A4:E-¥:x Universiteit
ANl Leiden

Master Computer Science

[Efficient Event-based Eye Tracking Using A
Lightweight Mamba-Based Model |

Name: Xuening Xin
Student ID: 53662012
Date: [13/06/2025]

Specialisation: [Artificial Intelligence]

Ist supervisor: [Qinyu Chen]
2nd supervisor: [Chang Gao]

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Acknowledgements

I would like to express my heartfelt gratitude to my advisor, Dr. Chen Qinyu, and
Dr. Chang Gao for your meticulous guidance, patient assistance, and encourage-
ment throughout the entire thesis process. Your expertise and rigorous approach
have deeply influenced me and provided a solid foundation for the completion of this
thesis.

I would also like to extend my special thanks to doctoral student Lu Guorui for the
invaluable advice and guidance you provided throughout the project. Your selfless
assistance and patient explanations have helped me grow significantly in my research
journey.

Additionally, I am deeply grateful to my lab colleague Zhen Xu for your support and
assistance when I faced challenges. Our collaboration has been immensely beneficial
to me.

Thank you to my friends, who always offered encouragement and companionship
when I was stressed or confused, serving as my strong support system.

Finally, I would like to extend my heartfelt gratitude to my parents for your under-
standing and support throughout. It is because of you that I have the courage to

pursue my dreams.

Abstract

This paper proposes a lightweight, deployable eye tracking model
based on event data. Using a cropped custom MobileViTv2 for spatial
encoding and the Mamba module for temporal modeling, we propose
a lightweight modular architecture that maintains high prediction ac-
curacy while significantly reducing model complexity. Experiments on
the 3ET Challenge dataset show that our best model achieved a pixel
error of 1.65 using only 265K parameters, representing a 98% reduc-
tion in model size compared to the 3ET baseline (from Top-1 ranking
team UTCEventGroup in 3ET+ challenge at CVPR 2025). Ablation
experiments demonstrated that the Mamba module outperforms tradi-
tional GRU and LAF modules in terms of both accuracy and efficiency
in the eye tracking task. Additionally, we visualized the pupil center
prediction behavior, verifying the model’s effective extraction of spatio-
temporal features from event data. Finally, this paper discusses several
promising directions for future research, including adaptive temporal res-
olution, online processing mechanisms, multimodal information fusion,
and self-supervised learning methods. The above results validate the
application potential of lightweight eye-tracking models for edge deploy-

ment in event-based visual scenarios.

Contents

[Acknowledgements|

(I _Introduction|

2Related Workl

[2.1 Classical Eye Tracking under Frame-based Visionl

2.2 Deep Learning for Eye Tracking|

2.3 Event-based Eye Trackingl

2.4 Lightweight and Deployable Architectures|

3 Method
3.1 Overview|

[3.2 Data processing|

[3.2.1 Time Slicing Accumulation|.

[3.2.2 Polarity Map and Weighted Accumulation|

[3.2.3 Caching Strategy|

[3.2.4 Data Augmentation|.

[3.2.5 Sequence Construction|

[3.3.1 Overall Design|

[3.3.2 Spatial Encoder: Trimmed MobileVilv2|

[3.3.3 Temporal Modell 0L

[3.3.4 Output Head and Post-processing|

[3.4 Training Strategy|

4 Experiments|

5 Conclusion|

6 Future Workl

10
10
10
11
11
13
13
13
14
14
16
19
21
22

23
23
23
23
24
24
25
27

28

29

1 Introduction

With the wide application of AR/VR/MR technology in education, medical and
industrial fields, eye tracking technology has gradually become one of the key means
to improve the efficiency of user interaction. By capturing the user’s pupil center
in real time, the eye tracking system can not only achieve natural interaction based
on line of sight, but also support focus detection and attention recognition. In the
education field [10], eye tracking can be used to analyze the students’ attention
patterns during reading, image comprehension, or problem solving, helping teachers
understand students’ learning behaviors and make personalized teaching plans. In
the medical field, companies such as Tobii Dynavox [25] have applied eye tracking to
assist people with disabilities in computer operations, enabling users to perform all
the functions of a Windows system independently using only their eye movements. In
industrial applications, the technology is widely used for tasks such as driver fatigue
detection [23] and early warning of hazardous behaviors which effectively improve the
safety and responsiveness of the system. With the development of technology, eye
tracking is becoming a key component of human-computer interaction, providing
strong support for creating a more immersive, intelligent and efficient interaction
environment. In our work, we mainly focus on pupil tracking, which is a very
important basic subtask in eye tracking. Accurate estimation of the pupil center
position is the basis for many downstream tasks (such as gaze point estimation,
attention analysis, and eye-tracking-based interaction).

Currently, the mainstream eye tracking devices are mainly frame-based optical
eye tracking devices [26]. Frame-based eye trackers usually combine infrared illu-
mination with a high-speed camera to acquire a series of eye images for accurate
localization of the pupil, with sampling rates can reach hundreds or even thousands
of Hz, which is the most commonly used solution in the scientific research and com-
mercial fields. However, frame-based systems are prone to image blurring and delays
in bright light, rapid eye movements or moving environments due to the limitation
of fixed frame rate, which makes them limited in eye tracking tasks and thus unable
to realize high-precision pupil center capture. In some medical and low-power sce-
narios, Electro-Oculogram (EOG) devices based on electrophysiological signals [4]
have been used to infer the direction of vision by detecting the potential changes
caused by eye movements. Although EOG devices have the advantages of low power
consumption and not relying on visual images, the limited spatial resolution makes
it difficult to meet the demand for eye tracking.

In order to overcome the under-performance problem of frame-based images in

high-speed dynamic environments, more and more researches in recent years have

attempted to introduce event vision techniques to enhance eye tracking performance.
Event vision sensors have been gradually applied to eye tracking tasks. These
sensors have the advantages of microsecond time resolution, low latency, and low
power consumption, but their application in eye tracking still faces many unique
challenges [14]. First, the raw event streams are inherently sparse, asynchronous
and noisy. Unlike traditional frame cameras that acquire a dense pixel grid image
with luminance values at each pixel point at fixed intervals, event cameras output
asynchronous events only when the luminance of a pixel changes above a certain
threshold. This makes it difficult to directly apply traditional convolutional neural
networks (CNNs) or recurrent architectures. Furthermore, due to sensor limitations
and environmental factors, event data can be severely distorted by noise, especially
when rapid eye movements or blink artifacts interfere with the signal stream. These
properties make robust representation learning and temporal modeling particularly
difficult.

To address these issues, many teams have begun to experiment with more com-
plex architectures. Several eye-tracking methods based on event data have been
proposed, especially in tasks such as the 3ET Challenge [7], where some of the lead-
ing solutions use a combination of deep CNN backbones, stacked GRUs or attention
modules, and post-processing to achieve high accuracy (e.g., pixel error 1.14). How-
ever, these architectures tend to have more than 12.89M parameters, high computa-
tional effort, slow inference, and high training cost, making them difficult to deploy
in resource-constrained environments such as edge platforms and AR/VR devices.

Current studies mainly focus on two aspects: first, how to fully exploit the
advantages of event data to improve the prediction accuracy of the model; second,
how to construct a lighter and more efficient network structure under the premise of
considerable accuracy. However, there is a lack of research on the impact of module
(e.g., time-series modeling module, number of layers of spatial feature extraction) on
the network structure in terms of performance, parameter size. In particular, there
is still no clear answer to whether deep and complex architectures are important for
high-precision predictions. This study is driven by a central question: Can high-
precision eye tracking task be achieved in event-based vision without relying on deep
and complex architectures, making models suitable for edge deployment?

To investigate the trade-off between modeling complexity and prediction accu-
racy, we would like to explore the combination of simpler, more efficient, and more
deployable architectures while maintaining the prediction accuracy. To this end, we
designed a modular joint spatial-temporal modeling framework based on Mobile-

ViTV2, and compared different architectural variants, examining the replacement

of temporal modeling modules (GRU, LAF, and autoregressive Mamba), and the
adjustment of the spatial encoder depth by either retaining deeper layers or applying
appropriate pruning (e.g., removing layer 4). Ultimately, we obtained a small model
with only 265K parameters but still maintaining high accuracy (Pixel Error 1.65)
on the 3ET+ dataset, verifying the feasibility of the lightweight structure.

In summary, our work explores the modular combination approach in the joint
spatial-temporal modeling architecture, and proposes a lightweight eye-tracking
model that can be efficiently deployed on embedded platforms, which provides a
practical paradigm for model compression and structural optimization in event vi-

sion tasks.

2 Related Work

2.1 Classical Eye Tracking under Frame-based Vision

Traditional eye tracking methods are mainly based on frame-based image inputs.
These image sequences are usually captured at a fixed frame rate by RGB or infrared
(IR) cameras. Early methods mostly used traditional image processing techniques
such as edge detection, threshold segmentation, and ellipse fitting to estimate the
pupil center. For example, the method proposed by Swirski et al. [34] has been
widely adopted and is considered as one of the classical schemes. This method is
mainly based on the convolution of the eye image with a center-surround structure,
followed by K-means clustering segmentation of the corresponding maximum po-
sition, further extraction of the boundary using Canny edge detection, and finally
ellipse fitting using the RANSAC algorithm [I1], to achieve the accurate localization
of the eye boundaries and centers. The ExCuSe algorithm [12] uses a multi-stage im-
age processing method to detect the eye center, including Canny edge detection [6],
ellipse fitting, coarse localization, and fine correction to make it more robust. This
method can gradually eliminate straight line interference and retain local features to
accomplish more refined localization, which is more applicable to real-world scenar-
ios. In addition, PuRe [13] is also a robust eye detection algorithm specially designed
for real-world environments, combining edge segment selection, conditional segment
combination strategy, and confidence assessment mechanism, which can significantly
improve detection accuracy and stability. It performs eye localization through struc-
tured image analysis pipeline, and have the ability to recognize images that do not
contain eyes.

However, these methods are difficult to integrate with modern deep learning

frameworks, lack end-to-end modeling capabilities, and are not well-suited for han-

dling high-speed dynamics due to their reliance on frame-based image processing.
Although traditional methods are reliable under certain conditions, they tend to
be highly rely on image quality and environment which make it difficult to adapt
to the needs of real-time, complex or mobile applications. To address these issues,
researchers have begun to introduce deep neural networks to learn robust represen-

tations for pupil, improving the accuracy and generalization ability of the model.

2.2 Deep Learning for Eye Tracking

In recent years, with the wide application of deep learning techniques, researchers
have begun to try to introduce them into eye tracking tasks to achieve stronger rep-
resentation learning and better robustness. For example, Wei-Liang Ou et al. pro-
posed a wearable eye tracking method based on YOLOv3-tiny network [29], which is
specifically designed for near-eye images under visible light conditions, replacing the
traditional ellipse fitting method. Detection of the eye region is achieved by training
a lightweight YOLOv3-tiny model, which is then combined with a calibration pro-
cess to achieve pupil center prediction. Lee et al., on the other hand, propose a deep
network that combines Self-Attention with a mutual information learning strategy
to achieve higher accuracy in eye center detection [21].

In addition, related studies have also explored multi-task structures to jointly
model eye detection and pupil center estimation. For example, GazeNet [38] intro-
duces a joint encoding structure for binocular images and head pose, which exhibits
significant robustness in cross-dataset scenarios and provides high-quality inputs for
pupil center in complex pupil center estimation systems. However, these methods
generally rely on image sequences acquired at a fixed frame rate and still have limita-
tions under rapid eye movements, occlusion, or extreme lighting conditions. On the
other hand, traditional image sensors suffer from temporal redundancy and limited
dynamic range, which limit their further improvement in real-time and robustness.
For this reason, more and more research is focusing on the potential of new visual
sensors, such as event cameras, for pupil center tracking, with a view to solving the

performance bottleneck of traditional frame-based methods in dynamic scenes.

2.3 Event-based Eye Tracking

Currently, event cameras are widely used in a variety of scenarios such as target
tracking [9, I7], object/gesture recognition [22] 28| [, optical flow estimation [39,
5], simultaneous localization and mapping (SLAM) [20} 31, [36], and so on. For
example, Bharath et al. [30] proposed the e-TLD (Extended Tracking-Learning-

Detection) framework, which integrates an event-based camera to achieve robust
long-term target tracking under cluttered environments and 6-DOF camera motion,
demonstrating the unique advantages of event-based cameras for real-time tracking
scenes. In the field of optical flow estimation in event vision, Bardow et al. [3]
proposed an innovative method to simultaneously estimate the scene luminance
map and the pixel-level motion field while relying solely on event flow. With the
development of event vision, more and more research is focusing on its application
in the field of eye tracking (pupil center Tracking). Unlike traditional frame images,
event data is characterized by microsecond time resolution, low latency, and high
dynamic range [14], and its kilohertz-level temporal resolution and ability to capture
fine details of consecutive eye movements make it an ideal sensor for realizing ultra-
high-precision eye tracking [14] 2]. The main event representation methods currently

available include:

Figure 1: Event frame images from the 3ET dataset [7]. Each frame is generated
cumulatively for events through a 10 ms time window. Red pixels in the figure
indicate ON events (positive polarity) and green pixels indicate OFF events (negative
polarity). The spatial distribution of events depicts the main contours of the ocular
structures, especially the pupil region.

e Time Slicing with Polarity Map: Event data is binned within a fixed
time window (e.g., 10ms) and accumulated into RGB channels by positive
and negative polarity to form pseudo-image inputs, making them suitable for
traditional CNN architectures. As shown in Figure [I] this representation ef-

fectively converts sparse event streams into dense frame-like inputs.

e Voxel Grid: Events are projected into a voxelized 3D tensor to capture the

joint distribution over time, space, and polarity [15].

e Time Surface: A time map encodes the timestamp of the most recent event

at each pixel to model local temporal dynamics [33].

While voxel grids provide higher spatio-temporal richness and temporal ordering,
time surfaces are simpler and lighter but more sensitive to sparse or noisy events.

However, regardless of the method used to construct the event frame, there are two

7

common characteristics: asynchrony and sparsity, which make time modeling a crit-

ical component. Existing mainstream temporal modeling methods mainly include:

e Recurrent Networks (e.g., Bi-GRU), which model temporal dependencies

aCross sequences.

e Attention Mechanisms (e.g., BRAT), which enhance long-distance depen-

dency modeling.

e State Space Models (e.g., Mamba), which offer efficient global sequence

modeling.

Among the existing studies, Mambaeye [37] is a representative method with lead-
ing performance in eye tracking tasks under event vision. The method proposes a
bi-directional selective temporal modeling framework consisting of a CNN-extracted
spatial encoder, a bi-directional GRU, and a linear time-varying state-space mod-
ule (LTV-SSM). Mambaeye performs well on the ThreeET-plus benchmark dataset,
but has a model parameter count of 8.59M with a computational overhead of 2.61T
FLOPs. The UTCEventGroup team proposed the BRAT architecture in the 3ET
Challenge [7]. As shown in (Figure [2| and Figure [3), which uses a convolutional
encoder to extract spatial features and combines Bi-GRU with bidirectional relative
positional attention to model temporal dynamics . This approach achieves a maxi-
mum accuracy of 1.14 pixel error [6], but again contains multiple complex modules
with a parameter count of 12.89M, hindering deployment on edge devices. While
these eye-tracking methods have made significant progress in terms of accuracy, their
schemes often rely on stacked depth structures and complex attention mechanisms
that consume large amounts of computational resources, making it difficult to meet
the requirements of low-power, low-latency deployments such as AR/VR, which has

prompted researchers to try to find lightweight deployable network architectures.

2.4 Lightweight and Deployable Architectures

To address the problem of difficult model deployment, recent research has begun
to explore lightweight and efficient architectures. These approaches aim to strike a
better balance between accuracy and deployability by simplifying spatial and tem-
poral encoders, trimming redundant layers, or adopting efficient model designs such
as linear state-space models like MobileViT or Mamba. For example, Iddrisu et al.
proposed a YOLOvS8-n based detection framework for the eye tracking task, which
achieves a good balance between very low parameter count and high real-time infer-

ence [19] through a modular feature extraction structure with only 3M parameters

8

(. . h i
Tracking Spatial Temporal
Pipeline Encoder Decoder
4
m o
z9 m 2 %)
Q> O3)
od (e }e) E]
o> =) <
] (= o> g
) Ar-]
0
=
& J/
.
Conv blocks
® nEE
Q
K=5 @+ | B+ |2 |+]|5
o
® el 2 xely
\ J

Figure 2: BRAT network by Team USTCEventGroup |[7]

{
L
L

Forward Relative Positional Attention

{fuv f2o « fr} |:>
Scale |—ED—| SoftMax

ooooooomE
0oo0ooo@EE
JooooEEm
Dmmgzmmm
ODo0FEEEE
EEEEE
EEEEE
EEEEE

oo

DZ%
E MDD
(=

linear

linear

<XP0

linear

1

i FB+T+C :

' [eB+C £B<C B«C|.|

:{fl £27° - fx]’i =
1

©- Out® ¢

Backward Relative Positional Attention wWOooooooo

EEENOOO0

[:::> EEEEROOD

fr} EEEEENOO
EEEEEEED

EEEEEEEN

{fv f2

linear

Q
I
finear K Scale @ SoftMax
v

linear

Figure 3: Bidirectional Relative Positional Attention [7]

and a lightweight detection head structure. Ghosh et al. proposed GazeSCRNN,
which is a spiking neural network based on a biologically inspired structure, com-
bining convolutional and RNN structures to achieve an efficient temporal modeling,
making it particularly suitable for edge scenarios such as AR/VR, where real-time
and energy-efficiency requirements are extremely high [I6]. In our work, we follow
this line of research by proposing a compact framework and conducting related abla-
tion experiments that reduce the inference overhead while maintaining competitive

tracking performance.

3 Method

3.1 Overview

Our goal is to design an efficient event-based eye tracking model that achieves com-
petitive prediction accuracy while significantly reducing model complexity and de-
ployment costs.Unlike mainstream architectures (such as CNN + GRU + BRAT)
that rely on deep and stacked structures, our approach adopts a simplified design,
replacing complex temporal modeling modules with a lightweight Mamba-based se-
quence model, and employing pruning techniques to reduce the number of parame-
ters in the feature extraction module. The final model has only 265k parameters and
achieves a prediction accuracy of 1.65% per error. To highlight the comparison, Fig-
ure [4] shows the architectural differences between the top-ranked USTCEventGroup

team and our lightweight configuration.

USTC Network Our Network
Architecture Architecture

- N O N
C /NN T Y,

Params:12.89M Params:265K

Ndo-'9d
1vdq

equiep

ZA
1IASIIGON

Figure 4: Architecture comparison between USTCEventGroup’s model and our pro-
posed lightweight design. On the left is the USTCEventGroup team model archi-
tecture, which includes a convolutional feature extraction module, a Bi-GRU time
series modeling module, and a BRAT attention head. On the right is our proposed
lightweight model architecture, which uses MobileViTv2 to replace the traditional
convolutional backbone and uses the Mamba module for time series modeling. This
design significantly reduces the number of model parameters while maintaining pre-
diction accuracy.

3.2 Data processing

To convert the original asynchronous event stream into a frame input format which
is suitable for feature extraction networks, we designed a preprocessing workflow
involving time slicing and weighted accumulation. After this preprocessing, the

originally asynchronous event data is divided into a series of more dense frame

10

sequences based on a fixed event window, which can be directly processed by main-
stream convolutional neural networks or temporal models. This method not only
preserves the high temporal resolution advantage of event cameras while enhancing
the spatial structure advantage of the input data, but also helps downstream models
better capture spatio-temporal features.

Weighted accumulation and Data Enhanced Sorting

Original Augmented

Slice into 10ms windows and sorting

.h5
event ‘ -
file
Ut

Figure 5: Event Data Preprocessing Flowchart

As shown in the figure o] this is a framework diagram of a complete data prepro-
cessing workflow. This workflow includes time slicing, polarity map construction,

image scaling, and data augmentation through sequence construction.

3.2.1 Time Slicing Accumulation

In order to transformer the event stream into a tensor input with structure, the
first step is to temporally order the raw events. We extract all events from the .h5
file, each containing a timestamp (t), spatial coordinates (x, y), and polarity (p, 0
for negative polarity, 1 for positive polarity). Event data is randomly distributed
according to the time it is recorded, so it is necessary to sort the data in ascending
order by timestamp to ensure that there is no cross-frame interference during slicing.
After sorting the data, we slice it into time windows with 10-millisecond increments,
dividing the timeline into continuous windows. All events within each time slice are

collected and form the base input for that point in time.

3.2.2 Polarity Map and Weighted Accumulation

Each 10ms time window needs to be converted into a tensor frame with the shape
[H, W, 2] for subsequent feature extraction. The last dimension contains two chan-
nels, which respectively accumulate positive polarity events and negative polarity
events. As shown in Figure [6] the green area represents the distribution of positive
polarity events, and the red area represents the distribution of negative polarity
events.

To construct this tensor frame, all events within the time window are traversed: if

an event has positive polarity, its value is accumulated at the corresponding position

11

Figure 6: This figure shows a Polarity Map of events within a 10ms time window.
The position of each pixel in the image indicates the spatial location of the event
triggered in that region, where red represents an ON event (a positive polarity
event resulting from an increase in brightness) and green represents an OFF event
(a negative polarity event resulting from a decrease in brightness). This approach
provides rich spatial contrast information while maintaining temporal polarity.

in the first channel; if negative, it is accumulated in the second channel. To enhance
the modeling of short-term dynamics, we introduce a temporal decay weighting
strategy. When constructing a multi-frame sequence, multiple adjacent windows are
superimposed, and each frame is assigned a weight based on its temporal distance
from the current frame—the farther the distance, the smaller the weight—so as to
emphasize the event changes occurring at the current moment.

Specifically, let T' be the window length, and let At be the time difference between
a given event and the current frame. The assigned value in the tensor is defined as:

T — At
[:c,y,p = Imax <Ix,y,p7 T) (1)

where:

e (z,y) denotes the position of the event on the image.
e p € {0, 1} indicates the event polarity (positive/negative).
e At represents the time difference between the event and the current frame.

e A weight value closer to 1 means the event is nearer to the center of the current

time window.

This weighting strategy enhances the local structure within the current time slice

and improves modeling performance in regions with high motion dynamics.

12

3.2.3 Caching Strategy

Due to the high resolution of the event camera output (e.g., 640x480), there is a
large amount of computational redundancy in direct processing, so we use bilinear
interpolation to scale each tensor to 80x60, which significantly reduces the sub-
sequent network load. The scaled tensor still retains the spatial contour features,
which can be effectively modeled by the lightweight network.

To avoid repetitive 1/O operations and repeated computations, we save each
tensor frame in .pt format to disk, and generate corresponding index files and
label files (with pupil center locations) according to the dataset division (train-
ing /validation/testing), which are convenient for subsequent fast loading and batch

training.

3.2.4 Data Augmentation

Considering that the pupil center estimation task is sensitive to spatial distribution
and visual microstructure, we adopt several lightweight but effective data enhance-

ment methods:

e Crop: Using the center of the pupil center as a reference, we randomly crop a
small area and resize it back to its original size to simulate the viewing area

under different focuses.

e Polarity Inversion: Displacing the two polarity channels to improve the model’s

adaptability to samples with inconsistent polarity.
e Horizontal Flip: mirrors the tensor horizontally with probability 0.5.

e Random Offset (Shift): adds an offset of £10% pixel range in the X and Y

axis directions, respectively.

All enhancement operations are performed with simultaneous label updates to
ensure that the viewpoint positions always match the inputs, thus enhancing the
generalization ability and robustness of the model.

Figure [7| shows a comparison of the tensor maps before and after enhancement.
In the right panel, it can be seen that the offset and flip have clearly occurred, while

preserving the key polar features.

3.2.5 Sequence Construction

To implement the timing modeling, we assemble the single-frame tensor into a fixed-

length sequence of frames. In this project, the setup is as follows:

13

Frame 0 Comparison

Original Augmented

Figure 7: Original polarity map (left) vs. enhanced image (right). Red and green
pixels indicate ON and OFF events, respectively. From the figure, it can be observed
that the enhanced image undergoes operations such as cropping, polarity flipping,
horizontal flipping, and horizontal and vertical displacements, which helps to im-
prove the robustness of the model

e The length of each sequence is 10 frames (T=10).

e The inter-frame interval (stride) is 5 frames.

During construction, the system will backtrack forward with the current frame
as the center and collect the history tensor frames to form a four-dimensional tensor
of [T, H, W, 2|. If the history is insufficient, the earliest available frame will be
copied automatically to make up for it. This structure not only supports the input
of temporal models such as GRU/Mamba, but also provides a certain view of history
with low memory overhead, which is a proven effective solution in deployment prac-
tice. This strategy offers a lightweight yet effective window of temporal context with
low memory overhead and has been empirically validated as suitable for real-time

deployment scenarios.

3.3 Model Architecture
3.3.1 Overall Design

This study aims to address the task of eye tracking in event vision scenar-
ios, i.e., predicting the observer’s pupil center coordinates from a dynamic stream
of visual events. Due to the asynchronous, sparse, and highly dynamic nature of
event data, the model must have both spatial modeling capabilities (for captur-
ing the spatial distribution of events) and temporal modeling capabilities (for

understanding the evolutionary patterns of events over time).

14

Algorithm 1 Frame Sequence Index Construction

Require: Current frame index 7, sequence length 7', stride s, file ID list F
Ensure: Frame index sequence S of length T’

1
2

3:

8:

9
10

: Initialize S < []
: for j =T —1to0do
k<1—7-s
if k> 0 and F[k] = F[i] then
Append k to S
else
Append S[0] to S > Pad with first valid index
end if
: end for
: return S

:
]

\

]
= 2 HE N
o [28] : === :
2 12 2 3 SEHENE N 2
t+1 _ = HE N
10-Frame Polarity «©
Sequence
Input Spatial ‘ ‘ Temporal

o /

as

Figure 8: Model Architecture

To this end, we design a lightweight joint spatial-temporal modeling architecture,

shown in Fig. [§l The architecture consists of three main components:

e Spatial Feature Extractor: MobileViTv2 is a lightweight visual Trans-
former architecture designed for mobile devices, serving as an improved version
of MobileViT [27]. It achieves significant reductions in model parameters and
computational complexity while maintaining high accuracy. When using Mo-
bileViTv2 as a spatial encoder, we performed structural pruning to further
reduce the number of MobileViT blocks while efficiently extracting features
from sparse temporal graphs. This module takes as input a polarity tensor of

shape [H, W, 2] for each frame and outputs compressed spatial feature vectors.

e Temporal Modeling Module: Mamba is a time series modeling architecture
designed to address the high computational complexity and low efficiency of
Transformers in long sequence modeling [18]. We chose Mamba as the main

time series modeler because it has a state space structure with linear time

15

complexity and can model long time series dependencies. We also used other
time series modeling modules (such as GRU and LAF modules) in our ablation

experiments, which are discussed in detail later in this paper.

e Pupil Center Prediction Layer: The sequence representation output from
the temporal modeling module is passed into a fully connected layer (i.e., a
Linear layer), which outputs two normalized floating point numbers represent-

ing the z/y coordinates of the predicted pupil center on the image.

The whole process starts from the input event sequence of shape [T, H, W, 2],
and then goes through spatial extraction, temporal modeling, and finally coordinate
regression to complete the efficient and lightweight pupil center prediction inference

process.

3.3.2 Spatial Encoder: Trimmed MobileViTv2

To effectively extract spatial structural information from event sequences, we adopt
the MobileViTv2 network as the spatial encoder [32]. MobileViTv2 combines the
inductive bias of convolutions with the global modeling capabilities of Transformers,
making it highly suitable for processing spatio-temporal visual data. To better
accommodate the sparsity and lightweight requirements of event vision tasks, we
have customized and simplified the spatial encoder module based on MobileViTv2.
This section will first introduce the basic structure of the standard MobileViTv2,
followed by a detailed explanation of our proposed pruned version of MobileViTv2

and the modifications and optimizations made to its key modules.

MobileViT block

Transformers as Convolutions

w Fusion |

Unfold

— 2 oo o Lo
_ |conv-3x3 MV2 MV2| |MobileiT| [MV2| [MobileviT| [MV2 MoblleViTI | Global pool -
j Rt e ot — Linear]_' Loglb
[+ E= h=w=2 h=w=2 h=w=2
Output spatial —» 128 x 128 64 x 64 32 x 32 16 x 16 8x8 1x1

dimensions

Figure 9: MobileViT structure diagram [27]

16

standard MobileViTv2 structure Figure [J] shows the overall structure of the
MobileViTv2 architecture and the internal components of the MobileViT module,
including local convolution layers, patch-based tokenization, transformer modeling,

and fusion steps. The main modules of the standard MobileViTv2 include:

e An input adaptation layer: a 3x3 convolution that maps 2-channel polarity

input to a 3-channel format compatible with MobileViTv2.
e A Conv2D Stem for basic feature extraction.
e Inverted Residual Block for efficient spatial refinement.

e MobileViT Block for global feature aggregation.

The input event tensor is a polarity map sequence:
X e RT><2><H xW
After spatial encoding, the output becomes:

F c RTXCXth

Where T is the sequence length, C' is the output channel, and h,w are the spatial

dimensions after downsampling.

(1) Conv2D Stem. Each frame X; € R**#*W ig passed through a 3 x 3 convo-

lution:
w
2

XY = Conv2D(Xy; Wegny, beony) € RO 2

(2) Inverted Residual Block. The block includes expansion, depthwise convo-

lution, and projection:

Xexpand = CODV1x1(Xt(1))
Xaw = DWConvsy3(Xexpand)

Xproject = CODV1x1(de)
X = Xy € B

w
2

17

(3) MobileViT Block. We apply a MobileViT block composed of convolution

and Transformer:

Xlocal = CODV3><3(Xt(2))
Patches = Unfold(X)ocal, patch _size = (p, p))
Tokens = Flatten(Patches) € R"»*4

Tokens’ = TransformerLayer(Tokens)
w

X® = Fold(Tokens') € RO*2 %>
This completes the spatial encoding process for a single frame.

Algorithm Explanation. Algorithm [2|outlines the step-by-step spatial encoding
process for an event sequence. For each time step ¢, the corresponding event repre-
sentation X, is sequentially passed through the Conv2D stem, the Inverted Residual
Block, and the MobileViT block. The resulting spatial feature map Xt(3) is collected
and stacked across the temporal dimension to form the final encoded tensor F'. This
ensures that local patterns and global context are efficiently captured for each frame

before temporal modeling.

Algorithm 2 Trimmed MobileViTv2 Spatial Encoder
RTXQXHXW

Require: Event sequence tensor X €
w

Ensure: Spatial feature tensor F' € RTX64x 5 x5

1: Initialize Conv Stem, Inverted Residual, and MobileViT Block

2: fort=1to 7 do

3 X« X[t > Shape: [2, H, W]
4 XY« Conv2D(X,)

5: X® InvertedResidual(Xt(l))

6: X « MobileViTBlock(X*)

7. Flt] « X%

8: end for

9: F « Stack(F[1],..., F[T])

10: return F > Shape: [T,64, H/2,W/2]

Custom cropping version MobileViTv2 module In order to better adapt to
the sparsity and lightweight requirements of event vision tasks, we customized and

simplified the spatial encoder module based on MobileViTv2:

18

e Lightweight attention mechanism In MobileViT Block, we use a custom
LinearSelfAttention module to replace the standard multi-head self-attention
(MHSA). This module generates queries, keys, and values through 1x1 con-
volutions and uses a non-standard softmax_te activation function for atten-
tion normalization, thereby reducing computational complexity and enhancing

sparsity and stability. The output is represented as:

Output = ReLU(V) - Z(K - softmax_te(Q))

e Patch modeling strategy optimization We adopt an unfold — Trans-
former — fold processing flow in the MobileViT Block, i.e., first divide the
local feature map into patches, then perform global attention modeling, and
finally restore the spatial structure. This strategy retains global modeling

capabilities while significantly reducing memory and computing requirements.

e Normalization strategy adjustment Considering that the batch size of
event image sequences is small and unevenly distributed, we uniformly use
GroupNorm instead of LayerNorm in the attention module and FFN module

to improve training stability.

e Forward path simplification Compared with the original MobileViTv2, we
only retain the first three layers (Conv Stem + IRB + a set of MobileViT
Blocks), with a total output channel count of 64 and a spatial size compressed
to half that of the original image, effectively controlling model size and im-

proving inference efficiency.

3.3.3 Temporal Model

Due to the non-uniform, sparse, high-frequency, and asynchronous nature of event
data along the temporal axis, effective temporal modeling is a main challenge in
event-based vision tasks. Unlike traditional frame-based data, event streams lack
fixed frame rates, so it requires models to capture temporal dynamics with low
latency and high efficiency. To address this, we designed and compared different
temporal modeling structures based on three core modules: Gated Recurrent Unit
(GRU), Linear Attention Feedforward (LAF), and the state-space-based Mamba
module.

This section provides a detailed description of each temporal module’s struc-
ture, computation, design motivation, comparison to conventional methods, and its

integration in our model architecture.

19

Gated Recurrent Unit (GRU). GRU [§] is an improved version of recurrent
neural networks (RNN), known for its use of gating mechanisms to control infor-
mation flow and mitigate the vanishing gradient problem. Compared with LSTM,
GRU has a simpler structure with fewer parameters and better training efficiency,

making it well-suited for low-resource event vision tasks.
The GRU update rules are defined as:

2z =W,y + ULhi_q)

re =oc(Wexy + Uphy_q)

hy = tanh(Wyxy + Up(ry © hy—1))
he=(1—2)@hy+ 20 hy

where 2, and r; are the update and reset gates respectively, h, is the candidate
hidden state, and h, is the final output state. z; is the input at time ¢, o denotes
the sigmoid function, and ® denotes element-wise multiplication.

In our model, features extracted from the MobileViTv2 encoder are globally
pooled and flattened into sequences X € REXT*P where D = C' - H - W, which
serve as the input to a single-layer GRU. The final hidden state hr is then used for
downstream prediction.

While GRU effectively captures short-term temporal dependencies, it struggles
with long-term modeling and lacks explicit mechanisms for selective temporal at-
tention. Therefore, we explore attention-based and state-space alternatives for en-

hanced modeling capacity.

Linear Attention Feedforward (LAF). To enhance global temporal modeling
while avoiding the high computational cost of standard Transformers, we introduce a
lightweight attention-based module, LAF [35]. It replaces full softmax attention with
a simplified normalization mechanism and combines it with a feedforward network
to efficiently model temporal context.

The attention mechanism used in LAF relies on the following activation function:

ReLU(1 + ¢ + 0.5¢%)

SoftmaxTE(q) =
oftmaxTE(q) > ReLU(1 + ¢, + 0.5¢42)

which approximates softmax while ensuring numerical stability and linear complex-
ity. The weighted representations are passed through a two-layer feedforward net-
work with residual connections and normalization.

In our architecture, LAF is stacked after the GRU, enabling the combination of

recurrent short-term modeling and attention-based global context encoding. Com-

20

pared with traditional multi-head Transformer modules, LAF offers:
e Reduced computational and memory overhead.
e Pluggable structure, easily integrated with RNNs or CNNs.

e Stable training due to simplified activation and normalization.

Mamba: State Space Sequence Modeling. Mamba is a recently proposed
state space model (SSM) [18] designed to achieve linear-time sequence modeling
while maintaining strong global context understanding. Unlike RNNs or Transform-
ers, Mamba models sequence dynamics through discretized continuous-time systems.

The core formulation is:

%h@) = Ah(t) + Ba(t), y(t) = Ch(t) + Da(t)

which can be discretized into a dynamic convolutional operation:

y = Az + B - convolve(z, K)

where K is a learnable kernel generated via interpolation. Mamba supports parallel
computation and achieves strong sequence modeling with high GPU efficiency.

Mamba offers:

e Strong long-term dependency modeling;

e Low parameter count and inference latency.

e Efficient GPU execution via parallel computation.

e Superior performance on event-based data.

3.3.4 Output Head and Post-processing

The final prediction head is designed to map the temporal output features into a
normalized 2D pupil center coordinate. The output head consists of a single-layer

fully connected (FC) projection:
§: = FC(hy) € R?
where hr is the final hidden state from the temporal module (e.g., GRU, Mamba).

The output g, represents the predicted (x,y) pupil center.

21

Activation Function. In our design, we do not apply a sigmoid activation to
y;. Instead, we allow the network to freely regress over the output range, and apply
normalization as part of the post-processing step. This approach preserves gradient
dynamics and avoids early saturation. We experimentally verified that adding a

sigmoid activation harms convergence and reduces accuracy.

Coordinate Normalization. During training, ground-truth pupil center coordi-
nates are normalized to [—1, 1] range based on the resolution of the original video.
The predicted values are then denormalized back to pixel space during evaluation

for compatibility with benchmark metrics.

Loss Function and Weighting. We adopt the standard ¢, loss (mean squared
error) between predicted and ground truth coordinates. We also experimented with
reweighting the loss in high-error samples, but found that uniform weighting yields

more stable training. Formally, the loss is:

1 N
»Cpupil—center = N Zl: Hyl - @2”3
i=

3.4 Training Strategy

Reproducibility and Environment. In order to ensure the stability of the train-
ing process and reproducibility of the results, we uniformly set the random seed in
each work thread of NumPy, PyTorch, and the data loader workers. Also, we set
torch.backends.cudnn.deterministic=True and disable benchmarking to avoid
selecting non-deterministic computational kernels. All models were trained on a sin-
gle NVIDIA GPU using the PyTorch Lightning framework, which automatically

handles tasks such as device configuration and logging.

Data Loading. We use a preprocessed event dataset to accelerate training, store
the processed dataset in .pt format, and load it with the customized H5Dataset
class. The training and validation sets have been partitioned proportionally in
advance, and the training is loaded using DataLoader. To ensure determinism in
the loading process, the training set is set with shuffle=True to scramble the data,
and all loading threads use worker_init_fn based on a fixed random seed. Each

sequence sample contains 10 consecutive frames of event images with batch size set
to 16.

22

Learning rate scheduling. According to the learning rate scheduling, we use
the current mainstream cosine annealing scheduler (cosine annealing scheduler) [24],
which can realize the dynamic adjustment of the learning rate in each training round.

The learning rate at the t-th epoch is calculated as:

Lt cos (I
=Ny = cos | —
Nt = To 5 T

where 19 = 1 x 1072 is the initial learning rate and 7' = 248 represents the total
number of rounds of training. This scheduling strategy helps the model converge
more smoothly and avoids overfitting caused by a fixed learning rate. In our experi-
ment, the cosine annealing scheduling can effectively bring smoother validation loss

curves and smaller pixel error fluctuations.

Model saving and logging. We automatically save the models through the
ModelCheckpoint callback function provided by PyTorch Lightning, which monitors
the validation set pixel error (val_p_err) and retains the top 30 best-performing
models based on the results of the validation set pixel error. The name of the saved
model file contains the epoch number and the error metrics, this naming scheme
is to facilitate the subsequent evaluation and analysis. The progress and evalu-
ation metrics during the training process are visually recorded and debugged via

TensorBoardLogger.

4 Experiments

4.1 Experimental Setup
4.1.1 Dataset

This experiment uses the official dataset provided by the 3ET Challenge [7], which
contains sequences of incident visual eye-tracking with real pupil center annotations.
The dataset is divided into a training set and a validation set. The training set
contains 24,788 sequences, validation is performed on a separate subset, and testing

is performed on the hidden test set provided by the challenge.

4.1.2 Training Configuration

The optimizer used for model training is Adam, and the initial learning rate is set to
1 x 1073, and the cosine annealing strategy is used to gradually reduce the learning

rate. The training epoch is set to 248, and the batch size is 16. All experiments

23

are done on a single NVIDIA RTX 3090 Ti GPU, implemented using the PyTorch
Lightning framework, and the training process is monitored by TensorBoard, and

the model is saved based on the pixel error of the validation set.

4.2 Evaluation Metric

In order to evaluate the effectiveness of our proposed temporal modeling strategy, we
use pixel error as a metric for evaluating the model, with a pixel error of Euclidean
distance between the predicted pupil center and the true pupil center locations on

an 80 x 60 downsampled image.

Evaluation Metric. Let 3, € R? denote the predicted pupil center at frame t,
and 1, € R? be the corresponding ground-truth label. The pixel error is defined as:

N
. 1 N
PixelError = N ;Zl G — yell, (2)

where N is the total number of samples. All coordinates are evaluated in the pixel

domain, scaled to the 80 x 60 spatial resolution used throughout training and testing.

Block Params_K

convl 3.23K

conv2 182.78K

conv3 1639.94K

fc 16.58K

gru 6391.38K

other e.eexK
transformer 4739.07K

Total Parameters: 12892.9eK (12.89M)

Figure 10: Measured Parameter Count of the 3E'T Baseline.

4.3 Baseline Reimplementation and Parameter Discrepancy

In previous related work [7], the total number of parameters for this model was
reported to be approximately 7 million. However, we couldn’t fully reproduce their
values because they didn’t open-source the implementation code or give us precise
ways to count parameters. To verify the actual model size, we reimplemented the
model structure based on the description in their paper and automatically counted

the parameters for each layer using PyTorch’s forward hook method. As shown in

24

the figure[I0] the final results indicate that the total number of trainable parameters
in the model is 12.89 million, significantly higher than the original report. We
think that this difference might be because old statistical tools were used or some
modules were left out while counting parameters (such GRU or attention structures

in Transformers).

4.4 Ablation Study

In order to gain insight into the contribution of the different modules in the proposed

model, we performed ablation experiments focusing on two key aspects.
e Comparing different temporal modeling modules (LAF/GRU vs. Mamba).
e Assessing the impact of spatial encoder depth in the MobileViT backbone..

The following Table [I| summarizes their results as measured by pixel error on the

test set:
Model Temporal Modules | #Spatial Layers | Params | Pixel Error
0 (3ET Baseline) | GRU + Transformer 3 12.89M 1.14
A GRU + LAF 4 0.84M 1.67
B GRU + Mamba 4 0.85M 1.63
C Mamba only 4 0.75M 1.65
D GRU + LAF 3 0.40M 1.79
E GRU + Mamba 3 0.41M 1.66
F Mamba only 3 0.26M 1.65

Table 1: Ablation study results for different model variants.

Comparison with Original 3ET Baseline We first compare our models against
the official 3ET Baseline (Model 0), which adopts a GRU + Transformer architecture
with three spatial encoding layers. Despite its high accuracy (pixel error of 1.14), the
large model size poses significant challenges for deployment on resource-constrained
platforms.

In contrast, our proposed lightweight variants substantially reduce the parameter

count (as low as 0.26M) while maintaining acceptable accuracy. For instance:

e Model F (Mamba-only with three spatial layers) achieves a pixel error of 1.65
with only 265K parameters, reducing model size by approximately 98% while

incurring only 0.51 more error.

25

e Model B (GRU + Mamba with four spatial layers) reaches 1.63 pixel er-
ror using just 0.85M parameters, which is still significantly smaller than the

baseline.

These results suggest that our lightweight models are good for situations when

resource efficiency is very important.

Temporal Modeling Modules: Comparison between LAF/GRU and Mamba
We compare the performance of the traditional GRU + LAF module with the
Mamba module under consistent spatial configurations. Results show that replac-
ing LAF + GRU with Mamba consistently improves model performance, as

summarized below:

e With four spatial layers, Model B (GRU + Mamba) outperforms Model A
(GRU + LAF), reducing pixel error from 1.67 to 1.63.

e Even without GRU, the Mamba-only models (Model C/F) maintain a com-
parable performance to GRU + LAF (pixel error around 1.65).

e Under the lightweight setting (three spatial layers), Model E (GRU + Mamba)
still outperforms Model D (GRU + LAF), demonstrating Mamba’s robust-

ness.

These findings confirm that Mamba provides superior temporal modeling
capability and parameter efficiency, making it an effective alternative to tradi-

tional recurrent-attention combinations.

The Role of Spatial Feature Extraction Layer (Layer 4) We also evaluate
the impact of the fourth spatial encoding layer (Layer4) in MobileViT. The key

observations are:

e Removing Layer4 leads to noticeable performance degradation in both GRU +
LAF and GRU + Mamba configurations (Model A — D: 1.67 — 1.79; Model
B — E: 1.63 — 1.66), highlighting the utility of high-level spatial features.

e However, in the fully lightweight Mamba-only model (Model F), removing
both GRU and Layer4 still results in a pixel error of 1.65, which is comparable
to the full model (Model A).

26

This implies that when Mamba is used, its temporal modeling capacity can com-
pensate for the absence of deep spatial features which enable the removal of
Layer4 to reduce the parameter count from 841K to 265K with minimal performance

loss.

Summary of Findings

Based on the above ablation study, we draw the following key conclusions:

e The Mamba module offers superior temporal modeling performance and

greater parameter efficiency than the traditional GRU + LAF combination.

e While deeper spatial encoders (e.g., Layer4) contribute positively to prediction

accuracy, they can be removed in certain deployment-sensitive conditions.

e Our best model configuration (three-layer encoder + Mamba-only) achieves
1.65 pixel error with only 265K parameters, striking an excellent balance

between performance and deployability for edge computing scenarios.

4.5 Visualization

&

(a) Sample 1 (b) Sample 2

Figure 11: Visualization of predicted pupil center locations (green dots) overlaid on
event polarity maps. The black circle indicates the ground truth pupil center area
and red and blue represent positive and negative events, respectively.

We present the prediction results for representative samples. The model’s pre-
dicted pupil center is annotated on the event polarity map which enable us to analyze
the model’s pupil center prediction behavior more intuitively.The event polarity map
is generated by mapping positive-polarity events andnegative-polarity events to red

and blue channels, respectively. As shown in Figure [T1] the green highlighted areas

27

indicate the model’s expected pupil center positions, i.e., two-dimensional coordi-
nates, while the outer black ring-shaped regions represent the actual pupil center
areas.From these two maps, it can be observed that the projected pupil center typ-
ically align well with the high-density motion regions around the eyes, indicating
that the model can extract important spatio-temporal attributes from sparse event
data.

5 Conclusion

In this study, our main goal is to accomplish the task of event-based eye tracking,
and to explore whether high prediction accuracy can be achieved without relying on
deep and complex structures. Given the increasing demand for real-time and low-
power eye tracking in AR/VR applications, we propose a lightweight pupil center
prediction model based on a modular spatiotemporal architecture, which effectively
combines the MobileViTv2 module for image processing with the Mamba module
for temporal modeling. To assess the impact of different architectural designs on
performance, we designed a series of different versions model for experimentation,
combining different temporal modeling modules (GRU, LAF, and Mamba) as well
as different spatial coding depths. Through extensive ablation experiments on the
3ET+ dataset, the results show that the Mamba-based temporal modeling module
not only outperforms the traditional GRU + LAF combination in terms of prediction
accuracy, but also significantly reduces the number of parameters. Our optimal
model achieves a 1.65 pixel error using only 265K parameters, representing over
98% compression in model size compared to the baseline scheme.

The above results validate the feasibility and effectiveness of lightweight struc-
tures for eye-tracking tasks in event vision. This result provides a useful reference

for subsequent researchers who wish to deploy eye-tracking systems to edge devices.

28

6 Future Work

Although the approach presented in this paper strikes a good balance between accu-
racy and efficiency, there are still several promising directions that deserve further

exploration:

e Real-time latency benchmarking on embedded devices. Deployment
on embedded devices. Despite the small parameter size and lightweight struc-
ture of our model, it has not yet been deployed and validated on real edge
devices (e.g., NVIDIA Jetson, ARM-based SoCs, etc.). The model is still in
Float format, and the computational overhead of trying to deploy it on edge
devices is a significant issue; future work could try to introduce techniques
such as model quantization to further enhance the increased deployability on

resource-constrained devices.

¢ Online eye tracking with adaptive temporal resolution. The sliding
window of the current model adopts a fixed length, and in the future, we can
explore the dynamic window mechanism or online processing framework, so
that the system latency can be further reduced and the response speed can be
further improved, which is more suitable for streaming input scenarios such as
AR/VR.

e Multi-modal sensor fusion. Currently we only have a single event data as
input, in the future, we can fuse the event data with other modalities (e.g.,
RGB images, depth sensors, or IMU signals), which is expected to greatly im-
prove the robustness of the model in complex environments (e.g., low light, oc-
clusion, blinking interference, etc.), and realize efficient fusion with lightweight

multistream structures.

e Self-supervised or unsupervised learning. Current event visual pupil
center prediction still relies heavily on manually labeled data. In the future,
self-supervised strategies based on motion consistency, contrast learning, etc.
can be explored, e.g., we can try to incorporate the optical flow model to reduce
the labeling cost and improve the model’s generalization ability in unknown

environments.

Overall, this study serves as a foundation for efficient and practical event-based
pupil center estimation, and we hope to build on this work to develop deployable

and adaptive systems for broader real-world applications.

29

References

1]

2l

3]

4]

[5]

6]

17l

8]

19]

[10]

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry,
Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau,
Marcela Mendoza, et al. A low power, fully event-based gesture recognition
system. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7243-7252, 2017.

Anastasios N Angelopoulos, Julien NP Martel, Amit PS Kohli, Jorg Conradt,
and Gordon Wetzstein. Event based, near eye gaze tracking beyond 10,000 hz.
arXw preprint arXiw:2004.03577, 2020.

Patrick Bardow, Andrew J Davison, and Stefan Leutenegger. Simultaneous
optical flow and intensity estimation from an event camera. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 884-892,
2016.

Rafael Barea, Luciano Boquete, Manuel Mazo, and Elena Lopez. System for as-
sisted mobility using eye movements based on electrooculography. IEEFE trans-

actions on neural systems and rehabilitation engineering, 10(4):209-218, 2002.

Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara
Bartolozzi. Event-based visual flow. IFEFE transactions on neural networks and
learning systems, 25(2):407-417, 2013.

John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698, 1986.

Qinyu Chen, Chang Gao, Min Liu, Daniele Perrone, Yan Ru Pei, Zuowen Wang,
Zhuo Zou, Shihang Tan, Tao Han, Guorui Lu, et al. Event-based eye tracking.
2025 event-based vision workshop. arXiv preprint arXiw:2504.18249, 2025.

Kyunghyun Cho et al. Learning phrase representations using rnn encoder—
decoder for statistical machine translation. In EMNLP, 2014.

Tobi Delbruck and Manuel Lang. Robotic goalie with 3 ms reaction time at 4%
cpu load using event-based dynamic vision sensor. Frontiers in neuroscience,
7:223, 2013.

Andrew T Duchowski and Andrew T Duchowski. Eye tracking methodology:
Theory and practice. Springer, 2017.

30

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-

phy. Communications of the ACM, 24(6):381-395, 1981.

Wolfgang Fuhl, Thomas Kiibler, Katrin Sippel, Wolfgang Rosenstiel, and
Enkelejda Kasneci. Excuse: Robust pupil detection in real-world scenarios.
In Computer Analysis of Images and Patterns: 16th International Conference,
CAIP 2015, Valletta, Malta, September 2-4, 2015 Proceedings, Part I 16, pages
39-51. Springer, 2015.

Wolfgang Fuhl, Thomas Kiibler, and Enkelejda Kasneci. Pure: Robust pupil
detection for real-world scenarios. In Proceedings of the 2020 ACM Symposium
on Eye Tracking Research and Applications (ETRA), pages 1-5. ACM, 2020.

Guillermo Gallego, Tobi Delbriick, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew J Davison, Jorg Conradt,
Kostas Daniilidis, et al. Event-based vision: A survey. IEEE transactions on

pattern analysis and machine intelligence, 44(1):154-180, 2020.

Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Davide Scaramuzza. End-
to-end learning of representations for asynchronous event-based data. In ICCV,
2019.

Anirban Ghosh, Wei-Ting Hsiao, Szu-Yu Liu, Pi-Cheng Chen, and Yu-
Chiang Frank Cheng. Gazescrnn: Event-based gaze estimation using spiking
convolutional recurrent neural networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2022. arXiv preprint arXiv:2205.02018.

Arren Glover and Chiara Bartolozzi. Event-driven ball detection and gaze
fixation in clutter. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2203-2208. IEEE, 2016.

Albert Gu, Tri Dao, Karan Goel, and Christopher Ré. Mamba: Linear-time
sequence modeling with selective state spaces. In International Conference on
Learning Representations (ICLR), 2024.

Khadija Iddrisu, Waseem Shariff, and Suzanne Little. A framework for pupil
tracking with event cameras. In 26th Irish Machine Vision and Image Process-
ing Conference (IMVIP). IET, 2024.

31

[20]

[21]

22]

23]

[24]

[25]

[26]

27|

28

[29]

Hanme Kim, Stefan Leutenegger, and Andrew J Davison. Real-time 3d recon-
struction and 6-dof tracking with an event camera. In Furopean conference on

computer vision, pages 349-364. Springer, 2016.

Jongmin Lee, Youngwook Kim, Dongyoon Kim, and Seungryong Lee. Deep
learning-based pupil center detection for fast and accurate eye tracking system.
FElectronics, 10(13):1532, 2021.

Jun Haeng Lee, Tobi Delbruck, Michael Pfeiffer, Paul KJ Park, Chang-Woo
Shin, Hyunsurk Ryu, and Byung Chang Kang. Real-time gesture interface
based on event-driven processing from stereo silicon retinas. I[FEFE transactions
on neural networks and learning systems, 25(12):2250-2263, 2014.

Yulan Liang, Michelle L Reyes, and John D Lee. Real-time detection of driver
cognitive distraction using support vector machines. I[IEFEE transactions on
intelligent transportation systems, 8(2):340-350, 2007.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. In ICLR, 2017.

Paivi Majaranta and Kari-Jouko Raiha. Text entry by gaze: Utilizing eye-
tracking. Text entry systems: Mobility, accessibility, universality, (2007):175—
187, 2007.

Mehrube Mehrubeoglu, Linh Manh Pham, Hung Thieu Le, Ramchander
Muddu, and Dongseok Ryu. Real-time eye tracking using a smart camera.
In 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pages
1-7. IEEE, 2011.

Sachin Mehta. Mobilevitv2: Improved mobile-friendly vision transformer with

simple and effective fusion, 2022.

Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings, Christoph Posch,
Nitish Thakor, and Ryad Benosman. Hfirst: A temporal approach to object
recognition. IEEFE transactions on pattern analysis and machine intelligence,
37(10):2028-2040, 2015.

Wei-Liang Ou, Tzu-Ling Kuo, Chin-Chieh Chang, and Chih-Peng Fan. Deep-
learning-based pupil center detection and tracking technology for visible-light

wearable gaze tracking devices. Applied Sciences, 11(2):851, 2021.

32

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Bharath Ramesh, Shihao Zhang, Zhi Wei Lee, Zhi Gao, Garrick Orchard, and
Cheng Xiang. Long-term object tracking with a moving event camera. In Bmuc,
page 241, 2018.

Henri Rebecq, Timo Horstschéfer, Guillermo Gallego, and Davide Scaramuzza.
Evo: A geometric approach to event-based 6-dof parallel tracking and mapping
in real time. IEEE Robotics and Automation Letters, 2(2):593-600, 2016.

Mohammad Rastegari Sachin Mehta. Mobilevitv2: Light-weight and general-
purpose vision transformers. arXiv preprint arXiv:2206.02680, 2023.

Amos Sironi, Marco Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad
Benosman. Hats: Histograms of averaged time surfaces for robust event-based
object classification. In CVPR, 2018.

Lech Swirski, Andreas Bulling, and Neil Dodgson. Robust real-time pupil track-
ing in highly off-axis images. In Proceedings of the symposium on eye tracking

research and applications, pages 173-176, 2012.
Ashish Vaswani et al. Attention is all you need. In NeurlPS, 2017.

Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scara-
muzza. Ultimate slam combining events, images, and imu for robust visual
slam in hdr and high-speed scenarios. IEEFE Robotics and Automation Letters,
3(2):994-1001, 2018.

Zhong Wang, Zengyu Wan, Han Han, Bohao Liao, Yuliang Wu, Wei Zhai, Yang
Cao, and Zheng-jun Zha. Mambapupil: Bidirectional selective recurrent model
for event-based eye tracking. arXiv preprint arXiv:2404.12083, 2024.

Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. It’s written
all over your face: Full-face appearance-based gaze estimation. In Proceedings
of the IEEFE conference on computer vision and pattern recognition, pages 2291—

2300, 2017.

Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Ev-
flownet: Self-supervised optical flow estimation for event-based cameras. arXiv

e-prints, pages arXiv—-1802, 2018.

33

	Acknowledgements
	Introduction
	Related Work
	Classical Eye Tracking under Frame-based Vision
	Deep Learning for Eye Tracking
	Event-based Eye Tracking
	Lightweight and Deployable Architectures

	Method
	Overview
	Data processing
	Time Slicing Accumulation
	Polarity Map and Weighted Accumulation
	Caching Strategy
	Data Augmentation
	Sequence Construction

	Model Architecture
	Overall Design
	Spatial Encoder: Trimmed MobileViTv2
	Temporal Model
	Output Head and Post-processing

	Training Strategy

	Experiments
	Experimental Setup
	Dataset
	Training Configuration

	Evaluation Metric
	Baseline Reimplementation and Parameter Discrepancy
	Ablation Study
	Visualization

	Conclusion
	Future Work

