
Master Computer Science

Identifying promising regions of

differentiated cardiomyocytes in brightfield images

through Machine Learning

Name: Lucas de Wolff
Student ID: s3672980

Date: 31/10/2024

Specialisation: Artificial Intelligence

1st supervisor: Lu Cao
2nd supervisor: Sylvia Le Dévédec

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

1

Abstract

Differentiating stem cells into cardiomyocytes is crucial for regenerative medicine
and drug discovery for heart deceases. Assessing the quality of this differ-
entiation is challenging and usually relies on manual microscopy, which is
time-consuming and resource-intensive. Provided by an image dataset in
which human induced pluripotent stem cells (hiPSCs) were differentiated
into cardiomyocytes, we developed a two-stage machine learning pipeline to
automate the evaluation of these differentiated cardiomyocytes relying only
on images acquired from brightfield microscopy. In the first stage, we trained
the EfficientNetV2 model on alpha-actinin-2 (ACTN2) fluorescent images
annotated by experts. This model classified regions as well-differentiated or
poorly differentiated cardiomyocytes with high accuracy. Using this trained
model, we generated annotations for corresponding brightfield images, cre-
ating a new dataset with quality labels. In the second stage, we trained a
similar CNN on these generated annotations to assess cardiomyocyte qual-
ity directly from brightfield images. While our approach shows promise,
it has limitations. Relying on generated annotations may introduce errors,
potentially propagating inaccuracies from the first model to the second. Ad-
ditionally, the inherent noisiness and lower detail of brightfield images make
accurate classification challenging. Time constraints also prevented the com-
plete optimization of the brightfield model. Our results suggest that combin-
ing brightfield microscopy with machine learning can automate parts of the
cardiomyocyte quality assessment process. However, further work is needed
to improve data quality and model performance. This approach can reduce
reliance on manual evaluations and accelerate advancements in stem cell
therapies and regenerative medicine.

Contents

1 Introduction 5

2 Background 7
2.1 Biomedical Background . 7

2.1.1 Stem Cell Differentiation 7
2.1.2 Cardiomyocytes: Structure and Function 7
2.1.3 Brightfield Imaging . 8
2.1.4 Fluorescent Imaging: ACTN2-mEGFP Labeling 8

2.2 Computer Science Background 8
2.2.1 Neural networks . 9
2.2.2 Convolutional Neural Networks (CNNs) 11
2.2.3 Ensemble Models . 12
2.2.4 Test-Time Augmentation 12
2.2.5 Bayesian Optimization 12

3 Related Work 14

4 Data 16
4.1 Generation of Cardiomyocyte Images 16
4.2 Expert-Annotated ACTN2 Dataset 17
4.3 Brightfield and ACTN2 Images Dataset 19

5 Methods: ACTN2 Model 20
5.1 Preprocessing ACTN2 Pattern Dataset 20

5.1.1 Binary Classification 20
5.1.2 Splitting the Data . 21
5.1.3 Data Augmentation . 21
5.1.4 Tuned Preprocessing Steps 22
5.1.5 Additional Preprocessing 23

5.2 ACTN2 Model . 24
5.2.1 Architecture . 24

1

5.2.2 Tuning . 25
5.2.3 Training . 26
5.2.4 Creating Final Predictions 26

6 ACTN2 Classifier Results 28
6.1 Tuning Results . 28
6.2 Training results . 29
6.3 Ensemble & Test-Time Augmentation 30
6.4 Confusion Matrix . 30

7 Methods: Brightfield Model 33
7.1 Generation of Annotated Brightfield Data 33
7.2 Splitting the Data . 36
7.3 Augmentation . 37
7.4 Preprocessing, Tuning & Training 37
7.5 Ensemble and Test-Time augmentation 38
7.6 Creating a Region map . 38

8 Brightfield Classifier Results 39
8.1 Tuning Results . 39
8.2 Training Results . 40
8.3 Confusion matrix . 40
8.4 Region Map Results . 41

9 Discussion 43
9.1 Discussing The ACTN2 Model 43

9.1.1 Tuning Process . 43
9.1.2 Training Process . 44
9.1.3 Ensemble & Test-Time Augmentation 45
9.1.4 Confusion Matrix . 45

9.2 Discussing The Brightfield Model 46
9.2.1 Generation of Brightfield Annotations 46
9.2.2 Tuning Process . 47
9.2.3 Ensemble Performance 47
9.2.4 Training Process . 48
9.2.5 Confusion Matrix . 48
9.2.6 Region Map . 48

10 Conclusion & Future Work 50

A ACTN2 Region Map versus True Annotations 56

2

B Brightfield Pixel Intensities 57

C Hardware and Software Specifications 58

3

Acknowledgements

I want to express my deepest gratitude to my supervisor, Dr. L. Cao, for
her invaluable guidance and expertise in both Computer Science and the
Biomedical fields. I am also thankful to Dr. S.E. Le Dévédec for providing
this project and her support throughout its development. I sincerely thank
PhD student S.C. Davidse for his assistance and always being available to
answer my questions. Lastly, I sincerely appreciate my girlfriend, friends,
and family for their support and encouragement. Without the contributions
of these individuals, this work would not have been possible.

I would like to thank the Allen Institute for providing their high-quality
dataset and their readiness to offer additional support and resources through-
out my research.

4

Chapter 1

Introduction

The differentiation of stem cells into specific cell types in vitro has enormous
potential for regenerative medicine and drug discovery. For example, pro-
ducing functional cardiomyocytes in the laboratory is crucial for developing
treatments for heart disease, a leading cause of death globally. This capability
could enable the repair or replacement of damaged cells or even entire organs.
However, directing stem cells to differentiate into their intended cell types
is challenging and prone to errors. Developing efficient and cost-effective
differentiation protocols remains a significant hurdle in biochemistry.

A critical step in refining these differentiation protocols is accurately eval-
uating stem cell quality. Traditionally, this evaluation has been conducted
through manual microscopy, where differentiated stem cells are examined us-
ing brightfield images. This manual method is time-consuming and demands
significant human effort. Automating this evaluation with machine learning
could greatly reduce reliance on human expertise, accelerating research and
development in this area. While existing research has explored similar appli-
cations, none have specifically automated the assessment of cardiomyocytes
using brightfield microscopy. This research aims to create a pipeline that
takes a brightfield image as input and outputs a region map indicating well-
and poorly differentiated cardiomyocytes.

To our knowledge, no dataset exists for brightfield microscopy that pro-
vides location-specific information on sarcomere quality. However, a recent
study by the Allen Institute for Cell Science published a dataset in which ex-
perts manually labeled the sarcomere organization of human induced pluripo-
tent stem cell (hiPSC)-derived cardiomyocytes in 18 microscopic images.
They assigned class labels to regions with clearly defined structures, cate-
gorizing them into five classes ranging from no structure to highly organized.
However, these annotations were based on ACTN2-tagged images rather than
brightfield images. To overcome this limitation, we designed a two-stage clas-

5

sification pipeline that generates brightfield data using the provided ACTN2
pattern dataset. This generated data was then used to train a classifier for
brightfield images. We also simplified the classification task to a binary eval-
uation of ”good” and ”bad” cells by merging the original five classes into two
broader categories based on a visual interpretation of the Allen Institute’s
classification scheme.

In this study, we first train a convolutional neural network (CNN) on the
expert-annotated ACTN2 data. Next, we use this trained model to generate
predictions on ACTN2 images with corresponding brightfield counterparts.
We then filter these predictions based on their confidence to ensure that only
the highest-quality annotations are kept. Finally, we train another CNN on
the generated data to create region maps for brightfield images of cardiomy-
ocytes.

In this study, we aim to achieve the following goals:

1. Determine the accuracy of a machine learning model in detecting well-
differentiated cardiomyocyte regions in ACTN2 images, using expert
annotations as a reference.

2. Assess the effectiveness of the ACTN2 classifier in generating annota-
tions for brightfield images.

3. Explore the feasibility of training a machine learning model to accu-
rately assess cardiomyocyte quality from brightfield images, using the
annotations generated in the previous step as ground truth.

This thesis is organized as follows: Chapter 2 provides essential back-
ground knowledge on relevant biomedical concepts and technical modeling
details. Chapter 3 discusses related work, giving context and motivation for
this study. Chapter 4 describes the dataset provided by the Allen Institute
and used for training the classifiers. Chapter 5 outlines the methods for devel-
oping the ACTN2 model, including preprocessing, tuning, and model design
choices. Chapter 6 presents the experimental results of the ACTN2 classifier.
Chapter 7 details the methods for generating the brightfield dataset and cre-
ating the brightfield classifier. This is followed by Chapter 8, which presents
the results of our final classifier. In Chapter 9, we discuss the results of both
classifiers and the limitations of our work. Finally, we conclude the thesis in
Chapter 10 and give suggestions for future research.

6

Chapter 2

Background

To fully understand the methods and results presented in this report, it is
essential to grasp the relevant concepts from both biomedical and computer
science. This section explains important concepts about stem cell differenti-
ation and machine learning techniques used in this study.

2.1 Biomedical Background

2.1.1 Stem Cell Differentiation

Stem cells are unspecialized cells that have the potential to develop into many
different cell types. There are two main categories: pluripotent stem cells
and somatic stem cells. Pluripotent stem cells can differentiate into all adult
cell types. On the other hand, somatic stem cells are located in adult organs
or tissue and can only differentiate into cells of that respective organ or
tissue. However, human induced pluripotent stem cells (hiPSCs) are unique;
these somatic cells have been reprogrammed back to their pluripotent state,
allowing them to change into cells other than their original lineage [24]. In
this study, hiPSCs are differentiated into cardiomyocytes, the heart’s muscle
cells. For this, precise biochemical protocols are followed.

2.1.2 Cardiomyocytes: Structure and Function

Cardiomyocytes are the muscle cells responsible for the heart’s contrac-
tion. As hiPSCs mature into cardiomyocytes, they undergo gene expression
changes and structural developments. A key aspect of this maturation is the
organization of sarcomeres, the essential building blocks of muscle contrac-
tion. When viewed under a microscope, the proteins within the sarcomeres
initially appear diffused, which indicates an immature state. As the cells

7

mature, the proteins form distinct, dot-like (punctate) patterns, showing in-
creasing structural organization. This eventually leads to the formation of
Z-disks, which anchor the thin filaments and are necessary for muscle con-
traction. Understanding sarcomere organization is necessary for assessing
cardiomyocyte functionality and quality. The assessment of sarcomere orga-
nization is commonly done using microscopy [4].

2.1.3 Brightfield Imaging

Brightfield imaging is one of the most basic forms of microscopy. As a sam-
ple is illuminated from underneath, light passes through the sample, making
denser areas appear darker, as opposed to transparent areas. This method
allows us to capture live images of the cells while noninvasive. However, while
brightfield microscopy captures important cell features, it focuses more on
general cell morphology. It would, for example, be less suited for capturing
sarcomere structure in cardiomyocytes than other more sophisticated tech-
niques. As a result, distinguishing between well-differentiated and poorly
differentiated cells based solely on brightfield images is challenging.

2.1.4 Fluorescent Imaging: ACTN2-mEGFP Labeling

Fluorescent imaging techniques allow us to study cellular physiology in more
detail. Alpha-actinin-2 (ACTN2) is a protein located at the Z-disks of sar-
comeres. This makes it a good marker for assessing sarcomere organization
in cardiomyocytes. By genetically modifying hiPSCs to express the ACTN2
protein with a modified enhanced Green Fluorescent Protein (mEGFP), re-
searchers can visualize sarcomere structures in live cardiomyocytes without
applying external dyes or fixing procedures [18]. As the cells grow, they will
naturally express this fluorescent marker. A light of a specific wavelength is
then shone onto the sample, illuminating the fluorescent ACTN2 protein.

2.2 Computer Science Background

Interpreting cell microscopy results requires human expertise and is time-
consuming. Machine learning can help alleviate this need by automatically
detecting important patterns in the images. This section explains the relevant
ideas behind such an intelligent system.

8

2.2.1 Neural networks

Neural networks are fundamental in the field of artificial intelligence. In-
spired by the structure and function of the human brain, neural networks
consist of layers of nodes, or neurons, that are wired together to form a
network. A neural network has an input layer, one or more hidden layers,
and an output layer. Typically, each neuron in a layer is connected to every
neuron in the following layer, called a fully connected layer. The connections
between neurons have an associated weight that determines the strength and
direction of their influence. By changing these weights, the network can
(semi-)independently ’learn’ complex functions. Every neuron also has an
activation function that determines whether or not the neuron will fire or
the intensity of firing. The activation functions introduce non-linearity into
the system, allowing the modeling of non-linear functions. In the case of
a classification problem, the output layer of a neural network usually con-
sists of a softmax activation function. This function produces a vector of
probabilities summing up to 1, representing the class probabilities.

Training Neural Networks

Training a neural network involves adjusting its weights to minimize the loss
function, which measures the error between the network’s predictions and
the ground truth. This adjustment is performed using an optimization tech-
nique called gradient descent. Gradient descent is an algorithm that seeks
the (local) minimum of a function by iteratively moving in the direction of
the steepest decrease, that is, opposite to the gradient of the function. The
network updates its weights by calculating the gradient of the loss function
with respect to each weight and then adjusting the weights in the opposite
direction of this gradient. This backward computation through the network
to update weights is known as backpropagation. The magnitude of these
weight updates is controlled by a parameter called the learning rate. For-
mally, gradient descent is expressed as:

θt+1 = θt − η∇θL(θt) (2.1)

Where θt represents the parameters (weights) at iteration t, η is the learn-
ing rate and ∇θL(θt) is the gradient of the loss function L with respect to
the parameters θ at iteration t.

Due to loss landscapes’ often noisy and irregular nature, standard gra-
dient descent may not always reach the global minimum. Many improved
optimization algorithms have been proposed to enhance the performance of
gradient descent. The optimization algorithm used in this study is RMSprop

9

(Root Mean Square Propagation) [15]. RMSprop improves gradient descent
by adapting the learning rate for each weight individually. It keeps track
of a moving average of the squared gradients and adjusts the learning rates
accordingly. For example, when the past gradients have been large values,
the learning rate will be divided by a larger value and thus will result in a
smaller update. This helps stabilize and accelerate training. The RMSprop
algorithm is defined by:

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.2)

θt+1 = θt −
η√

E[g2]t + ϵ
gt (2.3)

Where E[g2]t is the exponentially decaying average of past squared gra-
dients at time t, γ is the decay rate that determines the weight given to
past gradients, gt = ∇θL(θt) is the current gradient of the loss function with
respect to the parameters, and ϵ is a small constant to prevent division by
zero.

Furthermore, a popular addition that can be applied to many optimiza-
tion algorithms is momentum. Incorporating momentum into RMSprop ac-
celerates convergence by considering the past velocity of parameter updates.
RMSprop with momentum is defined as:

E[g2]t = γE[g2]t−1 + (1− γ)g2t (2.4)

vt = βvt−1 +
gt√

E[g2]t + ϵ
(2.5)

θt+1 = θt − ηvt (2.6)

Where vt is the velocity (momentum) term at time t, and β is the momen-
tum coefficient, which determines the contribution of the previous velocity.

Neural networks are susceptible to overfitting. This is when the model learns
the training data too well, including its noise and outliers, leading to poor
performance on unseen data. Many techniques have been proposed to combat
overfitting. Dropout [22] is widely used due to its simplicity and proven
effectiveness [28]. Dropout can be applied to specific layers, randomly turning
off a certain proportion of neurons based on a dropout rate. This ensures
that the network does not become overly dependent on any subset of neurons,
improving its generalization ability.

Other techniques, such as batch normalization [9], are also commonly
used in training neural networks. Data is usually processed in batches to save

10

computational resources (and introduce some necessary noise). The gradient
is computed on each batch; however, batches can vary significantly in their
mean and standard deviation, which can hinder learning. By centering and
rescaling each batch, batch normalization stabilizes the training process [20].

2.2.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) [11] are a class of deep learning mod-
els. A CNN introduces a new type of layer: the convolutional layer. These
layers are specialized in extracting spatial features. This makes them ideal
for image processing tasks like object detection, image classification, and
image segmentation.

Convolutional Layers

A convolutional layer uses filters (kernels) to extract features from images.
A kernel is a small matrix of values updated during training, similar to the
weights between neurons. The kernel is slid over the image, and the dot-
product is taken between the kernel and the image’s covered pixel values.
This results in a feature map representing the feature intensity at each image
point. Usually, CNNs consist of many stacked convolutional layers with
activation functions in between to introduce non-linearity.

Most CNN models also contain pooling layers, which are used to reduce
dimensionality. While different types of pooling operations exist, global av-
erage pooling is used in this study. It is typically placed at the end of a CNN
to extract the spatial features and transform them into a 1-D vector. As
the name suggests, it takes the average value across all feature maps. The
result is a vector containing spatial information that can directly feed into
the output layer of the network.

CNN Architecture: EfficientNetV2

There are many design choices to be considered when designing a neural net-
work. Such a design is called a network architecture, which is often created
to solve a specific problem. This study uses the EfficientNetV2 CNN archi-
tecture by Tan et al.[25], published in 2021. This model family was optimized
and evaluated on large image datasets to improve both parameter efficiency
and training accuracy. Doing so, they reached much higher accuracy while
using almost 7x fewer parameters than state-of-the-art models. This makes
it particularly useful in environments with limited computational resources
while still wanting high accuracy. Additionally, their models showed great

11

potential for transfer learning, which is when a pre-trained model is fine-
tuned on a different problem. They show that the pre-trained models can
generalize well to other datasets.

2.2.3 Ensemble Models

In machine learning, an ensemble model combines the predictions of multiple
models to improve overall performance. The intuition behind ensembling is
that different models may learn complementary patterns from the data, and
combining their predictions can help reduce errors and increase robustness.
In the context of classification, this typically involves voting or averaging
probabilities across the predictions of individual models. There are also more
advanced ways to combine models. Three main types are bagging, boosting,
and stacking. In short, When bagging, we combine the predictions of models
trained on different data subsets. When boosting, we combine models created
by iteratively fitting new models trained on the previous model’s mistakes.
Finally, when stacking, we use a meta-model that learns to combine the
model predictions intelligently. Depending on the problem specifications,
one method may be more applicable than the others.

2.2.4 Test-Time Augmentation

Test-time augmentation is a technique used to improve the robustness of
a model’s predictions by applying multiple random transformations (such
as rotations, flips, and scaling) to the input data during inference. The
model’s predictions are averaged across these transformed versions, resulting
in a more stable and reliable final prediction. This is particularly useful in
scenarios where the input data might contain noise or variation that could
lead to inconsistent or uncertain predictions.

2.2.5 Bayesian Optimization

Hyperparameter tuning is an essential step in optimizing machine learning
models. Instead of manual tuning, many algorithms exist that automatically
find the best hyperparameter configuration without any bias a manual search
might have. Bayesian Optimization [21] is an algorithm for hyperparameter
tuning that efficiently explores the hyperparameter space by building a prob-
abilistic model of the unknown objective function. This probabilistic model
usually uses a Gaussian process as its prior distribution. It will then use this
model to select the most promising hyperparameter settings (with an ac-
quisition function) and update its probabilistic model based on the received

12

score. Figure 2.1 gives an example of a probabilistic model with four points
selected as the initial samples. The blue line and contour represent the Gaus-
sian process mean and its 95% confidence interval, i.e., the range of values
it expects to see under the current probabilistic model for a hyperparameter
value. At the sample locations, the uncertainty is zero, i.e. the model knows
the exact performance of this value based on a previous observation.

Figure 2.1: Example scenario of hyperparameter sampling using Bayesian
optimization with a single hyperparameter. The orange dotted line is the
true objective function of which we try to find the optima, which is unknown
to us. The black crosses are hyperparameter values that have previously
been selected and evaluated. The blue line is our current estimate of the true
objective function with the uncertainties illustrated by the blue contour.

Unlike traditional grid search or random search, Bayesian Optimization
balances exploration and exploitation, often finding better hyperparameters
in fewer iterations.

13

Chapter 3

Related Work

Much work has been done to automate the assessment of differentiated cells
using machine learning and to assist researchers in stem cell culture progress.
While many previous studies share overlapping ideas or approaches, this
section will highlight why this paper is novel in its application.

Waisman et al. [29] used a convolutional neural network (CNN) to distin-
guish pluripotent stem cells from early differentiating cells using brightfield
microscopy. They achieved over 99% accuracy, showing that brightfield im-
ages can be reliable sources for detecting cell differentiation. However, their
study focuses on comparing early-stage differentiation with no differentia-
tion. The task becomes significantly more complicated when distinguishing
between different stages of differentiation. This paper will limit the classes
to poorly and well-differentiated cells.

Lien et al. [13] combined a CNN with a support vector machine (SVM) to
classify iPSC-derived cells and evaluate the differentiation efficiency of retinal
pigment epithelium cells (RPEs). In their work, they used phase contrast
images as the input of their CNN. The classification model achieved 97.8%
accuracy, distinguishing between iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-
RGCs. Through PCA projection of the last layer of the CNN, they manually
validated that the trained CNN could be used to recognize different degrees
of differentiation in iPSCs-derived cell lineages.

Zhu et al. [30] developed a deep learning model for predicting neural stem
cell differentiation from brightfield images. Similarly, Nguyen et al. [16] used
brightfield images to predict neural stem cell differentiation. However, their
focus lies on single cells and may not apply to cases of cell colonies, which is
usually the case when growing stem cells.

As mentioned in the introduction, the work of Gerbin et al. [6] is central
to this study. They developed an imaging platform, which they used to create
a dataset containing over 30,000 hiPSC-derived cardiomyocytes. They then

14

trained a ResNet18 [7] to classify the local organization of alpha-actinin-2
in subcellular regions into six classes. However, this requires an expensive
genetically altered ACTN2-mEGFP. Additionally, their data split might have
leaked train data into the test data, which we will elaborate on later in this
paper. Ahola et al. [1] used this dataset and fed brightfield images to a
U-Net model to estimate cardiomyocyte structure and maturity. However,
their study focused mainly on nuclear orientation.

This study builds on these works by focusing on cheap, easy-to-get bright-
field microscopy for cardiomyocyte differentiation. Using a two-stage clas-
sification pipeline and simplifying the task to binary categories of ”good”
and ”bad” cells, this approach aims to provide a solution for automatically
evaluating cell differentiation in cardiomyocytes. The main challenge is that
we have to deal with the low-feature and noisy properties of the brightfield
images in the context of cardiomyocytes. Overcoming this will be a major
step in the automation of cell assessment.

15

Chapter 4

Data

This chapter describes the datasets used in our study1, provided by the Allen
Institute as part of their research on the relationship between RNA abun-
dance and cellular organization. The datasets include raw and processed
images of cardiomyocytes and numerical data capturing various cellular fea-
tures. Central to our work is the dataset containing expert annotations of
sarcomere organization using images capturing ACTN2 fluorescent signals,
in this paper referred to as ACTN2 images. Additionally, we used a dataset
that includes both brightfield and ACTN2 images. Below, we detail the
generation of the images and describe the datasets used.

4.1 Generation of Cardiomyocyte Images

The Allen Institute developed a model system to analyze the relationship
between structural organization and cell gene expression. They used a human
induced pluripotent stem cell (hiPSC) line expressing ACTN2-mEGFP, a
validated approach for studying hiPSC differentiation [19]. This cell line was
differentiated into cardiomyocytes over 32 days using an optimized small-
molecule protocol to maximize differentiation efficiency.

On day 12, the wells were visually inspected to assess their suitability for
further analysis. Flow cytometry determined an efficiency of 78.1% ± 3.7%
was achieved. The cells were then replated for high-resolution imaging and
assessed for quality using antibody labeling of sarcomeric proteins. Cells that
did not meet the quality standards were excluded from further study. On
days 18, 25, and 32, the cardiomyocytes were imaged live at high resolution
using a 3i spinning-disk microscope. All images in this study have a width
of 1776 and a height of 1736 pixels.

1Allen Institute imaging dataset

16

https://open.quiltdata.com/b/allencell/packages/aics/integrated_transcriptomics_structural_organization_hipsc_cm

4.2 Expert-Annotated ACTN2 Dataset

Dataset Location: actn2 pattern ml classifier train folder.

This dataset consists of 18 high-resolution images of differentiated cardiomy-
ocytes captured using the alpha-actinin-2 marker. These images represent
the highest average intensity slice of their original 3D stack. Experts anno-
tated regions within each image based on five distinct patterns of sarcomere
organization, as illustrated in Figure 4.1:

1. Diffuse/Other (Class 1): No clear sarcomere structures.

2. Fibers (Class 2): Fibrous structures without clear sarcomere organi-
zation.

3. Disorganized Puncta (Class 3): Punctate patterns without regular
alignment.

4. Organized Puncta (Class 4): Punctate patterns showing some align-
ment.

5. Organized Z-Disks (Class 5): Well-organized sarcomere structures
with clear alignment.

Figure 4.1: Reference images for manual annotation of sarcomere structures
across five organization classes. Reproduced from Gerbin et al.[6] under the
Creative Commons CC BY-NC-ND license.

17

Pattern Number of Samples

Diffuse/Other (Class 1) 596
Fibers (Class 2) 688

Disorganized Puncta (Class 3) 727
Organized Puncta (Class 4) 906
Organized Z-Disks (Class 5) 572

Total 3,489

Table 4.1: Number of annotations per sarcomere organization class in the
expert-annotated ACTN2 dataset.

Within each image, regions that clearly represented one of the five classes
were identified, resulting in approximately 3,489 annotations, as detailed in
Table 4.1.

The annotations were organized into five folders corresponding to each
class, each containing the x and y coordinates and their associated image
numbers. Figure 4.2 shows an example of an ACTN2 image with its anno-
tations.

Figure 4.2: An example of an ACTN2 image of differentiated cardiomyocytes
with overlaid expert annotations. The annotations highlight regions corre-
sponding to the five classes of sarcomere organization used for classification.

18

4.3 Brightfield and ACTN2 Images Dataset

Dataset Location: 2d segmented fields fish 1/2D fov tiff path folder.

This dataset consists of 478 images, each containing ten channels correspond-
ing to different imaging techniques, including brightfield and ACTN2 chan-
nels. The purpose of the dataset was to collect all images used in their
research (not including the annotated ACTN2 images). The brightfield im-
ages were acquired using an LED light source with a peak emission of 740
nm and a bandpass filter of 706/95 nm, capturing the cells without any flu-
orescent markers. The ACTN2 images are similar to those described in the
previous section but without expert annotations.

The images in this dataset provide the brightfield counterparts to the
ACTN2 images, allowing for analysis that includes both structural protein
markers and standard microscopy images. Figure 4.3 shows the first two
channels of a 10-channel image, corresponding to the brightfield and ACTN2
channel.

Figure 4.3: First two channels of the 10-channel image, as provided by the
Allen Institute. The two channels are the brightfield and ACTN2 channels.

19

Chapter 5

Methods: ACTN2 Model

This chapter details the development of the ACTN2 pattern classifier. First,
we describe the preprocessing steps to prepare the data for training. Then,
we discuss the modeling process, including hyperparameter tuning and the
training of the classifiers. Finally, we explain how the models are combined
into an ensemble to generate the final predictions.1

5.1 Preprocessing ACTN2 Pattern Dataset

The ACTN2 pattern dataset had been split into five subfolders, each holding
the data for the specific organization class. Within these folders, coordinates
were stored alongside a number between 1 and 18, indicating the correspond-
ing image ID. A central task was to transform the annotations into small
parts of the image, called patches, which the computer vision model can use
to learn class-specific features. The patches underwent some preprocessing
steps to mold them into usable training data.

5.1.1 Binary Classification

This research aims to identify well-differentiated regions rather than specific
sarcomere organization patterns. Therefore, the first and most crucial pre-
processing step involved assigning all five classes to one of two categories:
well-differentiated and not-well-differentiated cardiomyocytes. This simpli-
fication of the classification task is expected to result in higher accuracy
compared to using five classes.

1All work in this paper was carried out using the hardware and software specifications
listed in Table C

20

Because the five classes can be seen as ordinal data (where the quality
of cardiomyocytes increases from left to right), splitting the classes at the
midpoint seems reasonable. Following expert opinion, the decision was made
to classify ’Diffuse/other’ and ’Fibers’ as the bad class and ’Disorganized
puncta,’ ’Organized puncta,’ and ’Organized z-disks’ as the good class. The
primary rationale was that the formation of puncta patterns is considered
positive, thus including the ’Disorganized puncta’ class in the good category.
After binarizing the five classes, the bad class consisted of 1284 samples, and
the good class consisted of 2205 samples.

5.1.2 Splitting the Data

The dataset was divided into training, validation, and test sets with a ratio of
80%, 10%, and 10%, respectively. Due to the spatial proximity of annotations
(depending on the patch size), a simple random split would likely result in
data leakage from the test and validation sets into the training set. To be
specific, annotations that are located within the distance of the patch size
will share overlapping pixels. Therefore, by splitting on the annotation level,
it is likely that the test and validation sets contain patterns seen by the model
in the training set. To address this issue, the data was split at the image
level, ensuring that each image was assigned to only one of the splits. This
method also aimed to maintain class balance across all splits. An overview
of the class distribution in each split is provided in Table 5.1.

Split Image Bad Count Good Count Split Proportion

Train
{2,3,4,5,6,7,8,9,10,
11,12,13,15,16,17} 987 1773 0.791

Validation {0} 168 203 0.106
Test {1,14} 129 229 0.103

Table 5.1: Distribution of class samples across the training, validation, and
test sets of the annotated ACTN2 data. The dataset was split at the image
level to avoid data leakage and maintain class balance. The table shows the
number of samples for each class and the proportion of the total dataset
represented by each split.

5.1.3 Data Augmentation

Neural networks typically require a large number of samples to perform well.
However, the current dataset is relatively small, increasing the risk of overfit-

21

ting, especially when using a complex model. Additionally, the imbalance in
the training set might cause the model to favor the majority class during pre-
dictions. Data augmentation effectively addresses both issues by artificially
expanding the dataset and creating new, unique instances from the original
samples.

A set of possible transformations was defined, including rotations of 90,
180, or 270 degrees and vertical or horizontal mirroring. When augmenting
each patch, transformations were sampled without replacement from this set,
ensuring no transformation was reused for the same patch. To address the
class imbalance, the bad class was augmented five times, while the good class
was augmented three times. This resulted in 4,935 bad samples and 5,319
good samples, totaling 10,254 patches and increasing the training set size by
a factor of 3.71. The validation and test sets were not augmented.

5.1.4 Tuned Preprocessing Steps

Selecting appropriate preprocessing methods is crucial for optimizing ma-
chine learning models. To avoid extensive manual testing of various methods
and their combinations, we used the automatic tuning algorithm Bayesian
Optimization. This algorithm efficiently samples hyperparameters to find
optimal (or near-optimal) configurations within a given time limit. Both the
data preprocessing steps and the model hyperparameters underwent auto-
matic tuning. This section will cover the tuned preprocessing steps.

Patch Sizes

The coordinates were converted into square patches with sizes of 24, 48, or
96 pixels, with the coordinate positioned at the center pixel. Gerbin et al.
used a patch size of 96 pixels. Their study did not specify their approach
to handling edge cases where annotations were within 96 pixels of the image
boundary. A potential solution would be to pad the regions outside the image
with zeros. However, because these annotations would likely act as noise and
were limited in their number, we chose to exclude them.

Histogram Normalization

Increasing the contrast in images can aid neural network learning. Histogram
normalization redistributes pixel values so that the cumulative distribution
of the histogram approximates a straight line, thus spreading pixel intensi-
ties more evenly. A Gaussian smoothing filter (kernel size of 5 by 5 pixels)
is applied before histogram normalization to avoid enlarging any noise in the

22

original image. The Gaussian blur is only applied when histogram normal-
ization is enabled.

Scaling Methods

Following optional histogram normalization, a scaling method was applied to
further aid model convergence and avoid issues like vanishing or exploding
gradients. Three popular scaling techniques were considered, where each can
outperform the other depending on the problem: centering, standardization,
and Normalization.

• Centering involves subtracting the mean pixel intensity of the training
images from all images, centering them around zero.

Xcentered = X − µ (5.1)

where X represents the original pixel intensity and µ is the mean pixel
intensity of the training dataset.

• Standardization extends centering by also dividing pixel values by the
standard deviation, ensuring images have zero mean and a standard
deviation of one.

Xstandardized =
X − µ

σ
(5.2)

where σ is the standard deviation of the pixel intensities in the training
dataset.

• Normalization scales pixel values to a range between 0 and 1 by sub-
tracting the minimum pixel value and dividing by the range of pixel
values.

Xnormalized =
X −Xmin

Xmax −Xmin

(5.3)

where Xmin and Xmax are the minimum and maximum pixel intensities
in the training dataset, respectively.

5.1.5 Additional Preprocessing

To ensure the data was fully processed and ready for training, all patches
were upscaled using OpenCV’s [3] linear interpolation method to match the
models’ input shape of 128×128 pixels. Additionally, the models in this
study expect RGB input images, while our data consists of grayscale im-
ages. A common practice is to stack each grayscale image three times along
the channel dimension, creating a three-channel RGB image with identical

23

channels. As a final step, the binary class labels were one-hot encoded into
two-element vectors to be compatible with the categorical loss functions used
during training.

5.2 ACTN2 Model

5.2.1 Architecture

Since everything was run on a single local GPU, computational resources
had to be spent wisely. Therefore, one main architecture was exploited for
its efficient learning using a small number of trainable model parameters.
This family of models is called EfficientNetV2. Through the high-level keras
API, multiple versions of the EfficientNetV2 model were available, where
the main difference lay in their number of parameters. In this study, we
experimented with (EfficientNet)V2B1, V2B2, V2B3, and V2S. The models
have roughly 8 million, 9 million, 14 million, and 24 million parameters,
respectively. We discovered in early experimentation that for the ACTN2
classifier, larger models (V2B3 and V2S) performed better compared to their
smaller siblings (V2B1 and V2B2). Therefore, only these were considered
for this subproblem. Both models had been pre-trained on the ImageNet
dataset, as Gerbin et al. did, with the difference being that they used a
ResNet18 model.

Modifying the Models

The pre-trained EfficientNet models on ImageNet-1000 have an output layer
designed for 1,000-class classification. We replaced the original output layer
with a new, randomly initialized classification head to adapt these models for
our binary classification task. Specifically, we removed the original output
layer and added the following layers:

• A global average pooling Layer

• A batch normalization Layer

• A dropout layer

• A Fully Connected Layer with two neurons and a softmax activation
function

The new classification head was initialized randomly and trained from scratch,
whereas the existing layers were fine-tuned.

24

5.2.2 Tuning

Not all hyperparameters were tuned automatically; some were set to cer-
tain values based on previous research. The batch size was set to 32, as
larger batch sizes can lead to sharp minima, which tend to generalize less
well compared to flat minima [10]. The recommended values from Tan et al.
were used for the optimizer hyperparameters, except for the RMSprop mo-
mentum hyperparameter. This hyperparameter controls the accumulation
of past gradient updates to smooth and accelerate the optimization process
during gradient descent. We also experimented with different patch sizes
to explore whether varying context sizes would improve model performance.
Additionally, experiments were conducted using histogram equalization and
different scaling methods. Finally, the learning rate was tuned within the
range of 1e−7 to 1e−3 using doubling steps to simplify the search process.

Table 5.2 showcases the tuned hyperparameters. These included both
model hyperparameters as well as those affecting the data preprocessing.
The Bayesian Optimization implementation by Keras Tuner [17] was used as
the automatic tuning algorithm. The number of trials was set to 100, and
each trial was set to last for at most 25 epochs. For both the tuning process
and the final model training, an early stopping procedure was used with
a patience of 10 epochs, monitoring the validation loss. EfficientNetV2S
and EfficientNetV2B3 models were tuned separately, resulting in distinct
hyperparameter recommendations.

Table 5.2: Hyperparameter Setup for Automatic Model Tuning

Hyperparameter Type Value / Range

Batch Size Fixed 32
Rho (RMSprop) Fixed 0.9
Learning rate decay Fixed 0.9

Patch Size Tuned {24, 48, 96}
Histogram Equalization Tuned {True, False}
Scaling Tuned {Center, Normalize, Standardize}
Learning Rate Tuned 1e-3 to 1e-7 with halving steps
Dropout Rate Tuned 0.1 to 0.5 with steps of 0.05
Momentum (RMSprop) Tuned 0.8 to 1.0 with steps of 0.01

25

5.2.3 Training

Binary cross-entropy, also known as the log loss, was used for the loss func-
tion. Since the classes are well-balanced, accuracy was used as our evaluation
metric.

As the authors of EfficientNetV2 recommended, we used the RMSprop
optimizer in combination with a linear warm-up of the learning rate. In
the warming-up episode, the learning rate is linearly increased from 0 to a
target learning rate. Doing this can push the model away from ’bad’ loss
landscapes and reduce variance during learning [14]. This episode lasts for
five epochs. After this, the learning rate is decayed using exponential decay
with a decay rate of 0.9. The warm-up episode length and the decay rate were
not tuned during the hyperparameter search to save computational resources.
In contrast to the tuning phase, during training, the models were given 100
epochs instead of 25 epochs, with a patience of 10 epochs for early stopping.

Following the hyperparameter tuning, the top hyperparameter settings
were selected for both models based on their tuning results. This selec-
tion was based on whether the tuning processes achieved good accuracy and
whether the hyperparameters were distinct enough to cause model variety.
Each configuration was then used to train a new model, following the above-
described training settings while allowing the models more time to converge.

5.2.4 Creating Final Predictions

Several steps were taken to take full advantage of the patterns learned by the
models. Since most models already achieved high accuracy on the training
set (>98%), using this to evaluate the ensembles would not effectively dif-
ferentiate the performances. Therefore, the validation set was used to test
and compare the ensembles, while the test set was reserved for evaluating
the final performance.

Ensemble

The final ensemble predictions were made by aggregating the outputs of the
seven trained models. Each model produced a probability vector for the
two classes, which were then averaged. The class with the highest combined
probability was selected as the final prediction. To optimize the ensemble,
a brute-force search tested all possible subsets of the models, identifying the
combination that minimized validation error. It was hypothesized that the
different hyperparameter settings would cause enough diversity in our models
to form effective ensemble models.

26

Test-time augmentation

We applied multiple random transformations to each data patch and av-
eraged the model predictions across these transformations. This method,
called test-time augmentation, can reduce sensitivity to input variations and
increase model robustness. The same 11 transformations used during data
augmentation (Section 5.1.3)—including rotations, flips, and scaling—were
applied here. The transformations were sampled randomly with no replace-
ment from this set.

Different numbers of transformations were tested, ranging from none to
several, with the final prediction being the average of all transformed outputs.

Ensemble + Test-time Augmentation Experiment

All possible ensembles were evaluated across a range of test-time augmenta-
tions, varying the number of transformations from 0 to 11. Because the aug-
mentations are sampled randomly, the experiment was repeated 100 times,
after which the accuracy was averaged. The ensemble and number of trans-
formations that achieved the highest validation accuracy were selected for
generating brightfield data and evaluated on the test set for reference.

27

Chapter 6

ACTN2 Classifier Results

This chapter will cover the results of the ACTN2 classifier, which is the
first step in moving towards a pipeline that can detect well-differentiated
cardiomyocytes using brightfield images. First, the hyperparameter tuning
results will be presented. Then, the training curves, which use the best-found
hyperparameters, will be shown. Finally, the results for finding the best
ensemble combination and number of alterations in test-time augmentation
will be displayed.

6.1 Tuning Results

After performing Bayesian Optimization, the hyperparameter configurations
were ranked based on their lowest achieved validation loss. For Efficient-
NetV2B3, the top three configurations were selected to potentially contribute
to the final model ensemble. For EfficientNetV2S, we initially also selected
the top three configurations. However, due to its slightly different hyperpa-
rameter settings, the fourth-best configuration was also chosen to introduce
more diversity in the ensemble’s predictions. Table 6.1 displays the identi-
fied hyperparameter configurations and their corresponding best validation
accuracy.
From the table, it is clear that most configurations share similar hyperpa-
rameter values. The patch size is consistently set to 96 pixels, and histogram
equalization is disabled for all models. A learning rate between 5e-05 and 1e-
4 proves effective, and dropout is generally maintained at around 0.3. Two
hyperparameters show more variation: scaling and momentum. The V2B3
models typically use centering, while the V2S models prefer standardization.
Although the original EfficientNetV2 authors used momentum values around
0.9, lower values near 0.8 also performed well.

28

Model names

Hyperparameters V2B3 1 V2B3 2 V2B3 3 V2S 1 V2S 2 V2S 3 V2S 4

Patch Size 96 96 96 96 96 96 96
Histogram Equalization False False False False False False False
Scaling center center center stand. stand. stand. norm.
Learning Rate 5e-05 5e-05 1e-4 1e-4 1e-4 1e-4 5e-05
Dropout Rate 0.4 0.35 0.3 0.35 0.35 0.3 0.3
Momentum (RMSprop) 0.91 0.92 0.95 0.83 0.82 0.81 0.81

Accuracy (validation) 0.9312 0.9252 0.9243 0.9398 0.9262 0.9349 0.9249

Table 6.1: Hyperparameter configurations for the seven best models.
The number following the model type indicates the rank of the hyperparam-
eter configuration in terms of performance (validation loss) during tuning.
’Stand.’ refers to standardize, and ’norm.’ refers to normalize.

6.2 Training results

All seven models were trained for up to 100 epochs. Figure 6.1 shows the
training and validation accuracies observed during training. For simplicity,
each model is numbered, and from here on, models are referenced by their
respective numbers.

Despite the increased training time compared to the tuning process, most
models were early-stopped before reaching 25 epochs. Only V2B3 Model 1
was trained until epoch 27. Most models achieved nearly perfect scores of
1.0 on the training set. For some models, the validation accuracy fluctuated
significantly between epochs. Model 7 exhibited highly oscillating behavior,
with accuracy dropping to around 50% at certain points. Models 3 and 4
showed a very gradual increase in validation accuracy before being early-
stopped.

Model names

V2B3 1 V2B3 2 V2B3 3 V2S 1 V2S 2 V2S 3 V2S 4

Accuracy (validation) 0.9326 0.9084 0.9272 0.9407 0.9299 0.938 0.9218

Table 6.2: Validation accuracies for the seven trained models. The
number following the model type indicates the rank of the hyperparameter
configuration in terms of performance during tuning.

Figure 6.2 shows that not all models retained or improved their perfor-
mance relative to the tuning phase. V2B3 Model 2, for instance, showed a
decline in validation accuracy, dropping from 0.9252 during tuning to 0.9084.
V2S Models 3 and 4 also experienced slight decreases in accuracy. In contrast,

29

V2B3 Models 1 and 3, along with V2S Models 1 and 2, demonstrated slight
improvements, with V2S Model 1 achieving the highest validation accuracy
of 0.9407.

6.3 Ensemble & Test-Time Augmentation

We evaluated all possible combinations of the seven models. For each com-
bination, we also tested different augmentation levels, ranging from no aug-
mentations to 11 augmentations per image (using all augmentations). The
results are shown in figure 6.2. We see that, in general, increasing the number
of augmentations correlates positively with accuracy, with the highest accu-
racy typically achieved using 11 augmentations. The ensemble of models 6
and 7 achieved the best validation accuracy of 0.9596, which is an improve-
ment over their individual accuracy scores of 0.938 (6) and 0.9218 (7). On
the test set, the same ensemble reached an accuracy of 0.9469, though other
ensembles reached a higher accuracy on the test set. It can also be seen that
the confidence interval for the best-performing model decreases in size when
the number of augmentations is increased, both for the validation and the
test set.

6.4 Confusion Matrix

In figure 6.3, we see the predictions on the test set (using the ensemble of
models 6 and 7 with 11 augmentations) compared with their ground truth
labels presented in a confusion matrix. The ensemble model makes a few
mistakes overall, getting slightly fewer predictions wrong in the good cate-
gory.

30

Figure 6.1: Training and validation accuracies over epochs for the
seven trained models. For convenience, the models are labeled 1 to 7.
Models 1–3 represent V2B3 configurations, and models 4–7 represent V2S
configurations.

31

Figure 6.2: Validation and Test Accuracy of Various Ensembles
Across Alterations. Left: Validation accuracies for all ensembles, high-
lighting the top five performers. Right: Test accuracy of the best-performing
validation ensemble. Accuracies are averaged over 100 runs.

Figure 6.3: Confusion matrix of the best ensemble model (ACTN2)
on the total test set, using test-time augmentation. Single run, since all
augmentations were used and the model output is deterministic.

32

Chapter 7

Methods: Brightfield Model

This chapter outlines the methods used to develop the Brightfield model,
which classifies brightfield images based on annotations generated by the
ACTN2 ensemble. The process includes generating annotated brightfield
data, splitting the data, and training the Brightfield model. The goal is
to create a model that can take a brightfield image and produce a region
map identifying ’good’ and ’bad’ differentiated cardiomyocytes. Due to time
constraints, specific optimizations, such as automatic hyperparameter tuning,
were not performed for the Brightfield model.

7.1 Generation of Annotated Brightfield Data

To create annotations for the brightfield images, we used the best-performing
ACTN2 ensemble, which combined models 6 and 7 and applied 11 test-time
augmentations. We randomly selected 100 images from the combined bright-
field and ACTN2 datasets. Since the ACTN2 images in this subset were
slightly darker than those used to train the ACTN2 model, we adjusted their
histograms to match the average histogram of the training images from the
ACTN2 model. This adjustment ensures consistency in the image distribu-
tions.

Next, we isolated the foreground pixels in each image to avoid feeding
the trained ensemble patches considered background. We achieved this sep-
aration using Li thresholding [12], an automatic method determining the
optimal pixel intensity to distinguish between foreground and background.
Figure 7.1 shows an example of the foreground extraction process. Because
a patch size of 96×96 pixels was used in our models, pixels within 48 pixels
of the border were excluded.

We randomly selected 500 pixels per image from the foreground pixels

33

Figure 7.1: An example of the selected foreground pixels (red) in an
ACTN2 image after applying Li thresholding to separate foreground
from background pixels. No pixels within 48 pixels of the border were se-
lected.

34

to serve as the center of the new image patches. Test-time augmentation
was applied to each patch (11 random augmentations) and then fed to the
ACTN2 ensemble model, which provided class probabilities for each patch.
To ensure high-quality annotations, we applied a confidence threshold. By
analyzing the ACTN2 validation set predictions, we determined that a con-
fidence threshold of roughly 0.97 (0.9739) maintained a validation accuracy
of 99%. This means that only predictions where the difference between class
probabilities exceeded 0.97 were considered reliable. As shown in Figure 7.2,
the green dotted line, which represents the 99% threshold, intersects the red
line at around 0.72. This means this threshold allowed us to retain approx-
imately 72% of the patches while having near-perfect annotation accuracy.
The reason for selecting a 99% accuracy threshold instead of 100% is that
100% accuracy was never achieved on the validation set through increasing
the threshold.

Figure 7.2: Accuracy plotted against the confidence threshold. The
red line represents the proportion of predictions that satisfy the threshold
value. The blue and orange lines represent the validation and test accuracy,
respectively, for the thresholded subset of predictions. The dotted lines in-
dicate the threshold value at which a certain validation accuracy is reached.
A 99% accuracy threshold was used in this study.

Using this method, we generated an extensive collection of coordinates.
The ACTN2 patches were discarded after being used for label prediction,
and the coordinates were used to grab the corresponding brightfield patches.
The brightfield images, however, followed a particular pattern (Appendix B).

35

Figure 7.3: Example of automatically generated annotations. Red
and green points indicate the sampled locations, where red represents ’bad’
regions and green represents ’good’ regions. Left: ACTN2 image with anno-
tations generated by the trained ACTN2 classifier. Right: Corresponding
brightfield image with the same annotations mapped from the ACTN2 im-
age.

Among the 100 selected brightfield images, 57 had an average pixel intensity
of around 4,000 with a standard deviation of approximately 300, whereas
43 had an average intensity of around 40,000 and a standard deviation of
roughly 1,000. It was essential to address this disparity to effectively train
on the brightfield images. We achieved this by selecting the low-intensity
images from the training set as references since they formed the majority.
We then calculated their average histogram and used it to match all images,
ensuring that the images maintained a consistent intensity distribution.

After mapping the labeled ACTN2 coordinates to the brightfield data, we
obtained 14,824 patches. Of these, 4,817 were classified as ’bad’ patches, and
10,007 were classified as ’good’ patches. An example of how predictions on
an ACTN2 image translate to brightfield annotations is depicted in Figure
7.3.

7.2 Splitting the Data

To prepare the dataset for training, we divided the data into training, valida-
tion, and test sets with an 80%, 10%, and 10% split, respectively. We assigned
all patches from a single image to the same split to prevent data leakage and
maintain class balance across splits. Given the larger number of images (100)

36

compared to the ACTN2 dataset (18), we used the differential evolution

function from SciPy [27] to optimize the split. This approach ensured that
each subset closely matched the target proportions and maintained class
balance. The split was performed before data augmentation to avoid data
leakage. The distribution of classes in each split is displayed in Table 7.1.

Split Nr. Images Bad Count Good Count Split Proportion

Train 79 4817 10007 0.8
Validation 10 751 909 0.09
Test 11 1103 945 0.11

Table 7.1: Distribution of class samples across the training, valida-
tion, and test sets of the generated Brightfield data. The dataset
was split at the image level to avoid data leakage and maintain class balance.
The table shows the number of samples for each class and the proportion of
the total dataset represented by each split rounded to 3 digits.

7.3 Augmentation

Since there was an inherent bias towards sampling patches containing suc-
cessfully differentiated cardiomyocytes (protocol has 78% efficiency), data
augmentation was used to balance the classes. The ’bad’ class was aug-
mented three times, using the same transformations used for the ACTN2
model to sample randomly from. The ’good’ class was augmented once, ef-
fectively doubling this class. After augmentation, we had 19,268 bad patches
and 20,014 good patches, which is close to a 50% class distribution and comes
to a total of 39,282 patches.

7.4 Preprocessing, Tuning & Training

The same preprocessing steps were applied to the brightfield patches as with
the ACNT2 model. Each patch was upscaled and stacked three times along
its channel dimension to meet the EfficientNetV2 input shape.

We used the optimized hyperparameters from the ACTN2 models as a
guideline for the brightfield model, expecting it to perform well given the
similarity of their tasks. We manually experimented with the learning rate,
dropout rate, and model architecture (also considering V2B1 and V2B2).

The training process followed the same protocol as the ACTN2 model.
Binary cross-entropy was used as the loss function, which is appropriate for

37

the binary classification task. The RMSprop optimizer was configured with
a linear warm-up of the learning rate over the first five epochs, followed by
an exponential decay at a rate of 0.9. The models were trained for up to 100
epochs to allow enough time for full convergence. Early stopping was applied
with a patience of 10 epochs, monitoring validation loss.

7.5 Ensemble and Test-Time augmentation

Identical to the ACTN2 classifier, final predictions were created by combin-
ing the trained models and applying test-time augmentation with a predeter-
mined value of 11 augmentations. We trained multiple models intending to
all contribute equally to the ensemble model by averaging their predictions.
These models all used the same manually tuned hyperparameters since only a
very limited range of values was found that resulted in stable, effective learn-
ing of the networks. We hoped that the random initialization of the networks
and the random data shuffles during training would result in diverse models
that benefit from the ensemble.

7.6 Creating a Region map

Using the trained model ensemble with test-time augmentation, an entire mi-
croscopic brightfield image could be predicted at once by taking the patches
around every pixel and predicting its class, i.e., a region map. However,
predicting every pixel is very time-consuming; therefore, a resolution was
chosen to create predictions for every nth pixel. This resolution was set to
n = 20, meaning that for each image (1776x1736 pixels minus the edge of 48
pixels), 6888 predictions should be performed. However, we could decrease
this number even more by only predicting foreground pixels. These included
the coordinates that were within an Euclidean distance of 5 pixels of a fore-
ground pixel as determined by Li thresholding. This was done to get a more
dense region map, assuming that the predictions of these non-overlapping
pixels would affect model performance minimally.

38

Chapter 8

Brightfield Classifier Results

This section showcases the results of the brightfield classifier. Eight classifiers
were trained on the brightfield data, sharing the same manually tuned hy-
perparameters. Their predictions were ensembled to hopefully increase their
performance. However, it turned out that the accuracy and loss of one model
outperformed the combined models. Therefore, the results of that particular
model are given solely. First, the hyperparameters used for training the mod-
els are presented. After, the training process is shown. Then, the confusion
matrix for the test set is given, giving more insight into the class-specific
performances. Finally, a region map is shown for one of the brightfield test
images, with a region map for the ACTN2 image to act as the ground truth.

8.1 Tuning Results

Table 8.1 shows the hyperparameters after manual tuning for stability and
accuracy. The tuned hyperparameters closely follow the configuration of

Hyperparameter Value

Patch Size 96
Histogram Equalization False
Scaling normalize
Learning Rate 1e-06
Dropout Rate 0.4
Momentum (RMSprop) 0.81
Model Architecture V2B1

Table 8.1: Hyperparameter configuration used for training the brightfield
models.

39

model 7 (V2S 4) from the ACTN2 models. They differ in the learning rate,
dropout rate, and model architecture. The brightfield model uses a lower
learning rate of 1e-6 and an increased dropout rate of 0.4. Most notably, it
uses the V2B1 architecture instead of the V2S architecture.

8.2 Training Results

Figure 8.1: Training and validation accuracy/loss curves of the brightfield
models.

In figure 8.1, the training progress of the best-performing model is dis-
played. A much lower accuracy is achieved of approximately 69%, compared
to the ACTN2 model (95%). After 20 epochs, almost no increase/decrease is
seen in the accuracy/loss. The training and validation curves roughly follow
the same shape, with the training set achieving a higher final accuracy.

8.3 Confusion matrix

The best-performing model was applied to the test set for final evaluation.
As before, 11 test-time augmentations were applied to the classifier. Figure
8.2 shows the confusion matrix. It can be seen that the brightfield model
tends to have more trouble assigning the proper class when presented with
’good’ regions. To be more specific, the model is correct on only 56% of the
’good’ patches, while it achieves roughly 91% accuracy on the ’bad’ patches.

40

Figure 8.2: Confusion matrix of the best-performing brightfield
model on the total test set, using test-time augmentation.

On the test set, the final brightfield model achieved an accuracy of 74.756%
using test-time augmentation.

8.4 Region Map Results

As described in section 7.6, a region map was created using the brightfield
classifier. Only foreground pixels of the brightfield image were predicted,
which were determined through Li thresholding. To better visualize the
results, two additional region maps were created: the ACTN2 ground truth
region map and a plot showing the agreement between the two region maps.

Figure 8.3 shows the region maps for a single case example brightfield
image. The brightfield region map is shown in the top left with the ACTN2
region map in the top right1, which serves as the ground truth in this case.
The bottom row shows the blank brightfield image on the left for reference,
with a region map showing the agreement between the two predictions on the
right. The brightfield region map contains many ’bad’ regions, whereas the
ACTN2 model (ground truth) predicts considerably more portions of ’good’
regions. This aligns with the observations made in the confusion matrix,
where it became apparent that many good areas are confused with bad areas.
The agreement plot is primarily green and yellow regions. The green regions

1Appendix A, shows a region map for the ACTN2 ensemble compared with its ground
truth (expert annotations)

41

Figure 8.3: Example of a region map generated by the Brightfield
model. The map highlights ’good’ (green) and ’bad’ (red) regions of differ-
entiated cardiomyocytes in a test image.

denote where the brightfield model correctly predicts the ’good’ class. The
yellow region consists of the predictions that are predicted as ’bad’ but are,
in fact, ’good.’

42

Chapter 9

Discussion

9.1 Discussing The ACTN2 Model

9.1.1 Tuning Process

The top hyperparameter settings were chosen from the Bayesian optimization
process. However, these tend to have very similar values as the Bayesian Op-
timization algorithm narrows the sampling range as it finds better settings.
The values are especially similar when the initial samples don’t effectively
cover the entire search space. Therefore, choosing the top configurations
might not be the best method of selecting models that form the final ensem-
ble, as ensembles generally thrive through models with different strengths
and weaknesses. Instead of picking only the top-performing hyperparameter
settings, we could consider selecting configurations that perform reasonably
well but are located in other regions of the hyperparameter space. This
was done to a certain extent by including the fourth-best hyperparameter
configuration for the V2S model. This proved useful as this configuration
contributed to the best-performing ensemble, even though its performance
was worse than the other configurations.

Interestingly, histogram equalization was not used in any of the config-
urations. As histogram equalization is known to improve contrast, it was
expected to improve feature extraction by the CNN. Also, a patch size of
96 pixels was used in most configurations. Logically, the larger the context,
the better the prediction; however, the problem also increases in complex-
ity. Considering that 96 pixels is a rather large patch size, we expected the
smaller patch sizes to perform better. Surprisingly, this was not the case.
Section 9.1.2 gives our speculated reason for the tuning process to result in
choosing these hyperparameters.

All hyperparameter configurations get a score reflecting how good the

43

configuration is. Based on the received scores, tuning models, like Bayesian
Optimization, choose their next configuration. By default, the scoring func-
tion takes the smallest (largest when maximizing) validation loss found thus
far in the tuning process as its scoring of the hyperparameter configuration.
This can incorrectly assign high scores to highly unstable configurations, and
that got lucky with one low validation loss. It’s hypothesized that these mod-
els typically find sharp local minima and thus generalize poorly to new data
(as briefly mentioned in section 5.2.2).

A solution could be to design a custom scoring function that considers
the network’s stability. However, we speculate that this problem could be
rooted in a noisy validation estimate and thus can be prevented by focusing
on fixing that instead.

9.1.2 Training Process

The retraining of the models resulted in noticeably different performances
compared to the tuning results. There is expected to be some variance in
performance after retraining using the same hyperparameters since each net-
work is initialized randomly. However, in this case, the difference is quite
large (sometimes up to 2% drop in accuracy), and the models were less
restrained in their training time. Perhaps we should have relaxed the early-
stopping behavior, now set to 10 epochs. Since most models were already
close to an accuracy of 1, the gap between validation and training accuracy
could not increase anymore by getting better on the training set. As long as
the model would not overfit and cause an increase in validation loss, training
for longer was fine and might, in some cases, be desirable. Aside from this,
typically, the retraining does not have a performance difference this large.
Therefore, we suspected something else might be the root problem.

A significant limitation in our experiments was the lack of diversity in
the ACTN2 validation and test sets. We split the dataset at the image level
to prevent data leakage from overlapping patches. This resulted in the val-
idation set containing only one image and the test set containing just two.
Likely, such small sets do not capture the variability in the data, making it
difficult to evaluate the model’s actual performance reliably. This is prob-
lematic because a small validation set can skew the hyperparameter tuning
process. This was observed during tuning, where the Bayesian Optimiza-
tion algorithm consistently sampled configurations that resulted in unstable
training dynamics characterized by fluctuating loss curves. This noise misled
the algorithm into favoring hyperparameter settings that appeared optimal
in a noisy context but were suboptimal. Similarly, using only two images
for the test set may lead to an over- or underestimation of the model’s true

44

accuracy. The same pattern could be observed during retraining, where a few
models suffered from significant drops in performance in between epochs.

We propose three solutions. The first solution would be to increase the
number of images in the validation and test sets, even if it would be at the
expense of some training data. Another option would be to increase the
validation and test sets through the same augmentation techniques used to
increase the training size. Lastly, one could use k-fold validation. In k-fold
cross-validation, the total dataset is split into k subsets of equal size. Then,
each subset is used once as the validation set, while the rest serves as the
training set. The performance is averaged between all validation sets to
provide a more robust estimate for the tuning algorithm.

9.1.3 Ensemble & Test-Time Augmentation

Implementing test-time augmentation in our experiments resulted in a no-
ticeable decrease in the confidence intervals of the model predictions and an
increase in average accuracy as the number of augmentations grew. This
trend suggests that test-time augmentation effectively enhances the robust-
ness of the model’s predictions. By evaluating multiple augmented versions of
each test image and aggregating the results, the model becomes less sensitive
to anomalies that could affect a single prediction.

The best-performing model ensemble consisted of two V2S models. How-
ever, this success did not translate to the test set, where the ensemble’s
performance was significantly lower than other ensembles (grey lines in the
background). This discrepancy indicates that the validation set did not serve
as a reliable indicator of the ensemble’s effectiveness on new data. It high-
lights the risk of overfitting to a small validation set, which can mislead the
model selection process. Nonetheless, it still performs better than not using
an ensemble, assuming the combined validation and test sets are representa-
tive of the data distribution.

9.1.4 Confusion Matrix

The confusion matrix in Figure 6.3 displays the performance of the final
ACTN2 model on the test set using 11 test-time augmentations. While the
model performs well overall, it appears to struggle slightly more with cor-
rectly classifying ’bad’ samples, misclassifying some of them as ’good’. One
possible explanation is that ’bad’ patches may have less distinctive or more
variable features, making them more challenging for the model to classify
accurately. However, given the small and limited validation and test sets, it
is difficult to determine if this issue is consistent or specific to these images.

45

Further investigation with a larger and more diverse dataset is needed to
confirm whether the model generally has difficulty with ’bad’ patches.

Additionally, since human experts made the annotations, there may be
some noise or subjective bias in the labels. Human annotations can vary
between annotators, where even the Allen Institute’s research demonstrated
disagreement between experts on similar tasks. This inconsistency might
contribute to the misclassifications observed. It is also possible that the
model’s errors occur mainly on samples where even human experts might
disagree on the classification, making it inherently challenging to achieve
higher accuracy without simply modeling annotator bias.

9.2 Discussing The Brightfield Model

9.2.1 Generation of Brightfield Annotations

Only regions clearly belonging to one class were annotated for the ACTN2
pattern dataset. However, when generating data points by randomly sam-
pling foreground pixels, we could have selected unclear points that do not
distinctly belong to a particular class. Therefore, the 99% accuracy achieved
after thresholding does not necessarily translate to this new data. Given
that brightfield images are inherently noisier, uncertainty about data quality
is undesirable.

Another issue with the current data generation method relates to the
confidence threshold. Applying the threshold assumes that the model’s con-
fidence values are meaningful; the model’s probabilities accurately reflect the
likelihood of correctness. While thresholding resulted in 99% accuracy on the
original validation set, there is no guarantee that this level of accuracy holds
for the newly generated samples. Additionally, the threshold might reduce
the diversity of the samples, thereby affecting the quality of the training data.

Finally, although we attempted to predict only foreground pixels using
Li thresholding, the technique is imperfect. It might have included patches
that should have been classified as background. We hoped the model would
still classify these patches as ’bad’, but this remains an assumption.

A simple solution to these problems could be to have experts validate
some of the generated samples.

Early in experimentation, an observation was made that there were two
distinct groups of brightfield images. One group had a very low mean with
a small standard deviation, and the other group had a high mean with a
large standard deviation (Appendix B). This was expected to not hinder the
model’s performance as long as these statistics were the sole differentiators

46

between these two groups. However, the model did not perform well using
this data, even after preprocessing steps and manual tuning. It was discov-
ered that matching the histograms to the average histogram of one of the
two groups in the training set fixed this issue and enabled the model to reach
better performance. This suggests that the difference between the two groups
is not solely the statistics but may be sampled from different distributions,
possibly due to imaging conditions. Further analysis of the images could re-
veal the origin of this dissimilarity. An alternative solution could have been
to use data from only one of the two groups, but this was avoided to prevent
data exclusion.

9.2.2 Tuning Process

We initially used the hyperparameters from the ACTN2 ensemble as a guide-
line for manually tuning the brightfield classifiers. However, many configu-
rations led to unstable learning, where the model heavily focused on the
training set. This would cause the validation loss to fluctuate heavily and
eventually flatline on a high loss value. We manually changed the ACTN2
guideline hyperparameters until we found stable settings, as shown in Table
8.1. We reduced the learning rate from 5e-5 (used in the ACTN2 models) to
1e-6. Normalization was the only method that yielded good results among
the scaling methods. We also noticed that a relatively high dropout rate of
0.4 most successfully prevented overfitting. Higher dropout rates hindered
the training too much. Ultimately, we found that the smallest model ar-
chitecture, EfficientNetV2B1, performed the best. This is likely due to the
noisy nature of the brightfield images. We suspect that the larger models
were overfitting to the noise and outliers. In contrast, simpler models are
naturally better at generalization, with the risk of the models underfitting.

9.2.3 Ensemble Performance

We repeatedly trained a classifier on the same set of hyperparameters (found
after manual tuning) eight times. After conducting a brute-force search to
explore different model combinations, we found no ensemble improved the
predictive performance. We speculate that the random initialization of model
parameters did not introduce sufficient diversity among the classifiers. This
is likely because all models start their training using the same pre-trained
parameters for a large portion of their network. Only the last manually added
layers introduce randomness, which is roughly 7000 parameters.

47

9.2.4 Training Process

The training curves show that the training and validation accuracies fol-
low a similar pattern, with the validation accuracy slightly lower than the
training accuracy. This indicates no apparent signs of overfitting, as the vali-
dation loss does not increase while the training loss decreases. After training,
the model’s performance without test-time augmentation achieved approxi-
mately 69% accuracy. Although the learning was stable and did not show
signs of overfitting, the model might be underfitted. While an effective hy-
perparameter configuration was not found, a slightly more complex model,
such as V2B2, could potentially achieve better accuracy with the proper
configuration. This could be confirmed through automatic hyperparameter
tuning.

9.2.5 Confusion Matrix

For a binary classification problem with balanced classes, random guessing
would yield approximately 50% accuracy. In our case, with an accuracy of
74.756% on the test set, the model can distinguish the two classes to some
extent. However, in Figure 8.2, the model performed considerably worse on
the ’good’ class, with near-random guessing performance for this particu-
lar class. Nonetheless, from a practical viewpoint, the low number of false
positives is a valuable property of the model. Whenever the model predicts
a region to be positive, according to the test set results, the prediction is
correct with a probability of 80.9%. This means that when the pipeline is
extended to move the microscope to good regions automatically, it will most
likely correctly identify a good region. The only drawback is that it may
potentially miss areas that are even better differentiated.

9.2.6 Region Map

We observe two interesting things in figure 8.3. First, the cardiomyocyte
nuclei—visible as darker, circular-shaped objects in the bottom-left of the
brightfield image—are frequently misclassified as ’bad’ regions by the bright-
field model. In contrast, the ACTN2 model correctly identifies these nuclei
as healthy components of the cells. While this discrepancy might initially
suggest a shortcoming of the brightfield model, it is important to consider
that these nuclei are not visible in the ACTN2-tagged images. Consequently,
the brightfield model faces a classification challenge that the ACTN2 model
does not encounter. Since the sampling of data points for generating the
training set was random and the nuclei occupy a relatively small portion of

48

the images, the brightfield model likely had few examples of nuclei regions
to learn from. It is also possible that the ACTN2 model assigned lower con-
fidence scores to these regions, causing them to fall below the confidence
threshold and thus be excluded from the generated dataset.

Second, applying Li thresholding results in a different selection of fore-
ground pixels in the brightfield image compared to the ACTN2 image. Some
regions that appear as background in the ACTN2 image present distinct fea-
tures in the brightfield image. This discrepancy leads the brightfield model
to make predictions on areas for which it has not been trained, increasing the
likelihood of misclassification. Considering that, during our experiments, we
noticed that the ACTN2 model consistently successfully predicted ’bad’ for
dark (background) regions, using the brightfield image as the primary ref-
erence for foreground pixel selection may be beneficial. By doing so, pixels
that appear bright in the brightfield image but dark in the ACTN2 image
would be labeled as ’bad’ during data generation. This adjustment could
enable the brightfield model to effectively learn which patterns to ignore in
the image, improving its classification performance.

49

Chapter 10

Conclusion & Future Work

This thesis presented a machine learning pipeline designed to automate the
assessment of cardiomyocyte differentiation quality using brightfield microscopy
images. The primary goal was to reduce the reliance on time-consuming man-
ual evaluations and to assist researchers in quickly identifying the quality of
cardiomyocytes.

Our approach involved a two-stage classification pipeline. First, to ac-
commodate the absence of brightfield data, we trained a classifier on ACTN2-
tagged images with expert annotations made available by the Allen Institute.
By training the ACTN2 classifier, we could generate reliable annotations for
ACTN2 images for which corresponding brightfield images were available.
These generated annotations served as the ground truth for training the
brightfield classifier, which was used to map regions of well- and poorly dif-
ferentiated cardiomyocytes in the brightfield images.

The ACTN2 classifier achieved high accuracy (roughly 95% on the test
set), demonstrating that machine learning models can effectively replicate
expert evaluations of cardiomyocyte quality using ACTN2-stained images.
After applying a dynamic confidence threshold, an accuracy of 99% was
reached on the test set by excluding only 28% of the annotations. In contrast,
the brightfield classifier faced challenges due to the noisy nature of brightfield
images and potential biases in data generation. It showed moderate accuracy
(roughly 75% on the test set) and tended to misclassify well-differentiated
regions as poorly differentiated.

Several limitations affected the performance of our final model. The small
and limited validation and test sets for the ACTN2 classifier most likely
formed the most significant performance bottleneck. It may have prevented
the classifier from reaching a much higher accuracy and thus affected the
quality of the generated brightfield data. Additionally, time constraints lim-
ited our ability to further experiment with the brightfield model, including

50

implementing automatic hyperparameter tuning.
Despite these challenges, our work provides a foundation for future efforts

to automate cardiomyocyte quality assessment using readily accessible imag-
ing techniques. By reducing reliance on manual evaluations and expensive
fluorescence methods, this approach has the potential to accelerate research
in stem cell therapies and regenerative medicine.

Future work should address the limitations caused by the small valida-
tion and test set sizes of the ACTN2 pattern dataset. Implementing k-fold
cross-validation could provide a more reliable assessment of the model’s per-
formance by using the entire dataset for validation across different folds.
Additionally, more advanced data augmentation techniques [5] can increase
the dataset’s diversity. Methods such as erasing transformations, generative
adversarial networks (GANs) [2], and feature mixing strategies [23] could
help expand the dataset, making it robust to input variations and adding
entirely new samples. The same could be done for the brightfield dataset.

A potential improvement is to apply a similar tuning process to the bright-
field classifier as was used for the ACTN2 classifier. This also allows us
to determine if larger models can achieve stable learning on the brightfield
dataset. If successful, it would enhance model complexity and address po-
tential underfitting.

Since the brightfield ensemble model did not outperform the best sin-
gle model, incorporating different neural network architectures into the en-
semble could be beneficial. Architectures such as ResNet, DenseNet [8], or
Transformer-based models [26] might extract complementary features, im-
proving the ensemble’s overall performance.

Regarding the ensemble, one could experiment with more advanced en-
semble techniques. Due to the relatively small validation set size for the first
classifier, this was not feasible in our case. Using a previously proposed solu-
tion like better data augmentation methods, a technique like model stacking
might significantly improve the results. This might already apply to the
brightfield models, where previously, no ensemble combination existed that
improved relative to the individual model performances.

Lastly, integrating the brightfield classifier with the microscope’s control
system to automatically identify optimal imaging regions could further reduce
the need for manual intervention. This integration would enable real-time
guidance of the imaging process, focusing on areas most likely to contain well-
differentiated cardiomyocytes. Implementing such a system would require
overcoming challenges related to real-time image processing, which still needs
to be fully explored.

51

Bibliography

[1] Ahola, A., Belay, B., Wählby, C., Hyttinen, J.: Label-free esti-
mation of sarcomere orientation from brightfield microscopy images
of induced pluripotent stem cell derived cardiomyocyte nuclei. In:
2022 Computing in Cardiology (CinC). vol. 498, pp. 1–4 (2022).
https://doi.org/10.22489/CinC.2022.359

[2] Biswas, A., Md Abdullah Al, N., Imran, A., Sejuty, A.T., Fairooz, F.,
Puppala, S., Talukder, S.: Generative adversarial networks for data
augmentation. In: Data Driven Approaches on Medical Imaging, pp.
159–177. Springer (2023)

[3] Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software
Tools (2000)

[4] Cao, L., Schoenmaker, L., Ten Den, S.A., Passier, R., Schwach, V.,
Verbeek, F.J.: Automated Sarcomere Structure Analysis for Study-
ing Cardiotoxicity in Human Pluripotent Stem Cell-Derived Car-
diomyocytes. Microscopy and Microanalysis 29(1), 254–264 (12 2022).
https://doi.org/10.1093/micmic/ozac016, https://doi.org/10.1093/
micmic/ozac016

[5] Garcea, F., Serra, A., Lamberti, F., Morra, L.: Data aug-
mentation for medical imaging: A systematic literature re-
view. Computers in Biology and Medicine 152, 106391 (2023).
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106391,
https://www.sciencedirect.com/science/article/pii/

S001048252201099X

[6] Gerbin, K.A., Grancharova, T., Donovan-Maiye, R.M., Hender-
shott, M.C., Anderson, H.G., Brown, J.M., Chen, J., Dinh, S.Q.,
Gehring, J.L., Johnson, G.R., Lee, H., Nath, A., Nelson, A.M.,
Sluzewski, M.F., Viana, M.P., Yan, C., Zaunbrecher, R.J., Cordes
Metzler, K.R., Gaudreault, N., Knijnenburg, T.A., Rafelski, S.M.,

52

https://doi.org/10.1093/micmic/ozac016
https://doi.org/10.1093/micmic/ozac016
https://www.sciencedirect.com/science/article/pii/S001048252201099X
https://www.sciencedirect.com/science/article/pii/S001048252201099X

Theriot, J.A., Gunawardane, R.N.: Cell states beyond transcrip-
tomics: Integrating structural organization and gene expression in
hipsc-derived cardiomyocytes. Cell Systems 12(6), 670–687.e10 (2021).
https://doi.org/https://doi.org/10.1016/j.cels.2021.05.001, https://

www.sciencedirect.com/science/article/pii/S2405471221001563

[7] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. CoRR abs/1512.03385 (2015), http://arxiv.org/abs/
1512.03385

[8] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely
connected convolutional networks. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 4700–4708 (2017)

[9] Ioffe, S.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

[10] Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.:
On large-batch training for deep learning: Generalization gap and
sharp minima. CoRR abs/1609.04836 (2016), http://arxiv.org/

abs/1609.04836

[11] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W., Jackel, L.: Handwritten digit recognition with a back-propagation
network. Advances in neural information processing systems 2 (1989)

[12] Li, C., Lee, C.: Minimum cross entropy thresh-
olding. Pattern Recognition 26(4), 617–625 (1993).
https://doi.org/https://doi.org/10.1016/0031-3203(93)90115-
D, https://www.sciencedirect.com/science/article/pii/

003132039390115D

[13] Lien, C.Y., Chen, T.T., Tsai, E.T., Hsiao, Y.J., Lee, N., Gao, C.E.,
Yang, Y.P., Chen, S.J., Yarmishyn, A.A., Hwang, D.K., Chou, S.J.,
Chu, W.C., Chiou, S.H., Chien, Y.: Recognizing the differentiation
degree of human induced pluripotent stem cell-derived retinal pig-
ment epithelium cells using machine learning and deep learning-based
approaches. Cells 12(2) (2023). https://doi.org/10.3390/cells12020211,
https://www.mdpi.com/2073-4409/12/2/211

[14] Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On
the variance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265 (2019)

53

https://www.sciencedirect.com/science/article/pii/S2405471221001563
https://www.sciencedirect.com/science/article/pii/S2405471221001563
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://www.sciencedirect.com/science/article/pii/003132039390115D
https://www.sciencedirect.com/science/article/pii/003132039390115D
https://www.mdpi.com/2073-4409/12/2/211

[15] McMahan, B., Streeter, M.: Delay-tolerant algorithms for asynchronous
distributed online learning. Advances in Neural Information Processing
Systems 27 (2014)

[16] Nguyen, D.H., Van Khuat, D., Nguyen, T.H., Tran, T.A.: Predictive
neural stem cell differentiation using single-cell images based on deep
learning. Journal of Science and Technology on Information and Com-
munications 1(1), 4–10 (2024)

[17] O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L.,
et al.: Keras Tuner. https://github.com/keras-team/keras-tuner
(2019)

[18] Roberts, B., Arakaki, J., Gerbin, K.A., Malik, H., Nelson, A., Hen-
dershott, M.C., Hookway, C., Ludmann, S.A., Mueller, I.A., Yang, R.,
et al.: Scarless gene tagging of transcriptionally silent genes in hipscs
to visualize cardiomyocyte sarcomeres in live cells. bioRxiv p. 342881
(2018)

[19] Roberts, B., Hendershott, M.C., Arakaki, J., Gerbin, K.A., Malik, H.,
Nelson, A., Gehring, J., Hookway, C., Ludmann, S.A., Yang, R., et al.:
Fluorescent gene tagging of transcriptionally silent genes in hipscs. Stem
Cell Reports 12(5), 1145–1158 (2019)

[20] Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normal-
ization help optimization? Advances in neural information processing
systems 31 (2018)

[21] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization
of machine learning algorithms. Advances in neural information process-
ing systems 25 (2012)

[22] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research 15(1), 1929–1958 (2014)

[23] Summers, C., Dinneen, M.J.: Improved mixed-example data augmen-
tation. In: 2019 IEEE winter conference on applications of computer
vision (WACV). pp. 1262–1270. IEEE (2019)

[24] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T.,
Tomoda, K., Yamanaka, S.: Induction of pluripotent stem cells from
adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007).

54

https://github.com/keras-team/keras-tuner

https://doi.org/https://doi.org/10.1016/j.cell.2007.11.019, https://

www.sciencedirect.com/science/article/pii/S0092867407014717

[25] Tan, M., Le, Q.V.: Efficientnetv2: Smaller models and faster training.
CoRR abs/2104.00298 (2021), https://arxiv.org/abs/2104.00298

[26] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou,
H.: Training data-efficient image transformers & distillation through
attention. In: International conference on machine learning. pp. 10347–
10357. PMLR (2021)

[27] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N.,
Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ.,
Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cim-
rman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M.,
Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-
019-0686-2

[28] Wager, S., Wang, S., Liang, P.S.: Dropout training as adaptive regular-
ization. Advances in neural information processing systems 26 (2013)

[29] Waisman, A., La Greca, A., Möbbs, A.M., Scaraf́ıa, M.A.,
Sant́ın Velazque, N.L., Neiman, G., Moro, L.N., Luzzani, C.,
Sevlever, G.E., Guberman, A.S., Miriuka, S.G.: Deep learn-
ing neural networks highly predict very early onset of pluripo-
tent stem cell differentiation. Stem Cell Reports 12(4), 845–859
(2019). https://doi.org/https://doi.org/10.1016/j.stemcr.2019.02.004,
https://www.sciencedirect.com/science/article/pii/

S2213671119300529

[30] Zhu, Y., Huang, R., Wu, Z., Song, S., Cheng, L., Zhu, R.: Deep learning-
based predictive identification of neural stem cell differentiation. Nature
communications 12(1), 2614 (2021)

55

https://www.sciencedirect.com/science/article/pii/S0092867407014717
https://www.sciencedirect.com/science/article/pii/S0092867407014717
https://arxiv.org/abs/2104.00298
https://www.sciencedirect.com/science/article/pii/S2213671119300529
https://www.sciencedirect.com/science/article/pii/S2213671119300529

Appendix A

ACTN2 Region Map versus
True Annotations

Figure A.1: Example of ACTN2 Region Map with Compared with
True Annotations. Foreground pixels are extracted using Li thresholding.

56

Appendix B

Brightfield Pixel Intensities

Figure B.1: Brightfield image intensities. There is a big disparity be-
tween some brightfield images in their brightness and contrast.

57

Appendix C

Hardware and Software
Specifications

Specification Details

Hardware

GPU NVIDIA RTX 2060 with 6GB GDDR6 memory
CPU AMD Ryzen 5 3600, 6 cores, 3.6GHz
RAM 16 GB
Operating System Windows 11

Software and Package Versions

Programming Language Python 3.10.11
Deep Learning Framework TensorFlow 2.10.0
Extra libraries Scikit-learn 1.5.1

Scikit-image 0.24
NumPy 1.26.4
OpenCV 4.10.0

Table C.1: Hardware and software specifications used in this study

58

	Introduction
	Background
	Biomedical Background
	Stem Cell Differentiation
	Cardiomyocytes: Structure and Function
	Brightfield Imaging
	Fluorescent Imaging: ACTN2-mEGFP Labeling

	Computer Science Background
	Neural networks
	Convolutional Neural Networks (CNNs)
	Ensemble Models
	Test-Time Augmentation
	Bayesian Optimization

	Related Work
	Data
	Generation of Cardiomyocyte Images
	Expert-Annotated ACTN2 Dataset
	Brightfield and ACTN2 Images Dataset

	Methods: ACTN2 Model
	Preprocessing ACTN2 Pattern Dataset
	Binary Classification
	Splitting the Data
	Data Augmentation
	Tuned Preprocessing Steps
	Additional Preprocessing

	ACTN2 Model
	Architecture
	Tuning
	Training
	Creating Final Predictions

	ACTN2 Classifier Results
	Tuning Results
	Training results
	Ensemble & Test-Time Augmentation
	Confusion Matrix

	Methods: Brightfield Model
	Generation of Annotated Brightfield Data
	Splitting the Data
	Augmentation
	Preprocessing, Tuning & Training
	Ensemble and Test-Time augmentation
	Creating a Region map

	Brightfield Classifier Results
	Tuning Results
	Training Results
	Confusion matrix
	Region Map Results

	Discussion
	Discussing The ACTN2 Model
	Tuning Process
	Training Process
	Ensemble & Test-Time Augmentation
	Confusion Matrix

	Discussing The Brightfield Model
	Generation of Brightfield Annotations
	Tuning Process
	Ensemble Performance
	Training Process
	Confusion Matrix
	Region Map

	Conclusion & Future Work
	ACTN2 Region Map versus True Annotations
	Brightfield Pixel Intensities
	Hardware and Software Specifications

