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1. Abstract

In recent years, the open source nature of the Android platform has made it a prime target
for malicious applications. It is difficult for users to distinguish between benign and ma-
licious applications. To bridge this gap, machine learning models are applied to Android
malware detection. However, since these models often lack interpretability, it is difficult for
malware analysts to understand the model decision-making process, making it difficult to
judge the reliability of models. XAI methods show good promise, allowing analysts to ex-
plain the model decision-making process, thereby increasing trust in the prediction system.
Although previous researches have applied a variety of local XAI techniques to Android
malware analysis, global explanation methods have not been systematically studied in this
direction, especially feature-based global XAI techniques. In addition, there is a lack of com-
prehensive comparison and evaluation of the performance and explanation effects of such
methods on different black-box models, as well as their application in security scenarios.

In this study, we aim to measured the quality of XAI methods for Android malware detection.
We validated the four local explanation methods-LIME, SHAP, EDC and Anchors based
on the consistency rate (CR) and soundness rates (SR) metrics proposed by Soulaimani
[78], and formulated three metrics for feature-based global explanation methods: stability,
robustness, and effectiveness to evaluate the four global explanation methods-ALE, PD,
PDV and Morris methods. The experimental results show that among the local explanation
methods, the SHAP method has the best soundness rate than the other four methods,
which is 97.41%; the LIME method has the highest consistency rate of 69.94%. Among the
global explanation methods, the Partial Dependence method (PD) has the best stability,
which is 93.97%, the Morris method has the highest robustness of 95%, and the Accumu-
lated Local Effects (ALE) method has the best effectiveness, which is 100%. Our results
provide malware analysts with more comprehensive, transparent, and effective insights into
explanation method selection.

Keywords: Interpretability, Android malware detection, local explanation, global explana-
tion
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2. Introduction

With the development of smart devices, Android system has gradually dominated the global
market. According to statistics released by Statista1, Android smartphones accounted for
more than 70% of the market in 2024, and Android also accounted for approximate 44%
of tablets. As of June 2023, there are nearly 2.6 million Android applications available for
download in the largest app store, Google Play Store. The success of the Android system
stems from its open source platform, which greatly enhances the user experience. How-
ever, this openness also increases security risks. Various malicious Android applications
have emerged, becoming one of the biggest security threats to the current mobile inter-
net. Malware (Malicious software) refers to any code or applications installed on a device
without the user consent with the purpose of harming the device system or violating the
user rights. Malware can cause a range of harms, including data leakage and unauthorized
surveillance [79]. Distinguishing between safe and harmful applications can be a challenge
for users due to their sophisticated disguises. To cope with this situation, researchers have
invested considerable efforts in developing innovative techniques for analyzing malware.

Android malware detection methods based on machine learning (ML) have proven to be
a relatively effective detection technology. This method can detect malware types that
have never been seen before and can provide better detection performance and efficiency
[64]. Machine learning-based Android malware detection also has some limitations, with
the main challenge being the black-box nature of the model as the decision-making process
is not transparent or understandable to humans. This opacity makes it difficult to fully
trust and verify test results [39]. Additionally, machine learning models require extensive
and representative training data to be effective, and malware evolves rapidly. Therefore,
these models quickly become outdated, requiring constant updating and retraining [35],
[21]. Moreover, methods such as adversarial strategies can be used to evade detection,
which only requires minor changes to the malware samples to effectively evade detection
[51], [23], [25]. Bostani and Moonsamy [19] also proposed EvadeDroid, a problem-space
adversarial attack, and achieved an average evasion rate of 79% on five popular commercial
antiviruses. Given these challenges, it becomes increasingly difficult for malware analysts to
judge the effectiveness of detection models in real-world applications.

To solve the problem of lack of transparency in the decision-making process of black-box
models, researchers have increasingly turned to explainable AI (XAI) methods. XAI method
allow analysts and users to understand the complex, difficult to explain results produced by
a black-box model, thereby enhancing trust in model decisions and detection results [90].
Applying XAI methods to cybersecurity can effectively improve the transparency and in-
terpretability of cybersecurity-related decision models. That said, there are domain-specific
requirements when applying XAI methods to malware detection. For example, security an-
alysts want to obtain consistent explanations across similar applications and different runs
of the model [56]. Therefore, XAI methods proposed for malware detection have to meet
these specific requirements. There are already some specific quantitative metrics have been

1https://www.statista.com/topics/876/android/topicOverview
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proposed to address this problem, such as stability, robustness and effectiveness [30], [87].

Explanation methods can be divided into local explanation methods and global explana-
tion methods. Local explanations focus on the decision rationale of a single instance, i.e.,
why a single Android application is labeled as benign or malicious, while global explanation
methods focus on analyzing the decision process of the model on the entire dataset. Al-
though previous research has made significant strides in applying local XAI techniques to
Android malware detection and evaluating their performance, global explanation methods
remain underexplored in the security domain. To address this gap, Li and Gadyatskaya [56]
proposed three quantitative metrics—stability, robustness, and effectiveness, and evaluated
five state-of-the-art rule-based XAI techniques within the context of Android malware de-
tection. However, feature-based XAI techniques in security still lack any dedicated global
evaluation metrics or a systematic framework tailored to their interpretability assessment.

In this paper, we focus on post-hoc XAI methods for black-box models for Android malware
detection and evaluates its performance. Our main study and findings can be divided into
two parts as follows:

1. For local explanation methods, we experiment with four widely used local explanation
methods, LIME [69], Anchors [70], SHAP [60] and Explaining Data-Driven Document
Classifications (EDC) [61] as descirbed in Section 3.2, using four traditional black-box
ML methods, SVM, random forest, XGBoost and MLP we have discussed in Section
3.1, and evaluate their performance using two metrics, consistency rate and soundness
rate formulated by Soulimani [78]. Our experimental results show that LIME has the
highest consistency rate of 69.94%, while SHAP has the highest soundness rate of
97.41%.

2. To fill the gap in the evaluation of feature-based global explanation methods, we
formulated three metrics based on important features: stability, robustness, and ef-
fectiveness to evaluate the four global explanation methods we describe in the 3.2
section, namely ALE [7], partial dependence (PD) [33], PD variance [37], and Morris
method [62]. Our experimental results show that the global explanation methods PD
achieves the highest stability of 93.97%, Morris method has the highest robustness
of 95% and ALE obtained the best effectiveness of 100%.

Our results cover both local and global explanation methods and can provide more com-
prehensive, transparent, and effective insights for malware analysts to choose appropriate
explanation methods.

The rest of this paper is structured as follows: Section 3 briefly introduces some classic
models that can be used for Android malware detection classification tasks and the expla-
nation methods used in this paper. Section 4 introduces some related works. The evaluation
metrics we selected for local and global explanation methods are presented in Section 5. Sec-
tion 6 mainly describes the experimental setup and related methods. Section 7 presented
our experiment results. The overall conclusion, limitations and future work presented in
Section 8.
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3. Background

This section briefly introduces some classification models that are widely used for Android
malware detection as well as some knowledge of local and global explanation methods.

3.1. Classification Algorithms
In machine learning (ML), classification and regression are two core tasks in supervised
learning. Supervised learning means that the training data contains input vectors and their
corresponding target vectors [41]. The difference between classification and regression lies
in the type of output variables. Specifically, the prediction result of the classification task is
a qualitative output, that is, a discrete variable prediction. The regression task is a quanti-
tative output, which is a continuous variable prediction [18].

In Android malware detection, sample labels are usually labeled as benign or malicious, so
it can be regarded as a binary classification problem in machine learning. As we described
in Section 2, some models have high accuracy, but their decision-process is difficult to ex-
plain, while some models have high interpretability but low accuracy. Figure 3.1 shows the
trade-off between interpretability and accuracy for some relevant machine learning models.

Figure 3.1: The trade-off between interpretability and accuracy of some ML models
[68].

In this section, we mainly discuss some classification algorithms that are commonly used in
Android malware detection with high accuracy but low interpretability.
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3.1.1 Support Vector Machine (SVM)
Support vector machine [17] is a widely used supervised learning model mainly used for
classification and regression analysis. Although SVM was originally designed for binary clas-
sification problems, it can also be used for multi-classification problems and regression tasks.
In a binary classification problem, the goal of SVM is to find a hyperplane (a straight line
in two-dimensional space and a plane or hyperplane in higher dimensions) to distinguish
data points of different categories. SVM attempts to determine the optimal hyperplane by
maximizing the separation between two categories of data points. Support vectors are those
data points closest to the hyperplane. These points are key elements when the model deter-
mines the optimal hyperplane, as they directly affect the size of the interval [18]. When the
data is not linearly separable, SVM maps the data into a higher-dimensional space by using
kernel functions (such as RBF kernel, polynomial kernel, etc.), making the data become
linearly separable in this new space. This approach enables SVM to handle more complex
nonlinear relationships.

SVM has strong generalization ability, especially in high-dimensional data. With a suit-
able kernel function, SVM can perform well on complex and non-linearly separable data
sets. However, choosing the appropriate kernel function and parameters (such as C param-
eters and gamma parameters) has a great impact on the performance of SVM. And when
processing large data sets, the training time of SVM may be longer [63].

3.1.2 Random Forest
Decision tree (DT) [72] is a tree-structured supervised learning method that can be used
in machine learning (ML) for both classification and regression tasks. The goal of DT is
to create a model that is able to learn and derive simple decision rules by analyzing data.
These rules will be used to identify key variables in the data characteristics so that effective
predictions can be made on these variables. Usually, a decision tree contains a root node,
several internal nodes and several leaf nodes. Among them, the root node is the starting
point of the decision-making process and contains the entire data set. Each internal node
tests the corresponding feature attributes in the items to be classified and decides the out-
put branch. Leaf nodes represent decision results. Decision trees are the basis for many
advanced tree-structured models.

The core idea of random forest [20] is to ensemble the prediction results of multiple decision
trees to improve the performance of the overall model. Random forest adopts bagging idea,
as shown in figure 3.2, each tree is trained independently, and during the training process,
the new training set is formed by random taking n training samples from the training set
with replacement each time, and using the new training set, train and obtain many sub-
models. This is also the meaning of “random” in random forest. For classification tasks,
random forest uses a voting mechanism, and the final classification results is the sub-model
with the most votes. Due to the independence of each tree, even if some trees predict inac-
curately, other trees can correct the errors, thereby improving the overall accuracy and fault
tolerance of the model. Random forest has excellent performance in classification tasks.
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Figure 3.2: The concept of a random forest classifier [71].

3.1.3 Extreme Gradient Boosting (XGBoost)
Extreme gradient boosting [22] is an tree ensemble machine learning algorithm widely used
in regression and classification tasks. It is an implementation of the gradient boosting [33]
framework based on decision trees (GBDT). The core idea of GBDT is to use boosting to
combine a set of weak classifiers into a strong classifier. The final prediction of GBDT is
the weighted sum of all tree predictions, that is, each iteration uses the error residual of
the previous model to fit the next model to gradually reduce the prediction error.

XGBoost optimizes and improves upon GBDT in several ways. For example, XGBoost
adds a regularization term to the objective function to control the complexity of the model,
which helps reduce model variance and prevent overfitting. Additionally, XGBoost supports
column subsampling and row subsampling, which simplifies calculations without travers-
ing all features. Moreover, XGBoost can automatically handle missing values and support
parallel computing. Figure 3.3 shows a simplified structure of XGBoost.

Figure 3.3: A simplified structure of XGBoost [85].

3.1.4 Multilayer Perceptron (MLP)
A multilayer perceptron [73] is a feedforward artificial neural network (ANN) that can be
used to solve a variety of machine learning problems. MLP consists of multiple layers of
neurons, usually an input layer, hidden layer(s), and an output layer. Each layer is fully
connected, meaning that each neuron in the previous layer is connected to all neurons in
the next layer. The input layer is used to receive data, and the hidden layer, which usually
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consists of a single or multiple layers, is used to perform nonlinear transformations on the
input and output the results by the output layer. The figure 3.4 shows an example of a MLP.

Therefore, the parameters of the MLP are the connection weights and biases between each
layer. During training process, the parameters of the model are updated by backpropagation,
and the final output is completed by forward propagation. The purpose of backpropagation
is to minimize the loss function, and the weights and biases are updated by calculating the
gradient of the loss function for each parameter using the gradient descent method. During
the forward propagation process, the input data passes through the neurons of each layer
in turn, and the output result is finally obtained after weighted summation and activation
function transformation.

Figure 3.4: MLP with three inputs, two hidden layers, and two outputs [80].

3.1.5 Deep Neural Network (DNN)
Deep Neural Network (DNN) is composed of multiple layers of Artificial Neural Networks
(ANNs) [2], where each layer consists of multiple nodes. A DNN contains an input layer,
hidden layer(s) and an output layer, and each hidden layer consists of multiple neurons.
The input layer is used to accept raw data and is the first layer of the DNN. The output
layer is used to generate the final prediction results. In classification tasks, the number of
neurons in the output layer usually corresponds to the number of categories in the problem.
The hidden layer is the core concept of DNN and is usually composed of one or more
layers. Each hidden layer consists of multiple neurons, each of which receives the output
of the previous layer and performs a nonlinear transformation through an activation function.

Forward propagation and back propagation are two important steps in the training pro-
cess of DNNs. The forward propagation of DNN is similar to that of the perceptron, which
uses the input of the previous layer to calculate the output of the next layer. Backpropa-
gation adjusts network parameters by calculating the error feedback between the predicted
value and the true value, and backpropagates layer by layer to update the weights and
biases. Its purpose is to minimize the loss function through optimization algorithms [36].

DNN can effectively handle complex pattern recognition tasks through multiple hidden
layers and is widely used in many fields such as image recognition and audio processing.
However, due to its complex internal structure, the decision making process of the model
is difficult to explain.
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3.1.6 Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) [65] is a type of neural network, which is particularly
powerful in the field of image classification. The architecture of a CNN usually includes
an input layer, convolutional layers, pooling layers, fully connected layers and an output
layer. Among them, the input layer is used to receive the pixel values of the image. In the
convolution layer, an important concept is the convolution kernel, also called a filter. The
convolution kernel is a weight matrix, usually of a fixed size. The convolution kernel slides
over the region of the input image, a process also called convolution. The convolution pro-
cess can extract important features of the local region. When the convolution kernel passes
through all the regions, the important features of the input image, also called feature maps,
can be extracted. can be extracted. The feature maps are then passed to the pooling layer
[26]. The purpose of the pooling layer is to reduce the number of parameters and the com-
plexity of computation by reducing the data dimension. The input data passes through the
convolutional layers and the pooling layers and is then input into the fully connected layers.
The structure of the fully connected layer is similar to the fully connected layer structure
of the DNN mentioned in Section 3.1.5. However, in CNN, the feature map processed by
the convolution layer and the pooling layer must be flattened into a one-dimensional vector
before entering the fully connected layer. Finally, the results are output according to differ-
ent tasks.

The activation functions are also the core component of a CNN. The activation func-
tions can effectively solve nonlinear problems and increase the expression ability of CNN
[86]. Commonly used activation functions include sigmoid function [16], tanh function [58],
ReLU function [29], etc.

Due to the powerful functions and excellent performance of CNN, it is also widely used
in the field of malware detection [46]. However, the complexity of its internal structure
also makes the decision-making process of the model lack of transparency and difficult for
analysts to understand.

3.2. Model Explanation Methods
The interpretability of machine learning can be divided into different types according to
different criteria [24]. As described in Section 2, this paper mainly focuses on post-hoc XAI
methods. Post-hoc explanation requires pre-training the model and analyzing its results to
understand why the model makes decisions, so it can also be understood as an explanation
step after the prediction [48]. Moreover, post-hoc explanation methods can be divided into
model-agnostic methods or model-specific methods. Model-agnostic means that researchers
can use any model to explain, so this method is more flexible. On the other hand, model-
specific explanation methods are limited to specific model types [24]. This section focuses
on model-agnostic interpretation methods. Post-hoc model explanation methods [10] in-
cluding local explanation and global explanation methods. Figure 3.5 shows an example of
global and local explanation. This section introduces some classifiers of local explanation
and global explanation.
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Figure 3.5: A simple example showing the difference between global and local explana-
tion methods. Local explanations focus on a single instance, while global explanations
focus on the entire dataset. The pink color graph in the figure represents the sample
instance being explained [66].

3.2.1 Local Explanation Methods
Local explanation methods usually focus on explaining a specific instance, i.e., why the
model makes a certain prediction for this instance.

Local Interpretable Model-agnostic Explanations (LIME)

LIME [69] is a local explanation method proposed by Ribeiro et al., applicable to any ma-
chine learning model of regression and classification tasks. The core idea of LIME is to train
a local surrogate model to predict a single instance [24]. Specifically, for an instance that
needs to be explained, perturbations are first performed around the sample point to generate
new perturbation samples, and then obtain the prediction value based on the corresponding
black box model. Subsequently, LIME trains an interpretable model, such as a decision tree,
on the new perturbation samples, so that it can well approximate the prediction behavior
of the black box model in the local area rather than the global area.

LIME first locally perturbs the target data point x whose prediction result is to be ex-
plained to obtain a sample set Z. The predictions of the model are observed, and then
weights are assigned according to the distance between the perturbed data point and the
original data point. The closer the instance to the explanation is, the greater the weight
assigned. LIME gives the following explanation:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (3.1)

where:
G: a class of potentially interpretable models,
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f : primitive models of higher complexity, i.e. a random forest model,
f(x): the probability that x belongs to a certain class,
πx: the similarity weight with the explained instance x,
πx(z): proximity measure between an instance z to x, so as to define locality around x,
z ∈ Z
L(f, g, πx): measure of how unfaithful g is in approximating f in the locality defined by πx,
Ω(g): a measure of complexity of the explanation g ∈ G.

In equation 3.1, Ω(g) is used to control the complexity of the model to avoid the model
being too complex and difficult to explain, and the function L(f, g, πx) is used to measure
the difference between the complex model f and the simple model g. Locality is captured
by πx. When the value of Ω(g) is low enough, the results are easy for humans to interpret.
At this time, we minimize the L function to get the explanations.

LIME represents the local behavior of the model in a linear manner, such that g(z′) = wg ·z′.
The distance between samples before and after the perturbation is defined as equation 3.2:

πx(z) = exp(−D(x, z)2/σ2) (3.2)

where D is distance function and σ is width. While πx(z) is an exponential kernel defined
on D with σ. The D for text and image are cosine distance and L2 distance respectively.
Thus, the locality-aware loss L can be expressed as equation 3.3:

L(f, g, πx) =
∑

z,z′∈Z

πx(z)(f(z) − g(z′))2 (3.3)

where f(z) are sample of instances around x′ by drawing non-zero elements of x′ uniformly
at random. For tabular data, LIME samples are collected from the mass center of the train-
ing data [24].

Anchors

Anchors, which is a high-precision model-agnostic explanations, also purposed by Ribeiro
et al. (2018) [70]. It is a local explanation method. Anchors addresses the main drawback
of the LIME method (presented in Section 3.2.1), which is to represent the local behavior
of the model in a linear manner [49]. The explanation results of the Anchors method are
based on IF-THEN rules, also called anchors. Simply, it is to find a set of rules, when these
rules are all satisfied, the predicted results are almost always the same. Figure 3.6 (c) shows
two examples of sentiment predictions made with LSTM (Long Short-term Memory [43], a
deep learning model that excels at processing sequence data) and explained with Anchors.
The rule can be expressed as IF this sentence contains “not bad”, THEN the interpretation
result is likely to be predicted as positive. IF a sentence contains “not good”, THEN the
prediction result is likely to be negative. In LIME, as shown in figure 3.6 (b), although the
analysis of the two sentences is accurate, users cannot understand when “not” is positively
or negatively affected. This is because the interpretation result on the left does not apply
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to the right (“not” has a positive impact on the left sentence, but a negative impact on
the right sentence).

Figure 3.6: Two examples of sentiment predictions made with LSTM and explained
with LIME and Anchors. Figure (a) shows two sentence examples, Figure (b) shows
the explanation result of LIME and Figure (c) shows the explanation result of Anchors
[70].

The definition of the rule can be defined as equation 3.4:

ED(z|A)[1f(x)=f(z)] ≥ τ, A(x) = 1. (3.4)

where:
x: an instance, x ∈ X,
f : a black box model,
f(x): the individual prediction for instance x,
A: a rule of set of predicates,
D(z|A): conditional distribution on sample z when the rule A applies,
τ : desired level of precision.

Given an instance x and a rule A, the consistency rate between samples z and x that
satisfy rule A must reach an precision of at least τ . Also, if A(x) = 1, and A is a sufficient
condition with high probability for f(x), then A is an anchor. According to equation 3.4,
the A can be defined as:

prec(A) = ED(z|A)[1f(x)=f(z)] (3.5)

After generating a set of candidate rules A, each subsequent iteration will generate a
new candidate rule, and the best rule is selected by comparing the precision. Multi-armed
Bandit [47] is used to estimate the precision. However, it is difficult to directly calculate
the precision for any D and f , thus, A needs to satisfy the constraint of prec(A) ≥ τ with
high probability. The equation show as 3.6:
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P (prec(A) ≥ τ) ≥ 1 − δ (3.6)

When there are multiple A meet the conditions, the anchor should be selected with the
largest coverage.

Local Rule-based Explanations (LORE)

Local Rule-based Explanations (LORE) [38] is a local explanation method proposed by
Guidotti et al. that can be applied to any type of machine learning model. LORE also
generates explanations based on rules, which are extracted from neighborhood data through
an interpretable surrogate model, usually a decision tree. In addition, LORE also generates
counterfactual rules that explain how the predictions of models change based on changing
the features of the instance. LORE is suitable for black-box result explanations of relational
tabular data and is based on a genetic algorithm [44] to explore decision boundaries near
data points. In the neighborhood generation process, a set of N neighbor instances Z is
generated for the instance x to be explained through a genetic algorithm, with the goal
of making it close to the features of instance x to achieve the local decision behavior of
the black box b. Z = Z= ∪ Z̸= is instances containing two decision values, that is, when
instances z ∈ Z=, b(x) = b(z) and when z ∈ Z̸=, b(x) ̸= b(z). The selection, crossover,
and mutation operations of the genetic algorithm can evolve the initial instance population
to make it close to the target. The fitness function is used to select the best result for
shaping the next generation. The generation of Z = Z= ∪ Z̸=is completed by maximizing
the fitness function, which is defined as follows:

fitnessx
=(z) = Ib(x)=b(z) + (1 − d(x, z)) − Ix=z

fitnessx
̸=(z) = Ib(x)̸=b(z) + (1 − d(x, z)) − Ix=z

where:
d : a distance function,
I: Itrue = 1 and Ifalse = 0,
1 − d(x, z): instances z similar to instances x,
Ix=z: Ix=z = 1, x = z; Ix=z = 0, x ̸= z.

The fitness functions find instances z that are similar to x but not equal to x, for the first
fitness function, b produces the same result as x, while for the second fitness function, b
returns a different decision.

After neighborhood generation process, LORE constructs an interpretable decision tree
model, aiming to simulate the local behavior of the black box in the neighborhood. Af-
ter the neighborhood generation process, LORE constructs an interpretable decision tree
model that aims to simulate the local behavior of the black box in the neighborhood. For
the decision tree c, the interpretation obtained is e = <r,Φ>. Among them, r is the de-
cision tree rule and Φ is the counterfactual rule. The rule extracted from the decision tree
is r = (p → y), where p is the conjunction of the conditions, y is the decision result,
and the rule r is formed by the path matched by x. Counterfactual rules are extracted by
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identifying paths in a decision tree that lead to different decisions than the original ones,
for each path in the decision tree that results in a decision ŷ ̸= y, we consider it as a
potential counterfactual rule. The counterfactual rule is expressed as q → ŷ, q represent
the conjunction of split conditions along such a path. If the conditions in q are met, the
prediction would change to ŷ. The set of counterfactual rules consists of the paths that do
not satisfy x the least.

Kernel Shapley Additive Explanations (SHAP)

Kernel SHAP (SHapley Additive exPlanations) proposed by Lundberg and Lee (2017) [60],
can be used for both local and global explanations [50]. It is a a model-agnostic inter-
pretability method that suitable for tabular data of any machine learning classification and
regression model. Kernel SHAP is explained using the concept of Shapley value from co-
operative game theory [74]. In cooperative game theory, Shapley value refers to the fair
distribution of the total expenditures received by players in the alliance to the players [24].
Therefore, Shapley value can be used in machine learning to calculate the contribution of
the model to the feature value of a single prediction. The classic Shapley value estimation
for feature i can be defined as equation 3.7:

ϕi =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |!

[
fS∪{i}

(
xS∪{i}

)
− fS (xS)

]
. (3.7)

where:
F : the set of all features,
S: the subset of F ,
F\{i}: F not include i,
fS∪{i}: model prediction when i is included in S,
XS: the values of the input features in S.

Among them, fS∪{i}
(
xS∪{i}

)
− fS (xS) is the marginal contribution and the term of

|S|!(|F |−|S|−1)!
|F |! represents the the weighting factor to ensure all possible subsets have fairly

weight [76].

SHAP combined linear LIME (presented in Section 3.2.1) and Shapley value. In SHAP,
the Shapley value interpretation is expressed as a linear model. SHAP specifies the inter-
pretation as:

g(z)′ = ϕ0 +
M∑

j=1
ϕz′

j (3.8)

where:
g: explanation model,
M : maximum simplified features size,
z′: simplified feature vectors, z′ ∈ {0, 1}M ,
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ϕj: Shapley values, ϕ{j} ∈ R.

Lundberg and Lee also proposed three desirable properties of SHAP: local accuracy, miss-
ingness and consistency. Local accuracy describes the matches between the original model
and explanation model, it can be formulated as:

f(x) = g(x′) = ϕ0 +
∑M

i=1 ϕix
′
i (3.9)

where f denotes the original model and x is the input; g denotes the explanation model and
x′ is the simplified input. The desirable property of missingness means that missing features
are imputed with a value of zero, that is, x′

i = 0 ⇒ ϕi = 0, when x′
i = 0, feature have no

attributed effect. Consistency means that if the model changes, the marginal contribution
of the feature value and Shapley value increases or remains the same, regardless of other
features. For model f and model f ′, z′ı denote setting z′

i = 0 for fx(z′) = f(hx(z′)) and
z′ı.

f ′
x(z′) − f ′

x(z′\i) ≥ fx(z′) − fx(z′\i) (3.10)

for all inputs z′ ∈ {0, 1}M , then ϕi(f ′, x) ≥ ϕi(f, x).

Kernel SHAP approximates Shapley values through kernel functions (Shapley kernel [60])
and weighted linear regression. The kernel function can be defined as equation 3.11 [24]:

πx (z′) = (M − 1)(
M
|z′|

)
|z′| (M − |z′|)

(3.11)

where:
M : maximum coalition size,
|z′|: the number of present features in instance z′.

Kernel SHAP can effectively increase sampling efficiency. The minimum and maximum
coalitions will take more weight to avoid blind adoption, so better Shapley value estimates
can be obtained.

Explaining Data-Driven Document Classifications (EDC)

The EDC algorithm is a local explanation method proposed by Martens and Provost [61].
The core purpose of this method is to understand the decision-making process of docu-
ment classifiers. Since textual data usually contains a large number of words, it is usually
high-dimensional. Therefore, the EDC method is suitable for some high-dimensional and
sparse data. The EDC method explains the classification decision by finding a minimal
set of words in a document. The minimal set of words needs to satisfy two requirements:
removing all words in the set will change the predicted class, and no other subset of the
word set has the same effect. Formally, given a document vocabulary with m words and
let µE denotes a mask vector to be a binary vector of length m, where each element of
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the vector corresponds to a word in the vocabulary. Let E be an explanation represented
by a mask vector µE with µE(i) = 1 ⇔ wi ∈ E, otherwise, µE(i) = 0 ⇔ wi /∈ E.
D \E is the Hadamard product of the feature vector of document D with the one’s com-
plement of µE, denotes the result of removing the words in E from document D. Thus,
finding a mask vector µE such that CM(D \ E) ̸= CM(D) means finding the minimum
explanation. However, if any bit of µE is set to zero to form E ′, then CM(D\E ′) = CM(D).

Martens and Provost proposed Search for Explanations for Document Classification (SEDC)
algorithm to find such minimal explanation. The aim of SEDC is to find minimal explana-
tions in a reasonable amount of time. SEDC uses a direct heuristic best-first search method,
first listing all potential explanations for a word, and then calculating the category and score
changes for each word. In other words, the algorithm removes words from the potential ex-
planations separately. If the predicted category and score change after removing a single
word, it means that the word constitutes a complete explanation and can be directly added
to the explanation set. Otherwise, it means that the word cannot constitute a complete
explanation and needs to be combined with other words for expansion. Subsequently, the
algorithm selects the words that have the greatest impact on the classification, that is, the
words with the greatest confidence reduction, as the best expansion candidates among all
the words that cannot constitute an explanation alone. The expansion method combines
candidate combinations with other words in the document to form new candidate subsets,
removes and reclassifies each new combination, and updates the classification results and
model output scores. This process is repeated until new explanations that can be added
to the explanation set appear. In order to control the computational complexity, SEDC
introduces a pruning strategy, that is, once a word combination is determined to be an
explanation, there is no need to expand other combinations. In addition, the algorithm can
prevent infinite expansion by setting a maximum number of iterations.

Contrastive Explanation Method (CEM)

Contrastive Explanation Method (CEM) is a local explanation method proposed by Dhu-
randhar et al. [28] in 2018. This method helps understand the decision-making process of
the model by generating two explanations for the classification model: Pertinent Positives
(PP) and Pertinent Negatives (PN). PP represents the minimum features required for the
model to predict the same label as the original instance. In other words, PP means the
minimum necessary conditions required for the model to make the current classification
decision. PN represents the minimum number of features that must be missing for the
model to make the current prediction. In other words, these features cannot be included for
the model to maintain the original prediction category, otherwise the prediction result will
change.

The CEM method transforms the finding PP and PN into a disturbance variable opti-
mization problem. For finding PP, the optimization problem can be formulated as follows:

min
δ∈X ∩x0

c · fpos
κ (x0, δ) + β∥δ∥1 + ∥δ∥2

2 + γ∥δ − AE(δ)∥2
2 (3.12)

where:
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x0: a natural example;
X : feasible data space, x0 ∈ X ;
δ: a perturbation applied to x0;
t0: class label obtained from classification model;
β, γ: regularization coefficients.

The aim of this formula is to find a minimum perturbation δ so that the model does not
change the current predicted category. The loss function fpos

κ (x0, δ) can be defined as:

fpos
κ (x0, δ) = max

{
max
i ̸=t0

[Pred(δ)]i − [Pred(δ)]t0 ,−κ
}

(3.13)

By minimizing the loss function, we can find the minimum set of features that support the
decision without changing the classification result.

For finding PN, the optimization problem can be formulated as:

min
δ∈X /x0

c · fneg
κ (x0, δ) + β∥δ∥1 + ∥δ∥2

2 + γ ∥x0 + δ − AE (x0 + δ)∥2
2 (3.14)

The loss function fneg
κ (x0, δ) is defined as:

fneg
κ (x0, δ) = max

{
[Pred (x0 + δ)]t0

− max
i ̸=t0

[Pred (x0 + δ)]i ,−κ
}

(3.15)

Different from PP, the goal of PN optimization problem is to find the minimum perturbation
that causes the model to change its classification results. By minimizing the loss function
of PN, we can find the minimum set of features that support the decision changing the
classification result.

Counterfactual Instances (CF)

Counterfactual instances (CF) is a local explanation method proposed by Wachter et al.
(2017) [83]. Counterfactual explanations aim to enhance the transparency and interpretabil-
ity of decisions and help understand the decision-making process of complex models with-
out revealing the details of the internal models. Counterfactual explanations are based on
causal reasoning, that is, “if X had not happened, Y would not have happened” [49]. A
simple example, assuming that android.permission.CAMERA is an important feature, an-
droid.permission.CAMERA = 1 means that the APK has requested camera permission. For
an APK sample labeled as malware, the counterfactual explanation can be ”If the APK did
not request permission to open the camera (android.permission.CAMERA = 0), then the
APK would likely be labeled as benign”. The generation of counterfactuals can be divided
into two parts. The first step is to minimize the objective function by finding the optimal set
of weights w, which is how most standard classifiers in machine learning are implemented.
This process is defined in Equation 3.16:
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arg min
w
ℓ(fw(xi), yi) + ρ(w) (3.16)

where:
yi: the label for data point xi;
ρ(w): a regularizer over weights w.

Then we need to minimize the distance between the original instance xi and the counter-
factual instance x′. The counterfactual instance needs to be as close to the original point
as possible so that fw(x′) = y′, where y′ is the new target. This process requires to hold
weight w.

arg min
x′

max
λ

λ (fw (x′) − y′)2 + d (xi, x
′) (3.17)

where d(xi, x
′) denotes a distance function, usually using L1 norm or Manhattan distance,

is used to measure the distance between the original data point xi and the counterfactual
x′. Maximizing λ makes fw(x′) close to the new target y′ while maintaining the similarity
with the original data point xi as much as possible.

Prototype Counterfactuals (ProtoCF)

Prototype Counterfactuals (ProtoCF) is a local explanation method proposed by Looveren
& Klaise [82] in 2021. The method is based on the counterfactual approach (presented in
Section 3.2.1) but accelerates finding interpretable counterfactual explanations for classifier
predictions by using class prototypes. The ProtoCF method improves the problem that the
generation method in the traditional counterfactual method may generate instances that
are unrealistic or do not conform to the data distribution by introducing the prototype of
the target category.

ProtoCF can also be transformed into an optimization problem, which is to find the smallest
input feature change compared to the original input, so that the model prediction result is
transformed from the original category to the target category, while the generated counter-
factual instance is close to the prototype of the target class. Its loss function can be defined
as:

loss = cLpred + βL1 + L2 + LAE + Lproto (3.18)

This loss function is similar to the CEM method (presented in Section 3.2.1), but adds the
reconstruction error of the L2 perturbed examples as a loss term to make the counterfactuals
close to the training data distribution. In addition, the Lproto loss term attempts to minimize
the distance between the L2 counterfactuals and the nearest prototype. The reason for
adding Lproto is that LAE does not necessarily obtain interpretable solutions or speed up
counterfactual search.
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3.2.2 Global Explanation Methods
Global explanations focus on the entire dataset and explain why the model made its decision.

Partial Dependence (PD)

Partial Dependence (PD) focuses on the changes in one or two feature values affect the
model predictions, while average the values of other features effects, is a global method
of visualizing linear, monotonic or other relationships between labels and features [33]. In
regression tasks, the calculation of the linear correlation between each feature and label can
be defined as 3.19:

fS(xS) = ExC
[f(xS, XC)] =

∫
f(xS, XC)dP(XC) (3.19)

where:
f : a black-box model,
F : a set of all features,
S: a set of features of interest, S ⊆ F .
C: complement, C = F\S.
X: feature space,
XC : random variables, features in set C,
xS: features realizations in set S,
P(XC): the probability distribution/measure for features set C.

The set S usually contains one or two features whose impact on prediction is expected to
be explored. The principle of PD is to marginalize the output of the model to the feature
distribution in the set C to reflect the relationship between the features in the set S and the
model prediction. We approximate the integral in equation 3.19 by computing the average
of the reference dataset. The PD of a set S can be approximated as:

fS(xS) = 1
n

n∑
i=1

f(xS, x
(i)
C ) (3.20)

where x
(i)
C denotes the feature values. The meaning of this formula is to calculate the

marginal impact of specific values of features in S on prediction.

In classification tasks, the output is the impact of features on category prediction probability.

Partial Dependence Variance (PD Variance)

Partial Dependence Variance (PD Variance) is a global explanation method proposed by
Greenwell et al. in 2018 [37]. This method relies on PD (presented in Section 3.2.2),
specifically, PD variance is a method for calculating global feature importance and feature
interaction, which is obtained by calculating the variance in the PD method. For feature
importance, the larger the fluctuation of the PD curve of a feature, the higher the variance,
indicating that the feature is more important. Conversely, a flat PD curve corresponds to
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a lower variance, indicating that the feature has less impact. The flatness measurement of
PD can generally be defined as:

i(x) = F (f̄s, (zs)) (3.21)

where F (·) denotes any measure of the flatness of f̄s, (zs). Importance measure for predictor
x1 can be defined as:

i (x1) =


√

1
k−1

∑k
i=1

[
f̄1 (x1i) − 1

k

∑k
i=1 f̄1 (x1i)

]2
if x1 is continuous[

maxi

(
f̄1 (x1i)

)
− mini

(
f̄1 (x1i)

)]
/4 if x1 is categorical

(3.22)

where the flatness measure is the sample standard deviation for continuous features and
the range statistic for factors with K levels divided by four for categorical features. The
reason of dividing the range by four estimates the standard deviation for small to moderate
sample sizes.

Accumulated Local Effects (ALE)

The Accumulated Local Effects (ALE) method proposed by Apley and Zhu [7], is utilized
for computing feature effects. The algorithm can be used for classification and regression
models of tabular data and provides a model-independent global explanation for black-
box models. As mentioned in Section 3.2.2, ALE also describes how features affect the
average prediction. However, PD has an obvious disadvantage that it will make wrong
predictions when there is a strong correlation between features. ALE improves this defect.
ALE calculates the average of the predicted changes and accumulates it on a grid. The
formula of ALE [24] is shown below:

f̂S,ALE (xS) =
∫ xS

z0,S

EXC |XS=xS

[
f̂S (Xs, Xc) | XS = zS

]
dzS − constant

=
∫ xS

z0,S

(∫
xC

f̂S (zs, Xc) dP (XC | XS = zS) d
)
dzS − constant

(3.23)

where:
XS: explained features,
XC : other features,
zS: the variable value of feature S during the integration process,
EXC |XS=xS

: the expectation of feature C with XS = xS,
dP (XC | XS = zS): when XS = zS, probability distribution of C.

A constant is subtracted to make the average effect of the data zero. Integral is used to
solve the problem of feature correlation. This formula 3.23 calculates the average of the
predicted changes, also defined as the gradient, but since not all models include a gradient,
ALE uses an approximate algorithm to estimate the value of the function:
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ˆ̃
f j,ALE(x) =

∑
i:x(i)

j ∈Nj(k)

[f̂(zk,j, x
(i)
−j) − f̂(zk−1,j, x

(i)
−j)] (3.24)

where:
f̂ : the prediction function of the model,
z: grid values,
zk,j: the upper boundary value of feature j in the kth interval,
zk−1,j: the lower boundary value of feature j in the kth interval,
Nj(k): the set of data points in the kth interval of feature j,
x

(i)
−j: features except j in data i.

The process of calculating the prediction difference can be seen from formula 3.24, this rep-
resents the local effect of the feature on the model prediction within the interval. Summing
these differences gives us the local cumulative impact of the feature within the interval.
Dividing the sum by the number of instances in the interval gives us the average difference
in predictions for the interval. When the mean effect is zero, this effect is located at the
center:

f̂j,ALE(x) = ˆ̃
f j,ALE(x) − 1

n

n∑
i=1

ˆ̃
f j,ALE(x(i)

j ) (3.25)

After removing the average effect of each effect, a positive feature effect indicates that the
feature has a positive impact on the prediction result, otherwise it has a negative impact.

Permutation Importance (PI)

Permutation Importance (PI) is a global explanation method first proposed by Breiman
[20] in 2001 and then refined by Fisher et al. [32] in 2019. PI is a method for tabular data
that calculates feature importance by the degree of decrease in model performance when
the feature values are permuted. PI was originally proposed for random forest classifiers.
Out-of-bag samples (OOB) are generated during random forest training. After each tree is
created, the value of a feature is randomly permuted to disrupt the relationship between
the feature and the truth label, generating a new set of OOB data. The new data is input
to the current tree to obtain a new prediction result and saved. The process is repeated for
all features, and the noisy response is compared with the true label to obtain the error rate.
The importance of a feature is represented by the percentage increase in the misclassifi-
cation rate after permutation relative to the OOB rate when all features remain unchanged.

Then, this was subsequently extended by Fisher et al. to a model-independent version
of permutation feature importance, also known as model reliance. For a model f , model
reliance can be informally written as:

MR(f) = Expected loss of f under noise
Expected loss of f without noise (3.26)

22



Model reliance can be formally defined as follows:
Let Z(a) = (Y a, Xa

1 , X
b
2) and Z(b) = (Y b, Xb

1, X
b
2) be independent random variables, each of

them should be following the same distribution Z = (Y,X1, X2), where Z = (Y,X1, X2) ∈
Z be an independent and identically distributed (iid) random variable, Y ∈ Y be the
outcome, X = (X1, X2) ∈ X are features, two subset X1 ∈ X1 and X2 ∈ X2 can be
multivariate. The expected value of the loss after the feature subset X1 is permuted is
defined as follows:

eswitch(f) = E[L
{
f, (Y (b), X

(a)
1 , X

(b)
2 )

}
] (3.27)

where the pair (Y (b), X
(b)
2 ) from Z(b) and X(a)

1 from Z(a). The standard expected loss shown
in equation 3.28 used for comparison is the loss without the feature values switched:

eorig(f) = E[L {(Y,X1, X2)}] (3.28)

Thus, model reliance can be formally defined as their ratio:

MR(f) = eswitch(f)
eorig(f) (3.29)

The degree of model reliance on feature subsets can be assessed by comparing the loss
changes before and after permutation. If the loss increases significantly after permutation,
it means that the feature has an important impact on the model, otherwise the reliance is
weak.

Morris Sensitivity Analysis (Morris method)

Morris sensitivity analysis, also known as Morris method, is a global explanation method
proposed by Morris [62]. Morris method is a one-factor-at-a-time (OAT) analysis method,
that is, only one factor is changed at a time to evaluate the impact of input variables on
model output, and is useful for screening input variables to determine the relative impact
of each feature. Morris method based on elementary effect (EE), in a grid input space, this
method captures the changes that occur to the sampled trajectory points. The EE of ith
input factor can be defined as:

di(x) = [y(x1, ..., xi− 1 + ∆, xi+1, ..., xk) − y(x)]
∆ (3.30)

where:
∆: step, usually a multiple of 1/(p− 1),
p: number of levels in input space,
x: vectors representing the input variables,
y: outputs.
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Morris method has two important indicators, mean (µ): µ = ∑r
i=1 di/r, used to assess

the overall importance of input factors to the model output; and standard deviation (σ):
σ =

√∑r
i=1 di(di − µ)2/r, used to account for non-linear effects or interactions between

factors. A low standard deviation means that the output is linear in this factor, and a high
standard deviation means that the indicator is non-linear in this factor. Where r is number
of trajectories. Then, Saltelli et al. [75] describe another metric µ∗ to address the robust-
ness issues of non-monotonic models: µ∗ = E[ψ(Y | X−i)], where ψ is an operator that
performs absolute local variation.

3.3. Overview of XAI Methods
In Section 3.2 we discussed some explanation methods. To be brief, this section mainly
summarizes these methods and their names, abbreviations, and brief descriptions so that
they can be used as references in subsequent sections. The details are shown in Table 3.1:

Full name Abbreviation Description
Local Rule-based Explanations LIME Local

Anchors Anchors Local
Local Rule-based Explanations LORE Local

Kernel Shapley Additive Explanations (Kernel) SHAP Local / Global
Explaining Data-Driven Document Classifications EDC Local

Contrastive Explanation Method CEM Local
Counterfactual Instances CF Local

Prototype Counterfactuals ProtoCF Local
Partial Dependence PD Global

Partial Dependence Variance PD Variance (PDV) Global
Accumulated Local Effects ALE Global
Permutation Importance PI Global

Morris Sensitivity Analysis Morris Global

Table 3.1: A summary of some XAI methods discussed in this paper, including their
full name, abbreviation and their description (local or global).
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4. Related Work

Android malware detection methods can generally be divided into static detection, dynamic
detection and hybrid detection technology [53], [57]. The difference between static detec-
tion and dynamic detection is whether the application is in a running state, and hybrid
detection combines static detection with dynamic detection. Android malware detection
methods based on machine learning (ML) have been proven to be one of the more effective
detection methods at present, and can usually achieve a high accuracy in malware detection
[4]. For Android applications, static features are mainly extracted by analyzing APK (appli-
cation package) files, such as permissions, Dalvik opcodes and other components, etc. The
analysis objects of dynamic features usually include network traffic, battery usage, CPU
utilization, IP address, opcode, etc [57]. Some popular machine learning models and algo-
rithms in Android malware detection methods include Decision Trees (DT), Naive Bayesian
(NB), Linear Model (LM), Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
K-means Clustering Algorithm, Neural Networks (NN) and Deep Learning (DL) [57].
For static analysis, Lou et al. [59] proposed TFDroid, a SVM-based approach to detect
malware, which incorporates topics and sensitive data streams as features and achieved
93.65% accuracy in identifying malicious applications. Tiwari and Shukla [81] proposed a
Android malware detection technique based on optimized permissions and API. They gen-
erated two types of features, common features and features with low variance removed, and
evaluated them on five ML classification models: SVM, DT, KNN, NB and Logistic Regres-
sion (LR). This method achieved the highest accuracy on LR, with 97.25% and 95.87%
respectively. Li et al. [55] proposed a malware detection system for Android mobiles based
on deep convolutional neural networks (DCNN). This method used an optimized DCNN to
learn the original opcode sequences extracted from decompiled Android files and achieved
an accuracy of 99%.
Dynamic analysis is often executed and tested in a sandbox. Yang et al. [92] proposed Droid-
Ward, an Android malware detection technique based on dynamic analysis. The method
runs applications with SVM, DT, and random forest to extracts the most relevant and ef-
fective features to improve the detection accuracy of malicious applications. The accuracy
of this method for detecting malicious applications is 98.54%. Ananya et al. [11] proposed
SysDroid, which designed a new feature selection method, selection of relevant attributes
for improving locally extracted features using classical feature selectors (SAILS), tested and
evaluated it using multiple different machine learning models, Logistic Regression (LR),
Classification and Regression Tree (CART), random forest (RF), eXtreme Gradient Boost
(XGBoost) and Deep Neural Networks (DNN). The accuracy of SysDroid in dynamic anal-
ysis of Android malware detection can reach up to 99%.
For hybrid analysis, Feng et al. [31] proposed a two-layer DL approach for Android malware
detection. The first layer is used to extract static features and detect malware in com-
bination with a fully connected neural network, and the results are passed to the second
layer. The second layer uses a new method CACNN (cascades CNN and AutoEncoder) to
detect malware through the network traffic characteristics of APPs. Bakir [15] proposed
TuneDroid in 2025, a novel Android malware detection technology based on hybrid analy-
sis. This method used Bayesian Optimization (BO) to adjust the pre-trained CNN model
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to improve model performance and achieved 98% accuracy on the test set.

ML for Android malware detection can only classify applications as benign or malicious,
but cannot explain the reasons for such classification. This is due to the black-box nature
of ML models. XAI-based malware detection methods can effectively make up for this short-
coming [89], making ML-based methods more credible. XAI methods can be divided into
intrinsic explanation methods and extrinsic (post-hoc) explanation methods according to
the connectivity with the machine learning (ML) model [56]. Intrinsic explanation methods
are those in which the ML model used is interpretable, so this method is based on specific
models. Extrinsic explanation methods can be applied to any model, but require training
data. As described in Section 3, post-hoc XAI methods can be divided into local explana-
tion methods and global explanation methods according to the scope of explanation. Local
explanations focus on a single apk and explain why an application is labeled as benign or
malicious, while global explanations focus on the entire dataset and analyze why the model
made its decision.
The most classic intrinsic method is Drebin [8], which combines static analysis and linear
SVM models to classify malware and provide explanations to users. The Traffic AV [84]
method combines network traffic analysis with DT algorithm to detect and analyze mal-
ware, while also providing users with analysis and explanation of the final decision.

In addition to intrinsic methods, more and more post-hoc XAI methods have also been
adapted and applied to Android malware detection. Some of the explanation methods we
described in Section 3.2 have been widely used to explain ML-based Android malware detec-
tion. For example, Fan et al. [30] have applied five widely used post-hoc local interpretable
methods, LIME, SHAP, Anchors, LORE, and LEMNA [40] to Android malware detection.
Galli et al. [34] proposed an XAI framework for Behavioral Malware Detection (BMD, an-
alyze software behavior at runtime) systems, aiming to evaluate the applicability of four
local XAI methods, SHAP, LIME, Layer-wise Relevance Propagation (LRP) [12] and at-
tention mechanism [14] into malware detection systems. Smmarwar et al. [77] proposed
XAI-AMD-DL, an Android malware detection framework based on a hybrid CNN and Bi-
GRU (Bi-Gated Recurrent Unit, similar to LSTM but more simplified) model, and the Kernel
SHAP method is integrated in the framework to provide local interpretability. Ambekar et
al. [6] proposed TabLSTMNet, an Android malware classification model integrating the at-
tention of TabNet (an interpretable deep learning architecture specialized for tabular data
that uses a sequential attention mechanism to select features to infer at each decision step)
mechanism and long short-term memory (LSTM, a recurrent neural network) architecture.
The classification model combines LIME and SHAP to explain the contributions of local
and global features, respectively. Kulkarni and Stamp [54] apply five XAI methods, LIME,
SHAP, PDP, ELI5 (global explanation methods, shuffle the permutations of the feature val-
ues. The worse the classification results are after a feature is shuffled, the more the model
relies on that feature) and Class Activation Mapping (CAM, a model-specific technique for
explain CNNs, class-based localization, use the gradient information flowing into the last
convolutional layer to obtain the localization of important regions in the image to determine
the importance of each pixel of the input image for a given class), to classical ML (SVM,
RF and KNN) and DL (MLP, CNN) models for Android malware classification and obtain
local and global explanation results.
Moreover, there are some techniques based on leveraging semantic information or key code
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snippets to provide explainability results. For instance, Qian et al. [67] proposed LAMD, the
first Android malware detection technique based on LLMs (Large Language Models). This
method filters irrelevant functions and analyzes application behavior step by step through
key context extraction and hierarchical code reasoning, effectively capturing structural de-
pendencies and semantics, and providing final predictions and explanations. Wu et al. [89]
proposed XMAL, a XAI based ML method for Android malware detection. XMAL is divided
into a classification phase and an explanation phase. The classification phase combines MLP
and attention mechanisms to find the most critical features, and the explanation phase au-
tomatically generates neural language descriptions to explain malicious behaviors within
the application. Korine et al. [52] proposed DAEMON, a dataset and platform-agnostic
explainable malware classifier. DAEMON uses multi-stage mining to gradually retain rela-
tively small features that are most effective in classifying malware families. These features
have rich semantic information, such as readable strings or malicious code snippets, so the
classification process is more transparent and easy to understand.

However, although XAI-based Android malware detection methods provide analysts with
a more intuitive basis for judgment, their explanation results still face many challenges.
For example, Abusitta et al. [1] believe that many XAI technologies lack robustness and
stability, which leads to users or analysts weakening their trust in the interpretation results.
Fan et al. [30] also proposed that some XAI methods that explain predictions by providing
important features generally fail to reach a consensus on the interpretation results obtained
in the malware analysis domain. Besides, some existing metrics for evaluating XAI methods,
such as fidelity [93] and Faithfulness [5] etc., have not been applied to the security field,
but in malware detection scenarios, it may be necessary to meet the needs of specific fields
or introduce security-specific metrics.
To close this gap, Fan et al. [30] formulated three metrics, stability, robustness and ef-
fectiveness for local interpretability results in the field of Android malware detection to
evaluate their explanation results. Soulimani [78] proposed two metrics, consistency rate
and soundness rate based on Fan et al. Consistency rate used to measure the degree of
variation in the explanation of the results using different classification methods for the same
feature set, and soundness rate refers to the degree to which adding irrelevant features to
the feature set explains the variation in the explanation results. The details of consistency
rate and soundness rate will be explained in section 5.1. For global interpretability evalu-
ation metrics in Android malware detection field, Li and Gadyatskaya [56] proposed three
metrics also based on stability, robustness, and effectiveness to evaluate rule-based global
explainable Android malware detection methods. Our work is based on Li and Gadyatskaya
and formulated three evaluation metrics for the explanation results of global XAI methods
that extract important features. The details of our work will be explained in section 5.2.
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5. Evaluation Metrics

This section describes in detail two metrics for evaluating local explanation methods and
three metrics for evaluating global explanation methods.

5.1. Local Explanation Methods
Local explanation methods aim to focus on the decision-making process of a single instance,
and the methods have been described in detail in Section 3.2. To evaluate these methods,
this section will analyze two metrics for local explanation methods.

5.1.1 Consistency Rate (CR)
The consistency rate (CR) [78] is a metric that can be used to calculate the extent of change
in the explanatory features obtained when different classification algorithms are used on the
same feature set. Let C denote a set of n classification models, C = {C1, C2, . . . , Cn}, and
the corresponding set of n explanations is represented by S = {E1, E2, . . . , En}, where Ei

is the set of features generated using the classification model Ci. We defined Z =
n⋃

i=1
Ei to

represent all the individual features generated by the interpretations in S. Thus, the formula
for CR can be expressed as:

CR =
∑
i∈Z

∑
s∈S

f(i,s)
|S|

|Z|
(5.1)

With:

f : Z × S ⇒ [0, 1]

f(i, s) =
{

1, i ∈ s
0, i /∈ s

Where:
f(i, s): determine whether feature i exists in feature set S. If it exists, f(i, s) returns 1,
otherwise returns 0,
|S|: total number of classifiers,
|Z|: total number of features.

Specifically, the formula first sums the number of occurrences of each feature i in all ex-
planation sets S, that is, check whether feature i exists in each explanation set s, set s
is an explanation generated by a different classification model for each set, s ∈ S. Then
accumulate all existences (f(i, s) = 1 or f(i, s) = 0). The result is then normalized by
dividing it by the total number of explanation sets |S| to obtain the average frequency of
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feature i in different classification model explanations. Therefore, we can use the part of the
formula ∑

s∈S

f(i,s)
|S| as a subformula to represent the feature representation on the classifier.

After obtaining the average frequency of all features, the value is summed and divided by
the total number of feature sets |Z| to normalize again to calculate the consistency rate
(CR). An example is used to further illustrate the calculation process of the consistency
rate of this indicator:
Consider an explanation method S and two classification models C1 and C2. The method
generates an explanation feature set s1 = {a, b, c} under the C1 model and an explanation
feature set s2 = {b, c, f} under the C2 model. Feature a only appears in s1, feature f only
appears in s2, so the frequency of occurrence of feature a and feature f is 1

2 , and feature b
and feature c appear in both s1 and s2, so the frequency of occurrence is 2

2 . By calculating
s1 ∪ s2, we can get the total number of features |Z| to be 4. Thus, according to equation
5.1, the value of CR =

1
2 + 2

2 + 2
2 + 1

2
4 = 0.75.

The higher the CR value, the closer the selection of explanatory features between dif-
ferent classification models is, and the lower the CR value, the greater the difference in the
selection of explanatory features between different classification models. The range of CR
value is [0, 1], this means that ideally, the value of CR should be 1, that is, using different
classification models for the same explainer, the resulting explanation features are exactly
the same. On the contrary, the CR value of 1

|S| is the worst case, which means that the
original feature set resulting in ∑

s∈S
f(i, s) = 1, that is, each feature appears in only one

explanation set and not in the others. The worst case indicates that the explanation results
between the classification models are completely inconsistent. A higher CR value means
that the explanation feature set generated by the explanation method under different clas-
sification models is more consistent, indicating that the explanation method is more reliable.
A low CR value indicates that the explanation method is less reliable.

5.1.2 Soundness Rate (SR)
Soundness rate (SR) [78] is a metric that can be used to evaluate the extent of change
in explanatory features obtained when an irrelevant dataset (features filtered out from the
original dataset during the data preprocessing process) is added to the original dataset.
Therefore, this metric requires comparing two different explanation feature sets: the in-
terpretation results obtained using the original feature set and the interpretation results
obtained by adding irrelevant features to the original feature set.

The irrelevant feature set needs to meet the property requirement of not contributing
to the application classification. Specifically, a feature is only a part of the application used
to describe a specific behavior, and different feature combinations lead the classification
model to distinguish it as a malicious or benign application. Adding irrelevant features to
an application only means adding some behaviors to the program, and the behavior does
not affect the prediction results of classification models of the program as malware or be-
nign based on other feature combinations. Therefore, irrelevant features can be regarded
as noise, and they will not have a substantial impact on the application classification. Ir-
relevant features are features with the lowest variance obtained by calculating the variance
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of features between applications in the dataset during feature extraction. These features
usually do not change much and will not affect the classification results. This property can
be formulated as the following:

Exp(ci, F ) = Exp(ci, F ∪ S) (5.2)

where:
Exp(.): explanation function,
ci: ci ∈ C2, where C is the set containing all classification models,
F : the original feature set,
S: a set of irrelevant features.

The soundness rate (SR) can be defined as follows:
Let F1 be the original feature set and F2 be the feature set with irrelevant features added
to the original feature set F1, make F1 ∩ F2 = ∅. Then, let S1 and S2 be the explained set
features generated by the explanation method using a certain classification model Ci and
the feature sets F1 and F2, respectively. Irrelevant features are those whose variance is 0
during feature selection process, and the rest are relevant features. Based on formula 5.2, the
explanation function using the original dataset F1 can be expressed as Exp(ci, F ) = S1, and
the explanation function of the dataset F2 with irrelevant features added can be expressed
as Exp(ci, F1 ∪ F2) = S2. Furthermore, let Rirr and Ror be the set of irrelevant features
and the original features present in S2, respectively. So, S2 = Ror ∪ Rirr with Ror ⊆ F1
and Rirr ⊆ F2.

Thus, the soundness rate (SR) can be defined as equation 5.3:

SR = 0.25 · (1 − |Rirr|
|F2|

) + 0.75 · CR (5.3)

while |Rirr|
|F2| describes the ratio of generated features to added features. The more irrelevant

features exit in the explanatory feature set, the closer this ratio is to 1. The addition of
CR is to take into account the impact of the original feature set after adding irrelevant
features. In other words, after adding irrelevant features, the addition of CR can retain the
core features of the original feature set. When calculating SR, Z in CR 5.1 is {Ror ∪ S1},
making S = {Ror,S1}, this allows CR to be used only to measure the feature set.

An example to explain the principle of SR: assume that F1 = {a, b, c, d, e} is the orig-
inal feature set, S1 = {b, d, e} is the explained feature set obtained after using a cer-
tain explanation method based on F1, and F2 = {x, y, z} is an irrelevant feature set
with a variance of 0 during the feature selection process. By adding F2 to F1 we get
F1 ∪ F2 = {a, b, c, d, e, x, y, z}, and S2 = {b, d, y} is the explained feature set obtained by
using F1 ∪ F2, where Ror = {b, d} and Rirr = {y}. According to equation 5.3 we can get
the value of SR is about 0.79.

A higher SR value indicates that a certain explanation method has a higher soundness
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rate when using different classification models. Ideally, the value is 1, which means that the
explanation method is not affected by irrelevant features at all. A lower SR value means
that the explanation method is extremely sensitive to irrelevant features. In the worst case,
the SR value is 0.375 (0.25 ·0+0.75 · 1

2 = 0.375), which means that the explanation feature
set is completely composed of irrelevant features and the core features are all replaced.

5.2. Global Explanation Methods
Global explanation methods aim to focus on a set of instances to explain the impact of
features on the overall prediction results of the model, and the methods have been described
in detail in Section 3.2.

The meanings expressed by important features are different in local and global explana-
tion methods. As mentioned in Section 5.1, the important feature of local explanation
methods is to reveal which features contribute most to the prediction result of a single
input instance. Therefore, different input individuals will generate different important fea-
tures. However, in global explanation methods, important features are used to evaluate
their overall impact on the predictions made by the model, rather than being limited to the
predictions of a single instance. In other words, the important features generated in global
explanation methods are those whose changes should significantly affect the output of the
model across all samples in the dataset.

Based on the above understanding, this section will analyze three feature-based metrics
to evaluate some global explanation methods.

5.2.1 Stability (stb)
Stability metric are designed to verify the extent to which the generated explanation re-
sults vary between multiple runs [30], that is, whether the generated explanation results are
consistent between multiple runs.

Stability can formally defined by the following:
Let M = {m1,m2,m3, ...,mn} be a set of classification models and E be a global explainer.
Each model mi generates a set of explanation results through the explainer E, the top k
important features was selected in this result and represent it as ri. Thus, for each model
mi, we have ri = E(mi). After T runs, this result can be expressed as rt

i = E(mt
i), where

t ∈ {T}. According to the context of stability, for each model mi, we aim to measure the
consistency of the explanation results rt

i of the model across T runs, that is, the similarity of
the top k important features in the explanation results of a model after multiple runs. This
similarity can be measured using the Dice coefficient. The reason for using Dice coefficient
is that this method gives higher weight to the overlapping parts. The similarity between
two feature sets r(t1)

i and r(t2)
i can be expressed as 5.4:
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D(r(t1)
i , r

(t2)
i ) = 2 × |r(t1)

i ∩ r
(t2)
i |

|r(t1)
i | + |r(t2)

i |
(5.4)

where r(t1)
i and r(t2)

i are the top k important feature sets generated by the model mi through
the interpreter E in two different runs t1 and t2.
The average similarity of model mi in all runs can be calculated by averaging the Dice
coefficients between all different run pairs. For T runs, there are

(
T
2

)
possible run pairs, so

the average similarity of model mi in T runs can be expressed as 5.5:

sim(mi, T ) = 2
T (T − 1)

∑
1≤t1<t2≤T

D(r(t1)
i , r

(t2)
i ) (5.5)

where 2
T (T −1) is the number of different run pairs

(
T
2

)
of model mi in T runs.

Thus, for model set M , by calculating the average similarity of each model in all runs, the
overall stability of the model set can be obtained. The stability formula is as follows 5.6:

stb(M,T ) = 1
n

n∑
i=1

sim(mi, T ) (5.6)

where n is the number of models in M .

The higher the stability value, the higher the similarity of the interpretation results (top k
features) after multiple runs of the global interpretation method, which also means that the
interpretation method has high stability. Ideally, this value is equal to 1. On the contrary,
a lower stability value means that the interpretation results of the interpretation method
after multiple runs are quite different, which proves that the interpretation method has poor
stability.

5.2.2 Robustness (rob)
Robustness refers to the ability of an explanation method to remain unaffected when slight
perturbations are applied to the input [30].

Robustness can formally defined by the following:
Let M = {m1,m2,m3, ...,mn} be a set of classification models and E be a global ex-
plainer. For a dataset d, each model mi generates a set of explanation results through the
explainer E, the top k most important features was selected in this result and represent it
as ri. Thus, for each model mi, we have ri = E(mi, d). After ri is generated, We randomly
select a set of not the most important features si with the same number as ri from the
remaining features (i.e., all features except ri) so that

|si| = |ri| and si ∩ ri = ∅,

The reason for avoiding choosing the least important features for perturbation is that if the
perturbation of important features obtains lower robustness, we cannot judge whether it
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is because the explanation method itself is not robust or because the change of important
feature values destroys key information, resulting in a large difference in the explanation
results. We add perturbations to the feature values corresponding to si and generates a
new dataset d′. We use the new dataset d′ to generate new perturbation results pi, so for
each model mi, we have pi = E(mi, d

′). The similarity between ri and pi can be measured
by the dice coefficient. In the context of robustness, we aim to measure the sensitivity of
an explanation method to small changes in input features, i.e., the consistency between the
original explanation results ri and the explanation results after perturbations pi. This part
can be formulated as equation 5.7:

R(ri, pi) = 2 × |ri ∩ pi|
|ri| + |pi|

(5.7)

For the entire model set M , we can get the overall robustness evaluation by averaging the
robustness values of each model mi:

rob(M,d) = 1
n

n∑
i=1

R(ri, pi) (5.8)

High robustness value means that the interpretation method remains consistent under
slightly perturbed inputs. When the robustness value is close to 1, it means that the interpre-
tation results before and after the perturbation are almost the same, and the interpretation
method is insensitive to small changes in the input and has high stability. Low robustness
value means that the interpretation method is very sensitive to changes in the input, re-
sulting in unreliable interpretation results.

5.2.3 Effectiveness (eff)
Effectiveness is a measure of how important the explanation results (important features)
are to the predictions. If important features are the basis for the model predictions, remov-
ing important features should result in significant changes in the classification prediction
results [30].

Effectiveness can formally defined by the following:
For model set M = {m1,m2,m3, ...,mn} and a original dataset d, run each model mi on
the original dataset d and generate predictions yi, then use explainer E to extract the top k
important features for each model mi, denote as ri = E(mi, d). After that, for each model
mi, we remove the important features ri of the model obtained by the explainer and obtain
a new dataset d′. Use model mi again on the new dataset d′ to get a new prediction result
y′

i. In the context of effectiveness, we aim to measure the prediction results change when
features considered important are removed. This change can be measured by comparing
the predictions yi of the original dataset with the predictions y′

i of the new dataset after
removing the important features. For each model mi, the effectiveness measure ei can be
expressed as:
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ei(mi, d) =
{

1, |yi − y′
i| ≥ λ,

0, |yi − y′
i| < λ.

(5.9)

where λ is a threshold value. The reason for adding the threshold is to allow a certain degree
of error, that is, to ignore the too small fluctuations produced by the model. Only when the
error exceeds the threshold, we consider these features to have an important influence on
the decision of the model. Otherwise, they have no influence. If the prediction results after
deleting important features are different (decreasing) from the original prediction results,
it is considered that these features have a positive impact on the prediction basis of the
model, so ei = 1, otherwise it is ei = 0. For the model set M , the effectiveness can be
measured by averaging the value of each ei:

eff(M,d) = 1
n

n∑
i=1

ei (5.10)

where n denotes the number of models in model set M .
The higher the average effectiveness value, the higher the proportion of models whose pre-
dictions change after deleting important features, indicating that the important features
identified by the interpretation method play a key role in the model prediction and the
stronger the effectiveness. Conversely, the lower the effectiveness value, the less significant
the change in the model prediction results after deleting the features, indicating that the
results obtained by the interpretation method are not effective.

The higher the effectiveness, the more reliable the results obtained by the interpretation
method are if the results obtained by the interpretation method are the basis for the model
predictions. Conversely, if the model prediction results do not change significantly after
deleting important features, it means that the decision basis of the model is irrelevant
to the results obtained by the interpretation method. In this case, it is difficult for the
feature-based global interpretation method to trust the interpretation results generated by
the interpretation method because it fails to identify features that actually affect the model
predictions.
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6. Experiments Setup

In this study, we intend to evaluate the selected XAI methods based on 5 selected metrics.
Our experiment is divided into two parts: local XAI methods and global XAI methods. The
specific process is shown in Figure 6.1.

Figure 6.1: Experiment set-up for evaluating local and global XAI Android malware
detection methods

We first preprocessed the data to filter out outliers and missing values, and selected XAI
methods that generated meaningful results and their supported black-box models. For local
explanation methods, we divided relevant and irrelevant features by calculating the vari-
ance of the data. Then, black-box malware detection models based on SVM, RF, XGB, and
MLP were trained. Subsequently, we used the four selected local XAI methods to explain
the results generated by the candidate models. Finally, the performance of XAI methods
was evaluated based on consistency rate and soundness rate. For global explanation meth-
ods, we trained black-box malware detection models based on SVM, RF, XGB, and MLP.
Subsequently, we used the four selected global XAI methods to explain the candidate mod-
els. Based on the explanation results, the most important features were selected and the
results generated by the candidate models were explained using the four selected global XAI
methods. Finally, the performance of global XAI methods was evaluated based on stability,
robustness, and effectiveness. The specific details of these steps will be discussed in the
rest of this Section.

6.1. Dataset
In 2017, Wei et al. built a large Android malware dataset, called AMD [88]. This dataset
collects 24,650 malware samples from 2010 to 2016 and manually analyzed them, which
were divided into 71 families and their 135 variants. AMD calibration method for malware
family information is based on the return results of VirusTotal, that is, each sample is voted
for using an antivirus engine. If the family label given by the result is consistent with more
than half, the label is assigned to the corresponding sample. The categories of AMD are
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shown in Table 6.1. Since AMD only contains malware datasets, to balance the data set
and improve the reliability of the overall analysis, we also need benign data to improve the
generalizability of the model. The benign dataset was downloaded from AndroZoo [3], which
is a growing collection of Android applications from multiple sources. Currently, the platform
provides 25,071,571 different APKs, and each APK has been tested by at least 10 different
AntiVirus tools to ensure the reliability of its data. Androzoo contains both malware and
benign datasets, aiming to provide and encourage researchers with new potential research
topics.

6.1.1 Features and Data Preprocessing
In Android applications, APK is the installation package of the application, which con-
tains files such as the manifest file (AndroidManifest.xml), the dex file (classes.dex) and
other resources. The AndroidManifest.xml file in the APK defines various components of
the application, such as Activity, Service, Broadcast Receiver and Content Provider, while
classes.dex contains the compiled application code [27]. As we mentioned in Section 4,
the methods used for static and dynamic analysis of Android applications are different. In
order to perform static analysis on Android applications, the APK needs to be unzipped
and decompiled to extract static features of the manifest file and dex file. For example,
sensitive permissions, activity names, intents and other configuration information can be
extracted from the manifest file, while sensitive API calls, control flow and data flow can
be extracted from the dex file. In addition, APKs that failed to parse or were incomplete
need to be removed to avoid their impact. The feature extraction process is completed by
Androguard1, a tool written in Python that can be used to process Android files. After
screening, we obtained a total of 696 static features. In contrast, dynamic analysis of An-
droid applications requires executing applications in a dedicated analysis environment and
extracting dynamic features by monitoring runtime behaviors (such as system calls, Binder
calls, network traffic, and file operations) [56].

Given that AMD only contains malware samples, we downloaded the same number of
benign samples as AMD from AndroZoo at the same time. Since our experimental design
covers a variety of detection models and explanation methods, using all the data will signif-
icantly increase the computational overhead. Therefore, we only extracted a total of 2,402
benign samples from two sources, anzhi and huawei. To avoid experimental bias and ensure
the balance of the two categories in the experiment, we randomly selected 2,400 from each
of the benign and malware samples, a total of 4,800 apks for analysis and experiments. We
set bit 0 to represent the malware sample label and bit 1 to represent the benign sample
label.

To split the training and test sets, we use ShuffleSplit from sklearn2 to perform random per-
mutation cross-validation on the dataset, where we set n splits = 10 to create 10 different
training and test splits. For each split, 85% of the dataset is divided into the training set
and the remaining 15% is divided into the test set to ensure that the benign and malware

1https://github.com/androguard/androguard
2https://scikit-learn.org/stable/modules/generated/sklearn.model selection.ShuffleSplit.html
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Type Description # of families
Trojan It disguises itself to attract users to down-

load, aiming to destroy, steal users impor-
tant files, information, passwords, etc., or re-
motely control the computer of the infected
user.

12

Trojan-SMS Attacks targeting mobile text messaging are
aimed to intercept or send malicious text
messages.

15

Trojan-Banker Targeting on online banking and digital fi-
nancial transaction programs, used to steal
infected users sensitive information such as
identity, banking login credentials, etc., in or-
der to commit fraud in the form of monetary
theft, identity theft, etc.

5

Trojan-Clicker By trying to connect to online resources,
mimicking users clicking on designated URLs
to increase advertising revenue.

2

Trojan-Spy Monitor user activities, including capturing
and recording keystrokes, websites visited by
infected users, emails, tracking logins and
other sensitive data.

4

Trojan-Dropper Designed to drop additional malicious pro-
grams on already infected mobile or comput-
ers.

6

Backdoor By bypassing normal authentication proce-
dures, it can remotely access resources within
unauthorized applications on the system, or
damage or delete hard disk data.

11

Hacker Tool Launch attacks against local or remote com-
puters and hide attackers presence on the
system.

2

Adware Advertisement-supported software, mali-
cious adware makes illegal profits by popping
up ads on mobile devices or computers to
trick users into clicking or installing them.

8

Ransom The user is held ransom by encrypting files
to prevent access.

6

Table 6.1: The details of AMD malware dataset categories and descriptions.
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two classes are evenly distributed in all splits. ShuffleSplit randomly shuffles the data and
each split is independent and non-repeated, which can better reflect the actual performance
of the model.

6.1.2 Feature Selection
Based on evaluation metrics for local explanation methods 5.1, we first need to divide the
features into relevant features and irrelevant features. For the purpose of distinguish rele-
vant and irrelevant features in the dataset, we calculate the variance of the features and
sort them. The features with the variance of 0 are considered as irrelevant features and
the rest are relevant features. The larger the variance of a feature, the more important the
feature is. Conversely, the smaller the variance of a feature, the less important the feature is.
Features with a variance of 0 are the least important features and are therefore considered
irrelevant features. Among all 696 features, some features have variance values very close
to 0 but not 0, and the amount of information contained in these features are very small. In
order to avoid noise interference from these features with very small variances, we select the
top 200 features with the largest variance as relevant features, and the 200 features with
a variance of 0 as irrelevant features. However, for the global explanation methods, this
feature extraction processing is not necessary. The extraction of important features in the
global interpretation method is based on the values obtained by the explanation methods,
which will be discussed in detail in Section 6.3.2.

6.2. Models and Explanation Methods Selection
In Section 3 we have discussed several models and explanation methods that can be applied
for Android malware detection tasks. The selection of explanation methods was driven by
two key factors. The first was whether the explanation method could generate meaning-
ful explanation results for our dataset and the selected classification models. That is, the
explanation method needs to produce low-complexity explanation results that are easy to
understand and analyze. Meaningless explanation results cannot provide actionable insights
to analysts, thus undermining the trust and understanding of XAI technology. Second,
we also considered the computational efficiency of the explanation method. XAI techniques
usually consume additional computing resources to generate decision explanations for black-
box models, but in actual applications, analysts cannot spend a lot of time waiting for the
generation of explanation results. Therefore, such explanation methods are considered in-
efficient [13], [9].

After our tests, based on the explanation methods of generating counterfactuals, CEM,
CF and ProtoCF fail to generate explanation results. Among them, the CEM method failed
to generate ”PP” and ”PN” instances, and CF and ProtoCF failed to find valid counter-
factual instances. This shows that these methods have certain limitations in the selection
of models or under the current data distribution, and cannot provide feasible or explainable
counterfactual results. The local method LORE needs to generate a large number of syn-
thetic neighborhood samples around the original sample through a genetic algorithm, which
is computationally intensive and time-consuming; the global interpretation method PI needs
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to shuffle each feature value one by one to observe the changes in the model output; the
global SHAP method needs to summarize the results of multiple local interpretations for
global analysis, so these methods require a lot of computing resources. Taking the SVM
model as an example, when running a complete explanation task, methods such as ALE
and PD only take a few minutes to generate explanation results, while PI methods take at
least 2 hours. The running time of each explanation method on the SVM model is shown
in Table 6.2:

Method Time(s) Generate Meaningful Result Description
ALE 149.15 Yes Global
PD 292.21 Yes Global

PDV 270.15 Yes Global
Morris 132.47 Yes Global

PI 8938.30 Yes Global
SHAP Global 18730.79 Yes Global

LIME 1.11 Yes Local
SHAP 11.73 Yes Local

Anchors 1.75 Yes Local
EDC 0.59 Yes Local

LORE 573.08 Yes Local
CF NA No cf instances Local

ProtoCF NA No cf instances Local
CEM NA No ‘PP’/‘PN’ Local

Table 6.2: The running time of each explanation method on the SVM model and
whether it can generate interpretable results.

Since our experiments focus on the interpretability of black-box models and use tabular
data, the choice of interpreter, whether it is a local or global interpretation method, needs
to be able to effectively capture and explain the underlying decision-making process in the
black-box model and needs to be compatible with the tabular data format. There are al-
ready some relatively complete Python libraries for interpreting machine learning models,
such as Alibi [49], interpretationML [45], [42] and OmniXAI [91] etc. However, most of the
explanation methods we mentioned in these libraries do not currently support models built
with TF/Keras. Although the explanation method based on generating counterfactual in-
stances can support the model built by TF/Keras, it cannot generate interpretable results.
Therefore, our study was limited to using classical machine learning models, SVM, RF,
XGBoost and MLP. Since linear models are usually easy to interpret [56] and our research
goal is mainly to target models with low interpretability, linear SVM is not in our selection.

Finally, our experiment chose to use LIME, Anchors, SHAP and EDC as local methods,
and ALE, PD, PDV and Morris method as global explanation methods to evaluate four
black box models: SVM, RF, XGBoost and MLP.
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6.3. Evaluations
The purpose of our experiments is to evaluate the trustworthiness of the results generated by
various explanation methods using the metrics we selected. The experiments are divided into
two parts: local explanation method evaluation and global explanation method evaluation.
Although the two explanation methods use different explainers, the underlying prediction
model remains consistent in both parts. As described in the 3.1 section, the criterion for
selecting classification models is high accuracy but poor interpretability, because models
with high interpretability usually have more transparent and easy to understand decision-
making processes, which may not fully challenge the ability of explanation methods in
complex tasks. As shown in the figure 3.1, four different classification models are selected
for our experiments: SVM, RF, XGBOOST and MLP.

For the performance evaluation of these black-box models, we use accuracy, precision, recall
and F1 score to evaluate the performance of the models, which are also the most com-
monly used detection metrics in current machine learning-based Android malware detection
methods. For this, we utilize the confusion matrix to provide insights into how the model
performs in the classification task. This matrix describes the number of correct or incorrect
classifications made by the model in the classification task. The four key metrics in the
confusion matrix are: True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN). The confusion matrix for our classification task is presented in Table
6.3:

Truth Prediction
Positive Negative

Positive TP FN
Negative FP TN

Table 6.3: The description of a confusion matrix.

In our experiments, the models prediction results are based on whether samples labeled
as malware can be correctly identified, so in the confusion matrix, we consider malware
samples as positive and benign samples as negative. Thus, the four key metrics can be
defined as:

• TP: labeled as malware, predict as malware;

• FP: labeled as benign, predict as malware;

• FN: labeled as malware, predict as benign;

• TN: labeled as benign, predict as benign.

Then the detection of model performance evaluation metrics can be defined as:

• Accuracy: T P +T N
T P +F P +F N+T N

;

• Precision: T P
T P +F P

;

• Recall: T P
T P +F N

;

• F1 score: 2×P recision×Recall
P recision+Recall

.
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Table 6.4 lists the parameter settings of the four classification models. These parameter
configurations are the parameter combinations with the best comprehensive performance
based on the above four performance evaluation metrics.

Model Parameter
SVM C=100, gamma=scale, kernel=rbf, probability=True

Random Forest max depth=None, n estimators=200, n jobs=-1,
min samples split=5, min samples leaf=1

XGBoost learning rate=0.1, max depth=3, n estimators=300,
subsample=1.0, n jobs=-1

MLP alpha=0.01, max iter=200, activation=tanh, hid-
den layer sizes=(100,)

Table 6.4: The parameters setting of 4 classification models.

6.3.1 Local Explanation Methods
In this experiment, we selected 4 explanation methods, LIME, Anchors, SHAP and EDC
methods for evaluation. The aim of this experiment is to evaluate the trustworthiness and
effectiveness of these explanation methods in explaining the decision-making process of
black box models. To evaluate these local explanation methods, we use two metrics, con-
sistency rate and soundness rate as mentioned in Section 5, to verify the results obtained
by the local explainers.

Consistency Rate (CR)

As discussed in Section 5.1.1, CR is used to measure the degree of changing in the explained
features obtained when using different classification algorithms on the same feature set. For
a given single instance, we want to know whether the results obtained by the explanation
method are consistent under different classification models.

To achieve this goal, we need to run different classification models on the same inter-
preter. In order to improve classifier performance and reduce the number of features to
reduce feature complexity, we only use relevant features for this experiments. First, we train
different classification models in sequence and use a selected local explanation method to
explain the same instance and generate a list of important features. The explanation features
generated by each model are collected into a list, allowing us to evaluate the consistency of
these features across different models. When the explanations of all models are obtained,
the consistency rate of the explanation results obtained by the explanation method across
different models can be calculated according to the CR formula. Repeat the above steps
until all explainers obtain CR results to ensure a more comprehensive evaluation of different
explanation methods. However, in fact, the explanation results are unstable, which means
that even when the same model and explainer are used for multiple runs on the same in-
stance, the explanation results obtained each time may not be exactly the same. This is
because the distribution of instances generated by local explanation methods is not fixed. To
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solve this problem, we run multiple times with 20 different random seeds, repeat the expla-
nation process 20 times and take the average results, and use the average results of all runs
as the final CR result. This repeated evaluation helps to mitigate the impact of randomness.

A higher CR value indicates that the explanation results produced by the explanation
method for different models have a higher similarity and can generate more consistent
explanation results. This means that the explanation method is relatively independent of
a certain model and has good general applicability. Specifically, a higher CR value means
that the explanation method can effectively generate data features that are important to
different models. A lower consistency rate means that the explanation results produced by
the explanation method for different models vary greatly, and the explanation method may
depend on a certain model. The change in the explanation results also means that the
explanation method may be more suitable for certain specific models and depends to a
certain extent on the decision-making method of the specific model.

Soundness Rate (SR)

As mentioned in Section 5.1.2, SR is used to measure the degree of change in the explana-
tory features obtained after adding an irrelevant dataset to the original dataset. Therefore,
in this experiment, we need to add the irrelevant features filtered out in the feature extrac-
tion step 6.1.1 into the original dataset. The purpose of this experiment is to analyze the
impact of adding irrelevant features on the important features generated by the explanation
methods. By comparing the explanation features generated before and after adding irrele-
vant features, we can evaluate the soundness of the model explanation under the influence
of irrelevant data.

To measure the change in the explanation results after adding irrelevant features, we can
compare them with the explanation results of the original features. Specifically, when ir-
relevant features are added, whether the explanation feature set is consistent with the
explanation feature set obtained using the original features. In addition, we also need to
consider whether the explanation feature set contains irrelevant features. The original fea-
ture set is trained with different classification models in turn and generates an explanation
feature set with the specified interpreter. The explanation features generated by each model
are collected into a list. In the second run, we add irrelevant features to the original features
to generate a new feature set. We repeat the steps of the first run with the new feature set
to obtain a new explanation feature set after adding irrelevant features and store it in a new
list. After obtaining these two results, we can derive the soundness rate of the explanation
method according to the SR formula. Then we run multiple times with 20 different random
seeds, repeat the explanation process 20 times and take the average results, and use the
average results of all runs as the final SR result.

A higher SR value indicates that the explanation method is not affected too much after
adding irrelevant features, and the interpretation results are relatively stable and reliable.
In other words, a higher SR indicates that the explanation method can ignore the noise
caused by irrelevant features and focus more on the truly important features. On the con-
trary, a lower SR value means that the interpretation method is very sensitive to irrelevant
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features and is easily affected by noise. Therefore, the conclusions drawn by this method
have lower reliability. When irrelevant features appear in the interpretation feature set, it
means that the interpretation method mistakenly identifies irrelevant features as relevant
features, thereby drawing wrong conclusions, which means that the results obtained by the
explanation method are unreliable and people will be confused by the results. Because ide-
ally, the explanation method should be noise resistant and be able to successfully filter out
irrelevant features, thereby providing more reliable interpretation results.

6.3.2 Global Explanation Methods
In the experiments of global explanation methods, we focus on analyzing the trustworthiness
of the results generated by global explanation methods. We selected 4 global explanation
methods, ALE, PD, PD Variance and Morris method we have discussed in Section 3.2, and
evaluated them according to the three global explanation feature-based metrics, stability,
robustness and effectiveness we formulated in Section 5.2.

Important Features Extraction

The important feature extraction method in the global explanation method is different
from that in the local explanation method. The important features of the global explana-
tion method are based on the generated results of the explanation method. The explanation
results generated by the feature-based explanation methods mainly include feature names
and their corresponding values. For example, the ALE method contains ale values, PD con-
tains pd values, PD Variance contains feature importances, and the Morris method contains
scores, which is also the basis for our ranking of important features. As described in Section
3.2.2 and Section 3.2.2, the pd values in the PD method are the marginal effects of the spe-
cific values of each feature on the prediction, and the ale values are the locally accumulated
average difference of the features to the model predictions within the interval. Therefore,
we can rank the feature importance by calculating the range of variation of the pd values
and ale values of each feature to find out the important features that affect the model
prediction. Taking the feature ’android.permission.CAMERA’ as an example, the feature
value is 0 and 1, so the pd value is: [[0.49814314, 0.48507062], [0.50185686, 0.51492938]],
the first array is the pd value when the feature is 0, and the second array is the pd value
when the feature is 1. The first element in each array corresponds to the malware label we
set, and the second element corresponds to the benign label. This shows that when the
feature value is 0, the model predicts that the probability of malware is about 0.49814314,
and the model predicts that the probability of benign is about 0.48507062. When the fea-
ture value is 1, the model predicts that the probability of malware is about 0.50185686,
and the model predicts that the probability of benign is about 0.51492938. Thus, by cal-
culating the difference between the maximum and minimum values in the array, that is,
0.51492938 - 0.48507062 = 0.02985876, we can get the influence range of the feature
on the prediction output under different values. The larger the range of variation, the
more important the feature is. For the ale values of this feature, we can also get a array:
[[0.00653626,−0.00653626], [−0.00653626, 0.00653626]], the positive and negative values
are due to the centralization of the ale method. This means that when the feature value is 0,
the model predicts effect of malware class increases by 0.00653626 and the effect predicts as
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benign decreases by 0.00653626. When the feature value is 1, the result is the opposite. We
can also find important features by calculating the difference between the absolute values
of the maximum and minimum values. This ale values shows that the average effect of this
feature is zero, so the impact is weak. PD Variance method 3.2.2 includes feature importance
values: [[0.00924367, 0.00476579, 0.00029151, ...], [0.00924367, 0.00476579, 0.00029151, ...]],
where the first array represents the importance score of each feature when the feature value
is 0, and the second array represents the importance score of each feature when the feature
value is 1. We can get the important features by calculating the importance difference be-
tween each feature value. In Morris method 3.2.2, scores measure the impact of the input
variable on the model output when the feature value changes. For example, the scores gener-
ated by Morris method are [0.012768212932900513, 0.0033002767857142844, 0.0036563035714285595, ...],
each score represents the average sensitivity of an input feature. The higher the score, the
more sensitive the feature is, that is, the greater the impact on model prediction.

Through the above method, we can sort the calculated importance of each feature and find
the key features that have a greater impact on the prediction results. In the sorting process,
we first evaluate the range of change of each feature on the predicted output under different
values. Features with a larger range of change indicate that the feature can cause significant
changes in the model under different values, otherwise it indicates that the feature has a
weak influence. In addition, considering that our experiment is based on important features,
and there are a large number of features with weak influence in the actual feature set, we
need to choose an appropriate number of important features to avoid the interference of
these features on subsequent interpretation or decision-making. Referring to the experience
of Fan et al. [30] and Soulimani [78] in selecting the number of important features in local
interpretation methods, Fan et al. selected a maximum of 20 features in the experiment,
while Soulimani selected a maximum of 30 features. Given that the number of features we
use is between the two, we finally decided to select the top 30 features with the highest
importance after sorting as the most important features. This number can filter out features
with weak or even zero influence, and can also ensure that key information is fully captured.

Stability (stb)

In the Section 5.2.1, we have discussed the definition of stability, the degree to which
the explanations generated by the explanation method vary between runs. We believe that
explanation methods should be stable, that is, the results they produce should remain con-
sistent across multiple runs.

To verify this, we measure the stability of the explanation method by comparing the sets of
important features generated across multiple runs with different random seeds. Specifically,
we apply different random seeds to generate important feature sets in multiple experiments
and compare the similarity between sets. If the important feature sets generated in multiple
runs are highly consistent, it means that the method is stable. We first run the selected
explanation method multiple times, and the explanation feature set generated in each run
contains the top 30 important features, and the results are stored in a list. These sets are
then compared in pairs to calculate the similarity between the sets. In our experiment, the
number of multiple runs is 20, so the number of feature set pairs is 20×(20−1)

2 = 190. Finally,
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we average the similarity values obtained for these set pairs to obtain the final stability of
the explanation method. Repeat the above steps until all explanation methods have ob-
tained similarity values.

An explanation method with high stability means that after multiple runs, the interpre-
tation feature sets maintain a high consistency rate, that is, the results of each run do not
change significantly, indicating that the explanation method has high stability. On the con-
trary, low stability means that the interpretation feature sets generated between different
runs are very different, indicating that the explanation method has poor stability and the
generated interpretation results are not reliable.

Robustness (rob)

The robustness of the explanation method means that when a slight perturbation is applied
to the input, the explanation results generated by the explanation method are basically
consistent with the results generated using the original data, without significant changes.
This shows that the method can identify the truly important features in the data without
being overly sensitive to small input changes and generating misleading explanations.

To verify the robustness, for a given global explanation method, we first apply each clas-
sification model to the original data and obtain the corresponding explanation results. In
our experiments, these explanation results are the top 30 important features identified by
each model through the explanation method. After obtaining the important features, we
randomly select 30 non-important features from the remaining features after excluding the
important features for perturbation. The reason for selecting non-important features for
experiments is to avoid destroying key information, otherwise it will be difficult to distin-
guish whether the change in the results is due to the lack of robustness of the explanation
method itself or the destruction of key information. We use eigenvalue permutation as the
perturbation method, that is, for the selected non-important features, we replace their value
0 with 1 with a certain probability, and for binary values, flip their value 1 to 0 with a certain
probability. For integer values greater than 1, we randomly add or subtract 1 with a certain
probability. We use this method to perturb all important features in turn and obtain a set
of new features based on perturbation. After that, we apply the new feature set based on
perturbation to generate a new perturbed explanation feature set, and compare this fea-
ture set with the original explanation feature set. Based on this result, we can deduce the
robustness of the explanation method according to robustness formula discussed in Section
5.2.2. We run the experiment 20 times with different random seeds to reduce the impact
of random variations. We store the robustness values obtained for each run in a list, and
after all runs are completed, we average the values in the list to obtain the final robustness
value of the explanation method. Repeat the above steps until the robustness of all global
explanation methods is obtained.

We hope that the explanation method to be robust to small perturbations. Small per-
turbations mean that the input data has changed slightly, while the underlying important
features remain largely unchanged. For small perturbations, the higher the robustness value,
the less sensitive the explanation method is to small changes in the input, the noise can
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be ignored, and it has a certain degree of noise resistance, indicating that the explanation
method can stably identify important features in the data and will not produce misleading
explanation results due to noise. Low robustness means that the explanation method is ex-
tremely sensitive to small noise, and small changes in the input will cause significant changes
in important features, so the explanation results produced by the explanation method are
unreliable.

Effectiveness (eff)

The effectiveness of an explanation method means that the results generated by the method
are valid and trustworthy. This shows that the important features generated by the expla-
nation method are an important basis for the models decision-making process, and when
the important features change, the models prediction results will also change significantly.
Effectiveness represents that the explanation method can accurately capture the decision
basis of the model, so that users can trust its explanation results.

The purpose of this experiment is to evaluate whether the explanation results generated by
the global explanation method are the decision basis of the model by comparing the changes
in accuracy before and after the classification model deletes important features. To verify
the effectiveness, we first select a classification model, train it on the original dataset, and
record the original accuracy of the model. After obtaining the model prediction results, the
specified explanation method is used to generate the explanation results of the model, that
is, the top k most important features, which are regarded as important bases for the model
to make predictions. These features account for about k of the total number of features.
Among them, the selection of k is based on the percentage of the total number of features
(for example, 10%, 20%, etc.).
The selection of k is to balance the importance and information deletion. Deleting too
many features may cause too much information loss and affect model prediction, and it is
impossible to determine whether the change in results is caused by the deletion of impor-
tant features; deleting too few features may cause the model to be insensitive to a small
amount of information loss due to the robustness issues of some classification models. At
the same time, based on the number of k, we can also determine the approximate number
of important features required for model decision-making.
After that, we delete the top k important features determined by the explanation method
to form a new feature set. The new feature set no longer contains these top k features, and
the remaining features are the same as the original features. We use the new feature set
to predict the selected classification model again and compare the results with the original
results. f the model metrics: : accuracy, precision, recall and F1 score after deleting the
features are less than the original metrics, the deleted features are considered to be more
important for model decision-making, and the validity is recorded as 1; if the experimental
metrics do not change, the validity is recorded as 0.
However, even if the same data is used for repeated runs, the accuracy obtained each time
cannot be exactly the same. This is because the training samples, initialization weights and
other factors of the model during the training process are random, resulting in different ini-
tial states during model training and different results. Secondly, the accuracy change in the
two experiments is too small to determine whether it is caused by the random fluctuation
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of the model or the deletion of important features.
To solve this problem, we set a threshold, that is, when the model accuracy changes by
more than 5%, we consider the change to prove effectiveness. Otherwise, the change can be
ignored. The setting of the threshold can help us more accurately judge the actual impact
of deleting important features on model decisions and avoid mistaking slight random fluc-
tuations of the model for changes in feature importance. After obtaining the results, we can
derive the effectiveness of the explanation method based on the effectiveness formula, that
is, whether the explanation feature set is an important basis for model decision-making.
At the same time, in order to avoid fluctuations in model prediction results, we use 20
different random seeds for multiple runs, and store the two results obtained from each run
in two different lists, and then average the effectiveness obtained from each run to obtain
the effectiveness of the explanation method for the classification model.
Repeat the above steps until all classification models are verified, and then we average the
effectiveness of all models to obtain the final effectiveness of the explanation method. Then
change the explanation method and repeat the above steps until the effectiveness of all
explanation methods is obtained.

One potential problem is that if enough features are deleted, even if they include unim-
portant features, the performance of the model will deteriorate. This is because deleting a
large number of features may reduce the amount of information available for the model to
learn, or change the data distribution. To avoid interference from this situation, we added
a verification step based on the original experiment, that is, deleting irrelevant features
and retaining only relevant features for model prediction. If the important features in the
explanatory feature set are the basis for the model decisions, then even if the model only
uses the important features for prediction, the prediction results should be similar to those
obtained using the original feature set.

A higher effectiveness value indicates that the interpretation results generated by the ex-
planation method are the basis for model decision-making, so the results obtained by the
explanation method can be considered valid. A lower validity indicates that the model does
not rely on the important features generated by the explanation method, and the explana-
tion method fails to effectively capture the real basis for model decision-making, resulting
in a lower credibility of the interpretation results.

6.4. Hardware
All experiments were run on a Vibranium server at the Leiden Institute of Advanced Com-
puter Science (LIACS) Data Science Lab. Vibranium has the following specifications:
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CPU 48 Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
Storage 3TB
RAM 256GB
OS CentOS Linux release 7.9.2009 (Core)

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit

CPU cores 12
GPU NVIDIA GeForce RTX 3090

6.5. Software
This section summarizes the implementation (libraries used) of each XAI method and the
use of four machine learning methods. Table 6.5 summarizes the libraries used by each
model, and Table 6.6 summarizes the libraries used by the explanation methods used in the
experiments.

Model Implementation
SVM sklearn.svm
RF sklearn.ensemble

XGBOOST xgboost
MLP sklearn.neural network

Table 6.5: Packages used by four machine learning models.

Explainer Implementation
LIME lime
SHAP shap (KernelExplainer)

Anchors alibi
EDC Github
ALE alibi
PD alibi

PD Variance alibi
Morris InterpretML

Table 6.6: Libraries used by each explanation methods. EDC does not yet provide a
library package that can be installed directly, so we need to download the source code
from Github manually3 4.

3https://github.com/oussama-soulimani/Evaluating-the-explanation-of-android-malware-
detection/blob/master/fn sedc.py

4https://github.com/oussama-soulimani/Evaluating-the-explanation-of-android-malware-
detection/blob/master/sedc algorithm.py
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7. Experiment Results and Discus-
sion

This section presents our experimental results, including the prediction results of the classi-
fication models and the results of the explanation methods. The results of the explanation
methods are divided into local explanation results and global explanation results.

7.1. Local Explanation Results
In the local explanation experiment, we applied two metrics consistency rate (CR) and
soundness rate (SR) to evaluate the performance of four local explanation methods LIME,
SHAP, EDC and Anchors on four classification models SVM, RF, XGBoost and MLP. In
this section, we discuss the results obtained based on the two metrics respectively.

Table 7.1 lists the parameters and descriptions used of each local explanation method
in the experiment.

7.1.1 Consistency Rate (CR)
In the experiment of CR, we want to check whether the set of explanatory features gener-
ated by the explanation method is consistent across different classification models. Besides,
the experiment also tested different parameter configurations of these explanation methods.
By comparing the CR values under different parameters, we can intuitively find the impact
of parameters on the consistency rate of explanation methods.

LIME CR Results

The CR results of the LIME method are shown in Table 7.2. According to the results in the
table, the parameters with the highest consistency rate obtained by the LIME method are
“distance metric: manhattan, num samples: 7000”, and the result is 69.94%. The parame-
ters with the lowest consistency rate are “distance metric: euclidean, num samples: 9000”,
and the result is 57.17%.

Figure 7.1 shows the changing trend of LIME under different parameters. From Figure
7.1 (left), we can see that the CR rises sharply between the 10th and 11th indexes. Com-
bined with Table 7.2, we can find that this is due to the change of the distance parameter.
From Figure 7.1 (right), it can be clearly find that the CR value of LIME changes sig-
nificantly under different distance parameters and the number of neighborhood samples.
When the Manhattan distance parameter is used, the highest CR result is 69.94%, and the
worst CR is 67.12%. When the Euclidean distance is used, the highest CR of LIME is only
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Parameter Description Method
distance metric The distance between the perturbed data

point and the original data point. The closer
the instance is to the explanation, the greater
the weight assigned.

LIME

num samples The number of new perturbed samples gen-
erated after perturbing the sample point.

LIME

l1 reg The selection of l1 regularization, auto in-
dicates automatic selection, aic uses Akaike
and bic uses Bayesian information criteria for
regularization parameters selection

SHAP

nsamples The number of subsets used to estimate the
shap value.

SHAP

max iter The maximum number of iterations in the
search procedure.

EDC

threshold classifier Threshold, when the score exceeds the
threshold, the instance is predicted as pos-
itive, otherwise it is negative. Probs is the
predict proba method of the model, which is
used to predict the training data and return
the probability that each sample belongs to
each category.

EDC

batch size The batch size of sampling Anchors
tau the multi-armed bandit parameters for se-

lecting candidate anchors at each iteration,
i.e. finding the most promising anchor within
a tolerance according to precision.

Anchors

threshold The minimum anchor precision threshold,
which is an anchor that maximizes the cov-
erage under precision constraint.

Anchors

Table 7.1: The parameters of each local explanation methods.
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61.02%, and the lowest CR is 57.17%. Therefore, when the Manhattan distance parameter
is used, the CR value is much higher than the Euclidean distance. This shows that for our
dataset, using Manhattan distance can obtain a higher consistency rate. In other words,
the important features identified by LIME using Manhattan distance have a greater overlap
between different classification models. This means that LIME can provide a more reliable
explanation under this parameter.
Under both distance parameters, the number of neighborhood samples reaches a peak at
7000. When the number of samples exceeds 7000, the CR value begins to decrease, indi-
cating that too many samples may introduce noise and make the local linear approximation
effect worse, resulting in large differences in the important features identified between mod-
els. When the distance parameter is Euclidean distance and the number of neighborhood
samples is 9000, LIME has the worst consistency rate of only 57.17%. This shows that the
explanation feature results generated by different classification models are very different.

In summary, this experiment shows that for the dataset and classification model we se-
lected, when Manhattan distance is used and the number of neighborhood samples is set
to 7000, LIME can obtain a high and stable consistency rate. The high consistency rate
indicates that the important features identified by the four models have a high degree of
similarity. This result provides a valuable reference for further optimizing the parameter
selection of LIME.

Figure 7.1: CR results of LIME under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.2, while the vertical axis displays the corresponding CR value. (Right) CR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the CR results.

SHAP CR Results

The CR results of the SHAP method are shown in Table 7.3. According to the results in the
table, we can find that the highest consistency rate result obtained by the SHAP method
is 68.41%, and the lowest consistency rate result is 50.79%.
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Index Parameters LIME CR Results
1 distance metric: euclidean, num samples: 1000 0.5823
2 distance metric: euclidean, num samples: 2000 0.5940
3 distance metric: euclidean, num samples: 3000 0.5975
4 distance metric: euclidean, num samples: 4000 0.5939
5 distance metric: euclidean, num samples: 5000 0.6018
6 distance metric: euclidean, num samples: 6000 0.6043
7 distance metric: euclidean, num samples: 7000 0.6102
8 distance metric: euclidean, num samples: 8000 0.6082
9 distance metric: euclidean, num samples: 9000 0.5717
10 distance metric: euclidean, num samples: 10000 0.5745
11 distance metric: manhattan, num samples: 1000 0.6800
12 distance metric: manhattan, num samples: 2000 0.6680
13 distance metric: manhattan, num samples: 3000 0.6843
14 distance metric: manhattan, num samples: 4000 0.6712
15 distance metric: manhattan, num samples: 5000 0.6810
16 distance metric: manhattan, num samples: 6000 0.6760
17 distance metric: manhattan, num samples: 7000 0.6994
18 distance metric: manhattan, num samples: 8000 0.6858
19 distance metric: manhattan, num samples: 9000 0.6809
20 distance metric: manhattan, num samples: 10000 0.6741

Table 7.2: CR results of the LIME method under different parameter combinations. The
parameter distance metric measures the distance between the perturbed data point
and the original data point. The closer the instance is to the explanation, the greater
the weight assigned. Parameter num samples is the number of new perturbed samples
generated after perturbing the sample point.
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Figure 7.2 shows the changing trend of SHAP under different parameters. As can be seen
from the figure (left), the nsamples parameter is the main parameter affecting the CR value
of the SHAP method. Figure (right) further reveals the impact of nsamples on the CR value.
Specifically, when nsamples is 2000, the CR of the three l1 regs is the lowest. As nsamples
increases, the CR value generally shows an upward trend. When the parameter value reaches
30000, the CR under the three l1 regs reaches a peak and still shows an upward trend. This
shows that increasing the number of samples can significantly improve the consistency of
the explanation results between different models. Compared with the nsamples parameter,
the l1 reg parameter has a relatively small effect on SHAP, and the curve does not change
much under three different l1 regs. When l1 reg is auto and nsamples is 2000, SHAP has
the lowest CR value, which is only 50.79%. When l1 reg is auto and nsamples is 30000,
SHAP has the highest CR value, which is 68.41%.
It is worth mentioning that, for this experiment, although a high consistency rate was ob-
tained when nsamples reached 30000, according to the trend of the curve, it has not yet
reached the saturation value, which means that further increasing the number of nsamples is
likely to achieve a higher consistency rate. However, whether further increasing the number
of nsamples can bring significant improvements and whether the additional computational
cost brought by the increase in the number of samples is reasonable are both worthy of
further verification and discussion.

In summary, the experimental results show that the nsamples parameter plays a key role in
improving the consistency rate of the SHAP method. When the number of subsets used to
estimate the shap value is small, SHAP cannot fully capture the important features of each
classification model, so the interpretation results between the models are quite different.
Increasing the number of subsets can effectively improve this defect and thus improve the
reliability of the interpretation results. The choice of regularization parameter has a rela-
tively weak effect on the CR value, which indicates that the regularization selection strategy
does not play a key decision-making role. In short, the experimental results emphasize that
the nsamples parameter plays a key role in improving the consistency rate of the SHAP
method and provide a valuable reference for the reasonable setting of the number of sam-
ples in the field of Android malware detection.

EDC CR Results

The CR results of the EDC method are shown in Table 7.4. According to the results in
the table, the highest consistency rate obtained by the EDC method is 28.33%, and its
parameter configuration is max iter=80, threshold classifier=np.percentile(probs, 95). The
lowest consistency rate result is 25%, and the parameters are max iter=20, threshold clas-
sifier=np.percentile(probs, 25) and max iter=80, threshold classifier=np.percentile(probs,
25).

From Figure 7.3 (left) can be seen that the CR curve rises sharply at indexes 12 to 13.
Combined with Table 7.4, this change in amplitude is caused by the increase in the threshold
setting to the 95th percentile of the predicted probability. Although the ups and downs of
the curve can be seen from the figure, the CR value range is distributed between 0.25 and
0.28, and the overall range of change is small. From Figure 7.3 (right), it can be clearly
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Index Parameters SHAP CR Results
1 l1 reg: auto, nsamples: auto 0.5549
2 l1 reg: auto, nsamples: 2000 0.5079
3 l1 reg: auto, nsamples: 3000 0.5548
4 l1 reg: auto, nsamples: 5000 0.5857
5 l1 reg: auto, nsamples: 8000 0.6060
6 l1 reg: auto, nsamples: 12000 0.6428
7 l1 reg: auto, nsamples: 20000 0.6725
8 l1 reg: auto, nsamples: 30000 0.6841
9 l1 reg: aic, nsamples: auto 0.5350
10 l1 reg: aic, nsamples: 2000 0.5152
11 l1 reg: aic, nsamples: 3000 0.5553
12 l1 reg: aic, nsamples: 5000 0.6183
13 l1 reg: aic, nsamples: 8000 0.6124
14 l1 reg: aic, nsamples: 12000 0.6398
15 l1 reg: aic, nsamples: 20000 0.6583
16 l1 reg: aic, nsamples: 30000 0.6799
17 l1 reg: bic, nsamples: auto 0.5323
18 l1 reg: bic, nsamples: 2000 0.5123
19 l1 reg: bic, nsamples: 3000 0.5467
20 l1 reg: bic, nsamples: 5000 0.5920
21 l1 reg: bic, nsamples: 8000 0.6049
22 l1 reg: bic, nsamples: 12000 0.6552
23 l1 reg: bic, nsamples: 20000 0.6534
24 l1 reg: bic, nsamples: 30000 0.6778

Table 7.3: CR results of the SHAP method under different parameter combinations. The
parameter l1 reg measures the selection of l1 regularization, auto indicates automatic
selection, aic uses Akaike and bic uses Bayesian information criteria for regularization
parameters selection. The parameter nsamples is the number of subsets used to estimate
the shap value.
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Figure 7.2: CR results of SHAP under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.3, while the vertical axis displays the corresponding CR value. (Right) CR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the CR results.

seen that for the 95% threshold, its CR value is much higher than the other thresholds, and
reaches a peak when the maximum number of iterations is 80. It can be clearly seen from
the figure 7.3 (right) that for the 95% threshold (i.e., the 95th percentile of the predicted
probability), its CR value is much higher than other thresholds and reaches a peak value
when the maximum number of iterations is 80. For the 50% threshold, the change range of
its CR value curve is relatively consistent with the 95% threshold, but the overall CR value
is lower than the 95% threshold and higher than the 25% threshold and 75% threshold. The
CR value curve of the 25% threshold shows regular changes, but the overall CR value is low.
The CR value curve of the 75% threshold does not form an obvious upward or downward
trend under each number of iterations, but the trend is relatively gentle. For the maximum
number of iterations, there is no obvious effect on the CR value of EDC. From this result,
it can be found that the parameter setting of the threshold lower than 95% does not have
much effect on the consistency rate of the EDC interpretation results, but the overall con-
sistency rate result of this method is low, which means that the important features obtained
by this method using different classification models have very few overlapping parts.

In summary, the CR value of the EDC method is generally low, which means that using
different classification models may obtain almost completely different interpretation results.
By experimenting with different parameter configurations, it can be found that this method
is relatively less affected by parameter changes, and only when the threshold percentile is
95% can the consistency rate be slightly improved. Some limitations of EDC method will
be discussed in detail in Section 8.1.

Anchors CR Results

The CR results of Anchors method are shown in Table 7.5. According to the results in the
table, we can find that the highest consistency rate result obtained by Anchors is 33.25%,
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Index Parameters EDC CR Results
1 max iter: 20, threshold classifier: np.percentile(probs, 25) 0.25
2 max iter: 50, threshold classifier: np.percentile(probs, 25) 0.2625
3 max iter: 80, threshold classifier: np.percentile(probs, 25) 0.25
4 max iter: 100, threshold classifier: np.percentile(probs, 25) 0.2625
5 max iter: 20, threshold classifier: np.percentile(probs, 50) 0.2625
6 max iter: 50, threshold classifier: np.percentile(probs, 50) 0.2625
7 max iter: 80, threshold classifier: np.percentile(probs, 50) 0.2688
8 max iter: 100, threshold classifier: np.percentile(probs, 50) 0.2625
9 max iter: 20, threshold classifier: np.percentile(probs, 75) 0.2625
10 max iter: 50, threshold classifier: np.percentile(probs, 75) 0.2583
11 max iter: 80, threshold classifier: np.percentile(probs, 75) 0.2604
12 max iter: 100, threshold classifier: np.percentile(probs, 75) 0.2583
13 max iter: 20, threshold classifier: np.percentile(probs, 95) 0.2792
14 max iter: 50, threshold classifier: np.percentile(probs, 95) 0.2792
15 max iter: 80, threshold classifier: np.percentile(probs, 95) 0.2833
16 max iter: 100, threshold classifier: np.percentile(probs, 95) 0.2792

Table 7.4: CR results of the EDC method under different parameter combinations.
The parameter max iter measures the maximum number of iterations in the search
procedure, and parameter threshold classifier is the threshold, when the score exceeds
the threshold, the instance is predicted as positive, otherwise it is negative. Probs is
the predict proba method of the model, which is used to predict the training data and
return the probability that each sample belongs to each category.

Figure 7.3: CR results of EDC under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.3, while the vertical axis displays the corresponding CR value. (Right) CR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the CR results.
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and the lowest consistency rate result is 30.68%.

Figure 7.4 shows the changing trend of Anchors method under different parameter com-
binations. It can be seen from the figure that the CR value of Anchors does not change
much under different parameter combinations, and the fluctuation range is concentrated
between 0.307 and 0.333. In this range, the peak value of Anchors is more obvious. As
can be seen from the Figure 7.4 (right), under the same threshold, different batch size
and tau combinations have different change trends. When batch size is 32, tau is 0.15 and
batch size is 64, tau is 0.1, the threshold is 0.9, which is the highest point, 0.95 is the
lowest point, and then it shows an upward trend, and the overall change range is more
obvious. When batch size is 64 and tau is 0.15, the curve shows a slow upward trend with
the increase of threshold. When batch size is 32 and tau is 0.1, the curve also shows a
trend of first decreasing and then increasing, but the highest CR value is reached when the
threshold is 0.99 and the overall change trend is relatively gentle. This observation shows
that the CR value of the Anchors method is not affected by a single parameter, but de-
pends on different parameter combinations. However, the results show that the important
features selected by the Anchors method in different classification models are significantly
different, which indicates that the explanation results generated by this method depend on
the selected classification model and lack consistency across models. Therefore, when using
Anchors method, it is necessary to consider the generalization ability of the explanation
results between different models.

In summary, the best CR value of Anchors is 33.25% when batch size is 64, tau is 0.1,
and threshold is 0.9. The worst CR value of 30.68% is obtained when batch size is 32, tau
is 0.15, and threshold is 0.95. The CR value of the Anchors method depends on the in-
teraction between different parameter combinations. Selecting appropriate parameters can
effectively improve the CR value of Anchors, that is, appropriate parameters can make the
interpretation method produce relatively similar interpretation results for different models.
Therefore, to obtain a higher consistency rate, it is necessary to jointly tune the parame-
ters and balance the influence of the parameters, so as to optimize the overall consistency
performance of the interpretation method. In addition, some limitations of Anchors will be
discussed in detail in Section 8.1.

7.1.2 Soundness Rate (SR)
In the experiment of SR, we want to check the impact of adding irrelevant features to the
original feature set on the explanation results. In this experiment, we also tested different
parameter combinations of the explanation method to explore the impact of parameters on
the soundness of the explanation method.

LIME SR Results

Table 7.6 shows the SR results of the LIME method. According to the SR results, when
the distance parameter is euclidean and the number of new perturbation samples generated
after perturbing the sample points is 10000, LIME has the highest SR value of 96.08%.
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Index Parameters Anchor CR Results
1 batch size: 32, tau: 0.1, threshold: 0.9 0.3208
2 batch size: 32, tau: 0.1, threshold: 0.95 0.3185
3 batch size: 32, tau: 0.1, threshold: 0.99 0.3248
4 batch size: 32, tau: 0.15, threshold: 0.9 0.3252
5 batch size: 32, tau: 0.15, threshold: 0.95 0.3068
6 batch size: 32, tau: 0.15, threshold: 0.99 0.3097
7 batch size: 64, tau: 0.1, threshold: 0.9 0.3325
8 batch size: 64, tau: 0.1, threshold: 0.95 0.3142
9 batch size: 64, tau: 0.1, threshold: 0.99 0.3231
10 batch size: 64, tau: 0.15, threshold: 0.9 0.3095
11 batch size: 64, tau: 0.15, threshold: 0.95 0.3117
12 batch size: 64, tau: 0.15, threshold: 0.99 0.3187

Table 7.5: CR results of the Anchors method under different parameter combinations.
The parameter batch size measures the batch size of sampling, tau measures the multi-
armed bandit parameters for selecting candidate anchors at each iteration, i.e. finding
the most promising anchor within a tolerance according to precision. And threshold
is the minimum anchor precision threshold, which is an anchor that maximizes the
coverage under precision constraint.

Figure 7.4: CR results of Anchors under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.5, while the vertical axis displays the corresponding CR value. (Right) CR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the CR results.
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When the distance metric is manhattan and the number of new perturbation samples gen-
erated after perturbing the sample points is 5000, LIME has the lowest SR value of 89.04%.

Figure 7.5 shows the changing trend of LIME SR value under different parameters. As
can be seen from the figure (left), the SR value curve drops sharply at indexes 10 to
11. Combined with the results in Table 7.6, it can be seen that this change is caused by
the change in the distance metric parameter. This observation shows that the change in
the distance parameter alone will have a significant impact on the SR result. The figure
(right) better explains the impact of the distance parameter on the SR value. The SR using
Euclidean distance parameter is significantly higher than that using Manhattan distance pa-
rameter. This shows that after adding irrelevant features, Euclidean distance has stronger
anti-interference ability to irrelevant features, so that the interpretation results can be ba-
sically consistent. The SR of Manhattan distance is relatively low, which indicates that this
distance parameter is relatively sensitive to irrelevant features. However, from the overall
results, it can be seen that no matter which distance parameter is used, a relatively high
SR is achieved, which shows that the LIME method is relatively insensitive to irrelevant
features as a whole and has good anti-noise ability.
Compared with the distance parameter, the number of samples has a relatively weaker effect
on the SR results. As can be seen from the figure, as the number of samples increases,
when LIME uses the Euclidean distance, the curve fluctuates slightly but shows an overall
upward trend. When the Manhattan distance is used, the curve is relatively flat when the
number of samples increases, indicating that the sensitivity to irrelevant features does not
change much with the number of samples.

In summary, the SR value of LIME is mainly affected by the distance parameter. When
using the Euclidean distance, appropriately increasing the number of samples may reduce
the sensitivity of the interpretation method to irrelevant features and improve the reliability
of the interpretation results. For the Manhattan distance, the number of samples reaches
a peak at 4000, which means that further increasing the number of samples has no effect
on improving SR. Overall, the LIME method achieves relatively high SR values under both
distance parameters, which shows that after adding irrelevant features, the interpretation
results of this method can still remain consistent and have stronger anti-interference ability
against irrelevant features.

SHAP SR Results

Table 7.7 shows the SR results of the SHAP method. From the SR results, when the l1
regularization parameter is selected as bic and the number of samples is 30,000, the SR
value of SHAP is the highest, which is 97.41%; when the l1 regularization parameter is
selected as bic and the number of samples is 2,000, the SR value of SHAP is the lowest,
which is 89.86%.

Combining Table 7.7 and Figure 7.6 (left), we can see that the peaks and troughs in
SHAP SR curve are caused by the change in the number of parameter samples. As the
number of samples increases, the SR curves under the three regularization parameters gen-
erally show an upward trend. Figure (right) better reveals this phenomenon. When the
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Index Parameter LIME SR Results
1 distance metric: euclidean, num samples: 1000 0.9297
2 distance metric: euclidean, num samples: 2000 0.9494
3 distance metric: euclidean, num samples: 3000 0.9514
4 distance metric: euclidean, num samples: 4000 0.9567
5 distance metric: euclidean, num samples: 5000 0.9573
6 distance metric: euclidean, num samples: 6000 0.9505
7 distance metric: euclidean, num samples: 7000 0.9557
8 distance metric: euclidean, num samples: 8000 0.9554
9 distance metric: euclidean, num samples: 9000 0.9562
10 distance metric: euclidean, num samples: 10000 0.9608
11 distance metric: manhattan, num samples: 1000 0.8962
12 distance metric: manhattan, num samples: 2000 0.8953
13 distance metric: manhattan, num samples: 3000 0.8964
14 distance metric: manhattan, num samples: 4000 0.9010
15 distance metric: manhattan, num samples: 5000 0.8904
16 distance metric: manhattan, num samples: 6000 0.8936
17 distance metric: manhattan, num samples: 7000 0.8957
18 distance metric: manhattan, num samples: 8000 0.9006
19 distance metric: manhattan, num samples: 9000 0.8998
20 distance metric: manhattan, num samples: 10000 0.8971

Table 7.6: SR results of the LIME method under different parameter combinations.

Figure 7.5: SR results of LIME under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.6, while the vertical axis displays the corresponding SR value. (Right) SR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the SR results.
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number of samples is 2000, the SR curves under the three regularization parameters are
at the lowest point, and gradually rise with the increase of nsamples. Among them, when
the regularization parameter is auto, the curve reaches the highest point when the number
of samples is 20000, and then decreases. When the regularization parameter is aic, the
number of samples decreases slightly in the range of 5000 8000, and then increases. When
the regularization parameter is bic, it rises rapidly after the number of samples is greater
than 2000, slows down when the number of samples is between 12000 and 20000, and then
rises rapidly again. This shows that a larger number of samples can effectively avoid the
impact of irrelevant features in the data set and provide a more stable explanation. For the
auto regularization parameter selection, the best performance is achieved when the number
of samples reaches 20,000, while aic and bic require a larger number of samples to obtain
a higher SR.
From the perspective of the overall SR value, the SHAP method can achieve a relatively
high SR value even with a smaller number of nsamples, which shows that this method can
effectively avoid the interference caused by irrelevant features and provide effective and
reliable interpretation results.

In summary, compared with the choice of regularization parameters, the number of samples
is more important for the SR of the SHAP method explanation results. In general, the SHAP
method can provide reliable explanations when dealing with data sets containing irrelevant
features. According to the experimental results, in the field of Android malware detection,
using bic as a regularization option and using a larger sample size can effectively improve
the SR of the SHAP method and enhance its anti-interference ability.

Figure 7.6: SR results of SHAP under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.7, while the vertical axis displays the corresponding SR value. (Right) SR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the SR results.

61



Index Parameters SHAP SR Results
1 l1 reg: auto, nsamples: auto 0.9128
2 l1 reg: auto, nsamples: 2000 0.9016
3 l1 reg: auto, nsamples: 3000 0.9236
4 l1 reg: auto, nsamples: 5000 0.9417
5 l1 reg: auto, nsamples: 8000 0.9570
6 l1 reg: auto, nsamples: 12000 0.9582
7 l1 reg: auto, nsamples: 20000 0.9713
8 l1 reg: auto, nsamples: 30000 0.9694
9 l1 reg: aic, nsamples: auto 0.9147
10 l1 reg: aic, nsamples: 2000 0.9131
11 l1 reg: aic, nsamples: 3000 0.9204
12 l1 reg: aic, nsamples: 5000 0.9493
13 l1 reg: aic, nsamples: 8000 0.9470
14 l1 reg: aic, nsamples: 12000 0.9481
15 l1 reg: aic, nsamples: 20000 0.9638
16 l1 reg: aic, nsamples: 30000 0.9698
17 l1 reg: bic, nsamples: auto 0.9169
18 l1 reg: bic, nsamples: 2000 0.8986
19 l1 reg: bic, nsamples: 3000 0.9277
20 l1 reg: bic, nsamples: 5000 0.9371
21 l1 reg: bic, nsamples: 8000 0.9435
22 l1 reg: bic, nsamples: 12000 0.9606
23 l1 reg: bic, nsamples: 20000 0.9614
24 l1 reg: bic, nsamples: 30000 0.9741

Table 7.7: SR results of the SHAP method under different parameter combinations.

EDC SR Results

Table 7.8 shows the SR results of the EDC method. From the SR results, when the max iter
is 100 and the threshold is 50th percentile , the SR value of EDC is the highest, which is
96.25%; when the max iter is 50 and the threshold is 95th percentile, the SR value of EDC
is the lowest, which is 85.31%.

Figure 7.7 shows the changing trend of EDC SR value under different parameters. As
can be seen from the figure, when the threshold is 50 percentile, the SR of EDC is much
greater than the other threshold percentiles. When the threshold is at the 25 percentile, the
SR curve of EDC decreases significantly in the range of the maximum number of iterations
from 20 to 80, and rises rapidly after exceeding 80. When the threshold is at the 75th
and 95th percentiles, the curves almost completely overlap, decrease in the range of the
maximum number of iterations from 20 to 50, and then increase. When the threshold is at
the 50th percentile, the curve also slowly decreases in the range of the maximum number of
iterations from 20 to 50, and rises when the number of iterations increases. It can be seen
from the observation that the SR of EDC is affected by the maximum number of iterations
and the threshold. When the number of iterations exceeds 80, the SR curves under different
thresholds show an upward trend. This shows that as the number of iterations increases,
EDC can fully resist the interference caused by irrelevant features and provide stable inter-
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pretation results. However, as the threshold increases, the SR of EDC gradually decreases,
which shows that a high threshold may filter out potential effective information and increase
the impact of irrelevant features. However, this defect can be gradually compensated as
the number of iterations increases.

In summary, the SR of EDC needs to balance the selection of the maximum number of
iterations and the threshold. A lower threshold may not fully tap the effectiveness of fea-
tures in fewer iterations, resulting in low SR. As the number of iterations increases, the
impact of EDC on irrelevant features gradually weakens, and it can provide more stable
interpretation results.

Index Parameters EDC SR Results
1 max iter: 20, threshold classifier: np.percentile(probs, 25) 0.9094
2 max iter: 50, threshold classifier: np.percentile(probs, 25) 0.8859
3 max iter: 80, threshold classifier: np.percentile(probs, 25) 0.8609
4 max iter: 100, threshold classifier: np.percentile(probs, 25) 0.9313
5 max iter: 20, threshold classifier: np.percentile(probs, 50) 0.9438
6 max iter: 50, threshold classifier: np.percentile(probs, 50) 0.9406
7 max iter: 80, threshold classifier: np.percentile(probs, 50) 0.9531
8 max iter: 100, threshold classifier: np.percentile(probs, 50) 0.9625
9 max iter: 20, threshold classifier: np.percentile(probs, 75) 0.8631
10 max iter: 50, threshold classifier: np.percentile(probs, 75) 0.8531
11 max iter: 80, threshold classifier: np.percentile(probs, 75) 0.8545
12 max iter: 100, threshold classifier: np.percentile(probs, 75) 0.8809
13 max iter: 20, threshold classifier: np.percentile(probs, 95) 0.8631
14 max iter: 50, threshold classifier: np.percentile(probs, 95) 0.8531
15 max iter: 80, threshold classifier: np.percentile(probs, 95) 0.8548
16 max iter: 100, threshold classifier: np.percentile(probs, 95) 0.8809

Table 7.8: SR results of the EDC method under different parameter combinations.

Anchors SR Results

The SR results of Anchors method are shown in Table 7.9. According to the results in the
table, we can find that the highest consistency rate result obtained by Anchors is 83.64%,
and the lowest consistency rate result is 76.79%.

Combining the figure 7.8 and the table 7.9, it can be seen that the SR of Anchors is
greatly affected by the threshold. As the threshold increases, the SR shows a downward
trend under different combinations of tau and batch size. This shows that in the process
of generating interpretation rules by Anchors, although higher rules can improve the confi-
dence of interpretation rules, they will also make the rules more stringent. Therefore, when
irrelevant features appear in the data, too high a threshold will limit the range of Anchors
in capturing effective features in the data. Even a small disturbance may make the rules
that originally meet the threshold no longer valid, resulting in a decrease in the stability of
the interpretation results, thereby reducing its overall anti-interference ability.
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Figure 7.7: SR results of EDC under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.8, while the vertical axis displays the corresponding SR value. (Right) SR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the SR results.

Tau has a greater impact on SR than batch size. As can be seen from the figure, a higher
tau actually obtains a lower SR. This shows that a lower tau value leads to an increase in
the accuracy tolerance range, so that some candidates with lower accuracy are selected,
making it more difficult to resist the interference caused by irrelevant features.

In summary, the SR of the Anchors method is mainly affected by the threshold and tau.
Higher threshold and tau will reduce the ability of Anchors to resist interference. In our
experiments, the parameter combination that achieves the highest SR is batch size=32,
tau=0.1 and threshold=0.9. The parameter combination with the lowest SR is batch
size=32, tau=0.15 and threshold=0.99.

Index Parameters Anchor SR Results
1 batch size: 32, tau: 0.1, threshold: 0.9 0.8364
2 batch size: 32, tau: 0.1, threshold: 0.95 0.7965
3 batch size: 32, tau: 0.1, threshold: 0.99 0.7896
4 batch size: 32, tau: 0.15, threshold: 0.9 0.7927
5 batch size: 32, tau: 0.15, threshold: 0.95 0.7696
6 batch size: 32, tau: 0.15, threshold: 0.99 0.7602
7 batch size: 64, tau: 0.1, threshold: 0.9 0.8164
8 batch size: 64, tau: 0.1, threshold: 0.95 0.8027
9 batch size: 64, tau: 0.1, threshold: 0.99 0.8018
10 batch size: 64, tau: 0.15, threshold: 0.9 0.8085
11 batch size: 64, tau: 0.15, threshold: 0.95 0.7921
12 batch size: 64, tau: 0.15, threshold: 0.99 0.7679

Table 7.9: SR results of the Anchors method under different parameter combinations.
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Figure 7.8: SR results of Anchors under different parameter combinations. (Left) The
horizontal axis shows the index corresponding to each parameter combination listed
in Table 7.9, while the vertical axis displays the corresponding SR value. (Right) SR
results plotted for each parameter combination, highlighting the effect of different set-
tings on the SR results.

7.1.3 Discussion of Local Explanation Methods
Figure 7.9 shows the CR and SR results of four different local explanation methods. Ac-
cording to the results of the final consistency rate (CR), EDC has the lowest CR, only
28.33%, indicating that the changes in the explanation features obtained by using different
classification algorithms on the same feature set using the EDC method are more obvious.
The second is Anchors, with a CR of only 33.25%. This result shows that the explana-
tion features generated by the EDC and Anchors methods depend on the classification
model used. The performance of the SHAP and LIME methods is better than that of EDC
and Anchors, among which SHAP has a CR of 68.41%, and LIME has the highest CR of
69.94%. This shows that the changes in the explanation features obtained by these two
explanation methods using different classification algorithms on the same feature set are
relatively small, and have a higher consistency rate among the four explanation methods.
This shows that the two explanation methods, SHAP and LIME, are relatively independent
of the classification model used. From the consistency rate results, the performance of the
explanation methods is LIME >SHAP >Anchors >EDC.

Regarding to the results of the final soundness rate (SR), SHAP has the highest SR value
of 97.41%, which means that adding irrelevant features had no significant effect on the ex-
planation results and could accurately capture the real important features. Anchors method
performed the worst, with an SR of only 83.64%, which means that after adding irrelevant
features to the original feature set, the explanation features obtained by Anchors changed
greatly and were easily disturbed by noise. The SR of EDC reaches 96.25%, second only
to SHAP. The SR of LIME reaches 96.08%, slightly lower than EDC. Therefore, from the
SR results, SHAP, EDC and LIME all have high SR values, which means that after adding
irrelevant features, these three explanation methods can still accurately identify the impor-
tant features that really affect the model decision and have a certain ability to resist noise.
In addition, the four explanation methods will not mistake irrelevant features for relevant
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features and add them to the input. From the soundness rate results, the performance of
the explanation methods is SHAP >EDC >LIME >Anchors.
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Figure 7.9: Performance of the chosen local explanation methods

Overall, combined with the evaluation metrics we selected for local explanation methods,
the LIME method has the highest CR of 69.94%. SHAP is second with a CR of 68.41%.
EDC has the lowest CR of only 28.33%. Anchors has a slightly higher CR than EDC, at
33.25%. For SR, SHAP is 97.41%, the highest among the four explanation methods, fol-
lowed by EDC with SR of 96.25%. LIME ranks third with SR of 96.08%. The SR of Anchors
is much lower than the other three methods, only 83.64%. It can be seen that LIME has
the highest CR and SHAP achieves the highest SR. EDC has the lowest CR and Anchors
has the lowest SR.
In Android malware detection, a high consistency rate means that even if different detec-
tion models are used, the explanation method can still output similar explanation results.
Specifically, in practical applications, if the explanation method is too dependent on the
detection model, it will cause the explanation method to obtain completely different expla-
nation results under different models, making it difficult for analysts to accurately identify
key features or behavior patterns related to malicious behavior, thereby reducing inter-
pretability and credibility. The soundness rate indicates the anti-interference ability of the
explanation method. That is, in the malware detection task, apk samples may contain a
large number of redundant or irrelevant features. If the explanation method is too sensitive
to these irrelevant features, it may cause the interpretation results to deviate from the
essence of malicious behavior and mistakenly identify irrelevant features as key features,
increasing the probability of misjudgment. Therefore, a higher soundness rate means that
the explanation method can still accurately identify the real malicious behavior after adding
irrelevant features and generate a stable explanation.
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7.2. Global Explanation Results
In the global explanation experiment, we formulated three metrics to evaluate the perfor-
mance of 4 feature-based global explanation methods, ALE, PD, PD Variance and Morris
method on 4 classification models, SVM, RF, XGBoost and MLP. In this section, we discuss
the results obtained based on the three metrics respectively.

Table 7.10 lists the parameters and descriptions used of each global explanation method in
the experiment.

Parameter Description Method
low resolution threshold Determine the feature values are used as grid

points instead of quantiles to avoid jumps in
the ALE plot that would mask the true effect.

ALE

min bin points Determines how many bins each feature
range is divided into, smaller and larger val-
ues result in less accurate local estimates be-
cause more of the feature range needs to be
averaged.

ALE

grid resolution Enabled when the number of unique values
of the target feature is greater than the grid
resolution value. The number of equidistant
points used to divide the range of each target
feature.

PD, PDV

conf level Confidence interval level. Morris
num levels The number of grid levels. Morris

num resamples measures the resample numbers used to com-
pute the confidence.

Morris

Table 7.10: The parameters of each global explanation methods.

7.2.1 Stability
In stability experiments, we want to check whether the set of explained features generated
by an explanation method remains consistent across multiple runs.

ALE Stb Results

Table 7.12 shows the stability comparison of the explanation results of the four black-box
models using the ALE method under different parameters. Among them, the stability of
ALE based on XGB reaches 100%, which means that XGB is not affected by the parameter
configuration of ALE and can always produce completely consistent interpretation results
in multiple runs. ALE also achieved high stability on SVM, and the stability reached 100%
when low resolution threshold was 5 and the number of minimum bins was 8, 32, and 50,
and when low resolution threshold was 10 and the number of bins was 8 and 32. How-
ever, the stability performance of ALE on RF and MLP is relatively poor. RF achieves
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a maximum stability of 82.19% and MLP achieves a maximum stability of 86.61% when
low resolution threshold is equal to 5 and min bin points are 32 and 50, respectively.

When we focus on the parameter configuration of ALE, we can find that when thresh-
old value is greater than or equal to 25, the number of bins has no effect on stability. ALE
obtains the same stability results on the four models, and its stability is slightly higher
than that in the interval of 15 to 20 for low resolution threshold. The number of bins has
an effect when low resolution threshold is 5 and 10, and a relatively large number of bins
is required for lower thresholds. However, in the low threshold range, ALE has the best
stability among the models.

Overall, ALE method shows good stability on the XGB and SVM models, which means
that the results generated by ALE on these two models remain unchanged over multiple
runs. For RF and MLP, parameter configuration will affect their results. Choosing a high
threshold or a low threshold but a relatively large number of bins can obtain better stability
results, and the latter is better than the former. In addition, the stability fluctuations of RF
and MLP may also be related to the randomness introduced by their models in addition
to the influence of parameters. When using the ALE method in practice, the appropriate
parameter combination should be selected according to the model type to avoid unstable
interpretation due to too small bins or thresholds.

PD Stb Results

Table 7.12 shows the stability comparison of the interpretation results of the four black-box
models using the PD method under different parameters. It is obvious from the results in
the table that the stability of the PD method is not affected by the parameters, and each
model obtains the same stability under different parameters. Both SVM and XGB achieved
100% stability, which means that after multiple runs, the explanations generated each time
are exactly the same. RF and MLP achieved stability scores of 89.07% and 86.79%, respec-
tively, which indicates that important features in the explanations changed slightly in one or
more runs, affecting the overall stability. RF and MLP obtained stability scores of 89.07%
and 86.79%, respectively, this indicates that important features in the explanation have
changed slightly in one or more runs, affecting the overall stability. However, as described
above, the stability of the PD method is independent of its parameters, so the change
in important features in the explanation may be caused by the model itself. For example,
MLP produces slight uncertainty during forward reasoning, or RF has small changes in the
explanation results due to different sampling in each run.

From the overall results of PD stability, the method shows perfect stability on SVM and
XGB, and also maintains relatively high stability on RF and MLP. This shows that PD can
still produce relatively consistent interpretation results after multiple runs. The parameter
independence of the PD method has great advantages over some interpretation methods
that are sensitive to parameter configuration and is easier to use. Its higher stability can
also improve the reliability of the interpretation results.
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Parameters SVM RF XGB MLP
low resolution threshold: 5, min bin points: 1 98.53% 79.33% 100.00% 77.60%
low resolution threshold: 5, min bin points: 4 98.53% 78.67% 100.00% 78.88%
low resolution threshold: 5, min bin points: 8 100.00% 79.93% 100.00% 78.82%
low resolution threshold: 5, min bin points: 16 98.82% 80.33% 100.00% 80.72%
low resolution threshold: 5, min bin points: 32 100.00% 82.19% 100.00% 83.19%
low resolution threshold: 5, min bin points: 50 100.00% 81.91% 100.00% 86.61%
low resolution threshold: 10, min bin points: 1 97.81% 77.49% 100.00% 76.95%
low resolution threshold: 10, min bin points: 4 97.81% 77.04% 100.00% 77.47%
low resolution threshold: 10, min bin points: 8 97.21% 78.35% 100.00% 78.21%
low resolution threshold: 10, min bin points: 16 98.68% 77.88% 100.00% 79.21%
low resolution threshold: 10, min bin points: 32 100.00% 79.84% 100.00% 78.63%
low resolution threshold: 10, min bin points: 50 98.68% 78.05% 100.00% 80.70%
low resolution threshold: 15, min bin points: 1 97.07% 78.26% 100.00% 77.44%
low resolution threshold: 15, min bin points: 4 97.07% 77.67% 100.00% 77.30%
low resolution threshold: 15, min bin points: 8 97.07% 79.16% 100.00% 77.53%
low resolution threshold: 15, min bin points: 16 98.35% 78.11% 100.00% 77.54%
low resolution threshold: 15, min bin points: 32 97.74% 79.89% 100.00% 78.28%
low resolution threshold: 15, min bin points: 50 97.81% 79.40% 100.00% 78.91%
low resolution threshold: 20, min bin points: 1 97.07% 78.44% 100.00% 77.65%
low resolution threshold: 20, min bin points: 4 97.07% 78.02% 100.00% 77.63%
low resolution threshold: 20, min bin points: 8 97.07% 78.39% 100.00% 77.30%
low resolution threshold: 20, min bin points: 16 98.35% 77.84% 100.00% 77.81%
low resolution threshold: 20, min bin points: 32 97.74% 79.63% 100.00% 78.67%
low resolution threshold: 20, min bin points: 50 97.81% 78.61% 100.00% 77.91%
low resolution threshold: 25, min bin points: 1 97.74% 78.44% 100.00% 78.02%
low resolution threshold: 25, min bin points: 4 97.74% 78.02% 100.00% 78.00%
low resolution threshold: 25, min bin points: 8 97.74% 78.39% 100.00% 77.67%
low resolution threshold: 25, min bin points: 16 97.74% 77.84% 100.00% 78.05%
low resolution threshold: 25, min bin points: 32 97.74% 79.63% 100.00% 78.82%
low resolution threshold: 25, min bin points: 50 98.68% 78.61% 100.00% 78.60%
low resolution threshold: 30, min bin points: 1 97.74% 78.44% 100.00% 78.02%
low resolution threshold: 30, min bin points: 4 97.74% 78.02% 100.00% 78.00%
low resolution threshold: 30, min bin points: 8 97.74% 78.39% 100.00% 77.67%
low resolution threshold: 30, min bin points: 16 97.74% 77.84% 100.00% 78.05%
low resolution threshold: 30, min bin points: 32 97.74% 79.63% 100.00% 78.82%
low resolution threshold: 30, min bin points: 50 98.68% 78.61% 100.00% 78.60%

Table 7.11: ALE stability for different parameter combinations results based on SVM,
RF, XGB, MLP. Min bin points determines how many bins each feature range is di-
vided into, smaller and larger values result in less accurate local estimates because
more of the feature range needs to be averaged. Low resolution threshold determine
the feature values are used as grid points instead of quantiles to avoid jumps in the
ALE plot that would mask the true effect.
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Parameters SVM RF XGB MLP
grid resolution: 10 100% 86.79% 100% 89.07%
grid resolution: 20 100% 86.79% 100% 89.07%
grid resolution: 30 100% 86.79% 100% 89.07%
grid resolution: 50 100% 86.79% 100% 89.07%
grid resolution: 100 100% 86.79% 100% 89.07%
grid resolution: 150 100% 86.79% 100% 89.07%
grid resolution: 200 100% 86.79% 100% 89.07%
grid resolution: 250 100% 86.79% 100% 89.07%
grid resolution: 300 100% 86.79% 100% 89.07%

Table 7.12: PD stability for different parameter combinations results based on SVM,
RF, XGB, MLP. Grid resolution is enabled when the number of unique values of the
target feature is greater than the grid resolution value. The number of equidistant
points used to divide the range of each target feature.

PDV Stb Results

Table 7.13 shows the stability comparison of the interpretation results of the four black-box
models using the PDV method under different parameters. It is clear from the table that
XGB-based PDV achieved 100% stability, which means that XGB is parameter-independent
and the important features in its interpretation results remain exactly the same in each
run. However, it is worth mentioning the stability results of the other three models. The
stability of PDV on SVM and RF always remains in the range of 17% to 22% under different
parameter configurations, and the stability of MLP only fluctuates in the range of 17.2%
to 17.9%. This means that the important features extracted by the PDV method based on
these three models are almost completely different after multiple runs, that is, each run will
produce different important features.

From the above research results, it can be seen that the PDV method maintains good
stability only when using the XGB model, while for SVM, RF and MLP, the stability of
the PDV method is extremely poor. At a stability of 17.2% to 22%, it is meaningless to
discuss whether this instability is caused by the parameter configuration of the interpre-
tation method or by the uncertainty of the model itself. The almost completely different
interpretation results brought by each run greatly reduce the credibility of the interpreta-
tion method, because the results it produces will confuse analysts and cannot be trusted.
Therefore, we can conclude that the PDV method is not suitable for the domain of Android
malware detection, but its performance on XGB needs to be further verified in combination
with other metrics mentioned later in this Section.

Morris Stb Results

Table 7.14 shows the stability comparison of the interpretation results of the four black-box
models using the Morris method under different parameters. From the results, it can be seen
that the Morris method has achieved high stability on SVM, XGB and MLP, among which
the stability on XGB is the highest, reaching 96.98%, while SVM and MLP have achieved
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Parameters SVM RF XGB MLP
grid resolution: 10 21.67% 21.98% 100% 17.89%
grid resolution: 20 19.12% 22.11% 100% 17.40%
grid resolution: 30 19.42% 21.77% 100% 17.49%
grid resolution: 50 19.42% 19.70% 100% 17.49%
grid resolution: 100 19.51% 21.12% 100% 17.25%
grid resolution: 150 19.56% 21.91% 100% 17.35%
grid resolution: 200 19.56% 20.46% 100% 17.35%
grid resolution: 250 19.51% 21.02% 100% 17.19%
grid resolution: 300 19.51% 20.25% 100% 17.19%

Table 7.13: PDV stability for different parameter combinations results based on SVM,
RF, XGB, MLP. The measurement of grid resolution is the same as PD.

the highest stability of 93.65% and 91.49% respectively. This indicates that the importance
features generated by the Morris method on SVM, XGB, and MLP vary relatively little
between multiple runs, and can generate more consistent interpretation results. However,
stability of Morris on RF is poor, with the highest being only 71.79%, this shows that the
interpretation results generated by Morris on RF show obvious differences between multiple
runs.

According to different parameter configurations, the results did not show a clear upward or
downward trend after increasing the confidence interval level, so this parameter has almost
no substantial effect on the stability of the interpretation results. This shows that the fluctu-
ation of stability is jointly affected by the number of grid levels and the number of resamples
used to calculate confidence, or due to the uncertainty of the model itself. However, from
the overall results, the stability of each model for different parameter configurations does
not change much. For SVM, the change range is between 91.63% and 93.65%; the change
range of RF is between 69.61% and 71.79%; the overall change range of XGB is between
95.89% and 97.18%, and the stability of MLP is between 90.32% and 91.49%, and its
maximum change range is only about 2%.

In summary, the interpretation results generated by the Morris method on SVM, XGB,
and MLP are highly stable, with the best performance on XGB. However, the stability on
RF is poor, indicating that the interpretation results fluctuate greatly between multiple runs.
The Morris method is relatively insensitive to changes in parameter configuration. Choosing
the appropriate number of grid levels and num resamples can slightly improve stability to
a certain extent, but it will not bring about a huge change.

7.2.2 Robustness
In this part of the experiment, we want to examine the effect of perturbations of features on
the generated explanations. That is, we want to check whether the explanations generated
after applying perturbations to the input are consistent with the explanations generated
using the original features.
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Parameters SVM RF XGB MLP
conf level: 0.95, num levels: 2, num resamples: 50 92.88% 70.46% 96.12% 90.68%
conf level: 0.95, num levels: 2, num resamples: 100 92.16% 71.23% 96.79% 90.89%
conf level: 0.95, num levels: 2, num resamples: 150 91.88% 70.51% 96.07% 90.89%
conf level: 0.95, num levels: 4, num resamples: 50 93.05% 71.30% 96.68% 91.49%
conf level: 0.95, num levels: 4, num resamples: 100 92.61% 70.04% 96.32% 90.81%
conf level: 0.95, num levels: 4, num resamples: 150 92.32% 70.23% 96.47% 90.65%
conf level: 0.95, num levels: 8, num resamples: 50 92.47% 70.86% 96.72% 90.91%
conf level: 0.95, num levels: 8, num resamples: 100 93.23% 70.68% 95.91% 90.47%
conf level: 0.95, num levels: 8, num resamples: 150 92.79% 70.32% 96.63% 91.25%
conf level: 0.99, num levels: 2, num resamples: 50 92.81% 71.30% 96.79% 90.32%
conf level: 0.99, num levels: 2, num resamples: 100 92.93% 71.28% 97.05% 91.26%
conf level: 0.99, num levels: 2, num resamples: 150 93.65% 71.77% 96.11% 91.42%
conf level: 0.99, num levels: 4, num resamples: 50 92.60% 70.16% 96.98% 90.56%
conf level: 0.99, num levels: 4, num resamples: 100 93.26% 70.96% 96.12% 90.91%
conf level: 0.99, num levels: 4, num resamples: 150 91.68% 69.61% 95.89% 90.51%
conf level: 0.99, num levels: 8, num resamples: 50 92.25% 70.53% 95.96% 91.09%
conf level: 0.99, num levels: 8, num resamples: 100 92.18% 71.79% 97.18% 91.00%
conf level: 0.99, num levels: 8, num resamples: 150 91.63% 71.05% 97.00% 91.02%

Table 7.14: Morris stability for different parameter combinations results based on SVM,
RF, XGB, MLP. Conf level is confidence interval level, num levels is the number of
grid levels and num resamples measures the resample numbers used to compute the
confidence.
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ALE Rob Results

Table 7.15 shows the robustness comparison of the explanation results of the four black-box
models using the ALE method under different parameters. According to the results, the best
performance is XGB with low resolution threshold=5, min bin points=50, with a robustness
of 98.83%, and the lowest robustness is 97.33% when threshold=25, min bin points=16.
The second best is SVM, with a robustness of 98.68% when threshold=30, min bin points=50,
and the lowest is 91.50% when threshold=15, min bin points=1. Then comes RF, which
reaches the best robustness of 93.67% when threshold=10, min bin points=4, and the low-
est is 90.67% when threshold=5, min bin points=1. The lowest is MLP, reaching 85.50%
when threshold=5, min bin points=32, and only 74.50% when threshold=20, min bin points=4.
It can be seen that ALE shows good robustness on XGB, SVM and RF, reaching more than
90% even in the worst performance. In contrast, the robustness of MLP is relatively low,
but it also reaches 85.5%. This means that the ALE method has good anti-interference
ability when non-important features are slightly disturbed.

XGB and RF have small fluctuations under different parameter configurations, which shows
that the robustness of ALE on these two models is relatively less dependent on parameter
settings. However, the robustness values of MLP and SVM under different parameters show
obvious differences. Especially for MLP, its fluctuation is 11%. The difference between the
best and worst robustness of SVM is over 7%. This shows that its robustness is greatly
affected by parameters.

In summary, the ALE method shows high robustness on different models. For XGB and
RF, different parameter configurations have relatively weak effects on their robustness. For
SVM and MLP, reasonable parameter configurations can greatly improve their robustness.
From the overall results, the ALE method has good noise resistance and can avoid com-
pletely different results due to slight changes in feature values. Therefore, ALE can provide
reliable explanation results.

PD Rob Results

Table 7.16 shows the robustness comparison of the interpretation results of the four black-
box models using the PD method under different parameters. From Table 7.16, we can find
that under different grid resolution parameters, the robustness of the PD method of the
four models is at a high level. The robustness of PD on each model is from high to low:
SVM, with a highest of 98.67%, XGB, with a highest robustness of 91.67%, followed by
RF with 91.33%, and finally MLP with 91.17%.

The robustness of PD fluctuates under different parameter values. Among them, the best
robustness of PD on SVM is when grid resolution is 100, and the lowest robustness is when
grid resolution is 50, with a robustness of 96.83% and a change of 1.84%. It can be seen
that SVM is relatively insensitive to changes in grid resolution. The fluctuation range of RF
is between 86.17% and 91.17%. It can be seen that the difference in robustness changes
when the parameter value changes is relatively obvious. The highest and lowest robust val-
ues of grid resolution are 300 and 20, respectively. XGB performs best at 100 resolution,
which is 91.67%, and the lowest at 250 resolution, which is 87.33%, with a change of
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Parameters SVM RF XGB MLP
low resolution threshold: 5, min bin points: 1 95.00% 90.67% 98.00% 80.17%
low resolution threshold: 5, min bin points: 4 93.33% 92.50% 98.00% 82.23%
low resolution threshold: 5, min bin points: 8 94.83% 92.17% 98.67% 83.50%
low resolution threshold: 5, min bin points: 16 93.00% 92.17% 97.00% 83.50%
low resolution threshold: 5, min bin points: 32 96.33% 92.83% 94.83% 85.50%
low resolution threshold: 5, min bin points: 50 94.83% 92.67% 98.83% 84.50%
low resolution threshold: 10, min bin points: 1 92.50% 91.00% 97.83% 80.00%
low resolution threshold: 10, min bin points: 4 93.17% 93.67% 97.33% 80.33%
low resolution threshold: 10, min bin points: 8 93.17% 90.83% 97.00% 81.17%
low resolution threshold: 10, min bin points: 16 93.67% 91.67% 96.33% 81.83%
low resolution threshold: 10, min bin points: 32 96.50% 93.17% 97.33% 84.00%
low resolution threshold: 10, min bin points: 50 96.50% 90.83% 98.17% 83.33%
low resolution threshold: 15, min bin points: 1 91.50% 92.17% 98.50% 81.33%
low resolution threshold: 15, min bin points: 4 92.67% 91.33% 98.17% 81.67%
low resolution threshold: 15, min bin points: 8 92.33% 92.17% 97.50% 80.17%
low resolution threshold: 15, min bin points: 16 93.17% 93.33% 97.00% 82.67%
low resolution threshold: 15, min bin points: 32 92.33% 91.83% 98.17% 83.50%
low resolution threshold: 15, min bin points: 50 93.67% 92.67% 97.50% 80.00%
low resolution threshold: 20, min bin points: 1 93.17% 93.00% 98.00% 78.83%
low resolution threshold: 20, min bin points: 4 91.33% 93.00% 98.83% 74.50%
low resolution threshold: 20, min bin points: 8 92.50% 93.33% 96.17% 82.83%
low resolution threshold: 20, min bin points: 16 92.67% 91.00% 97.17% 84.17%
low resolution threshold: 20, min bin points: 32 92.83% 92.33% 97.67% 80.00%
low resolution threshold: 20, min bin points: 50 93.67% 92.00% 98.17% 81.17%
low resolution threshold: 25, min bin points: 1 91.00% 92.17% 98.50% 81.00%
low resolution threshold: 25, min bin points: 4 93.50% 93.33% 97.50% 81.83%
low resolution threshold: 25, min bin points: 8 92.17% 92.83% 97.83% 81.00%
low resolution threshold: 25, min bin points: 16 90.67% 92.67% 97.33% 78.67%
low resolution threshold: 25, min bin points: 32 92.50% 91.83% 97.83% 80.33%
low resolution threshold: 25, min bin points: 50 93.17% 92.00% 97.83% 78.50%
low resolution threshold: 30, min bin points: 1 93.33% 92.17% 97.67% 78.83%
low resolution threshold: 30, min bin points: 4 91.83% 92.67% 97.50% 81.33%
low resolution threshold: 30, min bin points: 8 93.00% 92.50% 98.00% 81.67%
low resolution threshold: 30, min bin points: 16 92.33% 92.33% 97.33% 81.00%
low resolution threshold: 30, min bin points: 32 91.83% 92.67% 97.17% 82.83%
low resolution threshold: 30, min bin points: 50 98.68% 92.61% 97.33% 82.67%

Table 7.15: ALE robustness for different parameter combinations results based on SVM,
RF, XGB, MLP.
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4.34%, and its sensitivity to parameter changes is slightly lower than RF. The change range
of MLP is between 87.17% and 91.00%, indicating that parameter changes play a certain
role in robustness.

From the above observations, we can find that PD has the highest robustness on SVM, and
SVM is relatively less affected by parameter changes. PD has the worst robustness on MLP,
which is 91.17%. However, overall, the PD method has shown high robustness on all four
models, indicating that the method has good anti-interference ability. In addition, we also
found that different grid resolution values have different effects on the models. For example,
when grid resolution is 100, PD has the highest robustness on SVM and XGB, but for RF
and MLP, the value is 20 and 200. This shows that choosing the right grid resolution for
different models can improve the robustness of the explanation method to a certain extent.

Parameters SVM RF XGB MLP
grid resolution: 10 97.17% 89.17% 90.83% 89.83%
grid resolution: 20 97.67% 91.33% 91.00% 88.33%
grid resolution: 30 97.50% 89.00% 89.17% 87.83%
grid resolution: 50 96.83% 87.00% 89.00% 87.67%
grid resolution: 100 98.67% 88.67% 91.67% 90.67%
grid resolution: 150 97.67% 87.83% 91.17% 87.17%
grid resolution: 200 97.00% 87.50% 90.83% 91.17%
grid resolution: 250 98.33% 86.17% 87.33% 88.00%
grid resolution: 300 97.67% 88.67% 89.33% 91.00%

Table 7.16: PD robustness for different parameter combinations results based on SVM,
RF, XGB, MLP.

PDV Rob Results

Table 7.17 shows the robustness comparison of the interpretation results of the four black-
box models using the PDV method under different parameters. From the results in the
table, we can see that the robustness of the PDV method is extremely low, and it perfor-
mance under different parameters is extremely poorly in all four models. This shows that
although we have selected a small number of features that are not the most important
for perturbation, the explanation method itself lacks robustness and is therefore extremely
sensitive to small changes. This result also shows that the interpretation results of the PDV
method are very susceptible to even the slightest changes. Therefore, the interpretation
results generated by this method are difficult to trust. In other words, combined with the
previous experimental results on stability, it can be concluded that the PDV method is not
suitable for Android malware detection because the interpretation results it generates are
extremely unstable and can be easily affected by slight changes, thereby increasing the risk
of misleading, making it difficult for security analysts to identify the authenticity of the
interpretation results.
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Parameters SVM RF XGB MLP
grid resolution: 10 21.33% 22.17% 30.50% 19.17%
grid resolution: 20 19.00% 21.17% 32.00% 18.50%
grid resolution: 30 16.50% 22.50% 24.00% 17.67%
grid resolution: 50 17.33% 20.67% 29.00% 21.00%
grid resolution: 100 18.33% 21.17% 30.33% 17.17%
grid resolution: 150 17.33% 22.67% 32.83% 19.83%
grid resolution: 200 19.17% 22.83% 29.00% 16.83%
grid resolution: 250 19.17% 22.67% 23.33% 19.83%
grid resolution: 300 16.83% 20.67% 39.00% 20.17%

Table 7.17: PDV robustness for different parameter combinations results based on SVM,
RF, XGB, MLP.

Morris Rob Results

Table 7.18 shows the robustness comparison of the interpretation results of the four black-
box models using the Morris method under different parameters. From the results in Table
7.18, it can be seen that the robustness of Morris method on the four models is generally
high, all above 92%. From the overall average level, Morris has the highest robustness on
RF, which is 96.00%; MLP is second, which is 95.67%. Morris has a robustness of 95.17%
on XGB, and the last is SVM, 93.17%. The results show that when a small number of
eigenvalues are perturbed, the Morris method can remain undisturbed and still identify the
truly important features, with good noise resistance.

According to the robustness of each model under different parameters, the robustness of
the Morris method is not so sensitive to parameter changes, and each model fluctuates
within a very small range. This shows that the parameters of the Morris method have a
relatively small impact on its robustness, and there is no need to over-adjust the param-
eters. The best robustness parameter settings for each model are: conf level: 0.99, num
levels: 8, num resamples: 50 for RF; conf level: 0.95, num levels: 2, num resamples: 100 for
MLP; conf level: 0.95, num levels: 4, num resamples: 100 for XGB and conf level: 0.95, num
levels: 8, num resamples: 50 and conf level: 0.99, num levels: 4, num resamples: 50 for SVM.

In summary, Morris has shown high robustness on different models and can avoid inter-
ference caused by very small eigenvalue perturbations. Secondly, Morris’s robustness is less
dependent on parameters and can achieve high results without a large number of parame-
ter adjustments. However, using different parameter configurations for different models can
slightly improve its robustness to a certain extent.

7.2.3 Effectiveness
The effectiveness suggests that the explanatory features generated by the explanation
method should be the key to the model decision-making basis. Therefore, we first test
the model prediction results with the original features, and then compare them with the
prediction of model results after removing the explanatory features generated by the expla-
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Parameters SVM RF XGB MLP
conf level: 0.95, num levels: 2, num resamples: 50 92.67% 95.33% 94.67% 95.33%
conf level: 0.95, num levels: 2, num resamples: 100 92.67% 95.83% 94.83% 95.67%
conf level: 0.95, num levels: 2, num resamples: 150 93.00% 95.00% 94.33% 95.17%
conf level: 0.95, num levels: 4, num resamples: 50 92.33% 94.67% 94.33% 95.50%
conf level: 0.95, num levels: 4, num resamples: 100 93.00% 93.67% 95.17% 94.67%
conf level: 0.95, num levels: 4, num resamples: 150 92.67% 95.17% 94.50% 95.50%
conf level: 0.95, num levels: 8, num resamples: 50 93.17% 95.33% 93.50% 94.83%
conf level: 0.95, num levels: 8, num resamples: 100 92.83% 94.17% 94.50% 94.83%
conf level: 0.95, num levels: 8, num resamples: 150 92.83% 95.00% 94.33% 95.50%
conf level: 0.99, num levels: 2, num resamples: 50 92.83% 94.83% 94.67% 95.50%
conf level: 0.99, num levels: 2, num resamples: 100 92.67% 94.67% 94.33% 94.83%
conf level: 0.99, num levels: 2, num resamples: 150 92.33% 95.17% 94.17% 95.33%
conf level: 0.99, num levels: 4, num resamples: 50 93.17% 95.00% 94.50% 95.50%
conf level: 0.99, num levels: 4, num resamples: 100 92.83% 93.83% 94.83% 94.83%
conf level: 0.99, num levels: 4, num resamples: 150 92.83% 94.50% 94.17% 95.50%
conf level: 0.99, num levels: 8, num resamples: 50 92.67% 96.00% 94.50% 95.17%
conf level: 0.99, num levels: 8, num resamples: 100 92.67% 94.17% 95.00% 95.50%
conf level: 0.99, num levels: 8, num resamples: 150 92.50% 95.17% 94.67% 95.67%

Table 7.18: Morris robustness for different parameter combinations results based on
SVM, RF, XGB, MLP.

nation methods.

ALE Eff Results

Figure 7.10 shows the original performance metrics of accuracy, precision, recall and F1
score of the four black-box models SVM, RF, XGBoost and MLP, and their changes after
removing the 30 important features identified by the ALE method under different parameter
combinations.

From the results in the figure, we can see that after deleting 30 important features, the
performance metrics of each model are almost the same as those of the model using the
original features, especially RF and MLP. The performance metrics of the four models did
not drop below the threshold (5%), indicating that the number of important features that
affect the model decision is more than 30. Therefore, deleting only 30 important features
is not enough to affect the final result, and the model can still obtain sufficient effective
information from other features.
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(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.10: Effect of removing 30 important features identified by ALE on four per-
formance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of low resolution threshold (x-axis) and min bin points (y-
axis). The colored bars in each subplot represent the percentage point change of each
metric before and after removal, darker color indicate larger changes, and lighter color
indicate smaller changes.

We increase the number of features to be removed to 70, which is about 10% of the total
number of features. Figure 7.11 shows the original performance metrics of accuracy, preci-
sion, recall and F1 score of the four black-box models SVM, RF, XGBoost and MLP, and
their changes after removing the 70 important features identified by the ALE method under
different parameter combinations.

According to the results in Figure 7.11, after deleting the 70 features identified by the
ALE method under different parameters, the performance of the SVM method dropped be-
yond the threshold we specified, followed by XGBoost, and most of the results also showed
a significant drop. For RF and MLP, their performance dropped, but did not exceed the
threshold. This shows that for SVM and XGBoost, 70 important features have already af-
fected the decision-making process of the model. For RF and MLP, although this number
has affected the decision-making of the model to a certain extent, it is obviously not enough.

To further verify the effectiveness of the explanation method, we continue to increase
the number of deleted important features to 100. The result of remove 100 features as
shown in Figure 7.12.
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(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.11: Effect of removing 70 important features identified by ALE on four per-
formance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of low resolution threshold (x-axis) and min bin points (y-
axis). The colored bars in each subplot represent the percentage point change of each
metric before and after removal, darker color indicate larger changes, and lighter color
indicate smaller changes.

From the results in Figure 7.12, after removing 100 important features, the performance
metrics of SVM, RF, XGBoost and MLP all dropped by more than the 5% threshold. Among
them, by deleting the important features generated by the ALE method under different pa-
rameters, the drop of SVM is 9.5% - 12.5%, the drop of RF is 6% - 9%, the drop of
XGBoost is about 10% to 11%, and the drop of MLP is from 5.75% to 7.25%. In addition,
we also found that when the important features generated by ALE under low thresholds
and fewer bins were removed, the performance of SVM, RF and MLP changed the most.
Besides, SVM also showed sensitivity to low thresholds and high bins, while XGBoost was
not affected by ALE parameters.

However, as we discussed in the 6.3.2 section, a potential problem is that if we remove
enough features, even if they are unimportant features, the performance of the model may
deteriorate due to the reduction in the amount of information available for the model to
learn or the change in the data distribution. To make the effectiveness results more reliable,
we added a verification step, that is, if the features we removed are important features that
truly affect the basis for the model decision, then even if only these 100 important features
are used, the performance of the model should be close to the original performance. Given
the above results on the impact of ALE of different parameters on model performance,
we only need to verify the parameter combination that causes the largest drop in model
performance. That is, the thresholds are 5, the number of bins is 1, 4, 8, 50, and threshold
is 10, bins are 1. The verification results are shown in Table 7.19.

79



(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.12: Effect of removing 100 important features identified by ALE on four per-
formance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of low resolution threshold (x-axis) and min bin points (y-
axis). The colored bars in each subplot represent the percentage point change of each
metric before and after removal, darker color indicate larger changes, and lighter color
indicate smaller changes.

Table 7.19 shows the comparison of model performance when only 100 important features
are used and when the original features are used. It can be seen that the accuracy, recall,
and F1 scores of XGB using the original features are all 98.89%, and the precision is 98.90%,
while the accuracy, recall, and F1 scores of XGB using only 100 important features are all
98.61%, and the precision is 98.62%. It can also be seen from the results that the results
of XGB are not affected by the ALE parameters.

The accuracy, recall, and F1 scores of MLP using the original features are all 98.53%,
and the precision is 98.54%. The accuracy, precision, recall, and F1 scores of MLP using
only 100 important features are all 98.30%. The important features generated by ALE at a
threshold of 5 and a bin number of 4 are closest to the original data.

The accuracy, precision, recall, and F1 score of the SVM using the original features are
all 97.64%. Except for the important features generated by ALE with a threshold of 5 and
a bin number of 50, which has a performance index of 97.5%, the performance of the
important features under the other parameters is exactly the same as the original data.

The accuracy, precision, recall, and F1 scores of RF using the original features are all
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98.46%. The accuracy, precision, recall, and F1 scores of the 100 important features gen-
erated by ALE at a threshold of 5 and a bin number of 50 are closest to the original data,
all of which are 98.45%.

From these results, it can be seen that the performance of the model using only 100
important features, although not completely reaching the performance of the model using
the original features, is very close to the results. This shows that the important features
generated by the ALE method do have the largest marginal contribution to the decision pro-
cess of the model, so the impact is the largest when these features are removed. However,
since the interactions between minor features can still provide a small amount of informa-
tion, reconstructing the decision boundary using only these important features may result
in a slight decrease in performance. In other words, the 100 important features generated
by the ALE method capture most of the key information needed for model prediction, thus
proving the effectiveness of the method. Judging from the performance of the four models,
ALE is most effective on SVM.

Orig
(Acc, Prec, Recall, F1)

After Remove
(Acc, Prec, Recall, F1) Parameter

SVM 97.64%, 97.64%,
97.64%, 97.64%

97.64%, 97.64%, 97.64%, 97.64% t=5, b=1
97.64%, 97.64%, 97.64%, 97.64% t=5, b=4
97.64%, 97.64%, 97.64%, 97.64% t=5, b=8
97.50%, 97.50%, 97.50%, 97.50% t=5, b=50
97.64%, 97.64%, 97.64%, 97.64% t=10, b=1

RF 98.46%, 98.46%,
98.46%, 98.46%

98.35%, 98.36%, 98.35%, 98.35% t=5, b=1
98.36%, 98.36%, 98.36%, 98.36% t=5, b=4
98.33%, 98.33%, 98.33%, 98.33% t=5, b=8
98.45%, 98.45%, 98.45%, 98.45% t=5, b=50
98.44%, 98.44%, 98.44%, 98.44% t=10, b=1

XGB 98.89%, 98.90%,
98.89%, 98.89%

98.61%, 98.62%, 98.61%, 98.61% t=5, b=1
98.61%, 98.62%, 98.61%, 98.61% t=5, b=4
98.61%, 98.62%, 98.61%, 98.61% t=5, b=8
98.61%, 98.62%, 98.61%, 98.61% t=5, b=50
98.61%, 98.62%, 98.61%, 98.61% t=10, b=1

MLP 98.52%, 98.53%,
98.52%, 98.52%

98.24%, 98.25%, 98.24%, 98.24% t=5, b=1
98.30%, 98.30%, 98.30%, 98.30% t=5, b=4
98.24%, 98.25%, 98.24%, 98.24% t=5, b=8
98.28%, 98.28%, 98.28%, 98.28% t=5, b=50
98.29%, 98.30%, 98.29%, 98.29% t=10, b=1

Table 7.19: Performance results of four black-box models using only 100 features
generated by ALE. T refers to the low resolution threshold and b refers to the
min bin points.

PD Eff Results

Figure 7.13 shows the original performance metrics of accuracy, precision, recall and F1
score of the four black-box models SVM, RF, XGBoost and MLP, and their changes after
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removing the 30 important features identified by the PD method under different parameter
combinations.

It can be seen from the results in the figure 7.13 that after deleting 30 important fea-
tures, the performance metrics of each model did not change significantly, and none of
them fell below the threshold (5%). This shows that the number of important features that
affect model decisions is far more than 30. Therefore, deleting only 30 important features
is not enough to affect the final result, and the model can still obtain enough effective
information from other features. Secondly, after deleting the features generated by the PD
method under different parameters, the performance metrics of the model decreased at the
same rate under different parameters, indicating that the effectiveness of PD is not affected
by the parameter changes of the explanation method.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.13: Effect of removing 30 important features identified by PD on four perfor-
mance metrics (accuracy, precision, recall and F1 score) of four black-box models at
different parameters of grid resolution(x-axis). The colored bars in each subplot repre-
sent the percentage point change of each metric before and after removal, darker color
indicate larger changes, and lighter color indicate smaller changes.

Since removing 30 features is not enough to affect the decision-making process of the
model, we increase the number of removed features to 70. Figure 7.14 shows the change
in the performance of each model after removing 70 important features compared to the
original performance metrics.

From the results in the figure, we can find that after deleting 70 important features, the
performance of SVM and MLP decreased by about 3%, while the performance of XGB
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decreased by about 4%. This shows that the deleted features have affected the decision-
making process of the model to a certain extent. Although it has not reached the threshold,
it has shown a significant downward trend compared with deleting 30 features. However,
the performance of RF has only decreased by 1%. Although there is also a significant down-
ward trend compared with deleting 30 features, 70 features are still not enough to affect
the decision-making process of the model.

Therefore, we increase the number of important features to be deleted to 100 to fur-
ther observe the effectiveness of the explanation method.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.14: Effect of removing 70 important features identified by PD on four perfor-
mance metrics (accuracy, precision, recall and F1 score) of four black-box models at
different combinations of grid resolution. The colored bars in each subplot represent
the percentage point change of each metric before and after removal, darker color in-
dicate larger changes, and lighter color indicate smaller changes.

The performance comparison between the model removed with 100 features generated
based on the PD method deleted and the model with the original features is shown in
Figure 7.15. It can be seen that after removing 100 important features, the performance of
SVM and XGBoost both dropped by more than 5%. It is worth mentioning that although
the performance of RF and MLP also dropped to a large extent, it did not exceed the
threshold. Among them, the maximum performance drop of RF was about 3.5%, while
that of MLP was about 4.6%. Given that the drop of MLP and RF was already close to
the threshold range, we increased the number of important features deleted to 120. After
deleting 120 features, the performance drop of RF and MLP exceeded the threshold. In
other words, for the PD method, about 120 features are needed to be sufficient to affect
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the model prediction results.
Then, based on this finding, we verified the effectiveness of the PD method. From 7.15, we
can see that when grid resolution is greater than 10, RF and XGBoot decrease more. SVM
and MLP are not affected by the PD parameter. Therefore, we select grid resolution of 20,
100 and 250 for verification. The results are shown in Table 7.20.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.15: Effect of removing 100 important features identified by PD on four per-
formance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of grid resolution. The colored bars in each subplot represent
the percentage point change of each metric before and after removal, darker color in-
dicate larger changes, and lighter color indicate smaller changes.

According to the results in Table 7.20, the model performance is relatively insensitive to
the parameters of the PD method. Among them, XGB only uses 120 important features to
obtain the same results as the original features. The performance of SVM, RF and MLP
is slightly reduced when only 120 features are used, but it is not much different from the
original results. Therefore, it can be seen that the explanatory features generated by the
PD method are indeed an important basis for model decision-making, and their number
accounts for about 17% of the total number of features. And PD has the best effect on XGB.

PDV Eff Results

The performance comparison of the models after deleting the 30 important features and
removing 70 important features selected according to the PDV method is shown in Figure
7.16 and Figure 7.17, respectively.
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Orig
(Acc, Prec, Recall, F1)

After Remove
(Acc, Prec, Recall, F1) Parameter

SVM 97.64%, 97.64%,
97.64%, 97.64%

97.36%, 97.36%, 97.36%, 97.36% grid=20
97.36%, 97.36%, 97.36%, 97.36% grid=100
97.36%, 97.36%, 97.36%, 97.36% grid=250

RF 98.46%, 98.46%,
98.46%, 98.46%

98.42%, 98.42%, 98.42%, 98.42% grid=20
98.42%, 98.42%, 98.42%, 98.42% grid=100
98.42%, 98.42%, 98.42%, 98.42% grid=250

XGB 98.89%, 98.90%,
98.89%, 98.89%

98.89%, 98.90%, 98.89%, 98.90% grid=20
98.89%, 98.90%, 98.89%, 98.90% grid=100
98.89%, 98.90%, 98.89%, 98.90% grid=250

MLP 98.52%, 98.53%,
98.52%, 98.52%

98.14%, 98.14%, 98.14%, 98.14% grid=20
98.14%, 98.14%, 98.14%, 98.14% grid=100
98.14%, 98.14%, 98.14%, 98.14% grid=250

Table 7.20: Performance results of four black-box models using only 100 features gen-
erated by PD.

From the results of the model performance degradation in these two figures, whether delet-
ing 30 or 70 important features, the model performance is almost unaffected. Only the
performance of XGBoost dropped by more than 2%, and when the grid resolution was 10,
the performance of SVM dropped by 2%. Therefore, according to the current results, it
can be seen that the important features identified by the PDV method are unsufficient to
affect the model decision. However, considering the performance of SVM and XGBoost, we
still increase the number of important features deleted to 100 to observe the changes in
the performance of each model.

The result after removing 100 important features is shown in the Figure 7.18. It can be seen
that the performance of MLP and RF after removing 100 features has almost no significant
change compared to the original results. SVM only dropped by about 2% after removing
PDV with a grid resolution of 10. This shows that the 100 features generated by PDV
are not important features, so removing these features has almost no effect on the model
decision. However, XGBoost dropped by more than 5%, which means that for XGBoost,
the features generated by PDV may be able to affect its decision process. Given that the
PDV effectiveness on other models is 0, we only validated the results of XGBoost to ensure
its effectiveness. As can be seen from Figure 7.18, when the grid resolution of PDV is low,
the performance of XGB drops significantly, so we validated the results generated by PDV
when the grid resolution is 10, 20, and 30.
The verification results of XGB are shown in the Table 7.21.

It can be seen that the accuracy, precision, recall and F1 scores obtained by XGB using only
100 important features are all over 98%. Although the overall performance is good, there
is still a gap with the original results. This shows that the explanation results generated by
PDV can affect the decision of the model to a certain extent, but the results may contain
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(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.16: Effect of removing 30 important features identified by PD on four perfor-
mance metrics (accuracy, precision, recall and F1 score) of four black-box models at
different parameters of grid resolution(x-axis). The colored bars in each subplot repre-
sent the percentage point change of each metric before and after removal, darker color
indicate larger changes, and lighter color indicate smaller changes.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.17: Effect of removing 70 important features identified by PDV on four per-
formance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of grid resolution. The colored bars in each subplot represent
the percentage point change of each metric before and after removal, darker color in-
dicate larger changes, and lighter color indicate smaller changes.
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Orig
(Acc, Prec, Recall, F1)

After Remove
(Acc, Prec, Recall, F1)

grid=10 98.89%, 98.90%,98.89%, 98.89% 98.06%, 98.07%, 98.06%, 98.06%
grid=20 98.89%, 98.90%, 98.89%, 98.89% 98.19%, 98.20%, 98.19%, 98.19%
grid=30 98.89%, 98.90%, 98.89%, 98.89% 98.19%, 98.20%, 98.19%, 98.19%

Table 7.21: Performance results of XGBoost using only 100 features generated by PDV.

less important or unimportant features, which will have a certain impact on the prediction
of the model. However, from the results, PDV is effective on XGBoost.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.18: Effect of removing 100 important features identified by PDV on four
performance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of grid resolution. The colored bars in each subplot represent
the percentage point change of each metric before and after removal, darker color
indicate larger changes, and lighter color indicate smaller changes.

Morris Eff Results

The performance comparison of the models after deleting the 30 important features se-
lected according to the Morris method is shown in Figure 7.19. From the results, we can
see that removing only 30 features has almost no change in the performance of each model.
This shows that 30 features are not enough to affect the prediction results of the model.
Therefore, we increase this number to 70. The result is shown in Figure 7.20.
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After deleting 70 features, the maximum decrease of XGBoost is close to 5%, and the
maximum decrease of SVM and MLP is about 2.6%. However, the decrease of RF is still
small, only about 1.5%. Based on this result, we continue to increase the number of deleted
features to 100 to observe the changes in the performance of each model.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.19: Effect of removing 30 important features identified by Morris on four
performance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of conf level, num levels and num resamples. The colored bars
in each subplot represent the percentage point change of each metric before and after
removal, darker color indicate larger changes, and lighter color indicate smaller changes.

The comparison between the original result and the result after deleting 100 features is
shown in Figure 7.21. It can be seen that after deleting 100 important features, the per-
formance of XGB drops by more than 10%, and it is not related to the Morris parameter.
The drop of RF is between 7% and 8%. Whether the performance drop of SVM and MLP
exceeds the threshold is related to the parameter combination of the Morris method for
generating important features. Not all parameter combinations have a performance drop
of more than the threshold. Therefore, we increase the number of deleted features to 120.
After deleting 120 features, the performance drop of SVM and MLP is about 9%.

Then we verify the effectiveness of Morris, that is, we only use the 120 important fea-
tures generated by Morris to verify the performance of the model. The results as shown
in Table 7.22. From the results, we can see that when the model only uses 120 important
features, the results of XGB are the same as those using the original features. SVM, RF and
MLP are also close to the performance achieved by using the original features. Therefore, it
can be shown that the important features generated by Morris are the basis for influencing
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the model decision, so the explanation results generated by the Morris method are effective.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.20: Effect of removing 70 important features identified by Morris on four
performance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of conf level, num levels and num resamples. The colored bars
in each subplot represent the percentage point change of each metric before and after
removal, darker color indicate larger changes, and lighter color indicate smaller changes.
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Orig
(Acc, Prec, Recall, F1)

After Remove
(Acc, Prec, Recall, F1) Parameter

SVM 97.64%, 97.64%,
97.64%, 97.64%

97.50%, 97.50%, 97.50%, 97.36% c=0.95, l=4, s=100
97.36%, 97.36%, 97.36%, 97.36% c=0.99, l=2, s=150
97.36%, 97.36%, 97.36%, 97.36% c=0.99, l=4, s=150

RF 98.46%, 98.46%,
98.46%, 98.46%

98.33%, 98.33%, 98.33%, 98.33% c=0.95, l=4, s=100
98.44%, 98.45%, 98.44%, 98.44% c=0.99, l=2, s=150
98.37%, 98.37%, 98.37%, 98.37% c=0.99, l=4, s=150

XGB 98.89%, 98.90%,
98.89%, 98.89%

98.89%, 98.90%, 98.89%, 98.90% c=0.95, l=4, s=100
98.89%, 98.90%, 98.89%, 98.90% c=0.99, l=2, s=150
98.89%, 98.90%, 98.89%, 98.90% c=0.99, l=4, s=150

MLP 98.52%, 98.53%,
98.52%, 98.52%

98.31%, 98.32%, 98.31%, 98.31% c=0.95, l=4, s=100
98.20%, 98.21%, 98.20%, 98.20% c=0.99, l=2, s=150
98.13%, 98.14%, 98.13%, 98.13% c=0.99, l=4, s=150

Table 7.22: Performance results of four black-box models using only 100 features gen-
erated by Morris. C refers to the conf level, l refers to the num levels and s refers to
num resamples.

(a) SVM (b) RF

(c) XGBoost (d) MLP
Figure 7.21: Effect of removing 100 important features identified by Morris on four
performance metrics (accuracy, precision, recall and F1 score) of four black-box models
at different combinations of conf level, num levels and num resamples. The colored bars
in each subplot represent the percentage point change of each metric before and after
removal, darker color indicate larger changes, and lighter color indicate smaller changes.
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7.2.4 Discussion of Global Explanation Methods
Table 7.23 shows the stability (Stb), robustness (Rob) and effectiveness (Eff) performance
of various global explanation methods on different models.
For stability, the ALE method has 100% stability on SVM and XGBoost, which means that
the interpretation results do not change with multiple runs. It also has good stability, with
82.19% and 86.61% on RF and MLP, respectively. The PD method also has 100% stability
on SVM and XGBoost, and 86.79% and 89.01% on RF and MLP, respectively, which is
also good stability, slightly higher than ALE. Morris has the highest stability of 96.98%
on XGBoost, followed by SVM and MLP, with 93.65% and 91.49%, respectively. However,
Morris has a stability of only 71.79% on RF, which means that for RF, Morris generates
significant differences in the results between multiple runs. PDV only achieves 100% sta-
bility on XGBoost, but has very low stability on SVM, RF, and MLP. This means that the
interpretation results generated by the PDV method using these three models are almost
different each time between multiple runs.

In terms of robustness, ALE performs well on XGBoost and SVM, with 98.83% and 98.68%
respectively. RF is second with a robustness of 93.67%. This shows that the ALE method is
insensitive to slight disturbances and has a certain anti-interference ability. The robustness
of ALE on MLP is 85.50%, indicating that MLP is more sensitive when slight disturbances
occur, so the generated explanation results will change with the disturbance of the eigenval-
ues. The robustness of the PD method exceeds 90% on all four models, with a robustness
of 98.67% on SVM and 91.33% on RF. XGBoost and MLP have the same robustness of
91.17%. This shows that the PD method has low sensitivity to slight disturbances, and a
small change in eigenvalues does not affect its explanation results. The robustness of the
Morris method is best on RF and MLP, with 96.00% and 95.67% respectively, followed by
XGBoost, which is 95.17%. The robustness on SVM is lower than that of other models, at
93.17%. However, from the overall results, the Morris method has stronger anti-interference
ability than ALE and PD. The robustness values of the PDV method on the four models are
very low, so this method is not robust, and a slight disturbance will cause a huge change
in the interpretation results.

In terms of effectiveness, it can be seen that ALE, PD, and Morris have achieved full
effectiveness on all four models, which means that the important features generated by
these three explanation methods are indeed the features that affect the decision-making
basis of the model, indicating that the results generated by these three explanation meth-
ods are meaningful and effective. However, the PDV method can only generate effective
explanation results on XGBoost, but it is not effective for SVM, RF, and MLP. There-
fore, combining the stability and robustness results, the PDV method is not suitable for
Android malware detection because the method cannot generate reliable explanation results.

Figure 7.22 shows the average performance of the four global explanation methods on the
four models. Regarding the stability of the explanation methods, PD >ALE >Morris >PDV;
for robustness, Morris >PD >ALE >PDV. For effectiveness, although ALE, PD and Morris
all reached 100%, according to previous experimental results, the ALE method only needs
100 features to make the model performance close to the original performance, while PD
and Morris require 120. Therefore, in terms of effectiveness, ALE >PD = Morris >PDV. In
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SVM RF XGBoost MLP

ALE
Stb 100% 82.19% 100% 86.61%
Rob 98.68% 93.67% 98.83% 85.50%
Eff 100% 100% 100% 100%

PD
Stb 100% 86.79% 100% 89.07%
Rob 98.67% 91.33% 91.17% 91.17%
Eff 100% 100% 100% 100%

PDV
Stb 21.67% 21.98% 100% 17.89%
Rob 21.33% 22.67% 39.00% 21.00%
Eff 0 0 100% 0

Morris
Stb 93.65% 71.79% 96.98% 91.49%
Rob 93.17% 96.00% 95.17% 95.67%
Eff 100% 100% 100% 100%

Table 7.23: Performance of the chosen global explanation methods.

addition, according to the previous experimental results, it can be seen that the parameters
of the PD method have relatively little effect on the interpretation results. Overall, PD
achieves the highest stability of 93.97%, Morris method has the highest robustness of 95%
and ALE obtained the hightest effectiveness of 100%.

In Android malware detection, high stability means that the explanation method can output
stably and provide similar explanation results when the detection model and input features
do not change significantly, which is helpful for analysts to track some malicious behav-
iors in the long term. Android malicious applications usually confuse their true intentions
through subtle changes or disguises. If the explanation method is too sensitive to small
changes, it may result in completely different explanation results when the features change
slightly, thus misleading the analysis. Therefore, high robustness indicates that the expla-
nation method is insensitive to such changes and has a certain noise resistance to identify
the important features that really affect the judgment of the detection model. Effectiveness
focuses on whether the malicious behavior that the explanation method focuses on has a
real impact on the model decision. Therefore, effectiveness can also be used to determine
whether the detection method can be applied to the field of Android malware detection.
High effectiveness demonstrates that the explanation method focuses on the key features
that really affect the model judgment of whether it is malicious behavior, and through the
evaluation of effectiveness, the number of most important features for the model decision
can also be found, providing analysts with a more targeted explanation basis.
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8. Conclusion

This study aims to evaluate the quality of XAI methods for Android malware detection.
To achieve this goal, we used four classification models with high accuracy but low inter-
pretability, and evaluated 4 local explanation methods and 4 global explanation methods.
The results we obtained can provide an empirical basis for evaluating the interpretability
effects generated by different XAI methods in the Android malware detection task.

For local explanation methods, we extended the previous work of Soulaimani. Specifically,
we improved some limitations raised in previous experiments. For example, we applied a
larger dataset, improved the method of randomly selecting irrelevant features, and replaced
some white-box machine learning explanation methods with black-box explanation methods,
giving priority to those that can better explain complex model decisions. Local explanation
methods target a single apk, and two evaluation metrics are based on the [78] consistency
rate and soundness rate previously proposed by Soulaimani. The consistency rate effectively
evaluates whether the method can generate relatively consistent explanation results in differ-
ent models by comparing the consistency of the explanation feature sets generated between
different models, reflecting the reliability of the explanation method. The soundness rate
metric effectively evaluates whether the explanation method can ignore irrelevant features
and accurately identify important features that really affect model decisions by comparing
the consistency of the explanation feature set with the original result after adding the irrel-
evant feature set.
Based on the previous experimental results of Soulaimani and our experimental results, these
evaluation metrics are applicable to feature-based local explanation methods. According to
our experimental results, we demonstrate the impact of local explanation methods param-
eters on different tasks in Android malware detection. For example, the LIME method can
achieve higher consistency rates using Manhattan as the distance parameter, while using
Euclidean distance can achieve higher soundness rates, etc. Among these local explanation
methods, SHAP performs the best in terms of soundness and LIME obtains the highest
consistency rate. Furthermore, we found that explanation approaches based on generating
counterfactuals are not applicable to the domain of Android malware detection because such
methods cannot generate counterfactual instances and thus cannot provide interpretable
results. The consistency rates of EDC and Anchors methods are low, only 28.33% and
33.25%. This shows that the malicious behaviors identified by the explanation methods on
different detection models are quite different, which may confuse analysts with the changing
interpretation results. In addition, the SR of Anchors is also lower than that of the other
three explanation methods, at 83.64%. In practical applications, the key features identified
are unstable due to their sensitivity to irrelevant features. Therefore, the EDC and Anchors
methods may have certain limitations in actual detection, especially when using integrated
models or in environments with more data noise. The reliability and practicality of their
explanation results need to be further verified.

For global explanation methods, we developed three quality assessment metrics for ex-
planation methods based on important features: stability, robustness, and effectiveness,
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and evaluated them with four global explanation methods. Stability is used to evaluate
the similarity between the explanation feature sets generated by the explanation method
in multiple runs. Robustness is used to evaluate the sensitivity of the explanation method
under slight perturbations of the input. Effectiveness is used to evaluate whether the ex-
planation method can identify the features that are truly important for the model decision.
Our metric is applicable to global explanation methods based on important features.
Experimental results show that PD achieves the best stability of 93.97%, Morris performs
the best on robustness of 95%, and ALE has the highest effectiveness of 100%. In addition,
we also prove that PDV is not suitable for Android malware detection. Besides, we also show
that XGBoost not only leads SVM, RF, and MLP in classification performance, but also
outperforms other models in interpretability evaluation and is less sensitive to parameter
changes of each explanation method.

Our results cover both local and global explanation methods, which can provide more com-
prehensive and effective insights for malware analysts to choose appropriate explanation
methods. We also focus on parameter tuning strategies to reveal the impact of explanation
method parameters on explanation results, providing a reference for analysts to flexibly
configure parameters according to specific task goals. For instance, the grid resolution pa-
rameter in the PD method has no effect on its stability on various black box models, but
it effects the robustness of the method on different models. In addition, we also provide
valuable suggestions for analysts on how to balance explanation quality and computational
overhead in practice. For example, we found that the computational resources required by
LORE in the local explanation method are much higher than those of LIME, SHAP and
other methods. Although LORE has certain explanation capabilities, its operating efficiency
is not practical when processing large-scale samples. The running time of PI and SHAP
in the global explanation method is also much longer than that of other global explana-
tion methods. Thus, it will bring a large computational burden in multi-model or multi-run
explanation tasks. In the actual application deployment of Android malware detection, an-
alysts need to select a lighter and higher-quality explanation method under the constraints
of limited computing resources to balance efficiency and accuracy. We focus on the real key
features so that analysts can quickly locate the decision-making basis of malicious behavior,
thereby accelerating response efficiency and conducting more comprehensive and effective
analysis.
In summary, this study not only provides a comprehensive, transparent, and operational
framework for the selection of explanation methods in Android malware detection, but also
provides operational, quantifiable evaluation criteria and practical paths for the application
of XAI technology in the security field.

8.1. Limitations
In the experiments of local explanation methods, for the Anchors method, we only tested
batch size, tau, and threshold parameters. In fact, the Anchors method also has other
parameters, such as delta, beam size, etc. However, the parameter tuning of all Anchors
consumes a lot of computing resources, so more attempts cannot be made. According to
the current experimental results, the CR and SR results of Anchors are low, but we cannot
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be sure whether the performance of Anchors will be improved after trying more parameter
combinations. Another is the EDC method, which aims to understand the decision process
of the document classifier. Although this method obtains a higher SR, the CR value is
very low. Therefore, whether this method can be applied to the field of Android malware
detection needs further verification.

The limitation of the global explanation method in the experiment lies in the experimental
part of metric stability. In the experiment, we tested the stability of the four explanation
methods in 20 runs, but failed to verify whether their stability would gradually decrease
with the increase of the number of runs. A more cautious approach is to compare the ex-
periments of multiple runs and gradually increase the number of runs (for example, from 20
to 200 or even more) to observe whether the stability changes significantly. However, due
to hardware limitations, we were unable to run more comparison experiments, which could
take several months. Second, our choice of the number of important features was based
on some previous experience in selecting the number of features in experiments to evaluate
local explanation methods. A more cautious approach would be to try different numbers of
important features for validation to obtain more reliable results.

Another limitation is that in our experiments, all malware data comes from the AMD
dataset and all benign data comes from AndroZoo. This means that the extracted impor-
tant features are related to these two datasets, which affects the generalizability of the
research results.

8.2. Future work
In future work, we can try to solve the problems mentioned in the limitations. In addition,
we can evaluate the selected explanation methods and metrics on more malware datasets
to obtain more comprehensive and reliable analysis and results. Moreover, neural networks,
such as DNN, CNN, etc., have excellent performance in the field of Android malware, but
some current XAI technologies do not support models built with TF/Keras. Therefore, in
the future, the scope of application of some traditional XAI methods can be expanded
to enable them to be applied to more neural networks, thereby providing equally reliable
explainability support for more complex and less explainable deep learning, thereby further
improving the coverage and credibility of Android malware detection systems. Furthermore,
although there are many open source libraries for post-hoc XAI technologies, there are no
libraries for XAI technologies that can be used in the direction of Android malware detection.
Therefore, in future work, we can integrate XAI technologies that can be used in this field
and develop an open source library for this field.
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