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Abstract

We present an approach to implement a question-answering system
for enterprises’s internal documents using large language models (LLMs),
which also comes with capabilities to handle tabular data in the documents.

Modern enterprises often have vast amounts of internal documents, and
employees need to quickly find relevant information. These documents often
include a massive amount of tabular data, which carries important informa-
tion that is not easily accessible through traditional search methods. Using
centric high-performance infrastructure is not fesible for many enterprises
considering the confidentiality and security of their data.

We use a retrieval-augmented generation (RAG) approach. Combining
dense retrieval, sparse retrieval and reranking models, the application is ca-
pable of retrieving relevant document chunks from a local vector database.
The retrieved chunks are then processed by a large language model to gen-
erate answers to user queries. We also implement a tabular data processing
pipeline, which extracts and processes tabular data from the documents, al-
lowing the application to generate more accurate and high-quality answers.
Additionally, to evaluate the performance of our application, we create our
own dataset from Wikipedia pages in technical domains, which includes a
variety of document types and tabular data. Additionally, we develop a
prototype application that integrates our question-answering system with
a user-friendly interface, allowing users to interact with the system and ask
questions about the documents.

Our experiment results show that our approach substantially improves
the contextual precision, contextual recall, answer relevance and faithful-
ness of the answers generated by the question-answering system. Compared
to a baseline RAG pipeline, our pipeline is able to handle tabular data more
effectively, leading to more accurate and relevant answers.

This work demonstrates the potential of using LLMs and RAG tech-
niques to build effective question-answering systems for enterprises, espe-
cially in scenarios where tabular data carries important information. The
results suggest that our approach can substantially enhance the ability of
employees to quickly find and utilize relevant information fron their doc-
uments, allowing them to improve their productivity and decision-making
processes. The prototype application also provides a practical tool for enter-
prises to implement such systems, making it easier for employees to access
and leverage internal knowledge.
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1 INTRODUCTION

1 Introduction

In large organizations, employees are often required to deal with a massive
amount of technical documents, such as manuals, reports, and specifications,
which contain valuable information essential for performing their tasks efficiently.
For instance, new employees need to be familiar with the company’s products and
services by reading manuals and specifications, and software engineers consult
technical documents to understand system architecture and design. A common
scenario in such organizations is the need for collaboration among groups with
different backgrounds and expertise. For example, software engineers may need
to work closely with physicists to develop or improve a product, requiring deep
understanding of physics principles, abbreviations, formulas, as well as software
architecture, design, and implementation. In the meantime, the documents often
contain a huge amount of tabular data, which is often used to present information
more clearly and concisely. For instance, a technical document may contain a table
that summarizes the specifications of a product, or values of a specific parameter
in a system. These tables can be very useful for the employees to understand
the system and make decisions. However, these tables are often scattered across
different documents, and it is difficult to find the relevant tables that contain the
information needed by the employees.

Therefore, finding relevant information within these large and complex doc-
uments can be a time-consuming and challenging task, especially when effective
collaboration and knowledge sharing are crucial for success.

Additionally, in ASML, there are many regulations that restrict access to the
documents. There is a huge amount of documents that are confidential and can
only be accessed by the employees who have the permission, the documents should
not be shared or uploaded to the cloud. Therefore, it is helpful and important to
build a question-answering system that is able to ingest the user’s own documents
and generate answers based on the provided documents on the local machine.

Question-answering (QA) contains many techniques from the field of natural
language processing (NLP), Information Retrieval (IR) and Information Extrac-
tion (IE). A typical search engine, such as Google, Bing, can be considered a
QA system that can answer questions with documents from the web, i.e. given
the search keyword from the user, the search engine can return the most relevant
documents that contain the keywords. However, an ideal and user-friendly QA
system should be able to answer questions with a natural language that can be
seen as the answer directly to the user’s question [1] [2].

In 2017, transformer [3] has been introduced as a new architecture for natural
language processing tasks, which has shown great success in many NLP tasks.
With its attention mechanism, the transformer can effectively capture the long-
range dependencies in the text. This became the foundation for many state-
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1 INTRODUCTION

of-the-art models in NLP. In recent years, the development of large language
models has made it possible to build such a question answering system. The
transformer-based models, such as BERT [4], RoBERTa [5] and GPT-3 [6] can
understand natural language and generate answers based on the user’s query.
With the retrieval-augmented generation (RAG) method, the system can retrieve
relevant documents, and prompt the large language model to generate answers.

In this project, we aim to build a question answering system for enterprise,
which can answer questions based on the organization documents. The system is
built on top of a large language model, which can generate answers based on the
user’s query and the provided documents. The system consists of a frontend and
a backend, which are responsible for the user interface and the data processing
respectively.

• RQ-1: What is a good combination of retrieval methods for the RAG
pipeline that can run on a regular laptop?

• RQ-2: How can we build a retrieval-augmented generation (RAG) pipeline
that can handle tabular data effectively?

• RQ-3: What is the performance of the tabular data retrieval pipeline in
our RAG application?

The main contributions of this work are as follows:

• We proposed a retrieval-augmented generation (RAG) pipeline for an enter-
prise question-answering system, with ability to handle tabular data effec-
tively.

• We created a custom Wikipedia-derived dataset that contains tabular data,
which can be used for end-to-end evaluation of the RAG pipeline.

• We benchmarked the performance of our RAG retrieval pipeline on the
SciFact dataset, and compared it with different retrieval methods, including
BM25, dense retriever, and fusion retriever.

• We conducted a series of experiments to evaluate the performance of our
RAG pipeline, showing that our pipeline achieves higher scores on our cus-
tom dataset compared to the baseline approach.

• We developed a prototype application of the enterprise question-answering
system, which can be deployed on a local machine and can answer questions
based on the enterprise’s internal documents.
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2 RELATED WORK

The rest of the thesis is organized as follows. In Section 2, we will discuss the
relevant literature in this domain. In Section 3, we will describe the datasets that
we use in this project. In Section 4, we will describe the methods that we use in
this project. In Section 5, we will describe the experiments that we conducted to
evaluate the performance of our RAG pipeline. In Section 6, we will describe the
prototype development of the enterprise question answering system. In Section 7,
we will discuss the results of the experiments and the implications of the findings.
Finally, in Section 8, we will conclude the paper and discuss the future work.

2 Related Work

We list the relevant literature in this chapter. In Section 2.2, we will discuss
the work in retrieval-augmented generation, which is the core of our project.
This project focuses on technical documents, which usually contain tabular data.
Therefore, in Section 2.3, we will discuss the work in tabular data retrieval.

2.1 Question Answering

Question-answering is a widely studied task in natural language processing,
the goal is to allow humans to ask questions to the existing knowledge base in
natural language and get answers also in natural language. Back to last century,
the topics were put up in computer science field [7, 8, 9] .

In the past decades, with the development of the computer science, especially
the information retrieval and natural language processing, the question-answering
system has been extended to text-to-SQL systems, which can convert natural
language questions into SQL queries to retrieve relevant data from a structured
database [10, 11, 12] .

There are always a huge amount of documents in modern enterprise and orga-
nization environments which are usually stored in various formats, such as PDF,
Word, Excel, etc. With the rise of large language models, the question-answering
system has been able to answer questions based on the content of these documents.
However, these documents are not easily accessible to everyone in the organization,
and they are often stored with access control and permission management [13]. An
enterprise question-answering system must ensure that the sensitive information,
such as patent, financial, and personal data, is securely stored and accessed dur-
ing the retrieval and generation process. From the perspective of enterprise users,
they often expect the question-answering system with higher quality, consistency,
and interpretability compared to consumer-facing application [14].
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2.2 Retrieval-Augmented Generation

There has been a lot of research on Retrieval-Augmented Generation models,
which combine retrieval-based and generation-based approaches to question an-
swering. In particular, the RAG model has shown that the retrieval-augmented
model can outperform the generation-only model in knowledge-intensive NLP
tasks [15]. Similarly, REALM [16] introduces a method that augments language
models with a retrieval component, improving performance on open-domain QA
tasks by retrieving relevant text documents during the pre-training process. Later,
RAG with zero-shot prompting [17] has shown that the large language model can
be used to answer questions on a wide range of topics without any fine-tuning.

As part of the RAG pipeline, the retrieval component is responsible for finding
relevant documents from a large corpus. As popular and effective retrieval meth-
ods, BM25 [18] and TF-IDF [19] have been used in various retrieval-augmented
generation pipelines. These are the most common sparse retrieval methods, which
are based on the bag-of-words model and term frequency-inverse document fre-
quency (TF-IDF) weighting.

Additionally, dense retrieval methods are also used in the RAG pipeline. For
example, DPR [20] is a dense retrieval method that uses a bi-encoder architecture
to encode the query and document into a dense vector space. Later, the dense
vector space is used to retrieve relevant documents. Recently, the multilingual e5
embedding model [21] can be used to retrieve documents in multiple languages,
which is useful for multilingual question answering tasks.

There has been a lot of metrics proposed to evaluate the performance of gen-
erated text in the natural language processing field. The most intuitive metric is
the Exact Match (EM), which measures the percentage of generated answers that
match the ground truth answers exactly.

BLEU (Bilingual Evaluation Understudy) is another popular metric that mea-
sures the similarity between the generated text and the ground truth text [22, 23].
Originally, BLEU is used to evaluate the quality of machine translation, by con-
sidering the correspondence between a machine’s output and that of a human.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of met-
rics that measures the overlap between the generated text and the ground truth
text, originally proposed for summarization tasks [24]. By comparing the n-grams
of the generated text with the ground truth text, ROUGE can provide a more
comprehensive evaluation in terms of the overlapping words and phrases against
the ground truth text.

BERTScore is based on the pre-trained contextual embeddings from the BERT
model [4, 25]. By generating the embeddings and calculating the cosine similarity,
BERTScore can provide a semantic similarity score between the generated text
and the ground truth text. This metric is particularly useful for evaluating the
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3 DATA

quality of generated text in terms of semantic meaning, rather than just lexical
overlap.

2.3 Tabular Data Retrieval

In addition to text retrieval, there has been research on tabular data retrieval.
Traditional methods often use keyword or semantic search on the column and row
names of the table [26, 27].

TINTIN [28] proposed a method to leverage the structural information in the
table to retrieve relevant tables based on users’ queries. Later, TableSeer [29]
introduced a diagram for table detection, extraction, indexing, and ranking from
PDF files.

Similar to word2vec [30], table2vec [31] proposed a method to embed tables
into a dense vector space, which can be used to retrieve relevant tables based on
the query. The works by Shraga et al. [32] and the work by Trabelsi et al. [33]
also proposed methods for table retrieval based on the table embedding. They
showed that the table embedding can be used to retrieve relevant tables based on
the query and the table content.

TaPas [34] proposed a BERT-based pre-trained model to perform question
answering on tabular data. Later, based on TAPAS, Herzig et al. proposed a
dense retrieval method over tabular data [35], which is an end-to-end solution for
tabular data retrieval and question answering.

ERATTA [36] proposed a SQL-based method to retrieve relevant data from
a structural table based on the user’s query. The method uses a SQL query to
retrieve relevant data from the table, which can be used to answer the user’s
question.

More end-to-end solutions for tabular data retrieval and question answering
have been proposed. For example, Pan et al. [37] proposed a transformer-based
unified pipeline for table retrieval at the cell level.

3 Data

In this section, we describe the datasets that we use in this project, which are
the SciFact, and our custom Wikipedia-derived dataset.

3.1 SciFact Dataset

This dataset is a scientific fact-checking dataset, which contains scientific
claims verified against a corpus of abstracts. The task of this dataset is to verify
the scientific claims based on the abstracts. The SciFact dataset comes from BEIR
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[38], which is a heterogeneous benchmark containing diverse IR tasks. The SciFact
dataset is divided into three splits: train, dev and test in the BEIR benchmark
dataset.

We will use the test split of the SciFact dataset to evaluate the performance
of the retrieval component in the RAG pipeline. The detailed description of the
evaluation process is described in Section 5.2.

The SciFact dataset test split contains 1,409 scientific claims and a corpus of
5,183 abstracts. The statistics of the dataset are summarized in Table 1.

Table 1: Statistics of the SciFact dataset

Statistic Value

Number of documents in corpus 5183
Number of queries 300
Number of qrels 300
Ave. number of documents per query 1.13
Ave. length of document 1401.08
Ave. length of query 90.34

It is worth noting that in the SciFact dataset, each query might have multiple
relevant documents. As indicated in Table 1 by the average number of documents
per query, which is 1.13. This means that while most queries have one relevant
document, some queries have multiple relevant documents. Therefore, it requires
the retriever to be able to retrieve multiple relevant documents for each query.

This also matches the real-world scenario, where informative text might be
spread across multiple chunks. Therefore, the ability to retrieve top k relevant
chunks is crucial for the RAG pipeline to generate accurate and informative an-
swers.

To demonstrate the SciFact dataset, we provide an example of the query and
the relevant documents in Table 2.

In this work, this dataset is used to evaluate the performance of the retrieval
component in the RAG pipeline.

3.2 Custom Dataset from Wikipedia

This dataset will serve as the main evaluation set for the RAG pipeline in
this project. It provides a realistic scenario for end-to-end evaluation of the RAG
pipeline, including both document ingestion, retrieval, and answer generation.

In order to have a more realistic dataset for the application with end-to-end
evaluation, we created a custom dataset from Wikipedia. The dataset is de-
rived from technical Wikipedia pages, specifically focusing on topics on technical
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Table 2: Example of the query and the relevant documents in the SciFact dataset

Field Value

Queries
Query ID 1
Query 0-dimensional biomaterials show inductive properties.

qrels
Query ID 1
Document ID 31715818
Relevance 1

Documents
Document ID 31715818
Title New opportunities: the use of nanotechnologies to ma-

nipulate and track stem cells.
Text Nanotechnologies are emerging platforms that could be

useful in measuring, ...

products specifications, such as the details about Apple Silicon. The source mate-
rial was downloaded from Wikipedia, and purged from the original websites and
stored in HTML format to retain a semi-structured representation, including both
textual content and tables.

From the downloaded data, we manually selected relevant sections and used
ChatGPT to generate natural, human-like questions that might reasonably be
asked about the content. We then prompted ChatGPT to generate multiple an-
swers based on the provided content chunks, followed by a human review to ensure
answer quality and correctness.

The resulting dataset consists of two main components: the source documents
and the question-answer pairs. The source documents are stored in HTML format,
which preserves the structure of the original Wikipedia pages, including both text
and tables. The question-answer pairs are stored in a separate JSON file, which
contains triplets of questions, generated answers, and the corresponding source
documents.

After the source documents were collected and cleaned, we used ChatGPT to
generate question-answer pairs. The prompt to generate the question-answer pair
is listed in Appendix 1. The procedure for generating the question-answer pairs
is as follows:

• Manually select relevant text and/or table segments from the cleaned doc-
uments that contain technical or factual information.

7



3 DATA

• Copy and paste the selected content into ChatGPT, along with a prompt
instructing the model to generate realistic, human-like one-hop questions
that one might naturally ask based on the given content.

• For each question, prompt ChatGPT to generate one or more answers
grounded solely in the input chunk to simulate retrieval-augmented genera-
tion scenarios. We generate multiple candidate answers to ensure diversity
and quality.

• Repeat the process for each selected content chunk, generating multiple
candidate answers for each question.

• Review the generated answers by human annotators to ensure accuracy,
relevance, and naturalness. The final dataset consists of tuples containing
the question, the selected answer, and the name of the corresponding source
document.

We collected 5 pages from Wikipedia, i.e. the pages with the following titles:
‘Apple Silicon’, ‘Nvidia GeForce’, ‘Nintendo Switch’, ‘Intel Core’ and ‘ChatGPT’.
For each page, we formulated 10 question-answer pairs, resulting in a total of 50
question-answer pairs. The topics were selected based on their technical nature,
since the goal of these pages is to provide detailed information about a specific
product. This nature of the pages makes them similar to the technical documents
that employees in ASML would typically encounter.

Each entry in the question-answer dataset contains the following fields:

• Question: The question based on the content of the source document. The
question is designed to be clear and answerable directly from the content
of the source document, without requiring complex reasoning or multi-hop
retrieval.

• Answer: The answer generated by ChatGPT and reviewed by human anno-
tators based on the content of the source document. The answer is grounded
in the source document and is expected to be accurate and relevant to the
question.

• Source: The name of the source document from which the question and
answer are derived.

• SourceChunkType: The type of the source chunk, which can be either
Text or Table. This field indicates whether the question and answer are
based on textual content or tabular data from the source document.

8
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The following Table 3 provides an example of a question-answer pair from the
custom dataset. The question is about the fabrication process used for the Apple
A16 Bionic chip, and the answer is based on the information extracted from the
source document. The statistics of the dataset are summarized in Table 4.

Table 3: Example Question-Answer pair from the custom Wikipedia-derived
dataset

Field Value

Question How many transistors does the Apple M1
chip have?

Answer The Apple M1 chip contains 16 billion tran-
sistors.

Source apple silicon.html
Source Chunk Type Text

Table 4: Statistics of the custom Wikipedia-derived dataset

Statistic Value

Number of Question 100
Ave. length of Question 65.24
Ave. length of Answer 48.84
Number of Table Questions 50
Number of Text Questions 50

Source Documents To create a clean and structured dataset suitable for down-
stream processing, we first extracted source documents from relevant Wikipedia
pages. The raw HTML pages were downloaded, and subsequently parsed and
processed using Python libraries such as BeautifulSoup. The processing pipeline
focused on retaining informative content while removing unnecessary or noisy el-
ements from the HTML. Specifically, we removed non-essential components such
as images, scripts, styles, buttons, and figures. Hyperlinks were stripped down to
plain text to simplify the content representation, and empty tags were removed
to reduce clutter.

The result is a set of purged HTML documents preserving the core and impor-
tant textual and tabular information in a semi-structured format. The cleaned
HTML served as a foundation for question generation and answer grounding in
the RAG evaluation pipeline.
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Additionally, we also extracted a markdown version of the cleaned HTML
documents without tabular data. This markdown version is used in the RAG
pipeline to simplify the document ingestion process, where we aim to focus on the
tabular data pipeline.

Question-Answer Pairs To generate a high quality evaluation set for our RAG
system, we generated Question-Answer (QA) pairs from the cleaned Wikipedia
pages.

First, we manually selected relevant text and/or table segments from the
cleaned HTML documents that were likely to contain technical or factual informa-
tion. These content chunks were then fed into ChatGPT with carefully designed
prompts instructing the model to generate realistic, human-like questions that one
might naturally ask based on the given content. To simplify the task and enforce
clear answerability, we restricted generation to single-hop questions, which can
be answered directly using a single chunk of text or table data without requiring
information from multiple sources or complex reasoning. For each question, we
prompted ChatGPT to generate one or more answers grounded solely in the input
chunk to simulate retrieval-augmented generation scenarios.

To ensure the accuracy and naturalness, multiple candidate answers were gen-
erated and then reviewed by human annotators. The final dataset consists of
tuples containing the question, the selected answer, and the name of the corre-
sponding source document. The process enables a controlled interpretable eval-
uation of the RAG pipeline’s ability to retrieve and generate grounded answers
based on user queries.

4 Methods

The goal of this work is to build a RAG (Retrieval-Augmented Generation)
application in an enterprise environment, which can answer questions based on
the user’s own documents. Following the enterprise compliance and security re-
quirements, the system will be built to run on a local machine without any exter-
nal network access. The system will be built on top of a large language model,
which can generate answers based on the user’s query and the provided docu-
ments. Moreover, this work consists of a tabular data retrieval pipeline that is
specifically designed for retrieving relevant tables based on the user’s query.

In this section, we will describe the main components of the RAG pipeline and
the tabular pipeline.

10
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4.1 Retrieval-Augmented Generation Pipeline

We built a RAG pipeline that can ingest the user’s own documents and gen-
erate answers based on the provided documents.

The pipeline consists of three main components:

• Dataloader: This component is used to ingest the user’s own documents and
convert them into a format that can be used for the retriever (e.g. converting
the documents into vectors using word embeddings and storing them in a
database with their metadata).

• Retriever: This component is used to retrieve relevant documents based on
the user’s query. We will implement multiple retrieval methods, including
BM25 and vector similarity, and even a fusion of these methods.

• Generator: This component is used to generate answers based on the re-
trieved documents. We will connect the generator to a large language
model service such as Ollama to generate answers based on the retrieved
documents.

4.1.1 Dataloader

The user provides a set of documents that they want to use for their own
knowledge base (e.g. a set of technical documents, manuals, etc. in pdf, docx,
or pptx format). In a typical scenario, the documents usually contain a lot of
noise and irrelevant information. Besides, the user may ask questions that are
relevant to tabular data in the documents. Therefore, we need to preprocess the
documents to extract the relevant information and store them.

The documents are parsed and converted into text format. Then the text
will be chunked into smaller pieces and stored in a database with its metadata
(e.g. document id, chunk id, etc.). The metadata will also be used to retrieve the
relevant chunks based on the user’s query.

More formally, the dataloader can be defined as a function which can convert
the user’s documents into a set of chunks. Let D be the set of documents provided
by the user, the dataloader can be defined as

L(D) = {c1, c2, ..., cn},

where ci is a chunk of the document.
The high-level structure of the dataloader is shown in Figure 1. The dataloader

will first parse the documents and extract the text and tables from the documents.
Then, it will chunk the text into smaller pieces and store them in a database with
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Figure 1: An overview structure of the dataloader

its metadata. The embedding model will be used to convert the chunks into
vectors, which can be used for retrieval.

The dataloader will also handle the tabular data in the documents. The tables
will be extracted from the documents and processed with the tabular dataloader
pipeline before being stored in the vector database. The detailed description of
the tabular dataloader pipeline is provided in Section 4.2.

4.1.2 Retriever

The retriever is used to retrieve relevant documents based on the user’s query.
Once the query from the user is received, the retriever will search through the
documents and return the most relevant top-k chunks. Multiple retrieval methods
will be implemented and compared, including BM25, vector similarity, and a
fusion of these methods.

The retriever can be formally defined as a function which can retrieve the top-
k chunks based on the user’s query. Let Q be the user’s query, the retriever can
be defined as follows:

R(Q) = {c1, c2, ..., ck |ci ∈ L(D)}

where ci is the top-k chunks retrieved by the retriever based on the user’s
query Q.
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Sparse Retrieval Sparse retrieval methods are based on the bag-of-words model
and term frequency-inverse document frequency (TF-IDF) weighting. This method
more focuses on the lexical matching between the query and the document.

The term frequency (TF) is the number of times a term appears in a document,
in our case, a chunk. It measures the relevance of the term to the document; if
a term appears more frequently in a document, it is more likely to be relevant to
the document.

The inverse document frequency (IDF) is the logarithm of the total number of
documents divided by the number of documents containing the term. It measures
how rare a term is across all documents; if a term appears in fewer documents, it
is more likely to be relevant to the query.

These measurements are formally defined as follows:

TF(t, d) =
ft,d∑

t′∈d ft′,d

where ft,d is the frequency of term t in document d.

IDF(t,D) = log
|D|

|{d ∈ D : t ∈ d}|
where |D| is the total number of documents in the corpus, and |{d ∈ D : t ∈ d}|

is the number of documents containing term t.
Therefore, we can have the TF-IDF score as follows:

TF − IDF(t, d,D) = TF(t, d) × IDF(t,D)

In this work, we will use the BM25 method, which is an extension of the TF-
IDF method. Given a query Q and a document D, the BM25 score is defined as
follows:

BM25(Q,D) =
∑
t∈Q

IDF(t,D) × ft,D × (k1 + 1)

ft,D + k1 × (1 − b + b× |D|
avgdl

)

where ft,D is the frequency of term t in document D, k1 and b are hyperpa-
rameters, and avgdl is the average document length in the corpus.

BM25 is a popular sparse retrieval method that is based on the TF-IDF
method. This algorithm calculates the relevance score between the query and
the document based on the query terms appearing in the document. It can re-
turn the top k documents that are most relevant to the query based on lexical
matching.
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Dense Retrieval Dense retrieval methods are based on the dense vector space.
This method focuses on the semantic matching between the query and the docu-
ment by comparing the dense vector representations of the query and the docu-
ment.

The distributional hypothesis [39] in the information retrieval domain states
that the words that appear in similar contexts are likely to have similar meanings.
Therefore, the dense vector representations of the words can capture the semantic
meaning of the words.

With the development of language models, deep learning approaches [40] [41]
[42] [43] have become popular in the information retrieval domain. By mapping
text into low-dimensional latent space, where the words with semantic similarity
will be close, we can use the dense vector representations of the text to calculate
the similarity between the query and the document.

In this work, we will use the embedding model to create the dense vector
representations of the chunks and the query, and then use the vector similarity to
retrieve the relevant chunks based on the user’s query.

Given a query Q and a document D, the cosine similarity score is calculated
as follows:

CosineSimilarity(Q,D) =
vQ · vD

||vQ|| × ||vD||
where vQ and vD are the dense vector representations of the query Q and the

document D respectively.
By calculating the cosine similarity across all the chunks, we can retrieve the

top k chunks that are most relevant to the query based on the semantic matching.

4.1.3 Embedding Model

In this work, we use the embedding model to create the dense vector repre-
sentations of the chunks and the query. The embedding model is a large language
model that can generate the dense vector representations of the text. The em-
bedding model is pre-trained on a large corpus of text data and can generate the
embeddings for the text data.

E(ci) = vi

where E is the embedding model, ci is the chunk of the document, and vi is
the dense vector representation of the chunk ci.

In this work, we compare the performance on multiple embedding models,
including the BGE-m3, MiniLM and Mixedbread. By calculating the cosine sim-
ilarity between the query and the document, we can retrieve the top k chunks
that are most relevant to the query based on the semantic matching. Then, we

14
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compare the performance of the embedding models based on the retrieval metrics
in terms of nDCG@k, MAP@k, Recall@k and Precision@k.

BGE-m3 BGE-m3 is a large language model developed by Beijing Academy
of Artificial Intelligence. This model is designed for information retrieval tasks,
ranging from dense retrieval, multi-vector retrieval, and sparse retrieval with mul-
tilingual support for more than 100 languages. It can also be used for not only
short sentences but also long documents of up to 8192 tokens. [44]

MiniLM MiniLM is a small and efficient sentence transformer model that can
be used for generating embeddings for sentence-level or short paragraph text. [45]
The model is based on the BERT architecture and is pre-trained on a large corpus
of text data from multiple datasets.

Mixedbread Mixedbread AI is a company that focuses on text mining and
information retrieval technologies. They have developed a collection of models and
tools for various tasks, including embedding generation, text classification, and
information extraction. The Mixedbread embedding model series is a collection
of models that are designed to generate high-quality embeddings for text data.
More specifically, in this project we use the Mixedbread AI small embedding
model mixedbread-ai/mxbai-embed-xsmall-v1 1 to generate the embeddings for
the text data. The model is based on the BERT architecture, upon sentence-
transformers/all-MiniLM-L6-v2, the model is pre-trained with AnglE loss [46]
and Espresso [47] to generate high-quality embeddings to be used for information
retrieval tasks.

The reason why we use this model is that the expected scenario for our appli-
cation is to run on a local machine, where the resources are limited. The model is
designed to be lightweight and efficient. With only 22.7 million parameters, the
model is small enough to run on a regular laptop while still providing high-quality
embeddings.

Fusion Retrieval With the help of both sparse and dense retrieval methods,
we can perform both lexical and semantic matching between the query and the
document. The sparse retrieval method can capture the lexical matching between
the query and the document, while the dense retrieval method can capture the
semantic matching between the query and the document.

By fusing these two methods, we can retrieve the top k chunks that are most
relevant to the query based on both lexical and semantic matching.

1https://www.mixedbread.ai/blog/mxbai-embed-xsmall-v1
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After retrieving the top k chunks from both retrievers, we can combine the
results by ranking the chunks based on the relevance score.

The reciprocal rank fusion method [48] can be used to achieve this goal by
first deduplicating the chunks and then ranking the chunks based on the relevance
score. The reciprocal rank fusion score is defined as follows:

RRFScore(d ∈ D) =
k∑

i=1

1

rank(d) + j

where rank(d) is the rank of the document d in the list of retrieved documents
D, and j is a hyperparameter fixed to 60 to control the impact of outlier rankings.

4.1.4 Reranker

The reranker is used to rerank the top-k chunks retrieved by the retriever. It
takes both the query and the retrieved chunks as input and generates a relevance
score for each chunk. The reranker can be based on a large language model or a
transformer-based model that can generate the relevance score based on the query
and the retrieved chunks.

With a reranker model, we can first retrieve a large number of chunks from
the retriever with low cost in terms of time and resources. Then, we can use the
reranker model to rerank the top-k chunks based on the relevance score to help
provide the generator with more relevant chunks.

Mixedbread Reranker The Mixedbread Reranker family is a collection of
open-source models that are designed to generate relevance scores for query-
document pairs, similar to the Mixedbread embedding model, they are all released
by Mixedbread AI. The reranking models are based on the transformer-based
cross-encoder architecture and are pre-trained on a large corpus of text data with
guided reinforcement prompt optimization, contrastive learning and preference
learning 2. More specifically, in the project we use the smallest model in the fam-
ily, which is the mixedbread-ai/mxbai-rerank-xsmall-v1. With only 70.8 million
parameters, the model is small enough to integrate into the pipeline and run on
a laptop without a large increase in the computation cost.

Jinaai Reranker Developed by Jina AI, the Jinaai Reranker family is a collec-
tion of language models based on their own JinaBERT architecture that supports
the symmetric bidirectional variant of ALiBi [49, 50]. This architecture allows
the models to process significantly longer sequences of text, up to an impres-
sive 8,192 tokens. In this project, the model from the family that we use is the

2https://www.mixedbread.ai/blog/mxbai-rerank-v1

16

https://www.mixedbread.ai/blog/mxbai-rerank-v1


4 METHODS

jinaai/jina-reranker-v1-turbo-en, which is also a small model with only 37.8 mil-
lion parameters.

DistilRoBERTa Reranker The DistilRoBERTa Reranker is a transformer-
based model that is distilled from the RoBERTa-base model. The model is pre-
trained on the OpenWebTextCorpus dataset, which is a reproduction of OpenAI’s
WebText dataset. Compared to the original RoBERTa model, the DistilRoBERTa
model is smaller and faster, with only 82 million parameters, while the original
RoBERTa model has 125 million parameters [51]. We use the DistilRoBERTa
model as a baseline for the reranker in this project, so that we can compare the
performance of the reranker with the other models and without the reranker in
the pipeline.

4.1.5 Generator

The generator is used to generate answers based on the retrieved documents.
Once the retriever returns the top-k chunks, the generator will use a large language
model to generate answers by providing the chunks and the query to the model
within the prompt. The generated answers will be ranked based on the model’s
confidence score and returned to the user.

This can be formally defined as a function which can generate answers based on
the retrieved chunks and the user’s query. Let G be the generator, the generator
can be defined as follows:

G(Q,R(Q)) = A

where A is the answer generated by the generator based on the user’s query
Q and the retrieved chunks R(Q) as context.

We demonstrate the high-level structure of the generator in Figure 2. The
generator will take the user’s query and the retrieved chunks as input, and then
generate the answer based on the context provided by the retrieved chunks. The
generator can be based on a large language model such as LLaMA, which can
generate answers based on the context provided by the retrieved chunks. The
generator also contains a special tabular data retrieval pipeline that is specifically
designed for retrieving relevant tables based on the user’s query. The details of
the tabular data retrieval pipeline are provided in Section 4.2.

LLaMA Models LLaMA (Large Language Model Meta AI) is a series of large
language models developed by Meta AI [52]. The first generation of LLaMA
models, LLaMA 1, was released in February 2023, which aimed to provide a more
efficient and competitive alternative to existing language models with extremely
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Figure 2: An overview structure of the generator

large parameter sizes. Later, LLaMA 2 was released in the same year, which is
a more advanced version of the original LLaMA model in terms of performance,
safety, and alignment [53]. In 2024, LLaMA 3 was released, which further im-
proved the capabilities of the model in terms of natural language understanding,
reasoning, and tool use [54]. These models are commonly used in a variety of ap-
plications, including Retrieval-Augmented Generation (RAG), where their strong
performance in understanding context and generating coherent, relevant responses
has made them a popular choice.

In this project, we use the LLaMA 3.2, the 3 billion parameter version of the
model, which is a smaller version in the LLaMA 3 family. The model is distilled
from the LLaMA 3.1 model with 70 billion parameters. With the knowledge
distillation method, the model is trained to mimic the behavior of the larger
model while being significantly smaller and more efficient. The LLaMA 3.2 model
is designed to be lightweight and efficient, making it suitable for deployment in
resource-constrained environments.

Additionally, for the RAGAS evaluation, we also use the new LLaMA 4 Scout
17B 16E model 3, which is a MoE (Mixture of Experts) model with a 17 billion
parameter model with 16 experts. The model is designed to be more efficient and
effective in terms of performance, safety, and alignment. The model is trained on
a large corpus of text data and can generate high-quality answers based on the

3https://ai.meta.com/blog/llama-4-multimodal-intelligence/
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context provided by the retrieved chunks.

4.2 Tabular Data Pipeline

Apart from the text retrieval, we also implemented a tabular data pipeline that
is specifically designed for retrieving relevant tables based on the user’s query.

4.2.1 Table Dataloader

From the documents provided by the user, when the pipeline detects a table,
the table will be extracted and handled separately. Following in Table 5 is an
example of a table extracted from the documents. The mock table is about the
specifications of Apple’s M-series chips, which includes the RAM type, width,
data rate and the number of Thunderbolt controllers. The table is in markdown
format, which can be easily parsed and processed by the pipeline. In the following
sections, we will describe how the table data is processed and used in the retrieval
and generation steps.

Table 5: Example Tabular Data: Specifications of M1 series chips.

Model RAM (-MT/s) Width Data rate TB Controller

M1 LPDDR4X-4266 128 bit 68.3 GB/s 2×TB3
M1 Pro LPDDR5-6400 256 bit 204.8 GB/s 2×TB4
M1 Max LPDDR5-6400 512 bit 409.6 GB/s 4×TB4
M1 Ultra LPDDR5-6400 1024 bit 819.2 GB/s 8×TB4

A summary of the whole document will be generated by a large language
model to describe the content of the document. The summary will be used in the
following steps to generate a caption for the table. The summary can provide a
high-level overview of the document, which can help the large language model to
understand the context of the table better. The prompt of the document summary
generation is shown in Appendix 2.

Then, a caption will be generated by a large language model to describe the
table content. The column names, row names and along with the table data will
be sent to the model to generate a caption. The caption will be concatenated
to the table text, which will be sent to the embedding model to generate the
embedding for the table. The caption can provide a more detailed description of
the table content in terms of semantics and lexical matching, which can be useful
for the retrieval of the table based on the user’s query. The prompt of the table
caption generation is shown in Appendix 3.
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Instead of generating the embedding for the table data itself, we generate the
embedding for the table caption and the table data. The idea is to use the table
caption populate the table content, making the table chunk more informative.
This process can help the retriever to retrieve the relevant table chunk more
accurately and easily.

Following in Table 6 is an example of how the table caption is generated by
the large language model:

Table 6: Example of the table caption generation.

Field Value

Document Text Apple silicon is a series of system on a chip (SoC)
and system in a package (SiP) ... (Wikipedia Text)

Document Summary The A series is a family of SoCs used in the iPhone,
iPad, and Apple TV. The M series is a family of
SoCs used in Mac computers... (Summary for the
whole document)

Table Data Table 5

Table Caption The table lists the specifications of Apple’s M-
series SoCs, including: - M1: 128-bit, 4266 MT/s
RAM, 68.3 GB/s data rate, and 2×TB3 con-
troller... (Caption for the whole table)

To demonstrate the process more clearly, we also show the process visually
in Figure 3. The table caption generation process is shown in the figure, where
the document text, document summary, table data and table caption are used to
generate the table caption. The table caption will be used to retrieve the relevant
tables based on the user’s query.

4.2.2 Table Retrieval

The table retrieval is similar to the text retrieval, but instead of retrieving the
chunks, we retrieve the tables based on the user’s query. The table retrieval is
based on the table caption, which is generated by the LLM. The table caption is
used to retrieve the relevant tables based on the user’s query.

4.2.3 LLM-based Table Interpreter

The LLM can be used to interpret the table data and generate a draft answer
based on the table data; in the meantime, the LLM can also be used to filter
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Figure 3: Visualization of the table caption generation process.

out the irrelevant tables based on the user’s query. Therefore, to (1) enrich the
relevant information for the generator, and (2) filter out the irrelevant tables to
reduce the noise, we use the large language model to interpret the table data and
generate a draft answer based on the table data.

Table 7: Example of the LLM-based table interpreter output.

Field Value

Question Which chip has TB3 controllers?
Table Data Table 5
Prompt Appendix 4
LLM Output ‘M1’

In the following procedure, the draft answer generated by the LLM will be
concatenated with the retrieved table chunks. In the generator, the draft answer
will be used as part of the context to help the generator to highlight the relevant
information from the table data.

In case of an irrelevant table, the LLM will return an UNKNOWN answer,
which will be used to filter out the irrelevant tables. The table text will be
completely set to empty, and the table will not be used in the generator, so that
the noise from the irrelevant tables can be reduced.

21



4 METHODS

4.2.4 RCI Model Table Interpreter

If a table is retrieved from the database, the table data will be sent to a row-
column intersection (RCI) model to extract the possible rows, columns or cells
that are relevant to the user’s query [55] . There are two types of RCI models, one
to classify question-column pairs and one to classify question-row pairs 4. The
RCI model will generate the probabilities per-cell based on the user’s query and
the table data. The probabilities will be used to help the large language model to
understand the table in the context better and generate the answer based on the
table data.

With the tool calling feature of the language model, we can set up a special
tool to be used to interpret the table data.

The RCI models are based on the albert-base-v2 5, which is a transformer-
based model that can extract the rows, columns or cells from the table data based
on the user’s query . The RCI models are trained on WikiSQL, TabMCQ and
WikiTableQuestions datasets. There are two variants of the RCI models, one to
classify question-column pairs and one to classify question-row pairs.

The retrieved tables, along with the user’s query, will be sent to the RCI model
to generate the probabilities per-cell. The probabilities are used to help the LLM
to understand the table in the context better and generate the answer based on
the table data.

The RCI models take the table header and the table data as input, along with
the user’s query. The data will be applied to the row model and the column model
separately. And then, each model will generate the probabilities per-cell based on
the user’s query and the table data in terms of the row and column. The final
probabilities are the sum of the probabilities from both models.

The RCI model can be defined as follows:

Prow = RCIrow(Q, Theader, Tdata)

Pcol = RCIcol(Q, Theader, Tdata)

Pfinal = Prow + Pcol

where Prow is the probabilities per-cell generated by the row model, Pcol is
the probabilities per-cell generated by the column model, and Pfinal is the final
probabilities per-cell.

Table 8 is an example of how the RCI model can be used to extract the relevant
rows, columns or cells from the table data based on the user’s query.

4https://github.com/IBM/row-column-intersection
5https://huggingface.co/albert/albert-base-v2
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Table 8: Example of the RCI model output based on the user’s query and the
table data.

Field Value

Question Which chip has TB3 controllers?
Table Data Table 5
RCI Model Output ‘row ndx’: 0,

‘col ndx’: 0,
‘confidence score’: -4.436323642730713,
‘text’: ‘M1’

However, the RCI model is not perfect. It requires the arguments to be in
a specific format, and it may not be able to handle all the cases. In our imple-
mentation, to correctly format the table data, we use LLM to extract the table
header and the table columns from the text data, and then format the data into
json format. This process needs an extra step to call the LLM, and the practical
performance of the RCI model is not as good as expected. Therefore, we will not
use the RCI model in the final implementation, but we will keep it as an option
for future work. The actual implementation for the table interpreter is replaced
by the LLM-based table interpreter, which is more versatile and can handle more
cases.

5 Experiments and Results

In this section, we describe the experiments that we conducted to evaluate the
performance of our RAG pipeline. We first elaborate the evaluation metrics that
we used in the experiments. Then we describe the experimental setup and the
results of the experiments.

5.1 Evaluation Metrics

In this work, we use the following evaluation metrics to evaluate the perfor-
mance of the RAG pipeline.

The metrics are divided into two categories: retrieval metrics and generation
metrics. The retrieval metrics are used to evaluate the performance of the re-
triever, while the generation metrics are used to evaluate the performance of the
generator. The retrieval metrics are used to measure how well the retriever can
retrieve relevant documents based on the user’s query, while the generation met-
rics are used to measure how well the generator can generate answers based on
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the retrieved documents.
These metrics for the generation stage are proposed by RAGAS and are widely

used in the retrieval-augmented generation tasks.

5.1.1 Retrieval Metrics

nDCG@k Discounted Cumulative Gain (DCG) is a ranking quality metric that
measures the effectiveness of a retrieval system. This metric is often normalized
by the ideal DCG (IDCG) to obtain the normalized DCG (nDCG) to make it
comparable between different queries [56] . With a graded relevance scale of
documents in the top-k retrieved documents.

DCG is the sum of the usefulness of the results at each rank position, dis-
counted by the rank position. The DCG is calculated as follows:

DCG@k =
k∑

i=1

reli
log2(i + 1)

= rel1 +
k∑

i=2

reli
log2(i + 1)

where reli is the relevance score of the document at rank i. The relevance score
is a number between 0 and 1, where 0 means not relevant and 1 means relevant.

The ideal DCG (IDCG) is the maximum possible DCG for a given query. The
IDCG is calculated as follows:

IDCG@k =

|RELk|∑
i=1

2reli − 1

log2(i + 1)

where |RELp| is the number of relevant documents in the top-k retrieved doc-
uments. The IDCG is calculated by sorting the relevance scores in descending
order and then calculating the DCG for the sorted relevance scores.

And the nDCG is calculated as follows:

nDCG@k =
DCG@k

IDCG@k

MAP@k Mean Average Precision (MAP) is a metric that measures the average
precision of the retrieved documents. Or we can say that it measures how many
relevant documents are retrieved by the retriever.

The MAP is calculated as follows:

MAP@k =
1

|Q|

|Q|∑
q=1

AveragePrecision@k(q)

where |Q| is the number of queries, and AveragePrecision@k(q) is the average
precision for query q. The average precision is calculated as follows:
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AveragePrecision@k(q) =
1

|R|

k∑
i=1

Precision@i(q)

where |R| is the number of relevant documents for query q, and Precision@i(q) is
the precision at rank i for query q. The precision at rank i is calculated as follows:

Precision@i(q) =
1

i

i∑
j=1

relj

where relj is the relevance score of the document at rank j. The relevance score
is a number between 0 and 1, where 0 means not relevant and 1 means relevant.

Recall@k Recall@k is a metric that measures the number of relevant documents
retrieved by the retriever. The recall is calculated as the number of relevant
documents retrieved by the retriever divided by the total number of relevant
documents in the corpus. The recall@k is calculated as follows:

Recall@k =
1

|Q|

|Q|∑
q=1

TP@k(q)

|R|

where |Q| is the number of queries, TP@k(q) is the number of true positives
for query q, and |R| is the number of relevant documents for query q. The true
positives are the relevant documents retrieved by the retriever.

This metric is a key metric for evaluating the performance of the retriever. A
high recall indicates that the retriever can retrieve most of the relevant documents
based on the user’s query within the top-k retrieved documents.

Precision@k Precision@k is a metric that measures the number of relevant
documents retrieved by the retriever divided by the total number of documents
retrieved by the retriever. The precision@k is calculated as follows:

Precision@k =
1

|Q|

|Q|∑
q=1

TP@k(q)

TP@k(q) + FP@k(q)

where |Q| is the number of queries, TP@k(q) is the number of true positives
for query q, and FP@k(q) is the number of false positives for query q. The
true positives are the relevant documents retrieved by the retriever, and the false
positives are the irrelevant documents retrieved by the retriever.
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5.1.2 RAGAS Metrics

In this section, we will describe the LLM-based metrics that are used to evalu-
ate the performance of the RAG pipeline. These metrics are proposed by RAGAS
[57] and are widely used in the retrieval-augmented generation tasks. The met-
rics are designed to evaluate the quality of the generated answers based on the
retrieved documents and the user’s query. In our RAG application, we do not
have the ground truth relevant chunks for the user’s query, to mitigate the lack
of ground truth answers and relevant chunks, an LLM-based metric is used to
evaluate the quality of the retrieved chunks and generated answers.

Contextual Precision@k This is a metric that measures the precision of the
retrieved chunks based on the user’s query. The precision is calculated as the
number of relevant chunks retrieved by the retriever divided by the total number
of chunks retrieved by the retriever. The contextual precision@k is calculated as
follows:

ContextualPrecision@k =

∑K
k=1(Precision@k · vk)

Number of relevant chunks in top k

where K is the number of chunks retrieved by the retriever, Precision@k is
the precision of the top k chunks, and vk ∈ 0, 1 is the indicator at rank k.

The indicator vk is 1 if the chunk at rank k is relevant to the user’s query, and
0 otherwise.

The metric is an LLM-based metric with reference. During the evaluation,
user’s query, the retrieved chunks and the answer from the dataset are used as
input to the LLM. This method uses the LLM to judge if one retrieved chunk
is relevant to the reference answer. The judgement from the LLM is vk in the
formula.

Contextual Recall@k This is a metric that measures how many relevant
chunks are retrieved by the retriever based on the user’s query. It tries to judge if
the retriever can find all important information from the database. The context
recall is computed with user’s query, reference answer, and the retrieved chunks.

The reference answer will be broken down into multiple reference contexts, or
claims. Each claim is a sentence or a phrase that contains a piece of important
information from the reference answer. And then the claim will be analyzed by
the LLM to determine if it can be attributed to the retrieved context or not. In
an ideal situation, all claims can be attributed to the retrieved context.

The context recall@k is calculated as follows:
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ContextualRecall@k =
Number of claims supported by retrieved context

Number of claims

The process of calculating the number of claims is also done by the LLM. The
LLM will extract the claims from the reference answer. Then, the LLM will be
prompted to judge if the claims can be supported by the retrieved context. If
a claim can be supported by the retrieved context, it is considered as a relevant
context.

Answer Relevance This metric is to measure how relevant the generated an-
swer is to the user’s query. A higher relevance score indicates that the generated
answer has a better alignment with the user’s query.

The answer relevance is calculated by comparing the similarity of the dense
representations between user’s query and multiple generated questions from the
LLM based on the LLM generated answer. If an answer has a high relevance
score, it means the answer can be considered as a good answer. It evaluates how
well the answer matches the user’s query, and it penalizes the answer that is not
relevant or contains too much irrelevant information.

The answer relevance is calculated as follows:

AnswerRelevance =
1

N

N∑
i=1

CosineSimilarity(EQ, EQi
)

where N is the number of generated questions, EQ is the dense representation
of the user’s query, and EQi

is the dense representation of the generated question
i.

Faithfulness This metric is to measure how factually consistent the generated
answer is with the retrieved context. A higher faithfulness score indicates that
the generated answer is more factually consistent with the retrieved context.

First, all claims from the generated answer will be extracted by an LLM model.
Then, the claims will be judged by the LLM model to determine if they can be
supported by the retrieved context. If a claim can be supported by the retrieved
context, it is considered as a faithful claim.

The faithfulness is calculated as follows:

Faithfulness =
Number of claims supported by retrieved context

Number of claims
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5.1.3 Non LLM-based Metrics

In addition to the LLM-based metrics, we also use some non LLM-based met-
rics to evaluate the performance of the RAG pipeline. In our custom Wikipedia-
derived dataset, we have a reference answer for each query, generated by an LLM
and verified by a human annotator. These non LLM-based metrics are computed
based on the generated answer and the reference answer to give a more objective
evaluation of the generated answer.

BERTScore BERTScore is a metric that measures the similarity between the
generated answer and the reference answer. [25] It uses the BERT model to
compute the similarity between the two answers. The BERTScore is calculated
as follows:

BERTScore(EAi
, ERj

) =
1

N

N∑
i=1

max
j

CosineSimilarity(EAi
, ERj

)

where N is the number of generated answers, EAi
is the dense representation

of the generated answer i, and ERj
is the dense representation of the reference

answer j. The BERTScore is a measure of how similar the generated answer is to
the reference answer.

Even though a language model is used to compute the BERTScore, it is not
like the RAGAS metrics that require a conversation with the LLM to generate the
verdicts. Instead, it is a one-shot evaluation metric that uses the BERT model to
compute the similarity between the generated answer and the reference answer.

ROUGE ROUGE [24] is a widely used metric in the natural language process-
ing domain to evaluate the quality of the generated text, its original goal is to
calculate the overlap between machine-generated summaries and human-written
reference summaries. In this work, we use the ROUGE metric to measure the
overlap between the RAG generated answer and the human-reviewed reference
answer. The formula for the ROUGE metric is as follows:

ROUGE-N =

∑
S∈Reference

∑
gramn∈S Countmatch(gramn)∑

S∈Reference

∑
gramn∈S Count(gramn)

where gramn is the n-gram of the generated answer, Countmatch(gramn) is the
number of times the n-gram appears in the reference answer, and Count(gramn)
is the number of times the n-gram appears in the generated answer. Specifically,
ROUGE-L is used to measure the longest common subsequence between the gen-
erated answer and the reference answer, where L is the longest common sequence.

We are going to use the ROUGE-1, ROUGE-2 and ROUGE-L metrics to
evaluate the performance of the RAG pipeline.
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5.2 Experimental Setup

In this section, we will describe the experimental setup that we used to eval-
uate the performance of the RAG pipeline. The experiments are conducted on a
standard ASML laptop, ThinkPad P15 Gen1, with an Intel Core i7-10850H CPU,
32GB DDR4 RAM, and an NVIDIA Quadro RTX 3000 GPU. The pipeline is im-
plemented in Python 3.12, with PyTorch, LlamaIndex, Ollama and HuggingFace
models as the main foundation of the RAG pipeline.

Retrieval Component The retrieval component is responsible for retrieving
relevant documents based on the user’s query. The retriever is implemented using
multiple retrieval methods, including BM25, vector similarity, and a fusion of these
methods. The retriever is evaluated based on the retrieval metrics described in
Section 5.1.

To evaluate the retriever, we used the SciFact dataset as the benchmark
dataset, which contains queries, document corpus and relevance labels, the de-
tailed information of this dataset is described in Section 3.1. Therefore, we can
compute the retrieval metrics based on the retrieved documents and the relevance
labels, including nDCG@k, MAP@k, Recall@k and Precision@k.

The experiments are conducted with multiple retrieval methods, including
BM25, vector similarity, and a fusion of these methods, as described in Section
4.1.2. Then, we also implemented a reranker that is used to re-rank the retrieved
documents based on the user’s query, as described in Section 4.1.4.

The experiments include the following parts:

• Embedding Model Comparison: Ingest the SciFact dataset into the
LlamaIndex vector database with different embedding models. This part
is to compare the performance of the different embedding models in terms
of the ability to retrieve relevant documents based on the user’s query and
the time cost of the embedding process. The retrieval algorithm used in
this stage is cosine similarity to give a straightforward comparison of the
embedding models.

• Retrieval Method Comparison: Compare the performance of different
retrieval methods, including BM25, vector similarity and a fusion of these
methods. The fusion method is implemented with the RFF score, which is
a combination of the BM25 score and the vector similarity score.

• Reranker Comparison: Compare the performance of different rerankers,
including the mixedbread reranker, JinaAI reranker and DistilRoBERTa
reranker. The reranker is used to re-rank the top-k chunks retrieved by the
retriever based on the user’s query.
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RAG Pipeline Evaluation The RAG pipeline is evaluated based on the end-
to-end performance of the RAG pipeline, including the dataloader, retriever and
generator. The RAG pipeline is implemented using the LlamaIndex framework,
which provides a simple and efficient way to build a RAG pipeline. The RAG
pipeline is evaluated based on the RAGAS metrics described in Section 5.1.2 and
the non LLM-based metrics described in Section 5.1.3.

For the RAG pipeline evaluation, the dataset we are going to use is the custom
Wikipedia-derived dataset, which is described in Section 3.2. The dataset contains
queries, reference answers and the Wikipedia pages documents that are used to
generate the answers. The content of the dataset makes it suitable for the end-
to-end evaluation of the RAG pipeline.

In this experiment, we are going to first observe how the chunk size affects
the performance of the RAG pipeline. The chunk size is the size of the document
chunks that are stored in the vector database. In general, a larger chunk size can
provide more context to the generator, but it can also bring more noise to the
generator. Therefore, a moderate chunk size is preferred to balance the context
and noise.

Once the chunk size is determined, we will use the composition of the pipeline
as a baseline. Then, we will add the table enhancements to the RAG pipeline
to see how the table enhancements can improve the performance of the RAG
pipeline. The table enhancements are described in Section 4.2.

Models In order to demonstrate the models we used in the experiments, we will
list the models’ names we mentioned in this thesis, along with their identifiers in
Table 9.

To make the experiments more reproducible, we set the temperature of the
LLMs to 0.1 to make the answers more deterministic. If applicable, we also set
the random seed to 42 to ensure the reproducibility of the experiments.

5.3 Results

5.3.1 Retrieval Evaluation

We first evaluated the performance for the retriever component in the RAG
pipeline. The retriever is the first stage of the RAG pipeline that is responsible for
retrieving relevant documents based on the user’s query. The retriever is evaluated
based on the retrieval metrics described in Section 5.1.

We implemented multiple retrieval methods, including BM25, vector similarity,
and a fusion of these methods. Additionally, we also implemented a Reranker that
is used to re-rank the retrieved documents based on the user’s query.

30



5 EXPERIMENTS AND RESULTS

Table 9: List of models used in the experiments

Model Name Identifier

Embedding Models
BGE-m3 BAAI/bge-m3
MiniLM sentence-transformers/all-MiniLM-L6-v2
Mixedbread mixedbread-ai/mxbai-rerank-xsmall-v1

Reranking Models
Mixedbread Reranker mixedbread-ai/mxbai-rerank-xsmall-v1
JinaAI jinaai/jina-reranker-v1-turbo-en
DistilRoBERTa cross-encoder/qnli-distilroberta-base

LLMs
Generator LLM (Ollama) llama3.2:3b
RAGAS Evaluator LLM meta-llama/Llama-4-Scout-17B-16E-Instruct

Dense Retrieval After the documents are chunked, the next step is to generate
the embeddings for the chunks. The embedding model is used to generate the
dense vector representations of the chunks. We conducted the experiments with
multiple embedding models, including BAAI/bge-m3, sentence-transformers/all-
MiniLM-L6-v2 and mixedbread-ai/mxbai-embed-xsmall-v1. The results of the
experiments are shown in Table 10.

Table 10: Performance of different embedding models on the SciFact dataset

Model nDCG@5 MAP@5 Recall@5 Precision@5 Time

BGE-m3 0.615 0.577 0.708 0.155 751
MiniLM 0.633 0.593 0.742 0.163 33
Mixedbread 0.638 0.598 0.743 0.164 44

We can see that the mixedbread-ai/mxbai-embed-xsmall-v1 model has the best
performance on the SciFact dataset, with an nDCG@5 score of 0.638, a MAP@5
score of 0.5984, a Recall@5 score of 0.743, and a Precision@5 score of 0.164. In
terms of time, the MiniLM model is the fastest, taking only 33 seconds to finish
the embedding process for the whole dataset. However, the mxbai model is only
slightly slower than the MiniLM model, taking 44 seconds to finish the embedding
process, while reaching the best performance.

Therefore, we choose the mixedbread-ai/mxbai-embed-xsmall-v1 model as the
embedding model for the retriever component in the RAG pipeline.
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Fusion Retrieval The fusion retriever can be used to combine the results from
both sparse and dense retrieval methods. We conducted the experiments to com-
pare the performance between the sparse retrieval method (BM25), the dense re-
trieval method (Embedding model from Mixedbread AI) and the fusion retrieval
method that combines the results from both methods with RFF score.

Table 11: Performance of different retrieval methods on the SciFact dataset

Retriever nDCG@5 MAP@5 Recall@5 Precision@5

BM25 0.659 0.627 0.738 0.159
Dense 0.638 0.598 0.743 0.164
Fusion 0.696 0.657 0.794 0.174

After the embedding models comparison, we conducted the retrieval meth-
ods comparison in Section 5.3.1 as well. We compared the performance of three
retrieval methods, including BM25, dense retrieval with embedding models, and
hybrid retrieval with both BM25 and embedding models. The results are shown
in Table 11.

Following the previous experiment, we used the mixedbread-ai/mxbai-embed-
xsmall-v1 model as the embedding model for the dense retrieval method. The
BM25 method is a traditional yet effective lexical search method that is widely
used in information retrieval tasks. The fusion retrieval method combines the
results from both BM25 and dense retrieval methods, which can benefit from the
strengths of both methods.

We can see that the fusion retrieval method achieved the best performance
on the retrieval task, with an nDCG@5 of 0.696, MAP@5 of 0.657, Recall@5 of
0.794 and Precision@5 of 0.174. The performance is better than both the BM25
and dense retrieval methods, which indicates that the fusion retrieval method can
effectively improve the retrieval performance by combining the strengths of both
methods.

Reranker The reranker is used to rerank the top-k chunks retrieved by the
retriever. We conducted the experiments to compare the performance between
the mixedbread reranker, JinaAI reranker and DistilRoBERTa reranker. The
results of the experiments are shown in Table 12.

The results of the rerank models comparison are shown in Table 12. We
compared the performance of three rerank models, including the mixedbread-
ai/mxbai-rerank-xsmall-v1 model, jinaai/jina-reranker-v1-turbo-en and the cross-
encoder/qnli-distilroberta-base model. In general, a rerank model is used to re-
rank the retrieved chunks based on their relevance to the query.
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Table 12: Performance of different rerankers on the SciFact dataset

Reranker nDCG@5 MAP@5 Recall@5 Precision@5

Mixedbread rerank 0.680 0.644 0.768 0.169
JinaAI 0.722 0.690 0.795 0.177
DistilRoBERTa 0.445 0.396 0.576 0.125

With the help of the rerank model, we can provide a more useful context for
the generator by ranking the higher relevant chunks to the top. The results show
that the jinaai/jina-reranker-v1-turbo-en model achieved the best performance on
the rerank task, with an nDCG@5 of 0.722, MAP@5 of 0.690, Recall@5 of 0.793
and Precision@5 of 0.177. Compared to the previous fusion retrieval method,
the performance of the rerank model is slightly better, which indicates that the
rerank model can improve the retrieval performance without consuming too much
resources and time.

5.3.2 Original RAG Pipeline

With the retriever component in place, we can now evaluate the performance
of the end-to-end RAG pipeline. The end-to-end evaluation is to evaluate the
performance of the whole RAG pipeline, including the retriever and the generator.
We first evaluate the original RAG pipeline without any table enhancements.

Table 13: Original RAG pipeline performance on the custom Wikipedia-derived
dataset, without table enhancements.

Chunk Size Precision Recall Relevance Faithfulness

Without Reranker
384 0.502 0.605 0.642 0.857
512 0.567 0.620 0.611 0.887
768 0.618 0.685 0.628 0.822
1024 0.565 0.630 0.592 0.845

With Reranker
384 0.630 0.638 0.653 0.846
512 0.656 0.656 0.667 0.854
768 0.667 0.707 0.647 0.786
1024 0.636 0.685 0.578 0.824

The results of the end-to-end evaluation are shown in Table 13. This experi-
ment is conducted on the custom Wikipedia-derived dataset across multiple chunk
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Table 14: Evaluation scores (BERTScore and ROUGE) of the RAG pipeline across
different chunk sizes.

Chunk Size BERTScore ROUGE-1 ROUGE-2 ROUGE-L

Without Reranker
384 0.879 0.320 0.184 0.301
512 0.873 0.303 0.174 0.278
768 0.882 0.357 0.213 0.325
1024 0.877 0.324 0.197 0.298

With Reranker
384 0.885 0.366 0.218 0.340
512 0.878 0.322 0.196 0.303
768 0.879 0.342 0.206 0.312
1024 0.877 0.329 0.201 0.299

sizes, ranging from 384 to 1024, with and without the reranker. Four metrics are
computed to evaluate the quality of the generated answers: Precision, Recall,
Relevance and Faithfulness.

In order to give more insights of the performance, we also computed the
BERTScore and ROUGE metrics for the generated answers, as shown in Table
14.

We conducted a chunk size analysis to determine the moderate chunk size for
the end-to-end RAG pipeline in the document ingestion step. The chunk size is an
important hyperparameter, since it can affect the length of the context provided
to the generator and the grain of the context.

For the precision and recall, we can see that the best performance for both
with or without the reranker is achieved with a chunk size of 768. This could be
due to the fact that a larger chunk size can provide more context. The RAGAS
metrics are based on the LLM judge, hence, it is possible that a large chunk size
can be seen as a more relevant context to the user’s query since it contains more
information.

The relevance is the most direct metric to evaluate whether the generated
answer is sufficiently relevant to the user’s query. The best performance is achieved
with a chunk size of 512, with reranker, which is 0.667. Compared to the results
without the reranker, the performance is better, regardless of the chunk size. It
shows that with the help of the reranker, the RAG retriever can provide more
useful and relevant chunks to the generator, allowing the generator to give a more
relevant answer. Apart from the reranker, we can also notice that a large chunk
size can lead to a lower relevance score. Ideally, a large chunk size should provide
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more context to the generator. However, our goal is to build a RAG application
that runs on a laptop, which limits the LLM’s capabilities to understand the
context. Therefore, a large chunk size may introduce too much noise to the
generator, leading to a lower relevance score.

The results with the reranker are generally better than the results without
the reranker. It is worth noting that the BERTScore and ROUGE metrics are
less sensitive to the chunk size compared to the RAGAS metrics. This might
be due to the fact that retrieved chunks are not directly used to compute the
BERTScore and ROUGE metrics, but rather the generated answer is compared
with the reference answer. In our Wikipedia-derived dataset, the reference answer
is relatively short and might be directly related to the retrieved chunks. We can
assume that once the important information is retrieved, the generated answer
can be considered as a good answer.

Case Study We conducted a case study to analyze the differences between the
LLM-based metrics and the non LLM-based metrics.

Here are two examples of a query-answer pair, generated answer and the met-
rics for the query. These examples are shown in Table 15 as a showcase of the
analysis between RAGAS answer relevance and BERTScore.

To further understand the inconsistency between the RAGAS metrics and the
BERTScore, we conducted a case study on two examples from the Wikipedia-
derived dataset. The results are shown in Table 15.

Example 1 shows a good performance of the RAG pipeline, where the gen-
erated answer is relevant to the user’s query. Even though it contains some ad-
ditional information, it still can be seen as a good answer to the user’s query.
The answer relevance score is 0.943, which indicates that the generated answer is
highly relevant to the user’s query. The BERTScore is 0.858, which also indicates
that the generated answer is similar to the reference answer.

However, in Example 2, the generated answer only partially answers the user’s
query, while introducing redundant information that is not relevant to the user’s
query. The answer relevance score is 0.000, because it was not considered as a
relevant answer from the RAGAS metrics. However, the BERTScore is 0.811, this
might be due to the fact that the generated answer still contains some keywords,
and the topic is still relevant to the user’s query, such as ‘Core 2 Solo Merom-L’,
‘cache size’, and ‘TDP’. The BERTScore is still high, which indicates that the
generated answer is still similar to the reference answer. This shows that the
BERTScore is not sensitive to the relevance of the generated answer, but rather
to the semantic similarity between the generated answer and the reference answer.
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Table 15: Example of a query-answer pair, generated answer and the metrics for
the query.

Example 1
Query What naming scheme did Intel introduce in 2023

for mainstream processors?
Reference Core 3, Core 5, and Core 7.
Response In 2023, Intel introduced a new naming scheme for

mainstream processors, consisting of Core 3/5/7
branding.

Answer Relevance 0.943
BERTScore 0.858
ROUGE-1 0.320
ROUGE-2 0.087
ROUGE-L 0.320

Example 2
Query For Core 2 Solo Merom-L, what is the cache size

and TDP?
Reference 1 MB L2 cache, 5.5 W TDP.
Response The provided context does not mention the cache

size for Core 2 Solo Merom-L. However, it does
mention that the original U2xxx series Merom-L
used a special version of the Merom chip with
CPUID number 10661 (model 22, stepping A1)
that only had a single core. As for the TDP, the
context states that the Core 2 Solo, introduced in
September 2007, is the successor to the Core Solo
and is available only as an ultra-low-power mobile
processor with 5.5 Watt thermal design power.

Answer Relevance 0.000
BERTScore 0.811
ROUGE-1 0.082
ROUGE-2 0.021
ROUGE-L 0.062
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5.3.3 Table Pipeline

We also evaluated the performance of the RAG application with the table
pipeline. The results of these experiments are shown in Table 16.

Table 16: Performance of the RAG pipeline with table enhancements on the
custom Wikipedia-derived dataset.

Pipeline Precision Recall Relevance Faithfulness

Baseline 0.656 0.656 0.667 0.854
Table Enhancements 0.750 0.783 0.740 0.928

Ablation Study
No Table Answer 0.765 0.775 0.762 0.895
No Doc Summary 0.781 0.815 0.778 0.928
Only Table Caption 0.765 0.794 0.762 0.964

We can see that the table enhancements can improve the performance com-
pared to the original RAG pipeline. On our custom Wikipedia-derived dataset,
the table enhancements can improve the precision, recall, relevance and faithful-
ness from the RAGAS metrics. This indicates that our table enhancements can
help the RAG pipeline to understand the table structure better and generate more
accurate answers based on the table data.

Additionally, we also conducted an ablation experiment to analyze the impact
of each enhancement in the table pipeline.

There are three main steps in the table pipeline, including (1) generating the
document summary, (2) generating the table caption, and (3) generating the draft
answer. Our ablation study is designed to analyze the impact of each step in the
table pipeline. Following is the detailed description of the ablation study:

• No Table Answer: This setting is to remove the table draft answer gen-
eration step from the table pipeline. The table will be retrieved and sent
to the generator as-is, without generating the draft answer or removing the
irrelevant tables.

• No Doc Summary: This setting is to remove the document summary
generation step from the table pipeline. The table caption will be generated
based on the table content only, without using the document summary to
generate the table caption.

• Only Table Caption: This setting is the combination of the previous two
settings, where the table draft answer generation step and the document
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summary generation step are both removed. The table caption will be gen-
erated based on the table content only. And the table will be retrieved as-is,
without generating the draft answer or removing the irrelevant tables.

It is worth noting that the pipeline without using the document summary
to generate the table caption can achieve the best performance among all these
experiment settings, it even outperforms the result with all enhancements. This
indicates that the document summary can bring some noise to the table caption,
which can affect the performance of the RAG pipeline.

6 Prototype Development

In this section, we describe the prototype development of the enterprise ques-
tion answering system. The system is built on top of a large language model,
which can generate answers based on the user’s query and the provided docu-
ments. The system consists of a frontend and a backend, which are responsible
for the user interface and the data processing respectively.

6.1 Frontend Development

The frontend is built using React, which is a popular JavaScript/TypeScript
library for building user interfaces. The frontend is responsible for the user in-
terface, which allows the user to interact with the system. It has a simple and
intuitive design that allows the user to upload their own documents, ask questions,
and view the answers generated by the system. It follows the design pattern of
popular online large language model services, such as ChatGPT.

The frontend consists of multiple components, including the knowledge base,
the conversation panel and the chat window. The knowledge base displays the
user’s own documents that are uploaded to the system. The conversation panel
displays the conversation history between the user and the system. The chat
window allows the user to ask questions and view the answers generated by the
system.

6.2 Backend Development

The backend is built using FastAPI, which is a modern Python web framework
for building APIs. The backend is responsible for the data processing, which
includes the dataloader, the retriever, and the generator. It connects the frontend
to the large language model service, which is used to generate answers based on
the user’s query and the provided documents.
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The backend consists of multiple components, including the dataloader, the
retriever, and the generator. When the users upload their own documents from the
frontend via the API, the dataloader processes these documents and performs the
necessary transformations to make them suitable for the retrieval and generation
tasks. When the users interact with the system via the frontend and ask questions,
the retriever in the backend retrieves relevant information from the knowledge
base based on the user’s query. The generator then uses this information to
generate answers to the user’s questions. During the generation, the backend also
streams the response to the frontend, which allows the user to see the answer
being generated in real-time.

7 Discussion

In our work, we developed an RAG application for enterprise environments,
which allows users to upload organization-internal documents and ask questions
about the content of the content of these documents. Our research questions
are focused on the effectiveness of the RAG application that can be used on a
laptop to ensure the confidentiality and compliance of the data. And we also ex-
plored the table handling capabilities of the RAG application, which is a common
requirement in enterprise environments.

In this section, we discuss the results of our experiments for each component of
the RAG application, including the retrieval component, the LLM-based and non-
LLM-based metrics, the chunk size, the tabular data handling, the RCI models,
and the ablation study. We also discuss the limitations and challenges of our
RAG application, as well as future work that can be done to improve the RAG
application.

Retrieval Component To build up the foundation of our RAG application,
we conducted a series of experiments to evaluate the composition of the retrieval
component.

With the SciFact dataset, we found that the mixedbread-ai/mxbai-embed-
xsmall-v1 as the embedding model and jinaai/jina-reranker-v1-turbo-en as the
reranker model can achieve the best performance. With the fusion retrieval
method, our retrieval component can perform both semantic and lexical search.
Combining the strengths of dense retrieval, sparse retrieval, and reranking, our re-
trieval component can effectively retrieve relevant documents on SciFact dataset.
The best results for our retrieval component were an nDCG@5 of nearly 72%,
MAP@5 of about 69%, Recall@5 of close to 80%, while Precision@5 was lower at
18%.

It is worth mentioning that even though the Precision@5 is low, this is due to
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the nature of the SciFact dataset. In SciFact, the average number of relevant doc-
uments for each query is 1.13, this means in most of good cases, the top 5 retrieved
documents only contain one relevant document. Therefore, the Precision@5 looks
low, but it is actually a relatively good performance.

One possible alternative metric is to use Precision@1, which is the precision
of the top 1 retrieved document. This can solve the problem of low Precision@5,
since in most cases, there is only one relevant document in the top 5 retrieved
documents. Using Precision@1 will alter the evaluation of the retrieval component
into a strict and binary evaluation: if the top 1 retrieved document is relevant
or not. This will be useful when the downstream task (for the generator, in our
case) only needs one relevant document to generate the answer. However, in our
implementation, the retrieval component will pass the top k retrieved documents
to the generator, where k is less likely to be 1. The LLM itself is able to extract
useful information as long as the information is present in the retrieved documents.
Therefore, we consider to use the Precision@5 metric because it is able to evaluate
whether the relevant documents can be retrieved in the top k retrieved documents,
which is more close to the use-case in the RAG application.

LLM-based Metrics vs. Non-LLM-based Metrics We chose RAGAS met-
rics as the main evaluation metrics for our RAG application, additionally, we also
evaluated the RAG performance on BERT Score and ROUGE metrics. For each
experiment setting, we used the RAGAS metrics, BERT Score, and ROUGE
metrics to evaluate the performance of the RAG application. We found that the
RAGAS metrics can better reflect the performance of our RAG application than
the BERT Score and ROUGE metrics in terms of evaluating the quality of the
generated answers.

By using LLM-as-a-judge, RAGAS metrics designed a chain-of-thought evalua-
tion process to evaluate the generated answers from multiple perspectives, such as
contextual precision, contextual recall, answer relevance, and faithfulness. Among
these metrics, we think the answer relevance is the most important metric for our
RAG application, since it is the direct measure of how well the generated answer
is. The contextual precision and contextual recall are metrics to evaluate how well
retrieved documents are used in the generated answer. While the faithfulness is
to measure whether the generated answer is faithful to the retrieved documents,
this is more relevant to the LLM model itself, to check whether the LLM model is
generating hallucinations or not. Therefore, to determine the composition of the
RAG application, we made our decision based on the answer relevance metric.

We also used BERT Score and ROUGE metrics to evaluate our pipeline. We
found that the BERT Score and ROUGE metrics might not be as good as RA-
GAS metrics in evaluating the RAG application. We provided examples from our
pipeline and their metrics scores. We can see that the BERT Score is still high

40



7 DISCUSSION

even when the generated answer is insufficient to answer the question. Similar
to embedding, BERT Score is based on the semantic similarity to the ground
truth answer reviewed by human, it does not consider if the answer is useful or
not. Considering the nature of the RAG application, the generated answers are
always based on the retrieved documents, therefore, the generated answers and
the ground truth answers are always discussing the same topic, which leads to
high BERT Score.

The ROUGE metric has its own limitations as well, it is based on the n-gram
overlap between the generated answer and the ground truth answer. Ideally, the
ROUGE metric can reflect the lexical similarity between the generated answer and
the ground truth answer, however, in our case, we notice that the ROUGE metric
is easily affected by the word choice, phrasing and structure of the generated
answer. For example, if the reference answer is ‘Core 3/5/7’, while the generated
answer is ‘Intel Core i3, Core i5 and Core i7’. In this case, the generated answer
is actually correct, but the ROUGE metric will be low because of the different
expressions of the same information.

Therefore, we consider that the BERT Score and ROUGE metrics can only
be used as supplementary metrics for our RAG application, but not the main
evaluation metrics.

Chunk Size We used our custom Wikipedia-derived dataset to evaluate the
chunk size of the end-to-end performance of our RAG application. We found
that the chunk size of 512 with reranker model can achieve the best performance
among all the chunk sizes we tested in terms of the answer relevance.

There is a trade-off between the chunk size and the performance of the RAG
application. A smaller chunk size can provide a short and less noisy context for
the LLM model, while it might not be able to capture the full context of the
informative content. A larger chunk size can provide a rich context, but it might
introduce more noise and irrelevant information to the LLM model.

Our experiments can also reflect this pattern. The contextual precision and
contextual recall are higher when the chunk size is 768, when we increase or
decrease the chunk size, the contextual precision and contextual recall became
lower. This indicates that when we evaluate the context with RAGAS, a longer
and richer context is more relevant to the answer.

We also observed that the faithfulness is higher when the chunk size is 512,
compared to the chunk size of 384, 768 and 1024, regardless of the reranker model.
For the smaller chunk size, such as 384, the faithfulness is lower, this might be
due to the fact that the context is too short and the relevant sentences might be
truncated. This might cause the LLM to make something to answer the question,
leading to lower faithfulness. On the one hand, the fact that 512 chunk size
achieves the best faithfulness score shows that increasing the context size can help
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the LLM to get more information to generate faithful answers. On the other hand,
increasing the chunk size to 1024 does not improve the faithfulness even further,
this could be because the long context might introduce more noise and irrelevant
information to the LLM. As context grows longer, the LLM’s ability to attend
accurately to relevant information may decrease, resulting in misinterpretation or
hallucination. Therefore, we consider the chunk size of 512 is the best choice for
our RAG application, making a good balance between the context richness and
the noise.

Tabular Data Handling By adding more information to the chunk and remov-
ing irrelevant table chunks from the context, our tabular data handling process
can improve the performance of the RAG application. Compared to the baseline,
our RAG application with table enhancements achieves a higher answer relevance,
contextual precision, contextual recall, and faithfulness.

Before sending the table to the embedding model, we prompt the LLM to
generate a caption for the table, this caption brings more information to the
chunk, making the context more informative. In the process for generating the
caption, we also add the document summary to the prompt, this is to ensure the
LLM model can understand the context of the table. It is not only providing a
large chance for the retrieval component to retrieve the relevant table chunk, but
also providing more information to the LLM model to understand the table data.

After the table chunk is retrieved, we prompt the LLM model to generate a
draft answer based on the table chunk and the query, this draft answer is used
to highlight the relevant table data. By highlighting the relevant table data, the
generator model can focus on the relevant information in the table. Furthermore,
if the LLM notices that the table chunk is not relevant to the query, it can simply
ignore the table chunk and generate the answer based on the other retrieved
documents. Our RAG application is expected to be used in a laptop environment,
with limited resources. Therefore, this step is designed to shrink the context size,
making the LLM model focus on the relevant information, instead of feeding a
long context to the LLM model. This is a more flexible way to handle the table
data, since it allows the LLM model to focus on the relevant information and
ignore the irrelevant information.

RCI Models Initially, we implemented a table interpreter with an RCI model,
which can extract the most important value from the tabular data. However, in
the later experiments, we found that to correctly feed the data to the RCI model,
we need to parse the tabular data from the table with the LLM, which can be a
time-consuming and unstable process since the table can be in various formats.
For instance, the table might have merged cells, or to present the table in HTML,
the table might have its own style. Even though we can use pandas to parse the
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table data and convert it into a markdown format, it is not always guaranteed
that the table is well-formatted and can be parsed correctly by the RCI model.
Therefore, we decided to use an LLM as the replacement to the RCI model, which
is used to highlight the important values in the table data. The results show that
the idea of highlighting important values in the table data is still valid.

Ablation Study We conducted an ablation study to evaluate how each pro-
cess contributes to the overall performance of the RAG application with table
enhancement.

The results are interesting: all the results in our ablation study are better than
not only the baseline, but also the RAG application with all these capabilities
enabled.

Comparing the results of the baseline and our Only Table setting, we can
observe a substantially higher metrics score. This is an evidence showing that the
idea of splitting the table chunk from the other text chunk is valid. The contextual
precision and contextual recall are higher, indicating that these chunks are more
relevant to the query. The faithfulness is also higher, showing that the context is
less noisy and clearer to the LLM. And most importantly, the answer relevance
is higher, indicating that the idea can help the LLM to understand the context
both on the table chunk and the other text chunk.

The impact of using document summary is not as significant as we expected.
In our No Doc Summary setting, the document summary is disabled, while the
other capabilities are still enabled as the Table Enhancements setting. On the
contrary, the result shows that removing the document summary can improve the
overall performance. This could be because when the document summary is used,
the generated table caption carries more information about the whole document.
This might introduce more semantic and lexical similarity to the table that is not
relevant to the query. These irrelevant table chunks are more likely to be retrieved
during the retrieval process, which leads to lower performance.

Our draft answer generation process shows a similar pattern. In the No Table
Answer setting, the result has a slightly improvement compared to the Table
Enhancements setting. This might be because the LLM is sufficient to capture
the information in the context, and the draft answer generation process is not
necessary to make the context more clear. However, we can notice that the No
Doc Summary has a higher overall performance compared to the Only Table
setting. The difference between these two settings is that the No Doc Summary
setting has the draft answer generation process enabled, while the Only Table
setting does not. This might imply that by removing irrelevant table chunks, the
contextual precision and contextual recall can be improved, leading to a higher
answer relevance. Therefore, the draft answer generation process is still useful
to improve the performance of the RAG application by removing irrelevant table
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chunks.
According to our ablation study, we can conclude that these table enhance-

ments have the following impacts on the RAG application:

• Table caption: This is the most important and useful enhancement, im-
proving the relevance of the retrieved documents.

• Document summary: This can provide more context to the LLM when
the table caption is generated, but it might introduce more noise to the
context, making the retrieval process less effective.

• Draft answer generation: This can help the LLM to focus on the relevant
information in the table chunk, but it might not be necessary for the LLM.
However, removing irrelevant table chunks has the potential to improve the
overall performance of the RAG application.

Hence, we can conclude that the best setting for our RAG application is to
use the generated table caption without the document summary involved, and
follow by the draft answer generation process to remove irrelevant table chunks.
This provides a clear and relevant context for the LLM to improve the overall
performance of the RAG application.

Limitations and Challenges One limitation comes from the dataset used for
our experiments. Our custom Wikipedia-derived data set served as the end-to-end
dataset for this project, but is not a standard or widely recognized benchmark.
There is no direct comparison with other RAG architectures or applications, which
makes it difficult to evaluate the performance of our RAG application in a broader
range.

Additionally, our custom dataset is not large enough to cover all possible
scenarios in enterprise environments, which may limit the generalizability of our
findings. In real scenarios, documents can be in various formats, such as PDF,
Word, Excel, and HTML, which makes parsing and processing more challenging.
Our experiments assumed that documents are well-formatted, semi-structured
HTML files, providing a controlled environment. However, in real-world cases,
especially in PDF documents, tables can be more complex and difficult to parse,
with merged cells, different styles, or tables split across pages. This presents
challenges for the table enhancement pipeline, which may not be able to handle
all possible scenarios in real-world documents.
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8 Conclusion

In this thesis, we have developed a question-answering RAG application that
integrates table enhancements for enterprise use cases. The application is designed
to be deployed on a regular laptop, making it accessible for employees to use
in their daily work. The application is capable of running on a local machine,
without Internet connection; this makes it suitable for enterprise use cases where
data privacy is a concern. We also integrated a frontend and a backend to provide
a user-friendly and intuitive interface for users to interact with the application.

In our method, we used the SciFact dataset to determine the composition
of the retrieval component. We used an embedding model from Mixedbread-AI
to generate embeddings for the documents, and used a fusion retrieval method
to combine the results from BM25 and the embedding. Then, we also used a
reranking model from Jina AI to rerank the results from the retrieval component
to improve the quality of the retrieved documents.

We created a custom Wikipedia-derived dataset to evaluate the end-to-end
performance of the RAG application. The dataset consists of 5 documents in the
technical domain, each document contains text and multiple tables. We formu-
lated 10 questions per document, resulting in a total of 50 question-answer pairs.
We proposed a table enhancement method to improve the ability of the RAG
application to handle tables. The method splits the table chunk from the other
text chunks, and uses an LLM to generate document summaries, then combines
the table chunk and the document summary to generate a table caption. The
caption is then used to add information to the table chunk.

We evaluated the RAG application with table enhancements on the custom
Wikipedia-derived dataset. The results show that the RAG application with table
enhancements outperforms the baseline RAG application in terms of precision,
recall, relevance, and faithfulness from the RAGAS metrics.

Additionally, we conducted an ablation study to evaluate how each process
contributes to the overall performance of the RAG application with table en-
hancement. The results show that the idea of splitting the table chunk from the
other text chunk and generating a caption for the table chunk is valid. The ideas
of using document summaries to add information to the table chunk, and the idea
of generating draft answers for the table chunk have their own advantages, but
they are not as effective as generating a caption for the table chunk. Even though
these ideas are not as good as we expected, they still show potential to improve
the performance of the RAG application in handling tables.

Based on our experiments and results, we can answer our research questions
as follows:

• RQ-1: What is a good combination of retrieval methods for the
RAG pipeline that can run on a regular laptop? Combining dense
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retrieval and sparse retrieval methods, our experiments show that the fusion
retrieval with Reciprocal Rank Fusion (RRF) is a good combination of re-
trieval methods. The fusion retrieval method can benefit from the strengths
of both methods, resulting in good performance in retrieving relevant doc-
uments. Following the fusion retrieval, we also used a reranking model to
improve the quality of the retrieved documents even further. The rerank-
ing model can help to rank the most relevant documents higher, which can
improve the performance of the RAG application. This implementation can
run on a regular laptop, making it suitable for our use case.

• RQ-2: How can we build a retrieval-augmented generation (RAG)
pipeline that can handle tabular data effectively? We proposed a ta-
ble enhancement method to improve the ability of the RAG application to
handle tables. The method consists of the following steps: (1) Splitting the
table chunk from the other text chunk, (2) Use an LLM to generate table
captions, optionally with document summaries in this process. The table
chunk contains table text and caption will be sent to the embedding model.
(3) When a table chunk is retrieved, an LLM will generate a draft answer to
make the table chunk more clear to the query, and remove the table chunk if
the table data is not relevant to the query. By designing a tabular pipeline
and using LLM to populate the table chunk with more context, this method
can help the RAG application to handle tabular data more effectively com-
pared to the baseline RAG application. Moreover, the albation study shows
that disabling the document summary during the caption generateion step
can make the performance even better.

• RQ-3: What is the performance of the tabular data retrieval
pipeline in our RAG application? The performance of the best RAG
application with table enhancements is evaluated on our custom Wikipedia-
derived dataset. The results show that with the table enhancements, the
end-to-end RAG application achieves 78.1%, 82.5%, 78.8% and 92.8% on
contextual precision, contextual recall, answer relevance, and faithfulness
respectively. Compared to the baseline RAG application, the best scores of
the RAG application with table enhancements are 12.5%, 15.9%, 11.1% and
7.4% higher on these metrics. These improvements indicate that our tabular
pipeline can substantially improve the performance of the RAG application
on documents with tabular data.

Our future work can focus on addressing the limitations and challenges men-
tioned above.

One is to evaluate the RAG application on a larger dataset. This might in-
volve collecting more documents to create a more comprehensive dataset that
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covers a wider range of scenarios in enterprise environments. This can help to
better evaluate the performance of the RAG application and its table handling
capabilities.

Another is to improve the table handling capabilities of the RAG application.
This can involve developing a more robust table parsing and processing pipeline,
so that a document with more noise and complex table structures can still be
handled effectively. This might include using more advanced table parsing libraries
or methods. One approach could be to use OCR (Optical Character Recognition)
techniques to extract table data from documents.

One possible improvement might be re-designing the way of using RCI models.
The RCI models we used in this project still have their potential to be used in
the RAG application, considering their lightweight and fast inference speed. We
can explore how to better parse, format, and store the table data, so that the RCI
models are able to interpret the table more stably.

Finally, we can also explore a more fine-grained knowledge management that
can better handle the documents. Our current implementation is storing all the
ingested chunks together, so the search is based on the whole knowledge base.
However, in enterprise environments, the application might need to handle a large
number of documents. Therefore, it might be more efficient to implement a more
fine-grained knowledge management approach, where documents are categorized
and indexed based on their content, metadata, or other relevant attributes. This
can be helpful to improve the precision and recall of the retrieval component.
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Appendix

Prompts

Listing 1: ”Custom Dataset Generation Prompt for ChatGPT”

1.

[USER:]

Below is a piece of technical documentation. Your task is to ask a

question about the content. The question should be answerable based on

the information provided in the document. Do not ask question about date

. The question should be clear and concise.

Document:

{document}

2.

[USER:]

Based on the provided document, generate the answer to the question.

Listing 2: ”Document Summary Prompt”

[SYSTEM:]

You will be given a document, your task is to summarize the document in

a concise manner.

[USER:]

Document:

{document}

Please only return the summary of the document.
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Listing 3: ”Table Summary Prompt”

[SYSTEM:]

You will be given a table in markdown format along with the summary of

the whole document, your task is to summarize the table in a concise

manner.

[USER:]

Document Summary:

{document summary}

Table:

{table text}

Please only return the summary of the table.

Listing 4: ”LLM Table Interpreter Prompt”

[SYSTEM:]

You will be given a table in markdown format, your task is to answer the

question based on the table. If the answer is not present in the table,

return *UNKNOWEN*

[USER:]

Question:

{user query}

Table:

{table text}

Please only return the answer to the question.

49



REFERENCES

References

[1] Lynette Hirschman and Robert Gaizauskas. Natural language question an-
swering: the view from here. Natural Language Engineering, 7(4):275–300,
2001.

[2] Dell Zhang and Wee Sun Lee. A web-based question answering system. 2003.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceeddings of the 30th Advances in Neural Information Process-
ing Systems: Annual Conference on Neural Information Processing Systems,
(NeurIPS), pages 5998–6008, 2017.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
(NAACL-HLT), pages 4171–4186, 2019.

[5] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[6] Luciano Floridi and Massimo Chiriatti. GPT-3: Its nature, scope, limits,
and consequences. Minds and Machines, 30(4):681–694, 2020.

[7] Bert F Green Jr, Alice K Wolf, Carol Chomsky, and Kenneth Laughery.
Baseball: an automatic question-answerer. In Papers presented at the western
joint IRE-AIEE-ACM Computer Conference, pages 219–224, 1961.

[8] C Cordell Green and Bertram Raphael. The use of theorem-proving tech-
niques in question-answering systems. In Proceedings of the 23rd ACM Na-
tional Conference, pages 169–181, 1968.

[9] William A Woods. Transition network grammars for natural language anal-
ysis. Communications of the ACM, 13(10):591–606, 1970.

[10] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sql-
izer: query synthesis from natural language. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):1–26, 2017.

50



REFERENCES

[11] Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural lan-
guage interface for relational databases. Proceedings of the VLDB Endow-
ment, 8(1):73–84, 2014.

[12] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of
natural language interfaces to databases. In Proceedings of the 8th Interna-
tional Conference on Intelligent User Interfaces, (IUI), pages 149–157, 2003.

[13] Majid Latifi and Miquel Sànchez-Marrè. The use of NLP interchange format
for question answering in organizations. In Proceedings of the 16th Interna-
tional Conference of the Catalan Association for Artificial Intelligence, pages
235–244, 2013.

[14] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien
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