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Abstract

In recent years, the demand for energy-efficient and occupant-friendly lighting systems has
grown significantly, particularly in commercial buildings where lighting constitutes a substan-
tial portion of energy consumption. This thesis proposes a black-box optimization framework
for smart indoor lighting control, aiming to minimize energy usage while ensuring user com-
fort through adequate illuminance and uniformity. The problem is modeled as both a Single-
Objective and a Multi-Objective optimization task, with constraints based on European light-
ing standards (EN 12464-1). Due to the simulation-based and non-differentiable nature of the
evaluation process, executed via the DIALux evo software, traditional optimization techniques
are unsuitable. Therefore, this study explores non-traditional black-box methods, specifically
two variants of Bayesian Optimization (BO) and Particle Swarm Optimization (PSO). The
proposed system adapts lighting configurations based on randomized sensor input reflecting
presence/motion, covering a wide range of occupancy scenarios. The algorithms were tested
on eleven discrete sensor configurations, and evaluated in terms of energy consumption, desks
illuminance, and lighting uniformity. Results show that Bayesian Optimization techniques, par-
ticularly when warm-started and with the Probability of Improvement acquisition function,
outperform PSO in most scenarios, achieving a better balance between efficiency and com-
fort, and indicate the fastest convergence. PSO certainly needs either more evaluations for
this kind of problem or special treatment, as we will discuss. In the Multi-Objective setting,
SAMO-COBRA achieves superior Pareto front quality, effectively balancing energy and unifor-
mity when provided with a sufficient evaluation budget. This research highlights the suitability
of black-box optimization for smart lighting control, and provides a comparative analysis of al-
gorithm performance across practical conditions, contributing to the development of adaptive
and energy-conscious indoor environments.
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1 Introduction

The increasing demand for energy-efficient technologies in commercial buildings is driven by
rising electricity costs, growing global consumption, and heightened environmental concerns [7]
[21] [3]. Among building operations, indoor lighting remains a major contributor to energy use,
particularly in office environments. Despite advancements in lighting technology, many systems
operate inefficiently, often remaining active throughout the day regardless of occupancy levels
or daylight availability. This leads to excessive energy consumption and elevated operational
costs. At the same time, lighting quality plays a crucial role in occupant well-being [30] [1].
Inadequate lighting design can cause discomfort, eye strain, fatigue, and reduced productivity.
These challenges have intensified interest in smart lighting systems that strive to balance
energy efficiency with user comfort; two objectives that frequently conflict in practice.
This thesis addresses this dual objective by developing an intelligent lighting control system
that adapts illumination based on occupancy data. The problem is framed as a black-box
optimization task, acknowledging the simulation-based nature of lighting evaluation in tools
like DIALux evo [12], which do not provide analytical expressions for key performance metrics
such as energy consumption or uniformity.
To solve this problem, we investigate multiple optimization techniques, including two variants
of Bayesian Optimization and Particle Swarm Optimization, applied to a series of randomized
occupancy scenarios. System performance is evaluated using three core metrics aligned with
European lighting standards (EN 12464-1) [10], that are energy consumption, desks illumi-
nance, and lighting uniformity.
By applying black-box optimization in a simulation-driven context, this work advances the
development of adaptive lighting strategies for smart buildings. It offers insights into algorithm
performance and highlights how such systems can achieve sustainability objectives without
compromising user comfort.

1.1 Problem Statement

Optimizing indoor office lighting requires balancing two competing objectives: minimizing en-
ergy consumption and maintaining or even maximizing user comfort. This becomes more
complex under dynamic occupancy conditions and regulatory lighting standards, which limit
the effectiveness of traditional rule-based or model-driven approaches that rely on explicit,
differentiable models.
In this thesis, lighting configurations are evaluated through DIALux evo, which operates as a
black-box simulator for our system, making the internal mechanics inaccessible and each func-
tion evaluation computationally expensive. Additionally, such systems must respond adaptively
to real-time input from motion/presence sensors, further complicating the search for optimal
lighting settings. In this project, we simplify by removing the real-time insertion of occupancy,
and instead simulate some predefined scenarios.
The core problem, therefore, is to determine efficient lighting configurations, defined by lamp-
specific lumen values, under varying occupancy scenarios, while satisfying constraints on illumi-
nance and uniformity and minimizing energy consumption. Solving this requires sample-efficient
optimization techniques capable of operating in a black-box, constraint-driven environment.
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1.2 Goals of the Thesis

As discussed, the primary goal of this thesis is to design an intelligent lighting control system
that balances our two objectives using modern optimization methods and sensor-based data.
The specific objectives are:

• To evaluate the extent to which an intelligent lighting control system can
extract optimal lighting configurations for commercial office spaces while min-
imizing manual intervention. The system should operate autonomously, enhancing
user convenience and enabling seamless adaptation to occupancy conditions.

• To quantify the impact of energy-efficient lighting optimization on reducing
operational costs in office environments. Energy consumption has both financial and
environmental implications. Reducing it lowers electricity expenses and CO2 emissions,
contributing to sustainability and corporate responsibility.

• To examine the role of user comfort in lighting systems and assess the system’s
ability to adapt lighting behavior to human presence. While energy reduction is
essential, the system must also support visual comfort and productivity by avoiding
unnecessary dimming or switching and by maintaining a suitable lighting environment.

• To assess the effectiveness of sensor-driven data in enabling adaptive lighting
responses to varying occupancy scenarios. Leveraging data from motion/presence
sensors, the system should intelligently adjust light levels according to space utilization,
ensuring efficiency without sacrificing usability.

The system will utilize sensor data, particularly motion/presence detection, to determine the
optimal lumens and hence wattage for each lamp in the office environment. Since this is
an optimization problem, certain constraints must be satisfied to ensure the feasibility and
effectiveness of the proposed solution. According to the European Commission regulations
(EN 12464-1:2021 [10]) , the minimum required illuminance for office workstations should be
at least 500 lux to ensure proper visibility and comfort. Additionally, the illumination uniformity
across the office space must exceed a predefined threshold to prevent discomfort caused by
glare or uneven lighting. To achieve this, we implement both Single- and Multi-Objective black-
box optimization frameworks that adjust lighting configurations based on sensor and lighting
data.
We aim to compare Bayesian Single- and Multi-Objective optimization methods against the
commonly used PSO from previous research [31] [17].
For the correct evaluation of the solutions, we utilize DIALux evo, a lighting simulation software
capable of accurately modeling illuminance levels, energy consumption, and uniformity distribu-
tion in indoor environments. By simulating the lighting conditions under different optimization-
generated configurations, DIALux enables us to assess whether the system meets both energy
efficiency goals and regulatory lighting standards (e.g., maintaining at least 500 lux per work-
station).
Summarizing, the primary research question is: Do Single- and/or Multi-Objective Bayesian
Optimization methods achieve greater efficiency in optimizing energy consumption and illu-
mination uniformity in indoor lighting systems, based on sensor data, compared to the widely
used PSO algorithm?
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The structure of this paper is organized as follows. Section 2 presents a review of related
work that frames the context of this study. Section 3 outlines the theoretical background and
methodology that underpin the approach taken. Section 4 details the implementation process,
followed by Section 5 which describes the experimental setup. Section 6 reports the results
obtained, while Section 7 provides a discussion and interpretation of these findings. Finally,
Section 8 concludes the paper and suggests directions for future research.
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2 Related work

There has been a satisfactory amount of research on smart lighting, whether to save energy or
to achieve a better user experience [24][6][5]. There is also research on how machine learning
methods can be integrated into such systems, or into IoT in general [22] [13] [23]. First, we
are going to present research that examined rule-based techniques, followed by meta-heuristic
methods. Then, BO and Multi-Objective algorithms are discussed in order to investigate their
contribution in this field.
A comprehensive literature review conducted by A. G. Putrada et al. [22] explores the evolution
of smart lighting systems since 2014, with particular emphasis on machine learning applica-
tions and user comfort considerations. Their analysis covers fundamental challenges in smart
lighting, including energy consumption, control systems, and network infrastructure, while ex-
amining implementations across various contexts from homes to offices. The review details
essential technological components such as LEDs, sensors, actuators, and IoT integration,
highlighting how machine learning enhances smart lighting capabilities through predictive con-
trol, intelligent sensor-based actuation, gesture recognition, and activity detection. Notably,
the authors provide detailed frameworks for quantifying user comfort metrics, which are crucial
for evaluating system performance. The review concludes by addressing key development chal-
lenges, including cost-effectiveness and optimal sensor selection, providing valuable insights for
future smart lighting implementations.
Martirano [18] proposed an energy-efficient lighting control framework based on actual build-
ing usage patterns and user requirements. The approach focuses on minimizing unnecessary
energy consumption by monitoring daylight availability and occupancy levels across different
building zones, with a case study implemented in a classroom setting. The research presents
a supervisory control system framework utilizing sensor networks for data collection. While
the study demonstrates potential for energy savings through strategic control mechanisms, it
lacks the implementation of specific AI methods and comprehensive data analysis. Although
this framework could serve as a baseline for smart lighting control systems, it notably omits
consideration of user comfort metrics, highlighting a gap between energy optimization and
occupant satisfaction that warrants further investigation. We contribute to this work by using
advanced optimization techniques by taking into account a more human-centric approach.
The study [29] investigates energy conservation through smart lighting in offices, empha-
sizing visual comfort and energy savings. It proposes two primary energy-saving methods:
occupancy-based ON/OFF switching and conditional dimming, tailored to adapt across di-
verse office environments. Instead of AI, these systems rely on predefined logic, utilizing IoT
sensors to enhance energy efficiency based on occupant presence. The study compares these
smart features against a baseline scenario, highlighting substantial energy savings while en-
suring visual comfort. Evaluation is primarily statistical, focusing on quantifiable energy and
occupancy metrics to assess impact effectively. The lack of this work comes from the fact that
it is a rule-based method with predefined conditions, instead of integrating smarter methods,
as we are intending to undertake.
The article by Ayan and Turkay [2] examines the impact of smart LED bulbs in IoT-enabled
lighting systems on energy efficiency, focusing on how various colors affect power consumption.
It performs an extensive analysis on types of LEDs, examining both the advantages of smart
lighting and how different colors contribute to energy use. The study’s findings support the
practical benefits of smart lighting within home automation, including potential reductions
in energy consumption. However, it does not cover elements such as user comfort or spe-
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cific lighting control methods like ON/OFF or dimming functions, instead evaluating energy
consumption in various configurations to determine overall efficiency.
Another employment explores Meta-heuristic methods [28]. This research considers residential
buildings prioritizing HVAC systems but also considers lighting as part of an IoT-based setup.
The study applies algorithms, including Sine Cosine (SCA), Modified Sine Cosine (MSCA),
Arithmetic Optimization (AOA), and Hill-Climbing (HC), to optimize energy use. Addition-
ally, it considers daylighting effects but lacks specific attention to user comfort, thus focusing
mainly on energy savings in sunny conditions without broader environmental variability. Previ-
ous research by these authors [27] applies multiple optimization algorithms, including Particle
Swarm Optimization and Genetic Algorithm, to refine both energy efficiency and user com-
fort in home energy management. While the aforementioned study focused primarily on cost
savings in HVAC and lighting, this work introduces additional optimization techniques and eval-
uates the system under specific comfort constraints, such as maintaining indoor temperatures
between 23-26°C. This paper gives more attention to occupant comfort alongside efficiency,
utilizing YALMIP for solving optimization problems. While comfort is considered, lighting is
not the main focus, and sensor integration is minimal. This thesis focuses directly on lighting,
using realistic sensor inputs to drive decisions and evaluates PSO’s performance.
Latest research has started to explore the potential of Bayesian Optimization in building energy
management. Lin et al. [15] crafted a Bayesian Optimization approach for HVAC control
systems and demonstrated it to be able to optimize energy consumption as well as thermal
comfort. They highlight the capability of BO in handling real-world, black-box constraint-based
optimization problems in building environments. Similarly, Xu et al. [26] propose a Primal–Dual
Contextual Bayesian Optimization (PDCBO) framework for HVAC control under dynamic daily
constraints. The study emphasizes BO’s strength in handling Multi-Objective and contextual
optimization, making it a compelling alternative to conventional controllers when occupant
comfort and energy efficiency must be simultaneously addressed. Both researches showcase
that BO was applied mostly in the HVAC problem instead of lighting. Our work, though,
applies BO to smart lighting, showing its applicability to a new domain with similar black-box
and constraint-heavy characteristics.
Multi-Objective methods were also employed in the following studies. Madias et al. [16] explore
an optimization model for interior lighting using genetic algorithms, NSGA-II specifically. It
aims to minimize energy consumption while maximizing uniformity and maintaining adequate
illumination levels. The study employs simulated data and focuses on two objective functions:
the total dimming levels of luminaires and the coefficient of variation of illuminance uniformity.
While achieving significant energy savings, the model does not utilize daylighting data or occu-
pancy sensors, limiting its focus on user comfort. Its adaptable design allows application across
various room configurations. In contrast, Wagiman et al. [25] present a more recent approach
to lighting optimization with similar goals. They introduce the Illuminance Uniformity Devia-
tion Index (IUDI), a metric for measuring illuminance uniformity, which is optimized alongside
power demand using Multi-Objective Particle Swarm Optimization (MOPSO). This approach
allows for the simultaneous consideration of both artificial lighting and daylight, resulting in
improved outcomes for energy consumption and visual comfort. This project advances these
papers by incorporating occupant-specific comfort constraints in a Multi-Objective framework.
The study by Minh Hoang Ngo et al. [20] explores an adaptive smart lighting control system
utilizing a Multi-Objective Genetic Algorithm (GA) framework. The GA aims to optimize two
primary objectives: the total energy consumption of the lighting in the room and a penalty
function reflecting the difference between user-desired and actual illuminance levels. This sys-

9



tem enables users to specify their lighting preferences through a mobile application, allowing
for the optimization of energy consumption based on these preferences. While it adapts to
user needs, the focus is more on optimizing energy use rather than explicitly maximizing
overall user comfort. The design incorporates considerations for daylighting and is versatile
enough to accommodate various room structures, making it both generalized and adaptable.
The researchers employed a simulator to validate the system’s performance, demonstrating its
capability to manage lighting conditions in real-time based on user input and environmental
changes. In contrast, we aim to rely on sensor inputs and occupancy rather than user-declared
preferences.
To build upon existing research in smart lighting, this study develops and evaluates three opti-
mization algorithms, both Single- and Multi-Objective, aimed at achieving a balance between
energy efficiency and user comfort. The goal is to compare the performance of multiple algo-
rithms and problem formulations using occupancy data. While prior work has explored energy-
saving strategies or user-oriented lighting separately, few studies use black-box optimization
methods to address both objectives simultaneously. In particular, Bayesian Optimization re-
mains underexplored in the context of smart lighting, despite its strength in handling expensive,
non-differentiable, and Multi-Objective problems. Most existing approaches rely on rule-based
logic or traditional metaheuristics without leveraging surrogate modeling. This thesis fills this
gap by formulating the problem as a black-box optimization task, integrating occupancy-based
sensor data, and comparing the performance of two BO variants against PSO.
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3 Methodology

In this chapter, the mathematical formulation of the problem will be presented and dis-
cussed. Furthermore, the algorithms used in this project will be analyzed by also providing
their strengths and weaknesses.

3.1 Problem formulation

In optimization problems, the aim is to find the best set of input values that minimize or max-
imize an objective function. In black-box optimization, the internal structure of this function
is unknown or inaccessible; we can only observe the input–output behavior of the system.
Formally, given an unknown objective function f: Rn → R, a black-box optimization problem
can be defined as: minx∈X f(x). Here, x is a vector of decision variables, X is the feasible
domain defined by constraints, and f(x) is the unknown function whose value can only be
obtained through costly evaluations.
Traditional methods typically include manually defined rules or logic-based structures such as
condition statements, as well as classical optimization techniques that require an explicit and
often differentiable objective function. However, the problem addressed in this project lacks a
closed-form objective and depends on simulation-based evaluations. These characteristics make
it unsuitable for traditional approaches and instead require the use of non-traditional (black-
box) optimization methods, which can operate without direct knowledge of the function’s
structure and are effective for complex, costly, and data-driven problems.
The specific properties of this project that justify the use of black-box optimization techniques
are:

• Multi-Objective with trade-offs: The problem requires balancing energy consumption and
user comfort, specifically uniformity.

• Expensive to evaluate: Each candidate solution must be assessed through a time-consuming
DIALux simulation, making sample efficiency critical.

• Black-box by nature: The system does not provide an explicit analytical relationship
between inputs (e.g., lumens) and outputs (e.g., lux, energy, and uniformity), making
traditional methods impractical.

Because of these settings, optimization methods such as gradient descent or convex optimiza-
tion are not applicable. Black-box optimization techniques are better suited for this kind of
problem [11].
In this context, there are two decision variables:

• Li representing lumens of lamp i, where Liϵ[0, Lmax] and Lmax = 3600.

• Wi illustrate the wattage of lamp i, which is defined as Wi =
Li

Leff
. Leff is the luminous

efficacy of a lamp, this is a standard number for each type and model; the specific lamp
we used has Leff = 124.1.

The problem can be formulated as either a Single-Objective or a Bi-Objective optimization
task, depending on the priorities set between energy efficiency and lighting quality. In the
following sections, we present both formulations and explain how the objective function(s) are
defined accordingly.
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3.1.1 Single-Objective vs Bi-Objective

For the cases where we apply just one objective function, we set a balanced sum of energy
consumption and negated uniformity, formulated as:

f(L) =

∑N
i=1 Wi

Emax

− U + 0.1× Penalty (1)

where f is the objective function, the fraction represents the normalized energy (the total
maximum energy is defined by the number of lamps multiplied by the maximum watts, which
is 29), and U is the uniformity and measures how well the light is distributed among the area
we examine. The Penalty will be explained in Section 3.1.2.
In the Bi-Objective case, we have two objective functions defined as:

min

N∑
i=1

Wi (2)

where N is the number of lamps, and the sum is the total power consumption for all the lamps
for a specific moment.

maxU (3)

where U is the uniformity of the area calculated. It is important to mention that uniformity
concerns the whole area and not specific surfaces or spots in the place we investigate.

3.1.2 Penalties/Constraints

The two main constraints are Equation 4 and 5. Respectively, uniformity U of a place should be
above 0.6 to consider the lighting as ideal, and the lux levels for each of the desks (workstations)
should exceed the threshold of 500 lux.

U ≥ 0.60 (4)

Eworkstation,j ≥ 500,∀j (5)

The Penalty term in Equation 1 is designed to quantify deviations from ideal lighting con-
ditions, and it consists of two components: uniformity and desk illuminance penalty. For
any given configuration, the uniformity penalty is computed as the difference between the
ideal U (e.g., 0.6) and the actual one obtained from the simulation. This difference is mul-
tiplied by 100 to scale it in the same range as the lux-based penalty. The desk illuminance
penalty measures how much the current desk lux deviates from the target of 500 lux, cal-
culated as the absolute difference between 500 and the actual lux value. For example, if the
room’s U is 0.5 and the examining desk illuminance is 400 lux, the Penalty is computed as:
(0.6− 0.5)× 100 + (500− 400) = 10 + 100 = 110.
However, before applying these penalties, presence/motion detection is taken into account. If
no activity is detected in a zone, the uniformity penalty is ignored for that zone, as poor U
in unoccupied areas is not problematic unless it drastically affects the general U. Regarding
the desk penalty, it is represented by a slightly different definition. If a desk is not occupied,
the penalty applies only when the lux exceeds 500, indicating wasted energy. For instance,
if a vacant desk shows 550 lux, the penalty is 50. Otherwise, i.e., if a desk is occupied, the
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penalty is applied as explained in the previous paragraph. So, for an occupied desk with only
450 lux, the penalty is again 50. This penalty formulation ensures that both under-illumination
for occupants and over-illumination for empty desks are penalized, while unnecessary penalties
for uniformity in unoccupancy states are avoided.
In the Bi-Objective manner, the total Penalty, defined as the desk lux penalty added to the
uniformity penalty, acts as a single constraint. It follows the same logic as explained previously.

3.2 Algorithms

As mentioned earlier, this thesis employs both Single- and Bi-Objective optimization tech-
niques. Plain Bayesian Optimization and Particle Swarm Optimization (PSO) are implemented
as Single-Objective methods, as described in Equation 1, while the SAMO-COBRA framework
is used to explore the problem in a Bi-Objective setting.
The choice to focus on two BO variants and PSO is motivated by both their technical relevance
and research significance. Although BO has gained traction in fields such as machine learning
and engineering design, it remains underexplored in the context of smart lighting control. Most
existing work in this area relies on rule-based logic or metaheuristics with limited investigation
into BO’s potential for sample-efficient optimization in simulation-driven environments. PSO,
on the other hand, is a well-established population-based algorithm that serves as a robust
baseline due to its simplicity, flexibility, and proven success in energy-related applications.
The primary objective of incorporating BO is to evaluate its effectiveness in addressing the
black-box, constraint-driven nature of the indoor lighting problem. In particular, the study
investigates BO’s ability to produce high-quality configurations, those that minimize energy
consumption while satisfying comfort and uniformity constraints, with significantly fewer func-
tion evaluations compared to other approaches. This is especially relevant given the high
computational cost associated with each simulation run. A secondary objective is to assess the
practical applicability and robustness of BO across different configurations, including variations
in initial sample sizes and acquisition functions. By systematically benchmarking BO against
PSO, the study contributes not only performance insights but also a critical evaluation of
whether BO offers a viable and scalable solution for adaptive lighting systems in smart lighting
environments.

3.2.1 Plain Bayesian Optimization

Bayesian Optimization is a sequential, model-based optimization technique designed for ex-
pensive black-box functions. Unlike gradient-based methods, BO builds a probabilistic model
of the objective function and iteratively selects the most promising configurations to evaluate.
In this thesis, BO is used to optimize the lighting configurations, determining the optimal
lumens and thus wattage for each lamp based on sensor data.
Bayesian Optimization follows an iterative process, as depicted in the below list.

1. Start with an initial set of sample points from the objective function

2. Build a surrogate model by fitting a probabilistic model (usually a Gaussian process) to
approximate the objective function

3. Use an acquisition function to decide which point to evaluate next
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4. Evaluate the actual objective function (e.g., energy consumption and uniformity from
DIALux)

5. Update the surrogate model by incorporating the new data

6. Repeat the procedure

This approach allows BO to balance exploration (trying new areas) and exploitation (focusing
on known good areas) efficiently. A Gaussian process (GP) is used to model the unknown
objective function. Given a set of past evaluations, the posterior distribution of f(x) is given
by Equation 6.

f(x) ∼ GP (µ(x), κ(x, x′)) (6)

where µ is the mean function (expected function value), and κ(x, x′) is the covariance kernel,
which defines similarity between points. The purpose of GP is to estimate both mean function
values and uncertainty, guiding the next evaluation step.
To decide where to sample next, an acquisition function is used. Some popular options include
the Expected Improvement (EI), Upper Confidence Bound (UCB), and Probability of Improve-
ment (PI). EI prioritizes points that are likely to improve upon the best observed value, whilst
UCB balances exploration and exploitation using a variable κ to decide the trade-off between
these two. PI is able to choose points with the highest probability of improving the best-found
solution.
In this paragraph, we will mention some noteworthy advantages and disadvantages of Bayesian
Optimization. BO is very efficient when it comes to expensive evaluations, such as the DIALux
simulations. Moreover, it is able to handle uncertainty through the Gaussian processes. How-
ever, as with all algorithms, BO comes with its limitations, which are the high computational
cost, especially with large datasets. Furthermore, it is essential to provide good initial points,
making it sometimes necessary to set a warm-start. Finally, deciding the acquisition function
is important since the different options (EI, UCB and PI) impact the performance.

3.2.2 SAMO-COBRA

SAMO-COBRA (Surrogate-Assisted Self-Adaptive Multi-Objective Constrained Optimization
by Radial Basis Approximation) is an advanced surrogate-assisted black-box optimization tech-
nique designed for Multi-Objective constrained problems. It is particularly useful when function
evaluations are expensive, such as DIALux simulations for lighting control.
Unlike previous BO, which relies on Gaussian processes, SAMO-COBRA uses Radial Basis
Function (RBF) models as a surrogate to approximate the objective function and constraints.
This enables faster convergence and better handling of constraints compared to PSO. SAMO-
COBRA follows an iterative process similar to the aforementioned Bayesian Optimization but
with a different surrogate modeling approach:

1. Initialize with sample points using Latin Hypercube Sampling (LHS) or random sampling

2. Build a Radial Basis Function (RBF) surrogate model to approximate the objective
function based on previously evaluated solutions

3. Identify the next promising configuration using a balance of exploration and exploitation
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4. Evaluate the actual objective function

5. Update the surrogate model by incorporating new results into the RBF model and refining
predictions

6. Repeat until convergence or a stopping criterion is met

Some benefits of this algorithm are that it is more sample-efficient compared to PSO, as
it utilizes fewer function evaluations than heuristic methods. The algorithm is designed to
manage constraints explicitly and adaptively. In this project, constraints such as achieving at
least 500 lux at each desk and maintaining minimum uniformity are critical. SAMO-COBRA
models and refines these constraints, enabling it to find feasible solutions more effectively
than traditional methods. It automatically selects and adjusts surrogate model parameters
throughout the optimization process. However, there are also several limitations. Although
faster than direct evaluations, RBF models can become computationally expensive as more
samples are added. SAMO-COBRA may overfit to known solutions and struggle with high-
dimensional search spaces. Finally, it requires careful surrogate model selection since RBF may
not always be the best model.

3.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm inspired by real nature, as
it relies on the collective behavior of swarms (such as birds or fish) searching for food. It is a
population-based, iterative method that optimizes a problem by iteratively improving candidate
solutions based on their position and velocity in the search space.
More in detail, PSO is based on a swarm of particles, where each particle represents a candidate
solution. The swarm collectively searches for the optimal solution by adjusting their positions
based on the best-known solutions found so far. Each particle has:

• Position (Xi) that represents a possible lighting configuration

• Velocity (Vi) which decides how the position changes in the next iteration

• Personal best position (Pi) is the best solution found by the particle so far, and

• Global best position (G) illustrates the best solution found by any particle in the swarm

At each iteration, particles update their velocity and position using the following equations:

1. Velocity Update Equation (7), where: V t
i is the velocity of particle i at iteration t, ω

is the inertia weigh (how much of the previous velocity will be retained); c1 and c2
represents the acceleration coefficients; r1 and r2 are random values between 0 and 1.
Pi is the personal best position of the particle and G the global best position found by
any particle.

2. Position Update Equation (8), where X t
i is the particle’s current position (i.e., the

lighting configuration).

V t+1
i = ωV t

i + c1r1(Pi −X t
i ) + c2r2(G−X t

i ) (7)

X t+1
i = X t

i + V t+1
i (8)
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Each particle updates its velocity and position iteratively, balancing exploration (searching
new areas) and exploitation (refining good solutions). The steps followed, personalized for our
problem, are below:

1. Initialize a swarm of particles, where each particle represents a set of lumens/wattage
values for all lamps

2. Evaluate each particle by computing energy consumption and illumination uniformity
using DIALux simulations

3. Update the personal and global best solutions based on the evaluation results

4. Adjust velocity and position using the update equations

5. Repeat until convergence (e.g., when improvements become negligible or a maximum
number of iterations is reached)

PSO is fast in convergence when compared to other exhaustive search methods. It is an
algorithm easy to implement, with only a few parameters to be tuned. Unlike BO and SAMO-
COBRA, this one is effective for high-dimensional spaces. On the other hand, there is a high
chance of getting stuck in local optima, not guaranteeing a global optimum. Even though the
hyperparameters are few, PSO is heavily dependent on those, so pure tuning may lead to bad
results.

3.2.4 Warm-Start

During early tests without warm-start initialization, the algorithms often converged slowly or
remained stuck in suboptimal regions of the search space. To mitigate this, a warm-start mech-
anism was introduced using manually derived configurations on the full occupancy scenario
and leads to all lamps being set to 3400 lumens. This configuration serves as an informed
starting point for the optimization algorithms throughout all scenarios.
The warm-start notably improved performance in BO and SAMO-COBRA, which rely on
surrogate models and benefit from informative initial designs. The use of warm-starts resulted
in:

• Faster convergence with fewer simulation calls

• Higher-quality solutions in early iterations

• Improved algorithm stability

In summary, the algorithms discussed in this chapter, for the smart lighting optimization prob-
lem, are presented in Table 1. The next chapter discusses how these methods were implemented
in practice using Python and DIALux.
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Table 1: Benefits and Drawbacks of the Optimization Algorithms

Algorithm Benefits Drawbacks
BO Sample-efficient for expensive

black-box functions; balances
exploration and exploitation via
acquisition functions; handles
uncertainty through Gaussian
Processes.

High computational cost for large
datasets; sensitive to initial points
(often needs warm-start); per-
formance varies with acquisition
function choice.

SAMO-
COBRA

Reduces evaluations using sur-
rogate modeling; handles con-
straints explicitly; adapts surro-
gate model and kernel selection
during optimization.

Surrogate updates grow expen-
sive with many samples; may
overfit known solutions; less effec-
tive in high-dimensional spaces.

PSO Fast convergence; simple to
implement with few hyperpa-
rameters; suitable for high-
dimensional problems.

Prone to local optima; lacks built-
in constraint handling; perfor-
mance sensitive to parameter tun-
ing.

4 Implementation

This chapter outlines the procedures and tools used to implement the system described in this
thesis. Section 4.1 provides an overview of the workflow, followed by detailed descriptions of
the algorithms and the simulation environment using Python and DIALux.

4.1 Workflow

An overview of the project workflow is illustrated in Figure 1. The process begins with the
generation of randomized sensor data, representing presence/motion as boolean values (true
for occupancy, false for vacancy). These sensor states are used to create a variety of test
scenarios, validating that the system performs robustly across different occupancy patterns.
Additionally, lighting configurations specifying tuples of (lamp name, lumens, watts) are used
as input for the iterations of each optimization algorithm. These configurations are parsed and
applied in DIALux through UI automation. After the simulation, DIALux exports the results,
including lux levels, energy consumption, and uniformity, into Excel files. If the predefined
stopping criterion is met (in our case, a maximum number of evaluations), the optimization
halts; otherwise, the loop will continue.

4.2 Algorithms implementation

The optimization algorithms were implemented using Python 3.13. For each method, exist-
ing libraries compatible with this version were used to enable parameter tuning and ease of
experimentation. The selected libraries include:

• scikit-optimize for BO (version 1) [14]

• samo-cobra for surrogate-assisted self-adaptive Multi-Objective optimization/ BO (ver-
sion 2) [8]
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Start Project

Create randomized sensor data

Start optimization with initial points

Apply configs in DIALux

Calculate and extract results to Excel files

Evaluate uniformity and energy

Stopping criterion met?

End Project

No

Yes

Figure 1: Workflow of the project.

• pyswarm for Particle Swarm Optimization [19]

4.2.1 Characteristics

The first library utilized is scikit-optimize, a lightweight and flexible Python package de-
signed for sequential model-based optimization. It is particularly effective for hyperparameter
tuning and black-box optimization tasks where evaluations are expensive. The optimization
process in scikit-optimize is driven by surrogate models, such as Gaussian Processes (GP),
Random Forests, or Gradient Boosted Trees. In this project, only Gaussian Processes were
used. The library supports several acquisition functions, including Expected Improvement (EI),
Probability of Improvement (PI), and Lower Confidence Bound (LCB), allowing for a trade-off
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between exploration and exploitation.
SAMO-COBRA, on the other hand, is a surrogate-assisted Multi-Objective optimizer specifically
developed for constrained black-box problems. It uses Radial Basis Function (RBF) models
exclusively as surrogate approximators for both objective and constraint functions. The algo-
rithm supports Multi-Objective optimization through non-dominated sorting and maintains an
archive of feasible non-dominated solutions, representing the evolving Pareto front. Its iterative
search process is designed to balance exploration and exploitation, using surrogate predictions
to propose new candidate solutions efficiently while minimizing expensive function evaluations.
Lastly, pyswarm is a minimalistic Python library for Particle Swarm Optimization (PSO). It is
a population-based optimization method that does not require gradient information, making it
suitable for black-box and non-differentiable problems. The implementation allows the user to
define bounds and constraints for the search space and supports constraint handling through
penalty functions. While it does not include surrogate modeling, pyswarm is computationally
efficient and simple to configure, making it a practical choice for baseline comparisons.

4.3 DIALux Software

DIALux, developed by DIAL GmbH in Lüdenscheid, Germany, is a powerful lighting design
and simulation software widely used by professionals to plan, visualize, and optimize lighting
systems for both indoor and outdoor environments. The software offers a comprehensive suite
of tools for creating detailed 3D models of spaces, enabling users to simulate lighting con-
ditions with high accuracy. DIALux supports an extensive library of luminaires from various
manufacturers, allowing designers to select and integrate specific lighting products into their
projects. The software calculates key lighting metrics, such as illuminance (i.e., lux levels),
luminance, glare, and uniformity, ensuring compliance with international lighting standards
like EN 12464-1. Additionally, DIALux provides advanced features for daylight analysis, en-
ergy efficiency evaluations, and dynamic lighting scenarios, making it an indispensable tool for
architects, lighting designers, and engineers aiming to achieve optimal lighting solutions that
balance performance, energy efficiency, and user comfort.
In this project, DIALux is utilized in the evaluation part of all the optimization algorithms.
After the algorithm chooses the new points to evaluate, i.e., the new lumen values and hence
wattages for each lamp, they are inserted in DIALux, which provides the option to change
lumens and watts per lamp, as seen on the left pane in Figure 2. The next step is to calculate
the illuminance levels, uniformity, and energy. The ‘Documentation’ tab in DIALux provides us
with those and more details. An example image of how this looks is given in Figure 3. As we
can observe, it shows the final results calculated (with built-in formulas) and whether these
exceed the desired threshold, defined again by the program. In this example, it is clear that
the average lux level is correctly above 500, uniformity is above 0.60, and energy consumption
is within the limits, but the glare valuation should be below or equal to 19, which does not
apply.

4.3.1 Setup

We created a simple 3D room (Figure 2) with six working desks and corresponding chairs,
ten presence/motion sensors placed above these desks, and 18 lamps; four per sensor and
workspace. The room also consists of an entrance door and five windows on one side. The
lamps used are CoreLine panel RC133V G4 LED36S/840 PSD W62L62 OC from the Philips
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Figure 2: A snapshot from the DIALux software, also showcasing the structure of the
room we are examining.

Figure 3: A snapshot from the ‘Documentation’ of DIALux, depicting the results for a
random example.

company, and the specifications of interest are given in Table 2.
Another thing important to note is that there are calculating surfaces defined that cover each
desk; see Figure 4. The scope of this is to calculate lux levels under the sensor and specifically
on the desks, where we need to have indications above 500 lux, as determined by the EN
12464-1 rule.
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Table 2: Philips lamp information

Specification Value
Lighting Technology LED
Luminous Flux 3,600 lm
Correlated Color Temperature 4000 K
Luminous Efficacy (rated) 123 lm/W
Optic type Beam angle 90°
Unified glare rating CEN 19
Input Voltage 220-240 V
Power Consumption 29 W

Figure 4: Desk surfaces are marked with the yellow color. On the left, information on the
lux levels is given per calculating surface.
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5 Experiments

This section presents the experimental setup used to evaluate the performance of the three
selected optimization algorithms under varying sensor conditions. The objective is to assess how
well each method balances energy efficiency and uniformity in a black-box, simulation-based
smart lighting environment.

5.1 Examinations

For the experiments, we conducted a grid search over the three algorithms, two Bayesian
Optimization variants and Particle Swarm Optimization, with selected hyperparameter com-
binations. Due to the long runtime of each optimization iteration, we limited the parameter
configurations as shown in Table 3.

Table 3: Hyperparameter Grids for Optimization Algorithms

Algorithm Parameter Values
BO n initial points [5, 10]

n calls [30, 50]
acq func [EI, PI]

PSO swarmsize [3, 5]
maxiter [9]
omega [0.5, 0.7, 0.9]

SAMO-COBRA initial points [5, 10]
max iterations [30, 50]

From this table, we can calculate the total number of experimental runs per algorithm: BO
with Scikit involves 8 runs, PSO is executed 6 times, and SAMO-COBRA is tested with 4
configurations, totaling an amount of 18 experiments. All algorithms are evaluated using an
equivalent computational budget to ensure fair comparison. In the case of PSO, the total
number of evaluations is computed as s× i+ s, where s is the swarm size and i is the number
of iterations. For example, for a swarm size of 3, the total number of evaluations becomes
3× 9 + 3 = 30.
Note that in Section 6, the naming convention used to describe the algorithm configurations
follows a consistent format across all methods:

• BO: Configurations are denoted as EV IN ACQ, where EV is the number of evaluations,
IN is the number of initial design points, and ACQ refers to the acquisition function used
(e.g., EI or PI).

• PSO: Denoted as SW IT OM, where SW is the swarm size, IT is the number of max
iterations, and OM corresponds to the omega (inertia weight) parameter.

• SAMO-COBRA: Represented as EV IN, where EV again refers to the number of evalu-
ations, and IN indicates the number of initial design points, following the same structure
as BO.

This notation is used throughout the results section to concisely indicate the hyperparameter
settings associated with each experimental run.
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The experiments are executed across a diverse set of scenarios simulating different sensor
availability states. The aim is to investigate the robustness of each algorithm when certain
presence/motion sensors are disabled. The scenarios are:

• Scenario 1: All sensors are enabled

• Scenario 2–3: Two different randomized sensors are off

• Scenario 4–5: Four different randomized sensors are off

• Scenario 8–9: Six different randomized sensors are off

• Scenario 10–11: Eight different randomized sensors are off

In Figure 5, Scenarios 2 to 11 are visualized. Scenario 1 is excluded from the figure as it
represents fully active and fully inactive settings. Red circles indicate disabled sensors, while
active sensors remain unmarked.
Furthermore, for a scenario where PSO does not perform well and a BO variant does, we will
rerun these BO variants without informative warm-start. This is conducted in order to observe
the impact of a warm-start initialization and also make fair comparisons with PSO, as it is
implemented without this feature.
Additionally, if an algorithm fails to find feasible solutions across most scenarios, we will con-
sider refining its setup. This may include reducing the search space, increasing the evaluation
budget, relaxing constraints, or modifying key hyperparameters. These decisions will be based
on the outcome analysis.

5.2 Experimental setup

All experiments in this study were conducted on a personal laptop with the following spec-
ifications: an AMD Ryzen 7 4800H processor with Radeon Graphics, running at 2.90 GHz,
and 16 GB of installed DDR4 RAM. The system operates on a 64-bit Windows environment
with an x64-based processor architecture. While the DIALux simulations are time-intensive,
this hardware setup was sufficient for managing the experimental workload. Our system is
compatible with any machine capable of running DIALux evo; hence, any device is able to run
this project.

5.3 Time per simulation iteration

The integration of optimized lighting configurations with DIALux is achieved through a UI-
based automation pipeline, in which the system interacts programmatically with the DIALux
interface to simulate and evaluate each configuration. This process involves the following
steps: launching the DIALux project, selecting the luminaires present in the scene, modifying
the luminaire parameters (lumens and wattage), performing lighting calculations, accessing
the documentation view to preview the final results, and exporting the evaluation data and
saving the updated project. The execution time may vary slightly due to specific conditions
during the simulation process. In cases where the newly proposed lumen and watt values for a
particular lamp remain unchanged from the previous iteration, the system bypasses the need
to press the ‘Apply’ button in the DIALux interface, thereby saving a small amount of time.
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Figure 5: Overview of Scenarios 2–11. Red circles indicate disabled sensors.
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Conversely, when changes are detected, this step is executed, contributing to longer iteration
times.
Due to the UI-driven nature of this workflow, each iteration typically requires approximately
3 minutes to complete. However, it has been observed that, over time, DIALux encounters
performance degradation, potentially due to internal caching, memory usage, or accumulation
of process overhead. As a result, the duration of each iteration gradually increases, occasionally
leading to significant slowdowns or even temporary stalling of the simulation environment. To
address this issue, a monitoring mechanism was implemented to measure the duration of each
iteration. If the time required exceeds a threshold of 3.5 minutes, the automation routine
discards the current project file and initiates a new instance using a fresh project, thereby
resetting DIALux’s internal state. This practice restores the simulation speed to its baseline,
maintaining consistent iteration times and ensuring the reliability of the optimization loop.

5.4 Reproducibility

To ensure the reproducibility of this work, all experiments were conducted using a fixed random
seed of 42. This ensures that results can be consistently replicated under the same experimental
settings. By controlling the random state across all algorithms and simulation runs, the impact
of randomness is isolated, allowing for fair comparisons and reliable evaluations of algorithmic
performance. The code can be found in the GitHub repository here.

The key performance metrics tracked include total energy consumption, desks illuminance,
lighting uniformity, and penalty values related to lighting constraints. These results are dis-
cussed in detail in the following section.
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6 Results

This section presents an analysis of the results obtained from the experiments described ear-
lier. First, the outputs of any algorithm that encountered a feasible solution are summarized
in both Tables and Figures, one for each scenario. These are followed by visualizations to
further illustrate algorithm behavior and the impact of sensor data. As previously outlined, the
evaluation focuses on three key metrics: energy consumption, desk illuminance (lux) over the
six desk surfaces, and lighting uniformity.

6.1 Feasibility per scenario

Feasibility in this context is scenario-dependent, as it is influenced by the occupancy status
defined for each case. While the penalty function remains consistent across all scenarios,
we introduce an additional condition that prioritizes lighting adequacy for occupied desks.
Specifically, a solution is considered feasible if all occupied desks receive at least 500 lux.
Although the system also penalizes instances where vacant desks exceed this threshold, such
violations are not grounds for infeasibility, and the solutions are still accepted. In essence,
feasibility strictly requires compliance for occupied desks, whereas violations on unoccupied
ones are penalized but tolerated accordingly. For instance, in the first scenario, which assumes
full occupancy, every desk must reach a minimum of 500 lux for a solution to be considered
feasible. In contrast, in the second scenario where the second desk is unoccupied, a lux value
below 500 at that specific desk is acceptable, and the solution is still considered feasible.
Tables 4, 12-22 present the configurations executed for each algorithm that finds feasible
solutions, along with their corresponding results in terms of energy consumption, lighting
uniformity, and desk illuminance. In cases where a trade-off arises, such as one solution yielding
higher uniformity but also higher energy consumption, and another offering the reverse, we
include both. This approach ensures a balanced consideration of both objectives.
It is important to note that the presented results include two categories of solutions. The first
category corresponds to the solution selected as optimal by BO, based on its objective function.
In cases where this solution does not meet the feasibility criteria; either by failing to provide at
least 500 lux on occupied desks or by falling below the acceptable uniformity threshold, we also
report the first valid feasible solution identified with the lowest objective value. The second
category includes the most representative and clearly superior feasible solutions per algorithm
and hyperparameter configuration. Although additional feasible configurations were obtained
during the optimization process, they are not included in the Tables if they exhibit both higher
energy consumption and lower uniformity compared to other solutions derived under the same
settings.
In cases where the outcomes from both budgets are identical or the solutions obtained with
30 evaluations are sufficiently satisfactory in terms of levels of uniformity and energy, the
favored algorithm configuration is the one associated with the lower budget, thereby choosing
the more computationally efficient one. Furthermore, solutions corresponding to the warm-
start configuration are excluded, as the focus is on results discovered independently by the
optimization algorithms rather than predefined inputs. Finally, there are scenarios where more
than half desks are vacant; hence for those, we count solutions with uniformity below 0.6 as
eligible and are still presented in the respective Tables.
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Scenario 1

In the first scenario, PSO fails to identify any feasible solution, likely due to the absence of
warm-start initialization. In contrast, BO and SAMO-COBRA successfully identify one or more
feasible solutions, as summarized in Table 4.
Notably, several feasible solutions identified by Bayesian Optimization with a 30-evaluation
budget also appear among the solutions discovered using the extended 50-evaluation budget.
This observation suggests that the algorithm is often capable of converging to acceptable
configurations within a relatively limited number of evaluations. However, increasing the budget
may still yield additional or improved solutions beyond those found with fewer iterations.
Among the recorded results, the configuration using BO with 50 budget, 10 initial samples,
and the EI acquisition function achieved the highest uniformity, with a value of 0.76. The same
configuration but with PI instead of EI, attained the lowest energy consumption, indicating
a score of 427 W. The lighting configuration corresponding to the highest uniformity was
identified at iteration 49. In this solution, all lamps operate at full intensity (3600 lumens),
except for lamp 11, which emits 664 lumens. This outcome is expected since the objective
scopes to maximize uniformity without minding the increased energy consumption. Given that
the scenario assumes full occupancy, it is reasonable that 17 out of 18 lamps are set to
their maximum output in order to achieve an even distribution of light throughout the space.
The slightly reduced output from lamp 11 may have been adjusted to correct for localized
over-illumination or to improve balance across neighboring areas. In contrast, the lighting
configurations for the result that brings the lowest energy were found in the 43rd out of 50
evaluations, and the rounded values are: [3600, 3131, 2888, 2735, 3474, 3539, 2140, 2347,
3600, 2597, 2540, 3600, 2772, 2678, 3482, 1150, 3124, 3600] for lamps 1-18 correspondingly.
The variation in lumen values reflects a deliberate balance between meeting minimum lighting
requirements and reducing energy usage where possible.
As the BO works in a Single-Objective manner, with a balanced sum of uniformity and energy,
we also depict the optimal value achieved by all experiments of BO, that is 0.14, with the
lighting configurations being set to [3600, 3588, 2560, 3600, 2022, 2783, 3517, 896, 3519,
2201, 3551, 3600, 2629, 3193, 3600, 2115, 2926, 3600]. This solution is illustrated with a star
(*) throughout the corresponding line in Table 4.

Figure 6: Energy vs Uniformity for Scenario 1
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Table 4: Feasible solutions for Scenario 1

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 10 EI 520.3 0.72 [648, 654, 652, 688, 683, 670]
473.2 0.67 [632, 631, 536, 580, 600, 656]

30 10 PI 500.4 0.74 [621, 636, 635, 661, 657, 633]
480.3 0.68 [598, 607, 627, 654, 602, 597]

30 5 EI 505.2 0.73 [645, 652, 643, 666, 628, 631]
455.0 0.69 [625, 551, 642, 577, 504, 526]
435.8 0.67 [595, 508, 628, 562, 518, 550]

30 5 PI 489.6 0.75 [589, 614, 628, 648, 629, 633]
474.9 0.74 [596, 599, 592, 611, 606, 630]
460.7 0.69 [584, 578, 559, 579, 574, 623]
450.5 0.68 [541, 564, 552, 582, 564, 617]

50 10 EI 498.4 0.76 [642, 638, 649, 581, 586, 659]
473.2 0.67 [632, 631, 536, 580, 600, 656]
466.1 0.64 [636, 600, 594, 582, 587, 611]

50 10 PI 430.9* 0.69* [586, 616, 599, 527, 522, 519]*
490.3 0.73 [612, 634, 615, 629, 612, 633]
470.6 0.71 [602, 613, 613, 598, 612, 591]
443.6 0.70 [560, 511, 617, 578, 589, 628]
500.4 0.74 [621, 636, 635, 661, 657, 633]
427.0 0.68 [576, 575, 562, 501, 518, 586]

50 5 EI 479.6 0.75 [581, 567, 630, 639, 647, 623]
458.6 0.70 [561, 594, 569, 610, 623, 597]
455.0 0.69 [625, 551, 642, 577, 504, 526]
435.8 0.67 [595, 508, 628, 562, 518, 550]

50 5 PI 489.6 0.75 [589, 614, 628, 648, 629, 633]
474.9 0.74 [596, 599, 592, 611, 606, 630]
460.2 0.69 [565, 568, 561, 582, 617, 635]
450.5 0.68 [541, 564, 552, 582, 564, 617]
433.4 0.62 [510, 548, 584, 570, 518, 557]

SAMO-COBRA
50 10 458.1 0.69 [588, 615, 520, 568, 601, 600]

451.7 0.66 [509, 574, 509, 595, 655, 638]
50 5 447.2 0.74 [551, 571, 565, 590, 520, 546]

Scenarios 2-3

Scenarios 2 and 3 (presented in Tables 12 and 13, respectively) explore the case in which two
sensors do not detect occupancy. In both scenarios, PSO is unable to identify any feasible
solution, whereas BO and SAMO-COBRA successfully return such results.
A consistent pattern emerges across both scenarios: BO using the PI acquisition function
reliably discovers feasible solutions, whereas configurations employing EI are less effective.
Specifically, in Scenario 2, no feasible solutions were found using EI-based configurations. In
Scenario 3, only one EI-based configuration yields a feasible result, and that one is identical
across both the 30- and 50-evaluation budgets. Regarding SAMO-COBRA, feasibility in both
scenarios is achieved exclusively under the 50-evaluation budget. The whole set of solutions is
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presented on the first two plots in Figure 7.
In terms of lighting performance, SAMO-COBRA with 50 evaluations and 5 initial points
produces the highest uniformity in both cases: 0.78 in Scenario 2 and 0.74 in Scenario 3.
Notably, in both scenarios, the 50-5-PI setting of BO yields the lowest energy consumption,
437.6 W and 392.6 respectively, for 2 and 3. In Tables 12 and 13 the best solutions identified
by the BO process are indicated with a star. The optimal score, which is feasible, for the second
scenario is 0.11, while for the third we present both the optimal 0.48 and the first valid optimal
4.0, which includes the lowest energy too.
The corresponding lighting settings for the highest uniformity are [3600, 3600, 3600, 2793,
3600, 3600, 3600, 3600, 3600, 3600, 2792, 2437, 2556, 3568, 2940, 2837, 3600, 3260] for
Scenario 2 and [3600, 3600, 3600, 2774, 3600, 3600, 3600, 3600, 3600, 3600, 3600, 2595,
3600, 2958, 3600, 2947, 3600, 3092] for Scenario 3. Regarding energy, BO discovers the
following lumens: Scenario 2 with [3600, 2552, 3540, 3600, 2365, 3545, 1892, 3084, 3600,
2304, 2591, 3240, 1078, 3538, 3182, 3600, 3380, 3600], Scenario 3 with [3600, 2300, 2244,
2795, 2598, 621, 2127, 3137, 3333, 2899, 2755, 3600, 3600, 3600, 2093, 2695, 2780, 1944].
The optimal value identified in Scenario 2 is given when lights are set to [3017, 2532, 3399,
3600, 2405, 1784, 3600, 3549, 2512, 1792, 2579, 3423, 3600, 3600, 2842, 3600, 3465, 3236],
while the best valid for Scenario 3 is given when lights are set to [3600, 2432, 2118, 2556,
3598, 0, 2281, 3298, 832, 2497, 2833, 3600, 3600, 3600, 3177, 2683, 2884, 3575].

Scenarios 4-5

These two scenarios represent the case in which four sensors detect inactivity. Once again,
PSO fails to identify any feasible solutions, whereas both BO and SAMO-COBRA demonstrate
greater robustness under these conditions. A total of 14 feasible solutions were identified in
Scenario 4, and 10 in Scenario 5.
Regarding Scenario 4 (Table 14), all BO configurations, except for the 30-10-EI setting, pro-
duced at least one feasible solution. In contrast, SAMO-COBRA succeeded in only one configu-
ration, specifically with 50 evaluations and 10 initial points, suggesting difficulty in optimization
and that maybe a higher budget is necessary for feasibility in the current scenario. If we view
the BO process as a Multi-Objective, then we would choose the 30-5-PI setting, as it yields the
highest uniformity (0.72) in less budget, and 50-10-EI for depicting the lowest energy (428.4
W), overcoming SAMO-COBRA for both objectives. However, as BO is Single-Objective, we
mention the result that returns the lowest balanced sum between these two objectives and
is 0.42, and for the optimal valid is 1.58. The settings for highest uniformity, lowest en-
ergy, and optimal valid solutions are: [3391, 3516, 3485, 3437, 3406, 3311, 3384, 3505, 3439,
3339, 3436, 3527, 3511, 3509, 3519, 3505, 3516, 3492], [3600, 2543, 3600, 3600, 3600, 1569,
1582, 2007, 3600, 3600, 0, 3600, 3288, 2586, 3600, 3600, 3600, 3600], [3600, 3047, 3600,
3600, 3600, 3600, 3600, 2851, 3600, 3600, 3600, 2138, 1902, 3600, 2944, 2467, 3600, 2801],
respectively, showcasing really similar lighting configs.
Scenario 5, presented in Table 15, exhibits slightly different behavior. Here, BO showcases
a single feasible configuration when using 5 initial points with the PI acquisition function,
regardless of whether the evaluation budget was 30 or 50. Another solution is given by 50-
5-EI hyperparameters, which happens to be the optimal valid one, i.e., that has the lowest
objective value. The fourth result is not feasible, but is chosen as the best option from BO.
SAMO-COBRA performs more effectively in this case, as it discovers five feasible solutions, of
which four are discrete. It is also able to identify lower energy compared to what BO brings.
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Considering BO as Multi-Objective, the selected solution for the highest uniformity is decided
among three runs (two of each are identified by BO) that indicate 0.72 uniformity. However,
both BO solutions (487.1 W) showcase higher energy than SAMO-COBRA (473.7 W) with the
same level of uniformity; hence, we exclude the first two and choose the last one. Concerning
energy, SAMO-COBRA with 50 evaluations and 5 initial samples identifies the lowest among
all experiments, with a total wattage of 414.6. Although, due to the Single-Objective setting
of BO, the retrieved optimal value is 1.19, and for the optimal valid is 17.32. The high
difference here lies in the given penalty for emitting over 500 lux on desks 2 and 5. The lighting
configurations of SAMO-COBRA with highest uniformity are [3297, 3600, 3247, 2730, 2133,
3600, 3600, 3355, 3600, 2867, 3600, 2709, 3600, 3600, 3600, 3299, 3600, 2757] , and for
lowest energy are [3600, 3600, 2768, 3021, 3600, 3600, 3274, 2784, 3600, 3600, 2583, 2177,
3600, 3600, 3600, 2100, 2575, 2376]. The best valid solution indicates lumen values of [3600,
3600, 3600, 3600, 3600, 3600, 3600, 3600, 2723, 3600, 3600, 0, 1424, 3600, 1673, 3600,
3600, 3600].

Scenarios 6-7

The examined scenarios reflect conditions where the half sensors report vacancy. Under such
settings, PSO consistently failed to produce feasible outcomes. On the other hand, both BO
and SAMO-COBRA proved to be more resilient, presenting 15 feasible solutions for each
scenario.
In Scenario 6, summarized in Table 16, BO when using 10 initial points with the EI acquisition
function does not identify any feasible configuration, regardless of whether the total evalu-
ation budget was 30 or 50. SAMO-COBRA with 30 evaluations lacks finding feasibility. In
contrast, bigger budget discovers some solutions. This indicates that BO can efficiently detect
isolated feasible points early, whereas SAMO-COBRA gains more from a larger budget in these
conditions.
SAMO-COBRA yields the optimal uniformity, with a score of 0.74 and configs [3600, 3600,
3600, 2774, 3600, 3600, 3600, 3600, 3600, 3600, 3600, 2595, 3600, 2958, 3600, 2947, 3600,
3092]. The lowest energy consumption is recorded by BO with 50 budget, 10 initial points
and PI, and it is 409.2 W with lights set to [3600, 2780, 625, 1074, 3600, 2419, 581, 876,
2127, 0, 2444, 3600, 3584, 1499, 3600, 3600, 3600, 2303]. This applies when we do not take
into account the first valid solution with the lowest total objective value, which is 392.6 W.
The selected configuration by BO brings the second lowest energy but a uniformity below the
predefined threshold of 0.6. Hence, the next best solution, with light settings [3600, 2300,
2244, 2795, 2598, 621, 2127, 3137, 3333, 2899, 2755, 3600, 3600, 3600, 2093, 2695, 2780,
1944], that depicts feasibility is also in the Table. The objective values for each of these cases
are 0.49 and 4.0.
The second scenario of this category, shown in Table 17, identifies more solutions for the BO
with 5 initial points and PI settings, compared to the previous one. However, it is unable to find
any results with EI as the acquisition function. SAMO-COBRA is again experiencing difficulty
in recognizing plenty of solutions, with only two discrete outcomes. The first and third are the
same, found with 5 initial points and a budget of 30 and 50, respectively. The second solution
indicates lower energy, but also lower uniformity.
The most successful, in terms of efficiency, setting seems to be BO with 50 iterations, 5 initial
points, and PI, as it is capable of locating both the lowest energy and highest uniformity, in
case we take BO as a Multi-Objective algorithm. The numbers for energy and uniformity are
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Figure 7: Energy vs Uniformity for Scenarios 2-11
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416.5 W and 0.74, respectively. The corresponding light settings are: [3600, 3383, 2625,
2415, 2295, 2945, 2766, 2651, 3600, 3600, 1672, 2675, 3600, 1671, 2600, 3600, 3052, 2900]
and [3600, 3407, 3460, 2816, 2684, 3233, 3595, 3267, 3600, 2845, 3541, 3522, 3594, 3600,
3408, 3599, 3409, 3600]. The chosen best solution of BO, with an objective value at 0.79,
though, gives lower energy but infeasible uniformity; thus, we also present the first feasible
solution that yields the lowest objective calculation, that is 3.0, and depicts [3600, 3067, 3285,
1922, 2377, 3095, 1992, 2366, 3600, 3439, 1347, 2657, 3600, 1606, 2593, 3179, 2589, 2782]
lumens for lamps 1-18.

Scenarios 8-9

Scenarios 8 and 9 are the first to have more than half (6) of the sensors depicting unoccupancy.
Scenario 8 illustrates inactivity on three desks, while Scenario 9 has four desks vacant. For
the eighth scenario, we will proceed as with the previous ones, but for the ninth scenario
we introduce a new logic rule concerning uniformity. Meaning that, as more than half of the
desks are vacant we do not care that much having uniformity above 0.6, thus we also accept
solutions with lower uniformity scores.
Three discrete solutions are found by BO, with the setting of 10 initial points not working
that well for the present scenario. SAMO-COBRA finds feasibility in only one solution under
50-evaluation budget. The optimal energy is found by BO with an indication of 396.5 W,
while the highest uniformity is again depicted from BO (0.74), with both having PI as the
acquisition function. The optimal value is identified by 50-10-PI setting and is 0.08, with
lights set to [3417, 3600, 3600, 1515, 1764, 3600, 3600, 3600, 2009, 2822, 3581, 1197, 966,
3600, 3600, 2378, 1269, 3108]. This matches with where the vacant and occupant desks are
located in the space, as the occupied depict higher emission of light, compared to those that
are vacant.
In the case of Scenario 9, all the solutions presented in the scatter plot of Figure 7 might
be acceptable based on how much uniformity the user of this system wants to apply in such
conditions. In Table 19 we present only the optimal solutions returned by BO and PSO,
as well as all the solutions identified by SAMO-COBRA. In this case, SAMO-COBRA may
bring solutions that have higher energy as it tries to achieve the threshold defined before for
uniformity. BO’s chosen solution yields an optimal value of 1.14 with [2280, 1595, 3600, 2914,
3593, 643, 2152, 2072, 3561, 3600, 3090, 461, 2909, 2148, 3138, 1938, 432, 1402] as lumen
values. On the other hand, PSO optimal solution exports a score of -0.08 with lamps set
to [2310, 1404, 3002, 2417, 1932, 1572, 575, 2340, 2831, 1052, 5, 2059, 2242, 1426, 1592,
1537, 1918, 3450].

Scenarios 10-11

These two scenarios indicate a condition where 8 out of 10 sensors are disabled. It is obviously
difficult to adjust the lighting when using the same penalties and objectives for this problem,
as most of the desks, if not all, are not occupied.
Scenario 10 is a special one, where no desk is occupied, but two sensors in the corridor identify
human activity. This means that we do not have to account for desks with a minimum lux
value of 500 or have uniformity above 0.6. The solutions here vary, but probably for this case
we only want the lowest energy, which is found by the SAMO-COBRA 50-10 setting, and it
is 8.0 W, with uniformity at 0.16. For this setting, the lighting configurations are all near to
zero. The next solution with the lowest energy, which is identified by three SAMO-COBRA
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variants, is the one that yields energy at 49.6 W; indicating uniformity of 0.29. This solution
might be more suitable as there is still occupancy detected, and the configurations of it are:
[1800, 116, 97, 87, 83, 76, 67, 61, 59, 1200, 720, 514, 327, 276, 211, 189, 156, 124].
The final scenario depicts occupancy on two desks, hence we care about the uniformity level
and the rule of 500 lux on these two specific desks, in contrast to the previous scenario.
Therefore, the optimal solution found by BO is not valid, as the first and third desks are
not illuminated properly. PSO again struggles to find any solution. SAMO-COBRA though,
discovers some valid and compatible with our needs solutions. The lowest energy is identified by
SAMO-COBRA’s variant of the 30-5 setting, being 317.1 W and the corresponding uniformity
is 0.37. In case the users of this system want to choose higher uniformity levels, they should
compromise with an increase of 110 W of energy usage, unless the solution by BO is preferred.

6.2 Convergence over iterations

Although the optimization process is not inherently designed to improve monotonically over
time, we visualize the behavior of each algorithm across iterations, regardless of whether
feasible solutions were ultimately found. For each scenario, we present two convergence plots:
one corresponding to a 30-evaluation budget and one to 50 evaluations.
In these plots provided in Appendices, it can be observed that configurations initialized with
5 initial points share the same starting evaluations across both budget settings. Similarly,
configurations using 10 initial samples replicate the first five points, followed by five additional
consistent points. We present the plots for the first scenario (Figures 8 and 9) as an example.
The presence of the warm-start is also clearly visible as the first iteration in all relevant plots.
In the energy plots, the majority of configurations achieve lower energy consumption compared
to the warm-start, as evidenced by the downward trend of the curve below the initial value,
an indication of improvement toward the optimization goal. For uniformity, the objective is for
the curve to surpass the warm-start level. Even in cases where this does not occur, the initial
uniformity values exceed 0.7, suggesting a relatively high baseline performance from the outset.
It is important to note that for PSO, the first iteration shown corresponds to the warm-start
configuration. However, this point is included solely for comparative purposes. PSO does not
incorporate warm-starting in the same way as Bayesian Optimization methods; rather, it uses
this configuration as a fixed reference point before beginning its standard evaluation process.
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Figure 8: Energy and uniformity for Scenario 1 with 30-budget

Figure 9: Energy and uniformity for Scenario 1 with 50-budget

6.3 Convergence of function evaluations (Single-Objective)

For this type of plots, we utilize the IOHanalyzer platform [9], and specifically the Expected
Target Value (ETV) plots. These provide a comparative view of how efficiently and consis-
tently each algorithm improves the objective value over time. From these plots, we can observe
the convergence trends across multiple runs, offering insights not just into the speed of im-
provement, but also the robustness of each method. Algorithms with curves that descend
more steeply early on demonstrate faster initial progress, while those that continue to im-
prove steadily reflect stronger long-term performance. Overall, the ETV plots help highlight
the trade-offs between convergence speed, consistency, and final solution quality across the
evaluated methods. It is essential to mention that the solutions may not be feasible, hence the
optimal value is what the algorithms chose with no other criteria added, which were explained
before.
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Figure 10: Function evaluations of Scenario 1 for both 30- and 50- budget

Scenario 1

Scenario 1 function evaluations are provided in Figure 10. BO-30-5-PI is the earliest to reach a
promising solution, achieving an objective value of 0.17 quickly within the evaluation budget.
BO-30-10-PI, which allocates more evaluations to initial exploration, improves slightly later,
an expected outcome given its broader initial sampling. The most notable behavior, however,
is observed in BO-30-5-EI, which struggles to make progress for the majority of the run. Only
near the end does it make two sharp improvements, ultimately achieving the lowest objective
value (0.16) among all algorithm variants. This late-stage convergence can be attributed to
the characteristics of the EI acquisition function, which favors a more exploratory strategy early
on, followed by exploitation once a promising region is identified. This behavior highlights EI’s
strength in finding high-quality solutions, albeit with a delayed payoff.
In the 50-evaluation budget setting, the three PSO variants yield negative f(x) values, which
are not considered valid based on the criteria discussed in an earlier subsection. BO, in con-
trast, demonstrates strong and consistent performance across all configurations. As observed
previously, the distinction between PI and EI acquisition functions is evident with PI-based
configurations tending to identify better solutions earlier. Specifically, BO-50-5-PI exhibits the
earliest convergence and continues to improve until the end of the budget, ultimately reach-
ing an objective value of 0.16. Its counterpart with 10 initial points, BO-50-10-PI, shows a
sharp improvement in the final evaluation phase, achieving the best result with a value of
0.14. Meanwhile, BO-50-10-EI displays delayed progress, with gains occurring only in the late
stages, leaving insufficient time to further exploit promising regions. BO-50-5-EI performs rea-
sonably well but does not surpass its PI-based counterparts. Notably, in this scenario, EI-based
configurations fall short of the performance achieved by PI-based ones, suggesting that PI’s
exploitation-focused strategy was more effective within the given budget.

Scenarios 2-3

The function evaluations for Scenarios 2-3 are illustrated in Figures 11 and 12, respectively.
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Figure 11: Function evaluations of Scenario 2 for both 30- and 50- budget

In Scenario 2 with 30 evaluations, the objective value calculation of BO starts from high
(12) and all variants’ curves decrease, some more and some less. It is clear that the one that
improves the earliest also gives us the optimal value, which is 0.11. This configuration is
provided by BO-30-5-PI. The plot shows that in this case, PI does not always demonstrate
the earliest convergence, as BO-30-5-PI is the last to optimize. Regarding 50 evaluations, the
trends are very similar to those of the 30-budget until the halfway point of evaluations, not
altering much after that point. The same solution is identified as best for this budget, meaning
that BO-50-5-PI is the best-performing algorithm for the current scenario.
The next scenario, presents again similar trends concerning the 30- and 50- budget. As before,
PI with 5 initial points is able to minimize the objective value earlier than others. However, in
the first plot, BO-30-10-PI slightly surpasses the previous configuration, exhibiting 2.94 score,
while in the second plot, the first configuration mentioned achieves a better score (0.49) than
all, but it is very close with the 50-5-EI setting, having an indication of 0.6.
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Figure 12: Function evaluations of Scenario 3 for both 30- and 50- budget

Scenarios 4-11

The following scenarios continue with the same logic, thus the plots will be provided in Ap-
pendices, without explaining further. In cases where the plots are really close to each other,
we also show the specific optimal value of each algorithm.
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6.4 Pareto Front (Multi-Objective)

In this section, we present the Pareto fronts of SAMO-COBRA generated for all scenarios. In
this context, we treat energy consumption and uniformity as separate objectives rather than
as components of a combined or weighted objective function. Here, 30 and 50 evaluations are
not separated as before, thus there will be curves that might stop earlier. This might happen
as a bigger budget may be able to find better solutions.

Scenario 1

In Scenario 1, we can validate what we have already observed in Section 6.1. Highest uniformity
is represented by 50-5, exceeding 0.7, with energy around 450 W. The lowest energy comes
from all variants, with wattage levels below 50. If we observe the lowest energy out of feasible
solutions, we then should look at the second point from the top, again found by the 50-
5 setting. It is also clearly visible that only the 50 evaluations are surpassing the desired
uniformity for this scenario.

Figure 13: Pareto front for Scenario 1

Scenarios 2-3

Both scenarios are demonstrated in Figure 14. In the following scenario, the 50-5 configuration
once again achieves the highest uniformity, approaching a value of 0.8. Among the solutions
that meet the minimum uniformity threshold, the lowest energy consumption is approximately
310 W, also achieved by the 50-5 configuration. However, the 50-10 setting demonstrates
comparable uniformity performance while consuming slightly less energy, suggesting a com-
petitive trade-off. Notably, only these two configurations produce feasible solutions under the
current scenario.
In Scenario 3, the 50-5 configuration again delivers the highest uniformity, this time exceeding
0.7. Within the subset of valid solutions (i.e., those satisfying the uniformity criterion), the
lowest energy value is achieved by the 50-10 configuration at approximately 290 W, followed
by the 50-5 configuration with around 350 W. Unlike the previous two scenarios, the 30-5
configuration also meets the desired uniformity level in this case. However, it is possible that
this solution fails to meet the desk-level illuminance requirements, potentially rendering it
infeasible despite its promising uniformity score.
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Figure 14: Pareto fronts for Scenarios 2-11
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Scenarios 4-11

Scenarios 4 and 5 present 50-10 as the best algorithm regarding the uniformity, while for
Scenario 4 it also appears to be the one with the lowest energy. For Scenario 5, 50-5 setting
is the one showcasing the lowest energy. For feasible solutions, the lowest energy is given by
30-5 (and 50-5, as it is the same solution), reaching approximately 450 W.
Scenarios 6 and 7 show the 50-5 variant as the one with the highest uniformity and the 50-10
setting with the minimum energy. In general, the trends of these two are very similar, with
the difference that the 30-5 setting in Scenario 7 demonstrates a solution with promising
uniformity, achieving the same as 50-5 in just 30 evaluations.
The next Scenarios 8 and 9, showcase 50-5 parameters to succeed in recognizing both the
minimum energy and maximum uniformity. In the eighth scenario, we care about having uni-
formity above 0.6, where only 50-5 and 50-10 locate solutions. The ninth scenario is kind
of different from what we saw until now, as more than half of the desks are vacant; hence,
there might be a slight preference for the solutions with lower uniformity, as they also give less
energy.
Scenarios 10 and 11 conditions look alike with the previous scenario. Therefore, we may favor
again the solutions with the least energy, even if they recognize lower levels of uniformity than
the optimal one located. The lowest energy is demonstrated by the 50-10 configuration, with
nearly zero wattage emitted for Scenario 10 and approximately 20 for Scenario 11.

6.5 Distribution of solutions

Since the distributed lumen values across lamps will serve as a reference for optimizing PSO
configurations, we selectively present results for three representative scenarios: Scenario 1,
where all sensors detect occupancy; Scenario 4, which captures the case where four sensors
do not detect occupancy; and Scenario 8, where six sensors are inactive.
The boxplots in Figure 15 show how the lumens are distributed per algorithm and hyperpa-
rameter. We can also observe the differences in behavior for each run, as PSO, especially in
Scenarios 1 and 4, depicts an entirely different pattern compared to BO. BO mostly explores
in higher regions of lumen levels and drops throughout the scenarios as expected. SAMO-
COBRA investigates larger regions, particularly in Scenarios 1 and 8, while for Scenario 4,
the lumen values start low and reach up to mostly 2000 and 3000 lumens. PSO, as discussed
previously, struggles to find solutions; thus, we need to use these diagrams as informative to
improve its performance. We mostly get advice from BO instead of SAMO-COBRA, as this
has a Single-Objective formulation.
In Figure 16, the bars are almost alike. Scenario by scenario, the zero lumen values increase
as we expect, since the sensors detecting occupancy get less. Concerning the lumen value of
3600, it is understandable why in the first scenario there are approximately 3500 appearances,
while we can see that this pattern is not observed for the other two. This might be interpreted
by the fact that in Scenario 4 there are more lamps close to each other that are influenced
by two or more sensors (as seen in Figure 17), compared to Scenario 8. Moreover, in Scenario
4 there are squares of lamps where the corresponding sensors are inactive, as this may cause
lower lumen values than 3600. In addition, most lamps are located in the corridor in Scenario
4, compared to Scenario 8, where the lamps are also among the desks. Therefore, in order for
the optimization process to identify solutions with valid desk lux illuminance, Scenario 8 needs
more light illumination to satisfy this constraint, which is trivial for Scenario 4.
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Figure 15: Explored Lumens per algorithm for Scenarios 1, 4 and 8

Figure 16: Explored Lumens over all algorithms for Scenarios 1, 4 and 8
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Figure 17: Showing the lights influenced by sensors in order to observe patterns with
lumen values and conditions

After considering both Figures (16 and 15) we decided: For the first scenario, we minimize the
range of the search space from (0, 3600) to (2500, 3600), since the most lumen values are
distributed in this region. For the fourth scenario, we expand the search space a little due to the
necessity of lower illuminance in some spots, and it is set to (1000, 3600). The last examined
scenario concerns a state with more than half of the sensors not indicating occupancy. This
means that low values are important for achieving the minimum possible energy. For this case,
we will try to relax the constraint of uniformity, choosing uniformity above 0.40 instead of
0.60.

Enhancing PSO

Among the results of the enhancing of PSO, we will also show the runs of BO and SAMO-
COBRA without a warm-start set. Actually, for BO the warm-start is entirely removed, while
for SAMO-COBRA a dummy warm-start of 1800 lumens is given, as it was required to be
provided. This procedure is done in order to observe whether BO and SAMO-COBRA are
striving to find solutions as PSO, making them comparable. The results of both runs are given
in Figure 18.

Figure 18: the allocation of solutions using the most recent iterations of BO, SAMO-
COBRA, and PSO for Scenarios 1, 4, and 8.

Even though some of the illustrated solutions may not be feasible, this is how energy vs.
uniformity plots are being formed. For Scenario 1, see Table 5, optimized PSO is now capable
of identifying feasible solutions compared to the baseline PSO. It even exceeds the performance
of BO, achieving a better optimal value of the Single-Objective function. The scores are 0.008
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for enhanced PSO and 0.11 for warm-started BO, while BO with no warm-start achieves an
indication of 0.18, and finds a lot fewer solutions than the previous version of BO. SAMO-
COBRA is unable to discover feasible solutions in these conditions, making it obvious that a
warm-start is indeed essential.
For Scenario 4, demonstrated in Table 6, something interesting is happening. Both BO and
PSO recognize solutions with very similar optimal values. These are 0.122 and 0.123 for PSO
and BO, respectively. Compared to the previous version of PSO, PSO now finds at least two
feasible solutions, while baseline PSO did not succeed at all. Regarding BO, it again struggles
compared to the warm-started one but still succeeds in discovering feasibility.
For the last Scenario, provided in Table 7, where we tried to change the approach of optimized
PSO, there is no feasibility observed. Additionally, no warm-started BO also fails. Although
SAMO-COBRA encounters difficulty, it identifies a feasible solution. In general, this scenario
is hard to examine, as we are not sure how much uniformity is necessary for half desks being
occupied; hence, relaxing the constraint by setting the threshold of uniformity to 0.40 still did
not help a lot.

Table 5: Feasible solutions for Scenario 1, where BO is set with no warm-start and PSO’s
search space is minimized.

Algorithm Settings Energy Uniformity Desk Lux per surface

BO
50 5 EI 488.6* 0.75* [635, 641, 584, 590, 646, 626]*

457.8 0.68 [587, 628, 616, 597, 528, 566]

PSO

3 9 0.5 428.3 0.71 [558, 531, 501, 562, 570, 574]
428.6 0.72 [558, 530, 502, 563, 571, 575]
428.9* 0.74* [558, 530, 505, 563, 570, 575]*

5 9 0.5 412.9 0.71 [531, 520, 581, 556, 505, 505]
416.1 0.73 [534, 524, 586, 558, 508, 510]
420.7 0.74 [540, 529, 594, 564, 511, 512]
421.2 0.75 [539, 527, 583, 558, 524, 523]
422.1* 0.76* [541, 529, 577, 553, 528, 528]*

3 9 0.7 406.9 0.73 [505, 501, 549, 542, 538, 534]
411.2 0.74 [513, 505, 547, 552, 547, 546]
411.9 0.77 [516, 512, 553, 540, 536, 537]
415.1 0.78 [531, 520, 555, 541, 527, 535]
416.7* 0.79* [535, 522, 556, 542, 528, 535]*

5 9 0.7 416.7 0.71 [518, 513, 525, 564, 546, 539]
418.3 0.73 [518, 519, 522, 565, 550, 545]
421.3 0.74 [524, 528, 520, 569, 554, 553]
424.1* 0.75* [530, 538, 520, 570, 557, 559]*

3 9 0.9 414.4 0.74 [511, 554, 529, 534, 511, 526]
414.6 0.75 [511, 554, 517, 532, 517, 534]
421.0* 0.77* [522, 572, 513, 529, 520, 549]*

5 9 0.9 412.7 0.67 [557, 502, 550, 558, 530, 508]
417 0.69 [578, 523, 515, 545, 541, 542]
427.2 0.71 [564, 517, 540, 552, 574, 564]
432.5* 0.81* [546, 550, 520, 545, 575, 573]*
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Table 6: Feasible solutions for Scenario 4, where BO is set with no warm-start and PSO’s
search space is minimized.

Algorithm Settings Energy Uniformity Desk Lux per surface

BO
30 10 PI 465.7 0.67 [605, 597, 590, 586, 624, 595]
50 10 PI 465.7 0.67 [605, 597, 590, 586, 624, 595]

398.6* 0.64* [575, 555, 513, 539, 517, 421]*

PSO
3 9 0.9 403.4* 0.65* [522, 521, 541, 522, 505, 476]*

402.7 0.64 [522, 524, 541, 524, 508, 466]

Table 7: Feasible solutions for Scenario 8, with SAMO-COBRA having as a warm-start a
dummy solution

Algorithm Settings Energy Uniformity Desk Lux per surface
SAMO-COBRA 50 5 393.9 0.73 [520, 502, 514, 534, 509, 507]

6.6 Overview of algorithms

This section highlights the main insights of the algorithms in a Single-Objective and Multi-
Objective manner. For the Single-Objective ones, we present the top-3 ranking with the cor-
responding mean and standard deviation, while for the Multi-Objective ones, we provide the
Hypervolume and IGD+ metrics. Finally, we also compare the elapsed times of execution of
each of the algorithms.
Figure 19 presents the Empirical Cumulative Distribution Function (ECDF) plots of the Ex-
pected Attainment Function (EAF) for the evaluated optimization algorithms. The x-axis rep-
resents the number of function evaluations, while the y-axis indicates the fraction of problem
instances (or runs) for which an algorithm has attained at least a specified solution quality by
that evaluation count. These plots effectively illustrate the speed and consistency with which
each algorithm identifies high-quality solutions across multiple runs and scenarios.
Among the configurations tested under the 30-evaluation budget, the 30-10-PI variant demon-
strates superior convergence behavior, outperforming all other algorithmic variants. Notably,
30-10-PI surpasses 30-5-PI, indicating that Probability of Improvement (PI) benefits from a
larger initial sampling size in constrained budgets. Conversely, the Expected Improvement (EI)
variants display the opposite trend: 30-10-EI underperforms relative to 30-5-EI, suggesting
that EI may be less effective with increased initial sampling in low-budget cases. Overall,
PI-based acquisition functions consistently outperform EI counterparts in the 30-evaluation
setting, underscoring PI’s robustness for time-limited optimization.
Regarding the 50-evaluation budget, during the early phase (10–25 evaluations), the 50-5-
PI configuration exhibits superior performance, suggesting that fewer initial points facilitate
faster early convergence. In the mid-phase (25–35 evaluations), 50-10-PI temporarily overtakes
50-5-PI, reflecting the dynamic trade-off between exploration and exploitation. However, by
the final phase, 50-5-PI regains dominance, ultimately achieving the best solution quality. For
EI, the 50-5-EI variant surpasses 50-10-EI after 25 evaluations, reversing their initial rankings.
This indicates that EI’s sensitivity to initial sample size diminishes as the evaluation budget
increases.
Some general observations are that the EI variants with 5 initial samples are the slowest to
reach the 0.9 attainment fraction threshold in both budget settings, while the PI-based con-
figurations, again with 5 initial samples, demonstrate the fastest attainment, highlighting PI’s
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efficiency regardless of evaluation budget. Furthermore, PI acquisition functions dominate per-
formance across both evaluation budgets, while EI variants exhibit volatile rankings dependent
on the initial sample size, performing suboptimally with larger initial samples under limited
budgets but improving as the budget increases. Finally, all PSO variants show no progression
beyond the warm-start solution within both evaluation limits, indicating ineffective adaptation
under strict evaluation constraints or a small budget. This suggests PSO is unsuitable for prob-
lems with tight evaluation budgets and that EI should be reconsidered only when evaluation
budgets exceed 50.
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Figure 19: ECDF plots of the EAF for our optimization algorithms.

In Table 8, we summarize the top-3 Single-Objective algorithms for each scenario, those chosen
based on optimal value (first two columns) and those we consider valid (last two columns). For
the second category, there is not always more than one algorithm with feasibility. While PSO
variants frequently achieve top objective values, their presence among valid solutions is limited,
indicating feasibility challenges in some scenarios. Conversely, BO methods, particularly the
50-evaluation PI variant, consistently produce a higher number of valid optimal solutions,
demonstrating a better balance between optimization quality and constraint satisfaction.
To interpret these results, we also generate Table 9, where we present the mean and standard
deviation of each of the Single-Objective algorithms located in top-3 rankings. These are sorted
in ascending order of mean based on non-valid optimal solutions. Concerning the valid ones,
we also highlight how frequently each algorithm appeared among the top valid solutions for
reliability purposes. PSO discovers only one optimal solution over all scenarios, with the 50-9-
0.5 variant identifying none. If we rank the BO variations, 50-10-PI indicates the lowest mean
with success in 10 scenarios. Some BO algorithms, such as 50-5-PI, exhibit higher standard
deviation, suggesting that while they often find good solutions, their performance is more
variable.
The evaluation of SAMO-COBRA configurations across all scenarios, as demonstrated in Table
10, reveals clear differences in optimization effectiveness as measured by Hypervolume (HV)
and IGD+ metrics, given by pymoo package [4]. HV basically measures the size of the space
covered by the Pareto front, showing how well an algorithm explores good trade-offs between
objectives. A larger hypervolume means better coverage and diversity of solutions. IGD+
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Table 8: Top-3 algorithms with their non-valid and valid optimal solutions per scenario
for 30 and 50 evaluations

Sc Top-3 (30 ev) Top-3 (50 ev) Top-3 valid (30 ev) Top-3 valid (50 ev)

1
BO 30 5 EI (0.165) PSO 5 9 0.9 (-0.183) BO 30 5 EI (0.165) BO 50 10 PI (0.135)
BO 30 5 PI (0.169) PSO 5 9 0.5 (-0.168) BO 30 5 PI (0.169) BO 50 5 PI (0.157)
BO 30 10 PI (0.218) PSO 5 9 0.7 (-0.095) BO 30 10 PI (0.218) BO 50 5 EI (0.165)

2
PSO 3 9 0.5 (-0.202) PSO 5 9 0.5 (-0.258) BO 30 5 PI (0.112) BO 50 5 PI (0.112)
PSO 3 9 0.9 (-0.007) PSO 5 9 0.7 (0.018) BO 30 10 PI (7.525) BO 50 10 PI (7.525)
BO 30 5 PI (0.112) BO 50 5 PI (0.112)

3
PSO 3 9 0.7 (-0.075) PSO 5 9 0.5 (-0.101) BO 30 5 PI (11.470) BO 50 5 PI (4.042)
BO 30 10 PI (2.944) BO 50 5 EI (0.605) BO 30 10 PI (19.023) BO 50 10 PI (7.014)
BO 30 5 PI (3.517) BO 50 10 EI (2.888) BO 30 5 EI (30.876) BO 50 5 EI (30.876)

4
PSO 3 9 0.5 (-0.256) PSO 5 9 0.7 (-0.211) BO 30 10 PI (1.581) BO 50 10 PI (1.581)
PSO 3 9 0.7 (-0.086) BO 50 5 PI (0.425) BO 30 5 PI (3.377) BO 50 5 PI (3.377)
BO 30 5 PI (0.425) BO 50 10 PI (0.641) BO 30 5 EI (15.672) BO 50 10 EI (11.600)

5
PSO 3 9 0.9 (-0.170) PSO 5 9 0.5 (-0.022) BO 30 5 PI (37.713) BO 50 5 EI (17.327)
PSO 3 9 0.7 (-0.087) PSO 5 9 0.9 (-0.001) BO 50 5 PI (37.713)
PSO 3 9 0.5 (-0.030) BO 50 10 PI (1.189)

6
PSO 3 9 0.5 (-0.147) PSO 5 9 0.5 (0.000) BO 30 5 PI (11.470) BO 50 5 PI (4.042)
PSO 3 9 0.7 (-0.130) BO 50 5 EI (0.605) BO 30 10 PI (19.023) BO 50 10 PI (7.014)
PSO 3 9 0.9 (-0.079) BO 50 10 EI (2.888) BO 30 5 EI (30.876) BO 50 5 EI (30.876)

7
PSO 3 9 0.5 (-0.113) PSO 5 9 0.5 (-0.110) BO 30 5 PI (19.714) BO 50 5 PI (2.998)
BO 30 10 PI (3.873) BO 50 5 PI (0.792) BO 30 10 PI (25.298) BO 50 10 PI (8.174)
BO 30 5 PI (6.349) BO 50 10 PI (2.543)

8
BO 30 10 PI (1.928) BO 50 10 PI (0.079) BO 30 10 EI (3.602) BO 50 10 EI (0.789)
BO 30 10 EI (3.602) BO 50 10 EI (0.789) BO 30 5 EI (4.540) BO 50 5 PI (0.856)
BO 30 5 EI (4.540) BO 50 5 PI (0.856)

9
PSO 3 9 0.5 (-0.080) BO 50 10 PI (1.141) BO 30 10 PI (1.518) PSO 5 9 0.7 (0.611)
PSO 3 9 0.9 (0.201) BO 50 10 EI (1.355) PSO 3 9 0.9 (2.130) BO 50 10 PI (1.141)
BO 30 10 PI (1.518) BO 50 5 PI (1.734) BO 30 5 PI (2.197) BO 50 10 EI (1.355)

10
PSO 3 9 0.5 (-0.285) PSO 5 9 0.5 (-0.170) PSO 3 9 0.5 (-0.285) PSO 5 9 0.5 (-0.170)
BO 30 5 PI (-0.161) BO 50 5 PI (-0.161) BO 30 5 PI (-0.161) BO 50 5 PI (-0.161)
PSO 3 9 0.7 (-0.113) BO 50 10 PI (-0.134) PSO 3 9 0.7 (-0.113) BO 50 10 PI (-0.134)

11
BO 30 10 PI (0.873) BO 50 10 PI (0.508) BO 30 10 PI (0.873) BO 50 10 PI (0.508)
BO 30 5 EI (1.222) BO 50 5 EI (0.911) BO 30 5 EI (1.222) BO 50 5 EI (0.911)
BO 30 5 PI (3.498) BO 50 10 EI (2.813) BO 30 5 PI (3.498) BO 50 10 EI (2.813)
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Table 9: Statistics of valid and non-valid optimal solutions per algorithm

Non-valid solutions Valid solutions
Algorithm Mean Std Mean Std Count
PSO 3 9 0.5 -0.016 0.211 -0.285 0.000 1
PSO 5 9 0.5 0.010 0.191 -0.170 0.000 1
PSO 3 9 0.7 0.083 0.174 -0.113 0.000 1
PSO 5 9 0.7 0.113 0.176 0.611 0.000 1
PSO 3 9 0.9 0.119 0.159 2.130 0.000 1
PSO 5 9 0.9 0.147 0.155 - - 0
BO 50 5 PI 0.928 1.013 5.904 11.365 9
BO 50 10 PI 1.196 1.134 3.304 3.418 10
BO 30 10 PI 1.664 1.215 8.554 9.257 9
BO 50 5 EI 1.789 1.641 16.031 13.585 5
BO 50 10 EI 2.161 1.639 4.139 4.370 4
BO 30 5 PI 2.795 2.654 8.956 11.404 10
BO 30 5 EI 3.923 2.710 13.892 13.016 6
BO 30 10 EI 5.366 5.393 3.602 0.000 1

(Inverted Generational Distance Plus) measures how close the found solutions are to the true
best Pareto front, by capturing both the distance and distribution quality of the solutions.
A smaller IGD+ value means the solutions are closer and more evenly spread along the true
front.
Notably, the 50-10 configuration consistently attains the highest HV values, indicating that it
discovers lighting solutions that dominate a larger portion of the objective space, effectively
balancing low energy consumption with high lighting uniformity. Concurrently, this configura-
tion also achieves the lowest IGD+ scores, demonstrating that its approximate Pareto fronts
closely match the true Pareto fronts, thus capturing a diverse and well-converged set of optimal
trade-offs.
Conversely, configurations with fewer iterations or initial points, such as 30-5 and 30-10, gen-
erally exhibit lower HV and higher IGD+ values, suggesting a more limited exploration and
less accurate approximation of the Pareto front. These differences highlight the benefit of in-
creased computational budget and sampling in navigating the complex optimization landscape.
Additionally, certain scenarios, such as Scenario 2, show overall higher IGD+ values across con-
figurations, indicating increased optimization difficulty, likely due to environmental or sensor
variability affecting solution quality. In contrast, scenarios where HV values are uniformly high
and IGD+ values are low reflect more stable and well-defined optimization problems.
Overall, the metrics demonstrate that 50-10 is the most robust and effective SAMO-COBRA
setting across varied scenarios, providing confidence that increasing iterations and initial points
enhances both convergence quality and solution diversity in smart lighting optimization.
Table 11 presents the average elapsed time per algorithm, both including and excluding the
DIALux UI manipulation. This distinction offers a clearer understanding of the actual com-
putational time required by each algorithm, separate from the overhead introduced by the
simulation interface. Assuming each DIALux simulation iteration takes approximately 3 min-
utes (i.e., 180 seconds), the expected total simulation time for a 30- and 50-budget run is
5,400 seconds (90 minutes) and 9,000 seconds (150 minutes), respectively. However, this is
just an assumption as we do not actually have a standard average time over all evaluations.
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Table 10: Metrics (Hypervolume and IGD+) of SAMO-COBRA throughout all scenarios

Sc. Config. HV IGD+

1

30 5 66.786 0.043
30 10 44.982 0.015
50 5 134.484 0.033
50 10 166.562 0.003

2

30 5 53.234 1.544
30 10 44.982 1.515
50 5 253.931 0.012
50 10 160.945 1.499

3

30 5 122.730 0.055
30 10 44.982 0.056
50 5 173.710 0.017
50 10 151.782 0.014

4

30 5 72.368 2.873
30 10 50.638 2.846
50 5 67.327 0.509
50 10 214.281 0.003

5

30 5 122.730 1.043
30 10 92.960 1.018
50 5 190.681 0.029
50 10 176.228 1.002

6

30 5 122.730 0.055
30 10 44.982 0.056
50 5 173.710 0.017
50 10 151.782 0.014

7

30 5 122.730 0.039
30 10 73.872 0.022
50 5 125.642 0.037
50 10 139.941 0.001

8

30 5 60.954 1.716
30 10 44.982 1.702
50 5 128.715 0.036
50 10 149.238 1.644

9

30 5 68.878 1.031
30 10 44.982 0.971
50 5 204.572 0.072
50 10 133.707 0.928

10

30 5 61.046 2.519
30 10 44.982 2.501
50 5 171.102 2.464
50 10 220.345 0.019

11

30 5 106.680 1.500
30 10 44.982 1.469
50 5 149.398 1.470
50 10 178.628 0.008
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Table 11: Average elapsed time per algorithm, with and without DIALux simulation
(approx.)

Algorithm
Runtime Incl. DIALux Runtime Excl. DIALux

30 Budget 50 Budget 30 Budget 50 Budget
BO 5850.3 (≈1h 38m) 9661.5 (≈2h 41m) 450.3 (≈7.5m) 661.5 (≈11m)
SAMO-COBRA 6308.2 (≈1h 45m) 10573.0 (≈2h 56m) 908.2 (≈15m) 1573.0 (≈26m)
PSO 6382.2 (≈1h 47m) 11779.3 (≈3h 17m) 982.2 (≈16.5m) 2779.3 (≈46m)
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7 Discussion

The findings of this thesis offer a comprehensive understanding of the comparative perfor-
mance of optimization algorithms for intelligent lighting control in office environments. BO,
particularly the variant using the Probability of Improvement acquisition function, consistently
demonstrated robust performance across all scenarios. Configurations initialized with 5 points
frequently outperformed those with ten, highlighting the advantage of preserving more of the
evaluation budget for optimization rather than exploration. These observations were consis-
tently supported across convergence curves and attainment plots, restating BO’s ability to
achieve feasibility early and consistently, even under constrained evaluation budgets. In con-
trast, PSO exhibited limited feasibility, with performance largely dependent on initialization
and configuration tuning. SAMO-COBRA displayed more scenario-sensitive behavior, excelling
under Multi-Objective formulations and when larger evaluation budgets were available.
The convergence analysis further supports these findings. BO exhibited a steady progression
toward optimal solutions from the earliest iterations, often surpassing the warm-start base-
lines in both energy consumption and uniformity. The initial configurations, particularly those
achieving uniformity levels above 0.7, offered a strong foundation for subsequent evaluations.
Again, the 5 initialization samples allowed more evaluations to be spent refining promising re-
gions of the search space, resulting in sharper early improvements and validating the observed
sample-efficiency of these configurations. The interplay between warm-starting and targeted
exploitation dynamics contributed substantially to BO’s strong performance across scenarios.
Expected Target Value (ETV) plots provided an additional lens into the convergence dynam-
ics, reaffirming the previously established trends. PI-based BO configurations, especially with
5 initial samples, consistently achieved faster and more reliable convergence. While configura-
tions with ten initial points occasionally reached marginally better final objective values under
larger budgets, this came at the cost of slower early progress, illustrating the classic trade-
off between exploration depth and evaluation efficiency. Conversely, EI-based configurations
displayed delayed improvements, often concentrated near the end of the evaluation process.
PSO remained suboptimal throughout, typically exhibiting poor convergence behavior and of-
ten failing to find feasible solutions. Collectively, these plots confirm the effectiveness of BO
strategies that balance efficient initial sampling with strong exploitation mechanisms.
In the context of Multi-Objective optimization, the Pareto front analysis reinforces SAMO-
COBRA’s role as an effective solution for balancing energy consumption and lighting unifor-
mity. The 50-10 configuration consistently produced well-distributed Pareto fronts with high
Hypervolume and low IGD+ metrics, indicating effective trade-offs between objectives. These
results illustrate that sufficient evaluation budgets are critical for high-quality Multi-Objective
solutions. While 30-evaluation configurations generally underperformed, certain scenarios (e.g.,
3, 7, and 9) demonstrated some competitive outcomes too.
The lumen distribution analysis provided practical insight into how each algorithm explored the
solution space. BO exhibited adaptive behavior, often starting from high-lumen configurations
and gradually reducing intensity in response to occupancy constraints. SAMO-COBRA main-
tained a broader exploration range, aligning with its Multi-Objective formulation, while PSO’s
unstructured behavior resulted in scattered and often infeasible outcomes. By analyzing these
distribution patterns, targeted modifications were introduced to PSO’s search space, such as
narrowing or expanding intensity ranges per scenario. These adjustments led to significant
improvements: in Scenarios 1 and 4, PSO became not only feasible but even outperformed BO
whether with the presence or absence of warm-start. This suggests that algorithm performance
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can be substantially enhanced through scenario-specific parameter tuning and informed search
space design.
A holistic evaluation of all algorithms consolidates the earlier findings. BO with PI acquisition
emerged as the most effective approach in Single-Objective settings, offering a reliable balance
between feasibility, sample-efficiency, and convergence robustness. SAMO-COBRA excelled as
Multi-Objective, particularly under the 50-10 configuration, which produced the most well-
distributed Pareto fronts. Although PSO initially underperformed, its competitiveness improved
significantly following targeted configuration adjustments, emphasizing the value of contextual
adaptation. From a computational standpoint, BO provided the fastest execution times, while
SAMO-COBRA, although slower, justified its computational cost with superior Pareto quality.
These results underscore the complementary strengths of BO and SAMO-COBRA in addressing
distinct optimization objectives within intelligent lighting systems.
Beyond algorithmic performance, the broader implications of this study are particularly rel-
evant for energy-conscious and occupant-focused building environments. Minimizing energy
consumption in lighting systems contributes directly to operational cost savings and signif-
icantly reduces the building’s environmental footprint. Especially in commercial and office
settings, where lighting constitutes a major component of energy use, even marginal gains
in efficiency translate into substantial long-term savings. By adapting lighting output based
on occupancy and ambient conditions, such systems support compliance with sustainability
standards and contribute to greener building operations.
At the same time, maximizing lighting uniformity plays a vital role in ensuring occupant
well-being. Uniform illumination reduces eye strain, enhances visual comfort, and supports
higher levels of focus and task performance. This is especially critical in office environments
where prolonged screen time and varying ambient conditions can affect employee comfort.
Intelligent lighting systems that adapt illumination based on occupancy activity zones foster a
more responsive and comfortable environment, leading to improved productivity, satisfaction,
and overall health of building occupants. Therefore, the integration of smart lighting control
represents not only an advancement in energy efficiency but also a foundation of human-centric
building design.

7.1 Strengths

This thesis presents a robust and well-rounded approach to intelligent lighting control in
office environments. First, the research employs a comprehensive evaluation framework, testing
three distinct optimization algorithms: two BO variants and PSO across eleven randomized
occupancy scenarios. This extensive experimentation simulates real-world variability in lighting
needs, demonstrating the robustness and adaptability of each method under diverse conditions.
Second, a key strength of this thesis lies in the integration with DIALux evo, a professional-
grade lighting simulation tool. By embedding the optimization process within a simulation
environment, the study moves beyond theoretical analysis to provide realistic and practically
applicable results. Evaluating lighting configurations in terms of energy consumption, desk-level
illuminance, and lighting uniformity ensures that the proposed solutions meet both engineering
performance metrics and human-centric comfort standards, as defined by EN 12464-1.
Another valuable contribution is the use of a multi-criteria evaluation strategy, emphasizing
not only energy efficiency but also compliance with illuminance thresholds and uniformity
across workspaces. The formulation of scenario-dependent feasibility, requiring 500 lux only on
occupied desks, reflects a nuanced understanding of operational flexibility. While our system
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applies consistent penalties across all scenarios, it allows practical tolerance for lighting on
vacant desks, encouraging more energy-efficient yet context-aware solutions.
Moreover, this work emphasizes reproducibility, a hallmark of careful research. By explicitly set-
ting random seeds, documenting initial sampling strategies, and detailing algorithm configura-
tions, the experiments are fully transparent and replicable. This commitment to reproducibility
increases the credibility and utility of the findings for future research.

7.2 Limitations

Despite the strengths of this work, several limitations should be acknowledged. One limitation
of this study is that each algorithm was executed only once per configuration, without repeated
runs using different random seeds. While such a process is recommended to account for the
stochastic nature of Bayesian Optimization methods, this was not implemented due to time and
computational constraints. As a result, the reported performance metrics may be influenced
by specific random seeds, and conclusions drawn from single runs may not fully capture the
variability or robustness of each algorithm and configuration.
Secondly, the entire evaluation process is based on a simulation environment that, while highly
detailed and professional-grade, may not fully capture real-world factors such as reflections
from furniture, sensor latency, or erratic occupant behavior, as the digital environment created
does not accurately correspond to a real one. This reliance on simulation introduces a potential
gap in generalizability, as the system’s performance has not yet been validated in physical office
environments. Moreover, the integration with DIALux evo relies on UI-based automation, which
is both time-consuming and technically fragile. This limits the scalability of the experiments
and poses challenges for large-scale reproducibility, particularly when testing on more complex
building layouts.
In addition, the occupancy scenarios used throughout the experiments are based on randomized
but static cases. While this allows for a controlled and repeatable evaluation, it does not capture
temporal changes such as people entering or leaving rooms during the day. Consequently, the
system lacks real-time adaptability and cannot respond to dynamic occupancy or ambient
lighting conditions, which would be essential for deploying a closed-loop smart lighting solution
in practice.
Furthermore, daylight is omitted from the simulation setup. Although this exclusion simplifies
the optimization problem and isolates the effects of artificial lighting, it also limits the ecological
validity of the results. In office environments where daylight plays a crucial role, especially near
windows or skylights, the omission may overestimate the need for artificial lighting and thereby
distort the energy-performance trade-offs of certain configurations.
Finally, the use of warm-starts in Bayesian Optimization and SAMO-COBRA introduces a
potential bias. While initializing the optimization with pre-sampled configurations improves
convergence speed, it may also limit the algorithm’s exploration of the search space, increasing
the risk of converging prematurely to suboptimal regions. This bias, combined with the above
limitations, outlines the current boundaries of the proposed framework and points toward
directions for future improvement. The bias also exists when minimizing the search space to
enhance PSO, as it removes a big part of the accepted values for a lamp, making it unable to
choose lower lumen values which in reality are in the range of lumens. This may also increase
energy as higher lumen levels are depicted.
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8 Conclusion

This work introduces a black-box approach to guide smart indoor lighting, aiming to balance
energy use with occupant comfort in commercial offices. The challenge was tackled through
both Single-Objective and Multi-Objective models, all kept within the illuminance and unifor-
mity limits laid out by EN 12464-1. Because each run depends on the DIALux evo engine and
the output is non-differentiable, classic gradient-based search tools proved ineffective. As a
result, we tested three search strategies: a simple Bayesian Optimization, the surrogate-based
SAMO-COBRA, and standard Particle Swarm Optimization.
To answer the primary research question, the results demonstrate that both single- and Multi-
Objective warm-started Bayesian Optimization methods outperform the commonly used base-
line PSO algorithm in optimizing indoor lighting systems. BO achieved lower energy consump-
tion while maintaining adequate uniformity and comfort, and did so more consistently across
scenarios. In contrast, PSO often failed to meet feasibility constraints and was less reliable
in complex occupancy-driven settings. These findings confirm the need for a higher budget
concerning PSO, and also the ability of BO methods to succeed in a limited budget.
Extensive experiments across eleven different occupancy scenarios showed that BO, especially
when warm-started and using the Probability of Improvement acquisition function, reliably
produced feasible and high-quality lighting configurations. BO exhibited better convergence
behavior and sample efficiency compared to PSO, which often struggled to find feasible solu-
tions due to not having a warm-start and being sensitive to hyperparameter settings. SAMO-
COBRA, although more demanding in terms of computation, delivered strong performance in
Multi-Objective settings, particularly when there was enough evaluation budget available.
Key findings include the effectiveness of BO in discovering configurations that minimize energy
consumption while maintaining adequate uniformity and desk lux levels. Moreover, the study
underscored the importance of incorporating occupancy information into the optimization
pipeline to reduce over-illumination of vacant spaces and improve overall system efficiency.
After the intervention of optimizing PSO, we can observe that for scenarios where uniformity
should exceed the predefined threshold, utilizing the distribution of lumens might be insightful.
However, this applies only when the distribution is more informative and it is clear where
the lumen values are located, i.e., which regions are better. Furthermore, such a process of
reducing the search space may not be suggested as optimal, as it consists of bias of the
optimization procedures towards higher values of lumen and thus energy, ending up with
suboptimal solutions.
In conclusion, this work validates the applicability of black-box optimization methods for adap-
tive lighting control in indoor environments. By leveraging occupancy-based sensor data, the
proposed system demonstrated the ability to deliver energy-conscious configurations without
compromising user comfort. These findings contribute valuable insights to the growing field of
smart building technologies and offer a practical foundation for real-world deployment.

Future work

This thesis provides a solid foundation for intelligent lighting control via black-box optimization.
Future research can build on this work by constructing real-time optimization systems that
respond dynamically to changing occupancy and daylight conditions. Lighting setups could be
constantly adjusted throughout the day by connecting the optimization loop with real-time
sensor data, providing greater responsiveness and efficiency in operational environments.
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Another interesting avenue is to personalize lighting setups based on individual user preferences
or behavioral patterns. For example, some people may favor brighter conditions, whereas others
are more sensitive to glare. Integrating user profile or preference learning mechanisms can result
in a more user-centric control system that not only saves energy but also improves comfort
and pleasure.
The optimization framework might be modified to encompass different building subsystems,
such as HVAC or controlled blinds, allowing for cross-domain optimization. Joint control of
lighting and climate systems has the potential to greatly increase building energy efficiency.
Furthermore, future implementations could investigate how this approach expands to bigger
or multi-room office settings.
Sensor integration is another area that has room for growth. Incorporating more environmental
inputs, such as CO 2 levels, ambient lighting, or computer vision-based occupancy recognition,
can increase the accuracy of control triggers and optimization decisions.
Finally, future initiatives may benefit from quickening the optimization process. Creating sur-
rogate models to approximate DIALux simulation outputs would enable speedier evaluations
and accommodate larger-scale or real-time applications. This acceleration could also aid in-
tegration with current Building Management Systems (BMS), allowing a modular version of
the framework to be included in commercial smart building platforms, transitioning the system
from experimental to deployable.
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Appendices
Tables for Scenarios 2-11 are provided below.

Table 12: Feasible solutions for Scenario 2

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 10 PI 510.8 0.73 [630, 637, 633, 678, 679, 666]
503.5 0.72 [634, 637, 629, 661, 661, 646]
467.5 0.67 [542, 573, 613, 650, 629, 612]

30 5 PI 439.4 0.73 [516, 481, 513, 538, 610, 631]
50 10 PI 510.8 0.73 [630, 637, 633, 678, 679, 666]

503.5 0.72 [634, 637, 629, 661, 661, 646]
467.5 0.67 [542, 573, 613, 650, 629, 612]

50 5 PI 439.4* 0.73* [516, 481, 513, 538, 610, 631]*
437.6 0.71 [553, 551, 582, 574, 593, 531]

SAMO-COBRA
50 10 470.7 0.73 [599, 603, 587, 653, 595, 568]
50 5 476.9 0.78 [613, 641, 622, 598, 576, 571]

455.9 0.75 [565, 592, 602, 601, 574, 523]

Table 13: Feasible solutions for Scenario 3

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 10 PI 476.8 0.69 [560, 599, 589, 616, 651, 645]
30 5 EI 519.9 0.72 [648, 655, 651, 688, 683, 669]
30 5 PI 513.1 0.73 [647, 647, 644, 676, 663, 653]

449.0 0.69 [540, 524, 589, 568, 592, 643]
50 10 PI 476.8 0.69 [560, 599, 589, 616, 651, 645]

409.2 0.67 [512, 556, 513, 511, 594, 543]
50 5 EI 519.9 0.72 [648, 655, 651, 688, 683, 669]
50 5 PI 513.1 0.73 [647, 647, 644, 676, 663, 653]

449.0 0.69 [540, 524, 589, 568, 592, 643]
396.1* 0.57* [519, 392, 480, 529, 554, 613]*
392.6** 0.61** [505, 387, 539, 506, 540, 542]**

SAMO-COBRA
50 10 444.0 0.65 [599, 560, 556, 530, 571, 592]
50 5 492.8 0.74 [615, 647, 627, 654, 619, 613]
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Table 14: Feasible solutions for Scenario 4

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 10 PI 465.3** 0.71** [623, 627, 627, 611, 573, 514]**
30 5 EI 512.7 0.71 [647, 654, 633, 686, 680, 654]
30 5 PI 420.2* 0.58* [568, 558, 511, 585, 584, 493]*

501.4 0.72 [624, 636, 631, 665, 657, 637]
483.2 0.71 [604, 622, 605, 649, 641, 603]
437.3 0.66 [561, 577, 531, 593, 586, 532]

50 10 EI 428.4 0.62 [590, 513, 599, 533, 531, 614]
50 10 PI 465.3 0.71 [623, 627, 627, 611, 573, 514]
50 5 EI 512.7 0.71 [647, 654, 633, 686, 680, 654]
50 5 PI 420.2* 0.58* [568, 558, 511, 585, 584, 493]*

501.4 0.72 [624, 636, 631, 665, 657, 637]
483.2 0.71 [604, 622, 605, 649, 641, 603]
437.3 0.66 [561, 577, 531, 593, 586, 532]

SAMO-COBRA 50 10 433.8 0.70 [533, 532, 555, 577, 573, 542]

Table 15: Feasible solutions for Scenario 5

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 5 PI 487.1 0.72 [602, 612, 610, 643, 636, 627]
50 5 EI 452.9** 0.64** [635, 639, 552, 599, 532, 465]**
50 5 PI 487.1 0.72 [602, 612, 610, 643, 636, 627]
50 10 PI 360.0* 0.50* [561, 442, 540, 557, 341, 374]*

SAMO-COBRA
30 5 451.6 0.70 [615, 602, 642, 578, 491, 518]
50 10 473.7 0.72 [546, 581, 618, 637, 627, 599]
50 5 451.6 0.70 [615, 602, 642, 578, 491, 518]

Table 16: Feasible solutions for Scenario 6

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 10 PI 476.8 0.69 [560, 599, 589, 616, 651, 645]
30 5 EI 519.9 0.72 [648, 655, 651, 688, 683, 669]
30 5 PI 513.1 0.73 [647, 647, 644, 676, 663, 653]

449.0 0.69 [540, 524, 589, 568, 592, 643]
50 10 PI 476.8 0.69 [560, 599, 589, 616, 651, 645]

409.2 0.67 [512, 556, 513, 511, 594, 543]
50 5 EI 519.9 0.72 [648, 655, 651, 688, 683, 669]
50 5 PI 513.1 0.73 [647, 647, 644, 676, 663, 653]

449.0 0.69 [540, 524, 589, 568, 592, 643]
396.1* 0.57* [519, 392, 480, 529, 554, 613]*
392.6** 0.61** [505, 387, 539, 506, 540, 542]**

SAMO-COBRA
50 10 444.0 0.65 [599, 560, 556, 530, 571, 592]
50 5 492.8 0.74 [615, 647, 627, 654, 619, 613]

462.7 0.68 [592, 586, 596, 587, 602, 599]
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Table 17: Feasible solutions for Scenario 7

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 10 PI 489.9 0.74 [574, 590, 615, 644, 661, 654]
30 5 PI 496.9 0.74 [618, 619, 635, 655, 646, 643]

487.9 0.72 [619, 632, 642, 554, 563, 656]
479.9 0.67 [590, 614, 604, 645, 642, 595]

50 10 PI 489.9 0.74 [574, 590, 615, 644, 661, 654]
440.6 0.67 [555, 516, 564, 519, 564, 596]

50 5 PI 496.9 0.74 [618, 619, 635, 655, 646, 643]
487.9 0.72 [619, 632, 642, 554, 563, 656]
479.9 0.67 [590, 614, 604, 645, 642, 595]
416.5 0.65 [532, 514, 521, 548, 535, 566]
402.9* 0.58* [538, 495, 508, 543, 504, 522]*
395.7** 0.66** [506, 529, 506, 511, 485, 535]**

SAMO-COBRA
30 5 451.6 0.70 [615, 602, 642, 578, 491, 518]
50 10 434.2 0.69 [522, 594, 591, 512, 487, 553]
50 5 451.6 0.70 [615, 602, 642, 578, 491, 518]

Table 18: Feasible solutions for Scenario 8

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 5 EI 519.1 0.71 [636, 653, 658, 687, 682, 669]
50 5 EI 519.1 0.71 [636, 653, 658, 687, 682, 669]
30 5 PI 504.3 0.74 [623, 638, 634, 678, 672, 640]
50 5 PI 504.3 0.74 [623, 638, 634, 678, 672, 640]
50 10 PI 396.5* 0.68* [480, 566, 541, 570, 433, 378]*

SAMO-COBRA 50 5 446.1 0.73 [531, 520, 555, 526, 503, 502]
50 10 453.5 0.69 [534, 564, 525, 584, 658, 578]

450.8 0.68 [509, 539, 624, 649, 611, 541]

Table 19: Feasible solutions for Scenario 9

Algorithm Settings Energy Uniformity Desk Lux per surface
BO 50 10 PI 334.7* 0.50* [471, 440, 550, 524, 315, 300]*

PSO
3 9 0.5 271.4* 0.60* [362, 352, 329, 256, 297, 437]*
5 9 0.7 345.0** 0.55** [456, 471, 579, 506, 300, 288]**

SAMO-COBRA

30 5 429.7 0.26 [484, 584, 562, 567, 564, 594]
50 5 429.7 0.26 [484, 584, 562, 567, 564, 594]

467.6 0.69 [586, 565, 594, 565, 587, 600]
476.9 0.77 [632, 601, 568, 583, 589, 607]

50 10 452.4 0.72 [547, 530, 599, 577, 549, 593]
460.6 0.73 [519, 564, 575, 622, 593, 604]
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Table 20: Feasible solutions for Scenario 10

Algorithm Settings Energy Uniformity Desk Lux per surface

BO

30 5 EI 116.0 0.07 [408, 405, 74.7, 64.5, 35.3, 42.6]
150.8 0.28 [205, 216, 97, 229, 300, 199]
154.0 0.29 [274, 322, 72.3, 155, 133, 80.6]
244.4 0.35 [301, 321, 182, 316, 328, 339]
245.3 0.57 [287, 348, 379, 262, 256, 307]

30 10 EI 124.7 0.25 [166, 249, 56.6, 59.9, 62.3, 199]
188.3 0.32 [278, 386, 156, 164, 121, 360]
189.2 0.45 [203, 237, 240, 204, 219, 266]
272.9 0.57 [341, 315, 371, 429, 414, 286]

50 5 EI 104.8 0.13 [44, 136, 178, 200, 152, 264]
150.8 0.28 [205, 216, 97, 229, 300, 199]
154.0 0.29 [274, 322, 72.3, 155, 133, 80.6]
219.3 0.33 [296, 341, 175, 176, 295, 389]
229.5 0.34 [430, 439, 166, 226, 191, 255]
230.4 0.44 [401, 421, 235, 285, 213, 272]
245.3 0.57 [287, 348, 379, 262, 256, 307]

50 10 EI 110.9 0.11 [28.6, 71.1, 211, 157, 227, 199]
124.7 0.25 [166, 249, 56.6, 59.9, 62.3, 199]
152.7 0.32 [182, 314, 165, 122, 149, 227]
189.2 0.45 [203, 237, 240, 204, 219, 266]
272.9 0.57 [341, 315, 371, 429, 414, 286]

30 5 PI 165.9 0.29 [318, 335, 202, 143, 105, 184]
166.8 0.48 [271, 281, 213, 140, 124, 219]

30 10 PI 187.3 0.32 [340, 250, 221, 345, 285, 245]
232.3 0.33 [243, 247, 210, 329, 415, 289]
232.9 0.41 [373, 325, 294, 318, 282, 248]
250.9 0.44 [471, 362, 314, 385, 278, 236]
265.4 0.47 [342, 253, 351, 444, 316, 340]
271.6 0.49 [407, 317, 406, 487, 332, 250]
272.9 0.57 [341, 315, 371, 429, 414, 286]

50 5 PI 123.1 0.29 [98.7, 175, 88.2, 167, 141, 215]
166.7 0.32 [238, 251, 202, 251, 185, 132]
166.8* 0.48* [271, 281, 213, 140, 124, 219]*
249.3 0.52 [375, 329, 277, 324, 353, 348]

50 10 PI 169.0 0.22 [453, 325, 133, 133, 70, 84]
187.3 0.32 [340, 250, 221, 345, 285, 245]
189.2 0.45 [203, 237, 240, 204, 219, 266]
221.2 0.49 [232, 181, 409, 248, 218, 339]
238.3 0.59 [268, 281, 222, 382, 394, 238]
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Table 21: Feasible solutions for Scenario 10 (continue)

Algorithm Settings Energy Uniformity Desk Lux per surface

PSO

5 9 0.9 294.9 0.62 [373, 343, 338, 323, 427, 434]
309.9 0.66 [470, 401, 358, 289, 381, 391]
322.4 0.69 [447, 387, 387, 307, 399, 437]

3 9 0.5 190.4* 0.65* [266, 229, 184, 214, 296, 328]*
249.3 0.66 [275, 266, 292, 310, 388, 415]

5 9 0.5 253.5 0.61 [399, 351, 334, 412, 321, 274]
257.2 0.63 [374, 325, 355, 428, 339, 272]
259.2 0.65 [400, 352, 345, 422, 333, 277]
260.4 0.66 [398, 353, 346, 427, 336, 273]
261.3 0.67 [399, 353, 347, 430, 337, 274]

3 9 0.9 324.8 0.61 [465, 469, 372, 398, 463, 454]

SAMO-COBRA

30 5 49.6 0.29 [99, 40.4, 92.7, 114, 81.2, 80]
77.8 0.33 [84.6, 63.5, 159, 200, 145, 126]
101.6 0.37 [161, 82.5, 120, 184, 200, 170]
118.5 0.39 [91.7, 98.8, 184, 268, 263, 215]
271.6 0.43 [341, 312, 346, 409, 355, 379]
275.8 0.47 [313, 280, 334, 306, 301, 485]
289.1 0.52 [348, 261, 484, 395, 456, 359]

30 10 49.6 0.29 [99, 40.4, 92.7, 114, 81.2, 80]
77.8 0.33 [84.6, 63.5, 159, 200, 145, 126]
101.6 0.37 [161, 82.5, 120, 184, 200, 170]
118.5 0.39 [91.7, 98.8, 184, 268, 263, 215]
140.6 0.41 [179, 116, 242, 231, 215, 250]
142.8 0.46 [146, 122, 199, 212, 268, 292]
164 0.49 [237, 151, 266, 287, 204, 224]
191.2 0.53 [211, 177, 253, 319, 318, 311]

50 5 49.6 0.29 [99, 40.4, 92.7, 114, 81.2, 80]
77.8 0.33 [84.6, 63.5, 159, 200, 145, 126]
101.6 0.37 [161, 82.5, 120, 184, 200, 170]
115.9 0.49 [155, 85.2, 133, 177, 145, 216]
289.1 0.52 [348, 261, 484, 395, 456, 359]
322.1 0.53 [399, 452, 378, 460, 394, 408]
384.4 0.71 [495, 503, 508, 516, 484, 478]
409.9 0.73 [494, 456, 527, 517, 524, 562]
479.5 0.74 [574, 625, 598, 596, 595, 634]

50 10 8.0 0.16 [5.19, 4.51, 21.6, 24.2, 15, 33]
49.6 0.29 [99, 40.4, 92.7, 114, 81.2, 80]
31.0 0.36 [401, 324, 473, 486, 493, 402]
95.5 0.48 [124, 86, 136, 155, 148, 163]
164.0 0.49 [237, 151, 266, 287, 204, 224]
191.2 0.53 [211, 177, 253, 319, 318, 311]
365.9 0.58 [506, 499, 393, 324, 457, 618]
432.1 0.67 [564, 549, 541, 478, 534, 638]
458.2 0.70 [558, 567, 558, 566, 622, 653]
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Table 22: Feasible solutions for Scenario 11

Algorithm Settings Energy Uniformity Desk Lux per surface
BO 50 10 PI 189.2* 0.45* [203, 237, 240, 204, 219, 266]*

348.6** 0.56** [557, 416, 513, 477, 307, 325]**

SAMO-COBRA

30 5 317.1 0.37 [512, 412, 525, 342, 217, 305]
444.4 0.60 [538, 552, 568, 603, 554, 597]

50 5 317.1 0.37 [512, 412, 525, 342, 217, 305]
444.4 0.60 [538, 552, 568, 603, 554, 597]
453.0 0.76 [541, 573, 562, 595, 568, 590]

50 10 427.1 0.61 [548, 489, 575, 543, 559, 572]

Convergence over iterations for Scenarios 2-11.

Figure 20: Energy and uniformity for Scenario 2 with 30-budget

Figure 21: Energy and uniformity for Scenario 2 with 50-budget

63



Figure 22: Energy and uniformity for Scenario 3 with 30-budget

Figure 23: Energy and uniformity for Scenario 3 with 50-budget

Figure 24: Energy and uniformity for Scenario 4 with 30-budget
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Figure 25: Energy and uniformity for Scenario 4 with 50-budget

Figure 26: Energy and uniformity for Scenario 5 with 30-budget

Figure 27: Energy and uniformity for Scenario 5 with 50-budget
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Figure 28: Energy and uniformity for Scenario 6 with 30-budget

Figure 29: Energy and uniformity for Scenario 6 with 50-budget

Figure 30: Energy and uniformity for Scenario 7 with 30-budget
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Figure 31: Energy and uniformity for Scenario 7 with 50-budget

Figure 32: Energy and uniformity for Scenario 8 with 30-budget

Figure 33: Energy and uniformity for Scenario 8 with 50-budget
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Figure 34: Energy and uniformity for Scenario 9 with 30-budget

Figure 35: Energy and uniformity for Scenario 9 with 50-budget

Figure 36: Energy and uniformity for Scenario 10 with 30-budget
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Figure 37: Energy and uniformity for Scenario 10 with 50-budget

Figure 38: Energy and uniformity for Scenario 11 with 30-budget

Figure 39: Energy and uniformity for Scenario 11 with 50-budget
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Figure 40: Function evaluations of Scenarios 4-5 for both 30- and 50- budget

Function evaluations plots for Scenarios 4-11.
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Figure 41: Function evaluations of Scenarios 6-7 for both 30- and 50- budget
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Figure 42: Function evaluations of Scenarios 8-9 for both 30- and 50- budget
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Figure 43: Function evaluations of Scenarios 10-11 for both 30- and 50- budget

73


	Introduction
	Problem Statement
	Goals of the Thesis

	Related work
	Methodology
	Problem formulation
	Single-Objective vs Bi-Objective
	Penalties/Constraints

	Algorithms
	Plain Bayesian Optimization
	SAMO-COBRA
	Particle Swarm Optimization
	Warm-Start


	Implementation
	Workflow
	Algorithms implementation
	Characteristics

	DIALux Software
	Setup


	Experiments
	Examinations
	Experimental setup
	Time per simulation iteration
	Reproducibility

	Results
	Feasibility per scenario
	Convergence over iterations
	Convergence of function evaluations (Single-Objective)
	Pareto Front (Multi-Objective)
	Distribution of solutions
	Overview of algorithms

	Discussion
	Strengths
	Limitations

	Conclusion
	Appendices

