, and demonstrates
the practical viability of SAT-based synthesis in quantum computing.

11.2 Key Findings

The results of this thesis indicate that the answer to our central question — whether SAT-
based techniques can be effectively adapted to quantum circuit synthesis — is a yes, with
promising outcomes.
We extend prior work on model counting for equivalence checking to support one-shot equiv-
alence, enabling effective integration with synthesis workflows. We also further adapt the
encoding to allow for variations that compute fidelity, allowing for approximate equivalence
checking and, by extension, approximate synthesis. By generalizing this equivalence checking
process to also encompass gate selection and circuit structure, we formulate quantum synthesis
as a Maximum-Weighted Model Counting (MWMC) problem that supports both exact and
approximate fidelity objectives. To achieve depth optimality, we introduce a depth-bounded
incremental search strategy that discovers minimal-depth circuits within the synthesis space.
Additionally, we propose another encoding strategy, following the computational basis repre-
sentation, that improves performance and scalability in many cases.
These techniques are embodied in our prototype tool, Quokka#, which demonstrates the feasi-
bility and versatility of the proposed approach. Quokka# supports multiple core functionalities
of quantum circuit design — including simulation, equivalence checking, and synthesis —
within a single, unified symbolic framework. To our knowledge, it is the first tool to enable
depth-optimal synthesis for both exact and approximate objectives. In evaluations, Quokka#
significantly outperforms state-of-the-art tools in several benchmarks for simulation and syn-
thesis. Moreover, in the domain of depth-optimal synthesis, its performance is competitive with
the only existing tool that supports such guarantees, while uniquely offering fidelity-aware ap-
proximate synthesis with formal correctness bounds.
These findings not only demonstrate the technical viability of SAT-based synthesis but also
highlight its potential for broader impact within the field of quantum computing. In particu-
lar, this work shows that SAT-based techniques can unify simulation, equivalence checking,
and synthesis within a single formalism, offering flexibility, generality, and theoretical rigor.
Although current synthesis scalability is limited to circuits of moderate size (from 1 qubit with
depth ≤ 32 to 4 qubits with depth 4), this approach marks a shift toward symbolic, solver-
driven workflows that complement traditional algebraic and heuristic methods. Moreover, it
creates a promising feedback loop: advances in model counting — particularly in Maximum
Weighted Model Counting (MWMC) — will directly enhance synthesis performance, while our
framework, in turn, provides new motivation and use cases for improving MWMC techniques.
This synergy offers a hopeful path toward greater performance and scalability.
Furthermore, the techniques developed here align with broader goals in quantum computing:
enabling fault-tolerant execution, reducing circuit depth to mitigate decoherence, and adapting
to hardware constraints. By supporting approximate synthesis, our methods can also aid in
practical deployment where precision and resource constraints must be carefully balanced.

58

11.3 Future Directions

This thesis demonstrates that maximum weighted model counting (MWMC) is not only theo-
retically sound but also practically viable as a unifying formalism for quantum circuit simulation,
equivalence checking, and synthesis. The success of this approach — realized in the Quokka#
prototype — opens several promising avenues for future work, which we list below.
Solver-Level Innovations: For the evaluation of our methods, we rely on a prototype ex-
tension of d4Max, which currently lacks many of the optimizations found in state-of-the-art
model counters. A critical next step is to design dedicated MWMC solvers with direct complex
weight support and tailored heuristics. Incorporating incremental solving techniques — widely
used in SAT-based bounded model checking [19, 51] and recently explored for sampling and
weighted model counting [121, 122] — remains an open and unexplored direction for maximum
weighted model counting. Adapting such techniques to the MWMC setting could significantly
enhance synthesis performance by reusing solver state across depth-bounded iterations or lay-
ered circuit constructions. Similarly, exploiting problem structure in the CNF encodings (e.g.,
XOR clauses [83], repeated motifs, or circuit symmetries) could dramatically improve perfor-
mance [70, 14]. Symmetry-aware inference and caching, already successful in other reasoning
domains, could further accelerate solving in quantum contexts.
Synthesis Strategy and Encoding Refinements: At the synthesis level, there are opportu-
nities to improve scalability and generality through enhanced encoding strategies. Our current
depth-bounded incremental approach could be extended with partial reuse across layers or
heuristic guidance from structural features of the specification. While this work focused on
the Clifford+T gate set, the encoding naturally generalizes to other bases, including hardware-
native sets. The method could also be adapted to optimize alternative metrics such as T -count
or gate count, and support additional features, such as connectivity or ancilla usage. Special-
ized tasks — such as single-qubit rotation synthesis or Clifford-only compilation — could be
isolated and encoded modularly to improve efficiency.
Integration into Hardware-Aware Compilation Pipelines: Embedding symbolic synthe-
sis into a broader quantum compilation stack is another important frontier. This includes
mapping to physical hardware topologies, respecting native gate sets, and integrating with
error-correcting codes or logical-to-physical transpilation workflows. Depth-optimal synthesis
is especially critical in fault-tolerant settings [60], where multi-qubit gates and T -gates are
costly [69]. Continued refinement of these techniques may also enable the minimization of
important cost metrics under physical constraints.
Scalability through Approximation and Learning: While exact MWMC-based synthesis
remains challenging beyond a few qubits and layers, promising directions for scaling include
approximate model counting, variational synthesis, stochastic SAT formulations, and learning-
based guidance [76, 73] . For example, casting synthesis as a stochastic optimization problem
could allow probabilistic balancing between competing objectives such as fidelity, depth, and
gate cost. Learning-guided circuit prediction or abstraction-refinement loops could bridge sym-
bolic synthesis with data-driven methods.
Benchmarking and Community Engagement: This thesis presents the first systematic
application of MWMC-based quantum synthesis. The accompanying tool, Quokka#, provides
a foundation for defining future benchmark sets and offers motivation for developing more ca-
pable MWMC solvers. This work encourages further progress in symbolic quantum compilation

59

and weighted model counting research by highlighting concrete synthesis challenges and ex-
posing solver limitations. This feedback loop between application-driven problem instances and
solver development is well-established in classical SAT/SMT — through venues such as the
Model Counting Competition 1 — and may similarly benefit symbolic quantum compilation.
Theoretical and Foundational Implications: Beyond engineering, this work raises inter-
esting questions at the interface of formal methods, quantum compilation, and theoretical
computer science. For instance, it suggests new ways to derive lower bounds for quantum
synthesis problems based on results from reasoning and complexity theory [13]. The encoding
techniques and search paradigms developed here could also inform broader symbolic AI ef-
forts, particularly those involving weighted reasoning, probabilistic inference, and constrained
optimization.

In summary, this research lays the groundwork for a unified, SAT-based approach to quantum
circuit design. By showing that simulation, equivalence checking, and synthesis can all be
captured within a model counting framework, it opens the door to symbolic, rigorous, and
scalable quantum compilers. As quantum hardware matures and solver technology advances,
MWMC-based techniques may become a central component in the development of practical,
high-performance quantum computing.

1https://mccompetition.org/

60

https://mccompetition.org/

Bibliography

[1] Dimacs cnf. https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.
html. Accessed: 2025-01-27.

[2] Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-time.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
461(2063):3473–3482, 2005.

[3] Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):509–516,
1978. doi:10.1109/TC.1978.1675141.

[4] Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy threshold for
concatenated distance-3 codes. Quantum Info. Comput., 6(2):97–165, March 2006.

[5] Matthew Amy. Towards large-scale functional verification of universal quantum circuits.
arXiv:1805.06908, 2018.

[6] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time t-depth optimiza-
tion of clifford+ t circuits via matroid partitioning. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 33(10):1476–1489, 2014.

[7] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(6):818–830, 2013.
doi:10.1109/TCAD.2013.2244643.

[8] Ebrahim Ardeshir-Larijani, Simon J. Gay, and Rajagopal Nagarajan. Equivalence check-
ing of quantum protocols. In Nir Piterman and Scott A. Smolka, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 478–492, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg.

[9] Ebrahim Ardeshir-Larijani, Simon J. Gay, and Rajagopal Nagarajan. Verification of
concurrent quantum protocols by equivalence checking. In Erika Ábrahám and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 500–514, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[10] Frank Arute et al. Quantum supremacy using a programmable superconducting pro-
cessor. Nature, 574:505âĂŞ510, 2019. URL: https://www.nature.com/articles/
s41586-019-1666-5.

61

https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TCAD.2013.2244643
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5

[11] Gilles Audemard, Jean-Marie Lagniez, and Marie Miceli. A New Exact Solver for
(Weighted) Max#SAT. In Kuldeep S. Meel and Ofer Strichman, editors, 25th In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT
2022), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 28:1–28:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.SAT.2022.28, doi:10.4230/LIPIcs.SAT.2022.28.

[12] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications.
In Proceedings of 1993 International Conference on Computer Aided Design (ICCAD),
pages 188–191, 1993.

[13] Max Bannach and Markus Hecher. On Weighted Maximum Model Counting: Com-
plexity and Fragments. In 36th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2024, Herndon, Virginia, USA, October 28-30, 2024, 2024.

[14] Anicet Bart, Frédéric Koriche, Jean-Marie Lagniez, and Pierre Marquis. Symmetry-driven
decision diagrams for knowledge compilation. In Torsten Schaub, Gerhard Friedrich, and
Barry O’Sullivan, editors, ECAI 2014 - 21st European Conference on Artificial Intelli-
gence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applications
of Intelligent Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelligence and
Applications, pages 51–56. IOS Press, 2014. doi:10.3233/978-1-61499-419-0-51.

[15] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribution
and coin tossing. Theoretical computer science, 560:7–11, 2014.

[16] Lucas Berent, Lukas Burgholzer, and Robert Wille. Towards a SAT Encoding
for Quantum Circuits: A Journey From Classical Circuits to Clifford Circuits and
Beyond. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022), vol-
ume 236 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–
18:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/
LIPIcs.SAT.2022.18, doi:10.4230/LIPIcs.SAT.2022.18.

[17] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, pages 11–20, 1993.

[18] Benjamin Bichsel, Anouk Paradis, Maximilian Baader, and Martin Vechev. Abstraqt:
Analysis of quantum circuits via abstract stabilizer simulation. Quantum, 7:1185, 2023.

[19] Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability - Second Edition, volume 336 of
Frontiers in Artificial Intelligence and Applications, pages 739–764. IOS Press, 2021.
doi:10.3233/FAIA201002.

[20] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability. IOS Press,
2021.

62

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.28
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.28
https://doi.org/10.4230/LIPIcs.SAT.2022.28
https://doi.org/10.3233/978-1-61499-419-0-51
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.18
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.18
https://doi.org/10.4230/LIPIcs.SAT.2022.18
https://doi.org/10.3233/FAIA201002

[21] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in sat solving. In
Handbook of Satisfiability, pages 391–435. IOS press, 2021.

[22] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

[23] Lukas Burgholzer, Richard Kueng, and Robert Wille. Random stimuli generation for
the verification of quantum circuits. In Proceedings of the 26th Asia and South Pacific
Design Automation Conference, pages 767–772, 2021.

[24] Lukas Burgholzer, Tom Peham, and Robert Wille. MQT QCEC: Equivalence checking
for quantum circuits, 2020. https://arxiv.org/abs/2004.08420. URL: https:
//mqt.readthedocs.io/projects/qcec, doi:10.1109/TCAD.2020.3032630.

[25] Lukas Burgholzer and Robert Wille. Advanced equivalence checking for quantum
circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 40(9):1810–1824,
sep 2020. URL: http://dx.doi.org/10.1109/TCAD.2020.3032630, doi:10.1109/
tcad.2020.3032630.

[26] Lukas Burgholzer and Robert Wille. Advanced equivalence checking for quantum cir-
cuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 40(9):1810âĂŞ1824, September 2021. URL: http://dx.doi.org/10.1109/
TCAD.2020.3032630, doi:10.1109/tcad.2020.3032630.

[27] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum er-
ror correction and orthogonal geometry. Phys. Rev. Lett., 78:405–408, Jan 1997.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.78.405, doi:10.1103/
PhysRevLett.78.405.

[28] A. Robert Calderbank and Peter W. Shor. Good quantum error-correcting codes exist.
Phys. Rev. A, 54:1098–1105, Aug 1996. URL: https://link.aps.org/doi/10.1103/
PhysRevA.54.1098, doi:10.1103/PhysRevA.54.1098.

[29] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D John-
son, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya,
et al. Quantum chemistry in the age of quantum computing. Chemical reviews,
119(19):10856–10915, 2019.

[30] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From weighted
to unweighted model counting. In Proceedings of IJCAI, pages 689–695, 2015.

[31] Senrui Chen, Sisi Zhou, Alireza Seif, and Liang Jiang. Quantum advantages for pauli
channel estimation. Physical Review A, 2021. URL: https://api.semanticscholar.
org/CorpusID:237213441.

[32] Tian-Fu Chen, Jie-Hong R Jiang, and Min-Hsiu Hsieh. Partial equivalence checking of
quantum circuits. In 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE), pages 594–604. IEEE, 2022.

[33] Yanlin Chen, Yilei Chen, Rajendra Kumar, Subhasree Patro, and Florian Speelman.
Qseth strikes again: finer quantum lower bounds for lattice problem, strong simulation,
hitting set problem, and more. arXiv preprint arXiv:2309.16431, 2023.

63

https://arxiv.org/abs/2004.08420
https://mqt.readthedocs.io/projects/qcec
https://mqt.readthedocs.io/projects/qcec
https://doi.org/10.1109/TCAD.2020.3032630
http://dx.doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1109/tcad.2020.3032630
https://doi.org/10.1109/tcad.2020.3032630
http://dx.doi.org/10.1109/TCAD.2020.3032630
http://dx.doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1109/tcad.2020.3032630
https://link.aps.org/doi/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevLett.78.405
https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://link.aps.org/doi/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://api.semanticscholar.org/CorpusID:237213441
https://api.semanticscholar.org/CorpusID:237213441

[34] Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De
Yen. An automata-based framework for verification and bug hunting in quantum circuits.
Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi:10.1145/3591270.

[35] Edmund M. Clarke, Kenneth L. McMillan, Xudong Zhao, Masahiro Fujita, and Jerry
Yang. Spectral transforms for large boolean functions with applications to technology
mapping. In Proceedings of the 30th international Design Automation Conference, pages
54–60, 1993.

[36] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra
and diagrammatics. New Journal of Physics, 13(4):043016, 2011.

[37] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons,
and Seyon Sivarajah. On the qubit routing problem. arXiv preprint arXiv:1902.08091,
2019.

[38] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S. Bishop,
Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M. Gambetta, and
Blake R. Johnson. OpenQASM3: A broader and deeper quantum assembly language.
ACM Transactions on Quantum Computing, 3(3):1–50, September 2022. URL: http:
//dx.doi.org/10.1145/3505636, doi:10.1145/3505636.

[39] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm. Quan-
tum Inf. Comput., 6(1):81–95, 2006. doi:10.26421/QIC6.1-6.

[40] Niel de Beaudrap, Aleks Kissinger, and John van de Wetering. Circuit extraction for
ZX-diagrams can be #P-hard. In ICALP 2022. Schloss Dagstuhl - Leibniz-Zentrum
fÃĳr Informatik, 2022. URL: https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ICALP.2022.119, doi:10.4230/LIPICS.ICALP.2022.119.

[41] M. Van den Nest. Classical simulation of quantum computation, the gottesman-knill
theorem, and slightly beyond. arXiv:0811.0898, 2008.

[42] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimiza-
tion algorithm. arXiv preprint arXiv:1411.4028, 2014.

[43] Johannes K. Fichte, Markus Hecher, and Stefan Szeider. A time leap challenge for sat
solving, 2023. URL: https://arxiv.org/abs/2008.02215, arXiv:2008.02215.

[44] Fulvio Flamini, Nicolo Spagnolo, and Fabio Sciarrino. Photonic quantum information
processing: a review. Reports on Progress in Physics, 82(1):016001, 2018.

[45] Austin G. Fowler. Constructing arbitrary steane code single logical qubit fault-tolerant
gates. Quantum Inf. Comput., 11(9&10):867–873, sep 2011. doi:10.26421/QIC11.
9-10-10.

[46] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Sur-
face codes: Towards practical large-scale quantum computation. Physical Review A,
86(3):032324, 2012.

[47] Simon J. Gay. Stabilizer states as a basis for density matrices. CoRR, abs/1112.2156,
2011. URL: http://arxiv.org/abs/1112.2156, arXiv:1112.2156.

64

https://doi.org/10.1145/3591270
http://dx.doi.org/10.1145/3505636
http://dx.doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.26421/QIC6.1-6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.119
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.119
https://doi.org/10.4230/LIPICS.ICALP.2022.119
https://arxiv.org/abs/2008.02215
https://arxiv.org/abs/2008.02215
https://doi.org/10.26421/QIC11.9-10-10
https://doi.org/10.26421/QIC11.9-10-10
http://arxiv.org/abs/1112.2156
https://arxiv.org/abs/1112.2156

[48] Vlad Gheorghiu, Michele Mosca, and Priyanka Mukhopadhyay. T-count and t-
depth of any multi-qubit unitary. npj Quantum Information, 8(1), November
2022. URL: http://dx.doi.org/10.1038/s41534-022-00651-y, doi:10.1038/
s41534-022-00651-y.

[49] Brett Giles and Peter Selinger. Exact synthesis of multiqubit clifford+ t circuits. Physical
Review A, 87(3):032332, 2013.

[50] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm for
the t-count, 2013. URL: https://arxiv.org/abs/1308.4134, arXiv:1308.4134.

[51] Henning Günther and Georg Weissenbacher. Incremental bounded software model check-
ing. In Neha Rungta and Oksana Tkachuk, editors, 2014 International Symposium on
Model Checking of Software, SPIN 2014, Proceedings, San Jose, CA, USA, July 21-23,
2014, pages 40–47. ACM, 2014. doi:10.1145/2632362.2632374.

[52] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver. Journal
on Satisfiability, Boolean Modelling and Computation, 6(4):245–262, 2010.

[53] Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger, Frank Arute,
Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends, Sergio Boixo, et al. Quantum
approximate optimization of non-planar graph problems on a planar superconducting
processor. Nature Physics, 17(3):332–336, 2021.

[54] Kenji Hashimoto. GPMC. https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/
GPMC, 2020.

[55] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys,
Georges-Olivier Reymond, and Christophe Jurczak. Quantum computing with neutral
atoms. Quantum, 4:327, 2020.

[56] Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng Ying. A tensor
network based decision diagram for representation of quantum circuits. ACM Trans.
Design Autom. Electr. Syst., 27(6):60:1–60:30, 2022. doi:10.1145/3514355.

[57] Marie Miceli Jean-Marie Lagniez. d4. https://github.com/crillab/d4v2, 2024.

[58] Zhengfeng Ji and Xiaodi Wu. Non-identity check remains QMA-complete for short
circuits. arXiv:0906.5416, 2009.

[59] Antonio Jiménez-Pastor, Kim G. Larsen, Mirco Tribastone, and Max Tschaikowski.
Forward and backward constrained bisimulations for quantum circuits, 2024. arXiv:
2308.09510.

[60] N. Cody Jones. Logic synthesis for fault-tolerant quantum computers, 2013. URL:
https://arxiv.org/abs/1310.7290, arXiv:1310.7290, doi:10.48550/arXiv.
1310.7290.

[61] Tyson Jones. Decomposing dense matrices into dense Pauli tensors. arXiv:2401.16378,
2024.

65

http://dx.doi.org/10.1038/s41534-022-00651-y
https://doi.org/10.1038/s41534-022-00651-y
https://doi.org/10.1038/s41534-022-00651-y
https://arxiv.org/abs/1308.4134
https://arxiv.org/abs/1308.4134
https://doi.org/10.1145/2632362.2632374
https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC
https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/GPMC
https://doi.org/10.1145/3514355
https://github.com/crillab/d4v2
https://arxiv.org/abs/2308.09510
https://arxiv.org/abs/2308.09510
https://arxiv.org/abs/1310.7290
https://arxiv.org/abs/1310.7290
https://doi.org/10.48550/arXiv.1310.7290
https://doi.org/10.48550/arXiv.1310.7290

[62] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting.
Journal of Applied Logic, 22:46–62, 2017.

[63] Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagrammatic
reasoning. volume 318, pages 229–241. Open Publishing Association, May 2020. URL:
http://dx.doi.org/10.4204/EPTCS.318.14, doi:10.4204/eptcs.318.14.

[64] Aleks Kissinger and John van de Wetering. Simulating quantum circuits with ZX-calculus
reduced stabiliser decompositions. Quantum Science and Technology, 7(4):044001,
July 2022. URL: http://dx.doi.org/10.1088/2058-9565/ac5d20, doi:10.1088/
2058-9565/ac5d20.

[65] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathe-
matical Surveys, 52(6):1191, 1997.

[66] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum com-
putation. American Mathematical Society, 2002.

[67] Morten Kjaergaard, Mollie E Schwartz, Jochen Braumüller, Philip Krantz, Joel I-J Wang,
Simon Gustavsson, and William D Oliver. Superconducting qubits: Current state of play.
Annual Review of Condensed Matter Physics, 11(1):369–395, 2020.

[68] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient exact
synthesis of single qubit unitaries generated by clifford and t gates, 2013. URL:
https://arxiv.org/abs/1206.5236, arXiv:1206.5236.

[69] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Practical approximation of
single-qubit unitaries by single-qubit quantum clifford and t circuits. IEEE Transactions
on Computers, 65(1):161–172, 2016. doi:10.1109/TC.2015.2409842.

[70] Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas. Knowledge
compilation for model counting: Affine decision trees. In Francesca Rossi, editor, IJCAI
2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 947–953. IJCAI/AAAI, 2013. URL: http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6574.

[71] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete functional
synthesis. ACM Sigplan Notices, 45(6):316–329, 2010.

[72] Yung-Te Lai, Massoud Pedram, and Sarma BK Vrudhula. EVBDD-based algorithms for
integer linear programming, spectral transformation, and function decomposition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(8):959–
975, 1994.

[73] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R Jiang. Solving stochastic boolean sat-
isfiability under random-exist quantification. In IJCAI, pages 688–694, 2017. doi:
10.24963/ijcai.2017/96.

[74] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate
based branching heuristic for sat solvers. In Theory and Applications of Satisfiability
Testing–SAT 2016: 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings 19, pages 123–140. Springer, 2016.

66

http://dx.doi.org/10.4204/EPTCS.318.14
https://doi.org/10.4204/eptcs.318.14
http://dx.doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.1088/2058-9565/ac5d20
https://arxiv.org/abs/1206.5236
https://arxiv.org/abs/1206.5236
https://doi.org/10.1109/TC.2015.2409842
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6574
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6574
https://doi.org/10.24963/ijcai.2017/96
https://doi.org/10.24963/ijcai.2017/96

[75] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt,
Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison
of two quantum computing architectures. Proceedings of the National Academy of
Sciences, 114(13):3305–3310, 2017.

[76] Michael L Littman, Stephen M Majercik, and Toniann Pitassi. Stochastic boolean
satisfiability. Journal of Automated Reasoning, 27:251–296, 2001. doi:10.1023/A:
1017584715408.

[77] Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning sat
solvers. In Handbook of satisfiability, pages 133–182. ios Press, 2021.

[78] Dmitri Maslov and Martin Roetteler. Shorter stabilizer circuits via bruhat decompo-
sition and quantum circuit transformations. IEEE Transactions on Information The-
ory, 64(7):4729–4738, July 2018. URL: http://dx.doi.org/10.1109/TIT.2018.
2825602, doi:10.1109/tit.2018.2825602.

[79] Olivia Di Matteo and Michele Mosca. Parallelizing quantum circuit synthesis. Quan-
tum Science and Technology, 1(1):015003, oct 2016. URL: https://dx.doi.org/10.
1088/2058-9565/1/1/015003, doi:10.1088/2058-9565/1/1/015003.

[80] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao
Yuan. Quantum computational chemistry. Rev. Mod. Phys., 92:015003, Mar
2020. URL: https://link.aps.org/doi/10.1103/RevModPhys.92.015003, doi:
10.1103/RevModPhys.92.015003.

[81] Jingyi Mei, Marcello Bonsangue, and Alfons Laarman. Simulating quantum circuits by
model counting. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verifica-
tion, pages 555–578, Cham, 2024. Springer Nature Switzerland.

[82] Jingyi Mei, Tim Coopmans, Marcello Bonsangue, and Alfons Laarman. Equivalence
checking of quantum circuits by model counting. In Christoph Benzmüller, Marijn J.H.
Heule, and Renate A. Schmidt, editors, Automated Reasoning, pages 401–421. Springer,
2024.

[83] Jingyi Mei, Jan Martens, and Alfons Laarman. Disentangling the gap between quantum
and #SAT. In Theoretical Aspects of Computing - ICTAC 2024: 21st International
Colloquium, Bangkok, Thailand, November 25-29, 2024, Proceedings, pages 17–40,
Berlin, Heidelberg, 2024. Springer-Verlag. doi:10.1007/978-3-031-77019-7_2.

[84] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. SAT-based {CNOT, T} quan-
tum circuit synthesis. In Jarkko Kari and Irek Ulidowski, editors, Reversible Computation,
pages 175–188, Cham, 2018. Springer International Publishing.

[85] D Michael Miller and Mitchell A Thornton. QMDD: A decision diagram structure for
reversible and quantum circuits. In 36th International Symposium on Multiple-Valued
Logic (ISMVL’06), pages 30–30. IEEE, 2006.

[86] Michael A Nielsen and Isaac L Chuang. Quantum information and quantum computa-
tion. Cambridge: Cambridge University Press, 2(8):23, 2000.

67

https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
http://dx.doi.org/10.1109/TIT.2018.2825602
http://dx.doi.org/10.1109/TIT.2018.2825602
https://doi.org/10.1109/tit.2018.2825602
https://dx.doi.org/10.1088/2058-9565/1/1/015003
https://dx.doi.org/10.1088/2058-9565/1/1/015003
https://doi.org/10.1088/2058-9565/1/1/015003
https://link.aps.org/doi/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1007/978-3-031-77019-7_2

[87] Philipp Niemann, Robert Wille, and Rolf Drechsler. Advanced exact synthesis of
clifford+t circuits. Quantum Information Processing, 19(9):317, Aug 2020. doi:
10.1007/s11128-020-02816-0.

[88] Román Orús, Samuel Mugel, and Enrique Lizaso. Quantum computing for finance:
Overview and prospects. Reviews in Physics, 4:100028, 2019.

[89] Anouk Paradis, Jasper Dekoninck, Benjamin Bichsel, and Martin Vechev. Synthetiq:
Fast and versatile quantum circuit synthesis. Proc. ACM Program. Lang., 8(OOPSLA1),
April 2024. doi:10.1145/3649813.

[90] Edwin Pednault, John Gunnels, Dmitri Maslov, and Jay Gambetta. On quantum
supremacy. IBM Research Blog, 21, 2019.

[91] Tom Peham, Lukas Burgholzer, and Robert Wille. Equivalence checking of quantum
circuits with the ZX-calculus. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 12(3):662–675, September 2022. URL: http://dx.doi.org/10.1109/
JETCAS.2022.3202204, doi:10.1109/jetcas.2022.3202204.

[92] Tom Peham, Lukas Burgholzer, and Robert Wille. Equivalence checking of parameter-
ized quantum circuits: Verifying the compilation of variational quantum algorithms. In
2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
702–708, 2023.

[93] John Preskill. Quantum computing and the entanglement frontier, 2012. URL: https:
//arxiv.org/abs/1203.5813, arXiv:1203.5813.

[94] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,
August 2018. URL: http://dx.doi.org/10.22331/q-2018-08-06-79, doi:10.
22331/q-2018-08-06-79.

[95] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. MQT bench: Benchmarking
software and design automation tools for quantum computing. Quantum, 7:1062, July
2023. URL: http://dx.doi.org/10.22331/q-2023-07-20-1062, doi:10.22331/
q-2023-07-20-1062.

[96] Arend-Jan Quist and Alfons Laarman. Optimizing quantum space using spooky pebble
games. In International Conference on Reversible Computation, pages 134–149. Springer,
2023.

[97] Maxim Raginsky. A fidelity measure for quantum channels. Physics Letters A, 290(1-
2):11–18, 2001.

[98] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys.
Rev. Lett., 86:5188–5191, May 2001. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.86.5188, doi:10.1103/PhysRevLett.86.5188.

[99] Narayanan Rengaswamy, Robert Calderbank, Henry D. Pfister, and Swanand Kadhe.
Synthesis of logical clifford operators via symplectic geometry. In 2018 IEEE International
Symposium on Information Theory (ISIT), pages 791–795, 2018. doi:10.1109/ISIT.
2018.8437652.

68

https://doi.org/10.1007/s11128-020-02816-0
https://doi.org/10.1007/s11128-020-02816-0
https://doi.org/10.1145/3649813
http://dx.doi.org/10.1109/JETCAS.2022.3202204
http://dx.doi.org/10.1109/JETCAS.2022.3202204
https://doi.org/10.1109/jetcas.2022.3202204
https://arxiv.org/abs/1203.5813
https://arxiv.org/abs/1203.5813
https://arxiv.org/abs/1203.5813
http://dx.doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2023-07-20-1062
https://doi.org/10.22331/q-2023-07-20-1062
https://doi.org/10.22331/q-2023-07-20-1062
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1109/ISIT.2018.8437652
https://doi.org/10.1109/ISIT.2018.8437652

[100] Neil J. Ross and Peter Selinger. Optimal ancilla-free clifford+t approximation of z-
rotations, 2016. URL: https://arxiv.org/abs/1403.2975, arXiv:1403.2975.

[101] Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted
model counting. In AAAI, volume 5, pages 475–481, 2005.

[102] Scott Sanner and David McAllester. Affine algebraic decision diagrams (AADDs) and
their application to structured probabilistic inference. In Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence, IJCAI’05, pages 1384–1390, San
Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[103] Sarah Schneider, Lukas Burgholzer, and Robert Wille. A sat encoding for optimal clifford
circuit synthesis. In Proceedings of the 28th Asia and South Pacific Design Automation
Conference, ASPDAC ’23, pages 190–195, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3566097.3567929.

[104] Peter Selinger. Efficient clifford+t approximation of single-qubit operators, 2014. URL:
https://arxiv.org/abs/1212.6253, arXiv:1212.6253.

[105] Peter W Shor. Scheme for reducing decoherence in quantum computer memory. Physical
review A, 52(4):R2493, 1995.

[106] Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. Weighted context-free-language
ordered binary decision diagrams. arXiv preprint arXiv:2305.13610, 2023.

[107] Meghana Sistla, Swarat Chaudhuri, and Thomas W. Reps. Symbolic quantum simulation
with quasimodo. In Constantin Enea and Akash Lal, editors, Computer Aided Verification
- 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,
Part III, volume 13966 of Lecture Notes in Computer Science, pages 213–225. Springer,
Springer, 2023. URL: https://doi.org/10.1007/978-3-031-37709-9_11, doi:
10.1007/978-3-031-37709-9_11.

[108] A. M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793–
797, Jul 1996. URL: https://link.aps.org/doi/10.1103/PhysRevLett.77.793,
doi:10.1103/PhysRevLett.77.793.

[109] Paul Tafertshofer and Massoud Pedram. Factored edge-valued binary decision diagrams.
Formal Methods in System Design, 10(2):243–270, 1997.

[110] Dimitrios Thanos, Tim Coopmans, and Alfons Laarman. Fast equivalence checking of
quantum circuits of Clifford gates. In Étienne André and Jun Sun, editors, Automated
Technology for Verification and Analysis, pages 199–216, Cham, 2023. Springer Nature
Switzerland.

[111] Dimitrios Thanos, Alejandro Villoria, Sebastiaan Brand, Arend-Jan Quist Jingyi Mei, Tim
Coopmans, and Alfons Laarman. Automated reasoning in quantum circuit compilation.
In Model Checking Software (SPIN) 2024, (accepted for publication). Springer, 2024.

[112] Yuan-Hung Tsai, Jie-Hong R Jiang, and Chiao-Shan Jhang. Bit-slicing the Hilbert
space: Scaling up accurate quantum circuit simulation. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 439–444. IEEE, 2021.

69

https://arxiv.org/abs/1403.2975
https://arxiv.org/abs/1403.2975
https://doi.org/10.1145/3566097.3567929
https://arxiv.org/abs/1212.6253
https://arxiv.org/abs/1212.6253
https://doi.org/10.1007/978-3-031-37709-9_11
https://doi.org/10.1007/978-3-031-37709-9_11
https://doi.org/10.1007/978-3-031-37709-9_11
https://link.aps.org/doi/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.793

[113] Richard Versluis, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia Haider,
David J Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo. Scalable
quantum circuit and control for a superconducting surface code. Physical Review Ap-
plied, 8(3):034021, 2017.

[114] George F Viamontes, Igor L Markov, and John P Hayes. Improving gate-level simulation
of quantum circuits. Quantum Information Processing, 2(5):347–380, 2003. doi:
10.1023/B:QINP.0000022725.70000.4a.

[115] G.F. Viamontes, I.L. Markov, and J.P. Hayes. High-performance QuIDD-based sim-
ulation of quantum circuits. In Proceedings Design, Automation and Test in Eu-
rope Conference and Exhibition, volume 2, pages 1354–1355 Vol.2, 2004. doi:
10.1109/DATE.2004.1269084.

[116] Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Alfons Laar-
man. LIMDD: A decision diagram for simulation of quantum computing including sta-
bilizer states. Quantum, 7:1108, 2023. doi:10.22331/q-2023-09-11-1108.

[117] Qisheng Wang, Riling Li, and Mingsheng Ying. Equivalence checking of sequential
quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 41(9):3143–3156, 2022. doi:10.1109/TCAD.2021.3117506.

[118] Chun-Yu Wei, Yuan-Hung Tsai, Chiao-Shan Jhang, and Jie-Hong R Jiang. Accurate
BDD-based unitary operator manipulation for scalable and robust quantum circuit veri-
fication. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages
523–528, 2022.

[119] Robert Wille, Hongyan Zhang, and Rolf Drechsler. ATPG for reversible circuits us-
ing simulation, Boolean satisfiability, and pseudo Boolean optimization. In 2011
IEEE Computer Society Annual Symposium on VLSI, pages 120–125, 2011. doi:
10.1109/ISVLSI.2011.77.

[120] Nic Wilson. Decision diagrams for the computation of semiring valuations. In Proceed-
ings of the 19th international joint conference on Artificial intelligence, pages 331–336,
2005.

[121] Suwei Yang, Victor C. Liang, and Kuldeep S. Meel. INC: A scalable incremental
weighted sampler. In Alberto Griggio and Neha Rungta, editors, 22nd Formal Meth-
ods in Computer-Aided Design, FMCAD 2022, Trento, Italy, October 17-21, 2022,
volume 3, pages 205–213. TU Wien Academic Press, IEEE, 2022. URL: https:
//doi.org/10.34727/2022/isbn.978-3-85448-053-2_27, doi:10.34727/2022/
isbn.978-3-85448-053-2_27.

[122] Suwei Yang and Kuldeep S. Meel. Towards projected and incremental pseudo-boolean
model counting. CoRR, abs/2412.14485, 2024. arXiv:2412.14485, doi:10.48550/
arXiv.2412.14485.

[123] Nengkun Yu and Jens Palsberg. Quantum abstract interpretation. In Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pages 542–558, 2021.

70

https://doi.org/10.1023/B:QINP.0000022725.70000.4a
https://doi.org/10.1023/B:QINP.0000022725.70000.4a
https://doi.org/10.1109/DATE.2004.1269084
https://doi.org/10.1109/DATE.2004.1269084
https://doi.org/10.22331/q-2023-09-11-1108
https://doi.org/10.1109/TCAD.2021.3117506
https://doi.org/10.1109/ISVLSI.2011.77
https://doi.org/10.1109/ISVLSI.2011.77
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://arxiv.org/abs/2412.14485
https://doi.org/10.48550/arXiv.2412.14485
https://doi.org/10.48550/arXiv.2412.14485

[124] Dekel Zak, Jingyi Mei, Jean-Marie Lagniez, and Alfons Laarman. Reducing quantum
circuit synthesis to #SAT. In 31th International Conference on Principles and Practice
of Constraint Programming (CP 2025), 2025. Accepted for publication.

[125] Li Zhou, Nengkun Yu, and Mingsheng Ying. An applied quantum hoare logic. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, page 1149âĂŞ1162, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. doi:10.1145/3314221.3314584.

[126] Alwin Zulehner and Robert Wille. Improving synthesis of reversible circuits: Exploiting
redundancies in paths and nodes of QMDDs. In Reversible Computation: 9th Inter-
national Conference, RC 2017, Kolkata, India, July 6-7, 2017, Proceedings 9, pages
232–247. Springer, 2017.

[127] Alwin Zulehner and Robert Wille. Advanced simulation of quantum computations. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(5):848–
859, 2018.

71

https://doi.org/10.1145/3314221.3314584

	Acknowledgements
	Disclaimer on the Use of AI Tools
	Introduction
	Context and Motivation
	Problem Statement
	Scope and Objectives
	Contributions
	Overview of the Thesis

	Preliminaries
	Quantum Computing
	Maximum Weighted Model Counting
	Encoding Quantum Computing in Pauli basis

	Problem Statement
	Exact Synthesis
	Encoding Gate Layers for Synthesis
	Exact Equivalence Checking
	Encoding Exact Synthesis

	Approximate Synthesis
	Synthesis in the Computational Basis
	Computational Basis Encoding
	Encoding Equivalence Checking in CB
	Encoding Synthesis in CB

	Comparing the Encodings
	Comparing the Encoding Bases
	Encoding Complexity

	Implementation: Quokka#
	Design of Quokka#
	Usage of Quokka#
	Repository Structure
	Encoding optimization

	Related Work
	Simulation and Equivalence Checking
	Synthesis

	Experimental Evaluation
	Simulation
	Equivalence Checking
	Synthesis

	Conclusion
	Summary
	Key Findings
	Future Directions

