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Abstract

In this thesis we describe various agents for ‘The Crew’ for both phases of the game (task-taking
and playing) and evaluate their performances. The agents follow rules based on intuition of human
players and Monte Carlo methods. We conclude that the Monte Carlo Tree Search agent using Upper
Confidence bound for Trees performs the best in both playing phases. We also provide an analysis of
the winnability of a 2-player, 1-task variant of the game and conclude that 99.72% of games of this
type are winnable.
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1 Introduction

In this thesis we will discuss and analyse the game “The Crew”. The Crew is a cooperative trick-taking
game, where the goal is to work together to ensure that certain players will win certain tricks based on
task cards given to the players.

Within this thesis we will analyse and solve a 2-player variant of the game on winnability. We will
also define agents that either use rule-based algorithms modelled after player-intuition or Monte Carlo
methods and evaluate them on their ability to win a 3-player game for various numbers of tasks.

1.1 Related Work

Various research has already been done relating to determining optimal strategies for The Crew.

An analysis of the complexity of various (sub-)problems of The Crew where players have perfect infor-
mation has been performed by F. Reiber [ ]. Multiple versions of the game are covered, for example,
games with only a single value or only a single suit. Algorithms are defined to check whether a solution
to such a problem can be found. It is also shown that the general unbounded case of finding a winning
solution to a game of The Crew is NP-complete.

Moreover, S. Chan [ ] analyses various greedy algorithms that pick each player’s next played card
based on that trick alone, as well as various heuristics for both the trick-taking and task-choosing phases
of the game to determine which strategy is optimal. Games of The Crew with 3 players with imperfect
information and perfect information are considered. In the case of imperfect information, a player is
only aware of their own playing cards. However, the algorithms are also dependent on the playing cards
of the other players. Therefore, additional heuristics are introduced to estimate the playings cards of the
other players. It is concluded that the greedy algorithm that tries to complete the tasks of all the players
performs significantly better than the algorithm that tries to complete only the player’s own tasks and
the algorithm that picks random playable cards.

Furthermore, D. Rebstrock, et al. | ] use Generative Observation Monte Carlo Tree Search to
analyse The Crew for a game with 4 players and imperfect information, as well as various other trick-
taking card games. By using a generative model to base the decisions made by a player on, the issue of
not having perfect information is overcome.

Lastly, A. de Jong [d]21] experimentally analyses the winnability of The Crew by using SAT-solvers
for several randomly generated games of The Crew including trump cards. It is shown that there are
theoretical possibilities for unwinnable games. However, when generating 10,000 random games where
players can select their tasks for up to 23 tasks the fraction of winnable games seems to be nearly 1.
Additionally, several possible methods of determinization of the game are considered to overcome the
challenge of incomplete information within the game. Determinization can be used to determine a
random (valid) instance of a game with complete information based on an instance with incomplete
information. This allows for applications of algorithms that use complete information on games that do
not have complete information. In the case of The Crew this means estimating the hands of the other
players, based on prior tricks and the hand of a single player. Finally, several Pure Monte Carlo players
(one with perfect information, one with incomplete information that attributes random cards to the



other players and one who uses determinization to attribute cards to the other players) are compared on
what percentage of tasks are succesfully completed for tasks numbers up to 35. The Pure Monte Carlo
player with perfect information outperformed the others, but surprisingly, of the players with imperfect
information, the one attributing cards randomly outperformed the player using determinization.

1.2 Thesis overview

Section 2 of this thesis includes an overview of the rules of the game. Section 3 analyses the winnability
of a two person variation of the game. Section 4 discusses the algorithms that are used in the experiments
done. Section 5 highlights the most interesting results of the experiments. Section 6 concludes the thesis
by summarising the results and giving directions for further research on analysing The Crew. Appendix A
gives an overview of the complete results from the experiments.

This bachelor thesis was written as part of a double bachelor program Computer Science and Mathematics
at Leiden University, under supervision of Floske Spieksma (MI) and Rudy van Vliet (LIACS).



2 Rules

We begin by outlining the rules of the game as they were used for this research paper. To allow for a
simpler analysis we consider a simplified version of the rule-set.

The Crew is a trick-taking card game, like contract bridge, hearts or the Dutch game klaverjassen. In most
trick-taking card games, in each round the starting player may play any card and the other player(s)
must follow the suit (or colour) of the first card. If a subsequent player cannot follow, he may play any
card in his hand. The player with the highest value card of the initial suit wins the trick. However, since
The Crew is a cooperative game, the goal is not to win as many tricks as possible. The players must work
together to ensure that the right people win specific tricks. We will now define the rules of The Crew in
detail.

2.1 Base rules

Set-up

The original game of The Crew consists of 3-5 players. There are 36 base cards in total, namely the values
1-9 for each of the suits: blue, green, pink and yellow. These cards are divided equally over all players. If
the cards do not divide evenly, a few players are given an extra card. In fact, this is only possible when
there are 5 players and only the first player will be given an extra card. Next, the initial starting player
(the commander) is chosen randomly among the players with the most cards (so any player in a game
of 3-4 players and the player with the extra card when there are 5 players). The task cards are shuffled
and a fixed number of task cards (1-10 according to the standard rules) are laid out (face up). Beginning
with the starting player in clockwise order, each player must pick one of the tasks laid out in front of
them until no more tasks remain. If there are more tasks than players, the initial player must then pick a
second task and so forth. Task cards correspond to each of the 36 regular cards. When a player holds a
task card he must obtain the corresponding regular card by winning the trick where it is played. When
all tasks have been divided over the players the game begins.

Rounds

The first trick is started by the initial starting player. In all subsequent tricks, the starting player is the
player who won the previous trick. During a trick, the first player may play any card in his hand, and
the other players (in clockwise order) must follow the suit if possible. If a player has multiple cards of
the required suit he may play any of these cards. If he does not have the required suit, the player may
play any card in his hand. The player who played the highest card of the required suit wins the trick. An
example of a played trick can be seen in Figure 1. The game ends when all tasks have been completed
successfully, when a task is failed (the card specified by the task is taken by a wrong player) or when
the hand of at least one of the players is empty. The game is won when all tasks have been completed
successfully and lost otherwise.



Player 2

Figure 1: Example of a played trick in The Crew. Player 1 has the task associated with the yellow 6 and
player 2 has the the task for the blue 4. Player 3 has no tasks. This trick is opened by player 1, who first
plays the blue 4. player 2 must then choose between his blue 7 or blue 2 and chooses the 7 since he must
win the blue 4. Player 3 has no blue cards in his hand and therefore can freely choose which card to play.
Since the yellow 9 might interfere with player 1 winning the yellow 6 in later tricks, he chooses to play
the yellow 9 to get rid of it.

2.2 Further rules

In addition to the above mentioned base rules there are several more rules of The Crew that can be
incorporated to obtain a more complex game, and which are part of the original game. These rules will
not be considered within this thesis, but are included for completeness.

Trump/rocket cards

In the original game in addition to the 36 normal cards, 4 black ‘trump/rocket’ cards with values 1-4
are present in the game. These black cards operate as normal cards in the sense that when the player
who starts the trick plays one of the trump cards, other players with trump cards must also play them.
However, if a trump card is played when the required suit was different, the trump card wins over the
required suit. Note that, like all other suits, it is only possible for a player to play trump cards on a
different required suit if the player has no cards of the required suit on hand. When multiple trump
cards are played, the highest value trump card wins. When the trump cards are in the game, the player
with the rocket 4 card is the commander (the initial starting player).

Distress signal

Once per game, between tricks, players may decide unanimously to use the so-called distress signal.
When this happens, each player passes on a card of his choice to the player on the right. In the original
game this counts as a sort of ‘penalty’ and the win is worth slightly less.



Communication

In the original game (non-task) cards are private and each player may only communicate about his cards
once per game. Communication may only happen after the tasks have been divided and only between
(so not during) different tricks or before the first trick. The player shows a single card and communicates
that this card is the highest, the lowest card or the only card he holds of its respective suit. A player may
only communicate the card, if it is in at least one of these three categories and he may only communicate
truthful information. Moreover, trump cards may never be communicated.

Task order tokens

Order tokens can be added to some or all of the tasks during the set-up phase. These tokens specify, for
example, that a task should be completed first of all the tasks, last of all the tasks or before or after a
specific other task.

More complicated/varied tasks

In the second version of the game (“The Crew: Mission Deepsea”) other tasks are possible than just needing
to win a specific card. For example: needing to win three cards with a blue suit, needing to win the first
trick, or needing to win no tricks in the entire game.

Missions

In the original game, the number of tasks is determined by the mission-specification. The game includes
50 missions with increasing difficulty. A mission includes a fixed number of tasks (increasing as the
missions get higher), a potential order in which these tasks must be completed and sometimes other
special requirements, such as not being able to communicate for the duration of the mission.



3 Theoretical analysis

In this section we will analyse a game with two players. Note that in this case information is always
complete, hence it is not usually a version that is played in practice. It is, however, not entirely trivial. We
show, that not all games of this form are winnable by analysing a game with a single task. We determine
exactly how many instances of such a game exist. Moreover, we determine the percentage of winnable
games.

3.1 Formal definition of the game
First of all, we define a game of The Crew formally, in order to properly prove aspects of the game.

Definition 3.1 (2-player game of The Crew). An initial configuration of a 2-player The Crew game is a
7-tuple (C, S, V, Py, Py, T1,T3), where

1. S the set of suits in the game, finite and non-empty.
2. V C Z~y, the set of values in the game, finite and non-empty.

3. C':= S x V, the entire set of cards present in the game; the cartesian product of S (the suits) and V'
(the values).

4. P, P, C C,where LUP, =C,PLNP, =0 and 0 < |P|— |P,| < 1, the initial cards for player 1
and player 2 respectively.

5 Ty, Ty C C,where Ty NTy, = 0,0 < |Th| — |Tx| < 1 and|Ti| > 1 the tasks for player 1 and player 2
respectively.

That is, a game of The Crew has sets of suits and values. The cards (which are all unique combinations of
suits and values) are used to fill the hands of both players (where player 1 has at most one card more,
specifically in the case where the total number of cards is odd). The hands of both players must be
disjoint subsets that (together) contain all of the cards. Player 1 and player 2 also both have a set of
tasks, which are also subsets of the card-set. In this case, not necessarily all cards have to be used, but
the players may not have overlapping tasks. Moreover, since in the game player 1 would be the first
to pick a task, player 1 will have an extra task when dealing with an odd number of tasks. Note that
in the above definition tasks are given directly to the players. In the actual game, however, there is a
task-taking phase, where players choose their tasks. The initial configuration contains a set of tasks that
are laid out in front of the players who can then pick their tasks, with every possible division of these
tasks being a reachable state.

For the purposes and ease of our analysis, we instead consider each of the reachable states as initial
configurations. Also note that when considering games with only one task, there is no difference between
the two methods. Finally, in the game, task cards and playing cards are physically different cards, but for
our purposes it is more convenient to consider them as subsets of the same set C, since their possible
values do not differ.

In the analysis, we consider a standard game (i.e., a game with the 36 cards as described in Section 2)
with a single task. This specific case is described in Definition 3.2.
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Definition 3.2. [2-player standard game of The Crew with a single task] An initial configuration of a
2-player standard The Crew game is a 7-tuple (C, S, V, P, Py, T1,T5), where

1. S := {blue, green, pink, yellow},
2. V=1{1,2,..,9},
3.C:=58x%xYV,
4 P,P,C Cwhere PLUP,=C,PPNPy,=0and 0 < |P| —|P| <1,
5. Ty := {t} for somet € C, Ty := 0.
We also define the following notations and definitions for ease of writing.
Notation 3.3. Forc := (x,y) € C, we write c; := x and ¢, := y, the suit and the value of the card.

Notation 3.4. Let P, ; = {c € P, | ¢, = s}, the set of cards player i holds of suit s.

Notation 3.5 (Card count). Letk; = [{c € P, | ¢; =i}
a given suit 1.

, that is k; is the number of cards player 1 holds of

Note that in a standard 2-player game, player 2 then holds 9 — k; cards of suit :.
Definition 3.6 (Critical colour/suit). The critical colour/suit is equal to t5.

Definition 3.7 (Critical card). The critical card is the playing card present in one of the players’ hand
corresponding to the task card t.

Next, we must define a playout of the initial game-configuration. Both players will play n < 18 tricks,
specifically until the critical card is played. Player 1 is the initial starting player so he will win the first
trick if both players play cards of different suits. In subsequent tricks, the player who won the prior trick
(and therefore started this one) will win in such cases. We also want to enforce the requirement that the
players must follow suit when possible.

Definition 3.8 (Playout). A playout of a game is a sequence

G = ((1’1, ylvwl)a (1}2, y2aw2)7 R (mrwynawn))a

where x1,%2,... %, € P, y1,Y2,...Yn € P withx; # x5, y; # y; fori # j and (v, =t ory, = t).
Additionally, let wy := 1 and fori > 1

)L if (255 = Yis and ;4 > Yin) o7 (Tis 7# Yis and w;_y = 1)
e if (xis = Yis and T < Yio) 0oF (Ti5 # Yis and wi—q = 2).

Lastly, for alli > 1 either w;_y = 1 and Pyz,  \ {91, ... yi1} = 0, or
wi—y =2and Py, \{x1,....01} =0, orz; s = yis.

Definition 3.9 (Winning/losing playout for a 2-player game with 1 task; winnable/losing game). Let n
be the number of tricks played in a given playout of a 2-player The Crew game with one task. The playout
is called winning if w,, = 1, i.e. Player 1 wins the final trick of the game. By definition, this is the trick
containing the critical card. Likewise, a losing playout is a playout such that w,, = 2. A game which has a
winning playout is called winnable and a game that does not is called losing.

Definition 3.10 (Directly winning). Given two cardsx,y € C. We call x directly winning overy if v, = ys
and x, > Y,.



3.2 Total number of games filtered for symmetries

In order to determine how many games are winnable, we must first determine how many games there
are in total. Given a game, we can create a different game by swapping, for example, two of the suits.
Note that by swapping the same colours of a winning playout of the original game we get a winning
playout for the second game. The same holds for a losing playout. Therefore, we do not consider these
games ‘unique’, but rather symmetries of one another. Likewise, we can create symmetries of any given
game by considering all 4! permutations of suits, see also Figure 2.

62 2llsi3 1%

Player 1 Player 2 Player 1 Player 2

(a) Game instance 1 (b) Game instance 2

Figure 2: Two ‘nearly-identical’/symmetrical games that can be changed into one another using a simple
permutation that swaps blue to pink, pink to green and green to blue, and yellow to yellow (and vice
versa), this is commonly written as (blue, pink, green) in group theory. Such swaps are possible for all
4! permutations of the 4 suits.

To determine how many unique games there are with unique playouts, we need to filter out these
symmetries. Since it is difficult to count the unique games directly, we calculate them based on the
number of invariant games under each symmetry using Burnside’s Lemma, see also [ , Chapter 3],

[ I.

Lemma 3.11 (Burnside’s lemma). Let G be a finite group that acts on a set X. For g € GG, let X9 denote
the set of elements in X that are left invariant by g, i.e. X9 = {x € X | g- © = x}. The number of G-orbits
of X, written as | X /G|, satisfies the following formula:

1
[ X/Gl = @ZIXﬂ

geG

Proof. The proof of this lemma can be found in [ , Chapter 3].
N

Orbits are the equivalence classes of unique games, G in this case is the group of permutations and X is
the set of all possible games (without filtering for symmetries). A game is invariant under a permutation if
the division of the (task and playing) cards remains the same after applying the permutation. An example
of an invariant game can be found in Figure 3. The key difference between symmetrical games and
invariant games is that symmetrical games have equivalent play-outs under a (non-identity) permutation
and invariant games are completely identical games.



Player1 Player 2 Player 1 Player 2

(a) A (simplified) game instance (b) The game of 3a is invariant under (yellow, green)

Player1 Player 2
(c) The game of 3a is not invariant under (yellow, blue)

Figure 3: The game instance shown in 3a is invariant under the operation (yellow, green) (see 3b) as
only the order of the cards in hand changes. It is, however, not invariant under (yellow, blue) (see 3c).
The task colour is changed and player 1 now holds a yellow 2 instead of a yellow 1 and a blue 1 instead
of a blue 2. That is, 3a and 3c are different games within the same orbit. On the other hand, 3a and 3b are
the exact same game.

Theorem 3.12 (Total number of 2-player, 1-task games filtering out for all symmetries). There are
13,696,940,880 unique instances of a 2-player game of The Crew with a single task, when filtering symmet-
rical games.

Proof. We prove this theorem by applying Burnside’s Lemma. In this case G represents all the symmetries
of the game. As mentioned before, these are all the 4! = 24 permutations of the card suits. We can
separate these permutations by the (number of) suits that are swapped.

« 0/1 suits swapped: the only permutation of this type is the identity. All

36 36
1 18
games are left invariant under this permutation. In this number, (316) represents choosing a single

task card out of 36 possibilities, and (i’g) represents choosing 18 playing cards for player 1. Choosing
cards for player 1 also automatically fixes the cards player 2 has.

« 2 suits swapped: all permutations where two suits are swapped, e.g. (yellow, blue). Since we have
4 suits there are a total of (3) = 6 permutations. Games are invariant under these permutations if
the task-suit is not changed and player 1 has exactly the same values for both suits (and player 2
as well, but this is fixed by the cards of player 1). The total number of invariant games for each

symmetry of this form is
L /18\ (9 18
—\1 i 18 —2i/)

)

Here (118) represents choosing a task. Note that this task cannot be of a suit that gets swapped.
When choosing cards for player 1 we may pick any number of cards from the two suits that get
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swapped, as long as player 1 has the same values in both suits. This is represented by term (?)

After selecting cards from the suits that get swapped, we have 18 — 2¢ cards left to pick from the

non-swapped suits. There are (181_821.) possibilities for this.

« 3 suits swapped: all permutations where three suits are swapped, e.g. (yellow, blue, green) or
(yellow, green, blue). Since we have 4 suits and 2 distinct permutations for each group of 3 there
are a total of (g) - 2 = 8 such permutations. Games are invariant under these permutations if the
task-suit is not changed and player 1 has exactly the same values for all three swapped suits (and

player 2 as well, but this is fixed by the cards of player 1). The total number of games for each

symmetry of this form is
i 9 (9 [ 9
—~\1 l 18—3i)°

Here, the term (?) represents choosing the task (which must be of the non-permuted suit), (?)
represents choosing cards of the 3 permuted suits for player 1 (who must once again have the same
values in each suit) and (18231‘) represents choosing 18 — 37 remaining cards from the non-permuted
suit. Note that the maximum number of cards player 1 may hold of the fourth (non-permuted) suit
is 9. This means that in invariant games of this kind player 1 must hold at least 3 cards of each of
the permuted suits. Moreover, he only has 18 cards total. Since he holds an equal number of all the

permuted suits, this means that he can hold at most 6 cards of each of the permuted suits.

« 4 suits swapped: Permutations of all 4 suits can be of two different types, i.e. a rotation over all 4
suits (pink, yellow, green, blue) or two swaps of suits (pink, yellow)(green, blue). The number
of permutations for the rotation is 3 - 2 = 6. The first suit is arbitrary as only the order matters,
then the second suit has 3 options and the third suit has 2 options, after which the final suit of
the rotation is also fixed. For the double swap there are 3 options. Again, the first suit you pick
is arbitrary and then there are 3 options for suits to swap it with. Then, based on the first duo
picked, the second duo is fixed. The total number of permutations including all 4 suits is therefore
9. There are no invariant games with only a single task under any of these permutations. This is
due to the fact that the task suit always changes, leading to a different element within the orbit.

We conclude that we have accounted for all 1 + 6 + 8 + 9 = 24 = 4! symmetries. Moreover, the total
number of invariant games is equal to

(1) (o (2 ()- () (22))-
(S0 () (w2)) -

326,704,870,800 + 1,551,835,152 + 469,875,168 = 328,726,581,120

Using Burnside’s Lemma we conclude that the total number of unique games is equal to

1 1
> X9 = 57 " 328,726,581,120 = 13,696,940,850 .
eG

X/G| = —
X161 = 17
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In Section 3.3, we will consider different types of winnable games. Filtering for all symmetries in that
analysis would be complex. We therefore recalculate the total number of games for analysis purposes. In
this case we only filter on symmetries in the task card, since this is easy to account for.

Lemma 3.13 (Total number of 2-player, 1-task games filtering for task-suit symmetry). There are

9\ /36
: = 81,676,21
(1> (18) 81,676,217,700

unique instances of a 2-player game of The Crew with a single task, when filtering out symmetry in task
colour.

Proof. When fixing the task colour we have 9 possible tasks from which we must choose 1. Then, when

we pick 18 cards from the 36 available playing cards for player 1, the cards of player 2 are also determined.
N

3.3 Winnability of 2-player games with only 1 task

We now analyse the winnability of the game. We do this by splitting the game into two possible situations:
one where the critical card is in player 1’s hand and one where the critical card is in player 2’s hand. We
cover these two cases in Theorem 3.15 and Theorem 3.18 respectively.

For the case where the critical card is in the hand of player 1, the task can be completed in two different
ways. The first method is by having player 1 play the critical card and player 2 play a card of the critical
suit and lower value. The second method is by having player 1 play the critical card and player 2 play
a card of a different suit (and player 1 opening the trick). The second method is only possible when
player 2 has no (more) cards of the critical suit. To see whether this is possible, we determine how many
cards player 2 can discard in a suit.

Lemma 3.14 (Discard opportunities for a given suit using a given suit). The maximum number of cards
of a single other suit that can be discarded by player 2 due to player 1 playing cards of suit i is equal to

T(k;) = max{0, 2k; — 9}, (1)
where k; is the number of cards of suit i in player 1’s hand.

Proof. If player 1 has k; cards of suit ¢, then player 2 has 9 — k; cards. If 9 — k; > k; (equivalently
k; < 5 since k; € 7Z) then player 1 cannot open any tricks in colour ¢ where player 2 does not also
play colour i. Therefore, in this case T'(k;) = 0. Now assume that k; > 5. The difference in cards is
ki — (9 — k;) = 2k; — 9. In the first tricks both players must play cards of the same suit. Afterwards, if
player 1 can open the tricks a total of 2k; — 9 tricks can be opened in suit 7 where player 2 is free to play

cards of a chosen different suit.
O]

Using this lemma we can determine when games with the critical card in the hand of player 1 are
winnable. We split these games in three different cases, which we try to keep maximally disjoint so that
we can calculate the exact number of games in each case easier later on.
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Theorem 3.15 (Winning 2-player, 1-task games where the task card is in player 1’s hand). A 2-player,
1-task The Crew game, where the critical card is in the hand of player 1 is winnable if and only if (at least)
one of the following holds:

1.

2.

Player 2 has a card that directly loses to the critical card.
Player 1 has all cards of a suit.

There is at least one directly winning’ card x,, € P; to a card y; € P, and the cards are distributed
according to the formula below (which is equivalent to saying player 2 must get the opportunity to
discard all cards he has of the critical suit) for critical colour r and unique suits a,b,c € S\ {r}.

2k, — 10+ T'(ky) + T(ky) + T(ke) > 0
{ceC|c,<tyandc, =1t} C P (2)
Ko Koo Koy e < 8.

Proof. Note that, within property 3, the rule {¢c € C' | ¢, < t,and¢s; = t;} C P excludes games
that satisfy property 1 (since when player 1 is missing a card of the critical suit with a lower value
than ¢ property 1. holds) and that k,, k,, ky, k. < 8 excludes games that satisfy property 2, to maintain
disjointness between the properties. The purpose of these requirements is purely to maintain disjointness,
for the ease of later theorems, particularly Theorem 3.17.

We need to show that any game with any of the above properties is winnable and any game without the
properties is unwinnable. We begin by proving that each of the cases is winnable.

1.

2.

3.

Let y; be a card in player 2’s hand that directly loses to the critical card. The following playout is
well-defined and winning: G := ((¢,y;, 1)).

We separate the cases where player 1 has all cards of the critical suit or all cards of a non-critical
suit. If player 1 has all cards of the critical suit the following playout is well-defined and winning:
G = ((t,y,1)) for an y € P5. Now assume that player 1 has all cards of a non-critical suit, say
suit @ # r. Let P, , = {%41,..., %49} be all cards player 1 has of suit a, P, = {y,.1,..., ¥, } for
some j with 1 < j < 8 be all the cards player 2 has of suit 7 and let y € P, \ P»,. The following
playout is well-defined and winning: G' := (%41, Yr1,1)s - - -, (Ta s Yrjs 1)), (£, y, 1)).

That is, player 1 first plays as many cards of suit a as player 2 has cards of the critical suit. This
gives player 2 the opportunity to discard all his cards of the critical suit (which clearly cannot be
strictly more than the 9 cards player 1 has of suit a). Then player 1 is free to play the critical card
and win, since player 2 has no more cards of the critical suit.

We first show that once the card distribution satisfies Formula (2), player 2 has the opportunity to
discard all of his 9 — k, cards of the critical suit.

By definition, the players can use the suits a, b, and c to let player 2 discard T'(k,) + T (k) + T (k.)
cards. Playing tricks in the critical suit allows player 2 to discard an additional k, — 1 cards. This
is because player 1 is able to play that many tricks in the critical suit without being forced to play
the critical card. Thus player 2 also gets to play k, — 1 cards of the critical suit. From Formula (2)
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we can directly conclude that the following holds

2k, — 10+ T' (ko) + T'(ky) + T'(k.) > 0
> k. — 14+ T(ky) +T(ky) +T(ke) > 9 — k.
We can therefore conclude that player 2 has the opportunity to discard all of his 9 — k, cards of
the critical suit.

After all this introductory work, we can finally define a winning playout for the third case, implying
that the game is winnable. Let P{ , == {c € Py |c, = s, c # T, c # t} = {2} ,..., 7 I }ie.
S, 1,s

all cards player 1 has of suit s € S excluding the directly winning card and the task card. Similarly,
let Py :={c€ P|cs=s,c#u}=1{vi1,- - Y, I |} be all card player 2 has of suit s € S

/
P2,s

excluding the directly losing card. Let m, := min{’Pl”s }, be the minimum of the sizes of

these two sets.

Lastly, let P/ = Uscqpoi: € Pl i > |P|} = {@1,...,x,}, the ‘leftover’ cards of the
(non-critical) suits for which player 1 has a majority.

Likewise, let P35 = U c oy {¥si € Pas | 1> |P{ .|} = {1, ... yu}. the cards of non-critical suits
player 2 has left. Note that y = T'(k,) + T'(ky) + T'(k.) (meaning pu + k., — 1 > 9 — k).

Y

The following playout is well-defined and winning:

G = (('T;J? ytlz,l’ wi), ..., (l':z,ma7 y(/z,ma7 w;),
(xg),lv 3/1/),17 Wit1), .-, (xg,mba yl/),mb7 w;),
(x/c,h ?/é,h Wig1)s s ('T::,mc7 y::,mc7 wy,),
(5’7;,17 1/;,17 Why1)s -y (x;“,mﬂ y:",mﬂ wy),

(:L‘wvyh 1)7 (xlvy;,m,n-i—l’ 1)7 SRR (xypéyr|7y,/ﬂy|P2/T|a 1))7 (taylv 1)) .

That is: we first play the number of ‘overlapping’ cards of each non-critical suit and overlapping
cards in the critical suit (excluding the critical card and a directly winning/losing combination
of cards). Then we make sure player 1 is the trick opener by playing the directly winning card.
From that point on, we know that player 1 will win each trick not started in the critical colour,
since player 2 has no more cards in any non-critical suit where player 1 still has cards. Moreover,
because the number of tricks played in the critical colour equals min(k, — 1,9 — k,), player 2 has
max (10 — 2k, 0) cards of the critical suit left. Player 1 can then play any card in his hand (except
the task) to allow player 2 y = T'(k,) + T'(k,) + T'(k.) opportunities to discard his remaining
cards of the critical suit. This (as shown before) is sufficient for letting player 2 discard all his cards
of the critical suit. Lastly, the task card is played and, since he has no more cards of the critical
suit, player 2 may play any card and lose the trick.

To conclude our proof we must show that all games that do not satisfy the three given properties, are
losing. Suppose, there is a game where none of the properties hold and that is winnable. Then the
final/winning trick of the game must be started by player 1 using the critical card and player 2 must
play a card of a different suit, otherwise property 1 would hold. This cannot be on the first turn, since
then player 1 would have all cards of the critical suit and property 2 would hold. Therefore, player 2 has
discarded all cards of the critical suit before the final trick and it is player 1’s turn during the final trick.
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This means that player 1 must have won at least one trick using a card that is not the critical card. If the
first trick is won by player 1, then this must be using a directly winning card (since, again, property 2
does not hold). If the first trick is won by player 2, then player 1 must win a later trick, otherwise he
cannot start the final trick. Winning a trick when the other player opens is only possible using a directly
winning card. We can conclude that in both cases player 1 has at least one directly winning card over a
card of player 2.

Moreover, player 2 discarding all his 9 — k, cards of the critical suit is only possible, if the cards are
distributed in a way that satisfies 9 — k, < T'(k,) + T'(ky) + T'(k.) + k. — 1, i.e,,

2k, — 10 + T'(k,) + T'(ky) + T'(k.) > 0.

Finally, note that the second and third requirements of Formula (2) are satisfied since property 1 and 2
do not hold. Therefore, in this case, all requirements of property 3 are satisfied.

We conclude that a game is winnable only when at least one of the given properties holds. We can
therefore conclude that games without any of the properties must all be losing.

]

Corollary 3.16 (Losing 2-player, 1-task games where the task card is in player 1’s hand). A 2-player,
1-task The Crew game, where the critical card is in the hand of player 1 is losing if and only if all of the
following properties hold:

1. Player 2 has no cards that lose directly to the critical card.
2. Player 1 does not have all cards of any suit.

3. There is no directly winning card in the hand of player 1 over player 2 and/or the cards are distributed
according to the following formula for critical colour r and unique suits a,b,c € S\ {r}:

2k, — 10+ T'(ky) +T(ky) + T(k.) <0
{ceClc, <tyandcs =t} C P, (3)
kpy ko, ky, ke < 8.

Proof. This is the complement of Theorem 3.15, with the exception that the two final requirements of
Formula (2) and Formula (3) overlap. These requirements correspond with maintaining disjoint properties
in Theorem 3.15. In this case they overlap with properties 1 and 2 and are redundant, but included to
maintain similarity.

]

Theorem 3.17. The number of losing 2-player, 1-task The Crew games with the critical card in the hand of
player 1 for critical suit r and non-critical unique suits a,b, c € S is equal to S1 + Sa, where

8 8
- Z Z Z Z Z Lty (ko kb ke) * Lotk tkp+ke=18 (4)

ty ka=0 kp=0 kc.=

with f referring to satisfying Formula (2), and
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AR 9\ (9 (9
2SS (0 () () () ks s

5 ky=5 ke=>5
with fo referring to satisfying Formula (3).

Proof. Properties 1 and 2 of Corollary 3.16 must always hold and 3 can be split into two cases. Either
there is no directly winning card in the hand of player 1 or the cards are distributed in accordance with
Formula (3). We must ensure that the games that have both of these options for property 3 are only
counted once.

To find the total number of games, we will first determine the number of games satisfying properties 1
and 2, where there is no directly winning card in the hand of player 1 over player 2, but excluding initial
games that satisfy Formula (3). After that, we will determine the number of games satisfying properties 1
and 2 that do satisfy Formula (3) and where there might also be a directly winning card in the hand
of player 1 over player 2. Note that (only) the second case includes games which satisfy both parts of
property 3.

Property 2 is enforced by setting the maximum number of cards of each suit to 8. We take property 1
into account by requiring that player 1 has all cards of the critical suit of lower value than the critical
card. Otherwise the critical card wins directly over a card in the hand of player 2. We ensure this
by setting the lower bound in Zi to t,. In the second case, we then have k, — t, other cards of
the critical suit and 9 — ¢, cards left to choose from, leading to the factor ( o ) Since the maximum
number of cards of a suit is 8, this also means that the task-value cannot be greater ‘than 8ina losing game.

For the first case (given in Formula (4)), player 1 must always have the cards from the lowest value
counting upwards for as many cards of the suit he has in total. After all, if he skips a value then there is a
directly losing card in the hand of player 2. Since we are excluding games where the cards are distributed
in accordance with Formula (3), we include the requirement that the cards are distributed according to
Formula (2) instead.

For the second case (given in Formula (5)), note that if a task has value 4 or higher Formula (3) can never
be satisfied. After all, £, > 4 also implies that k, > 4 due to property 1. When £, satisfies k, > 5 it
already holds that 2k, — 10 > 0. If, on the other hand, k, = 4 it holds that 2k, — 10 = —2, but either
two of k,, ky, k. will be at least 5 or at least one will be at least 6.

In both cases 2k, — 10 + T'(k,) + T'(ky) + T(k.) > —2 + 2 = 0 holds. Because k, < 3, it must also
hold that ¢, < 3. Due to this we can set the upper bound of the task-value and %, in Zi:l and Zir: ., t03.

With this upper bound for the task values and k, we can also determine upper and lower bounds for the
other suits. If player 1 were to have 8 cards of a non-critical suit, say a, we know that k. = ¢, = 1, since
otherwise 2k, — 10+ T (k,) + T (ky) +T'(k.) > —6+T(8) = 1 > 0 would already hold. However, in this
case, either k;, or k. will have to be at least 5 and 2k, —10+T(k,)+T1 (ky)+ 1 (k.) > —8+T(8)+T'(5) = 0.
So the upper bound for £, ky, k. becomes 7 to ensure Formula (3) can be satisfied.
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If player 1 were to have 4 cards (or fewer) of a non-critical suit, say a, then T'(k,) = 0. Thus,

2k, — 10+ T'(ky) + T(ky) + T(k.) = 2k, — 10 + T'(ky) + T'(k.) holds. Since T'(k;) = max{0, 2k; — 9},
the minimum of 7'(k;) 4+ T'(k.) is 0 when k;, + k. = 8 (since T'(4) = 0) and increases by 1 for each extra
card up to 10 that needs to be of suit b, ¢ (since 7'(5) = 1) and then increases by 2 for each extra card.
If k. = 1 then ky + k. > 13 meaning T'(k;,) + T'(k.) > 8 = —2k, + 10.

If k. = 2 then ky + k. > 12 meaning T'(k;,) + T'(k.) > 6 = —2k, + 10.

If k, = 3 then ky, + k. > 11 meaning T'(ky) + T'(k.) > 4 = —2k, + 10.

Thus, in any such case, T'(ky) + T'(k.) > —2k, + 10 and therefore Formula (3) cannot be satisfied. We
conclude that the lower bound for k,, ks, k. is 5.

(Note: Within these bounds any combination of k,., k,, ky, k. satisfies 2k, —10+71'(k,)+T (ky)+T (k) < 0.
To understand why this is true, we first observe that &, + k, + ky + k. > 14+ 545+ 5 = 16, so there are
only 2 cards out of 18 left to be distributed over the suits. For i € {a, b, c}, T'(k;) is at least 1 since player 1
has at least 1 card more than player 2 in each non-critical suit. Additionally, T'(k;) scales with 2 for each
value above 5. The value of %, is always at least 1 and the term 2k, scales with a factor of 2 for each in-
crease of k,.. Therefore, the 2 cards out of 18 that are ‘unaccounted for’ always allow for exactly 2 discard
opportunities each. Meaning, 2k, — 10 +1'(k,) + T (ky) + T'(k.) =2—-10+1+1+142-2= -1 < 0.
This also means that, when using the given lower and upper bounds for k., k,, ky, k. and the factor
( ]?:f;v), all three requirements of Formula (3) are accounted for within Formula (5). Thus, using the in-
dicator function 1y, (x, k, &, k.) 1S actually redundant in this case, but it is still included for similarity to S;.)

We conclude that Formula (4) and Formula (5) are well-defined and their sum is equal to the number of
2-player, 1-task losing games of The Crew where the critical card is in the hand of player 1.
O

Theorem 3.18 (Winning 2-player, 1-task games where the task card is in player 2’s hand). A 2-player, 1
task The Crew game, where the critical card is in the hand of player 2 is winnable if and only if and only if
(at least) one of the following holds:

1. Player 1 has a card that directly wins over the critical card.
2. Player 1 has all cards of a (non-critical) suit.

3. There is at least one directly winning’ card x,, € Py to a card y; € P, and player 1 has a majority of
cards (but not all) in any non-critical suit.

Proof. 1t is sufficient to show that any game of the above properties is winnable and any game without
the above properties is unwinnable. We begin by proving each of the given cases is winnable.

1. Let z,, € P, be a directly winning card over ¢. The following playout is well-defined and winning:

G = ((zy,1,1)).

2. Let a € S be a (non-critical) suit such that player 1 holds all cards of suit a. Let x € P; such that
xs = a. Since by definition ¢ # a and player 2 holds no cards of suit a the following playout is
well-defined and winning: G := ((z,t, 1)).
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3. Say that player 1 has the majority of cards in suit a € S and a # ¢, let
Pl,={ceP|cs=a,cFr,}={a),,...,70 I ’} be the set of all cards player 1 has of this
a, 1,a

suit, excluding the directly winning card (if it is of suit a).
Likewise,let P , == {c € Py |cs =a, c# yi} ={yo1,-- >V 17y ‘} be the set of all cards player 2
a2 q

has of this suit, excluding the directly losing card (if it is of suit a).
Let m, := min{‘P{ya} , ‘PQ’a|} = |P2’7a’. The following playout is well-defined and winning:

G = ((x:z,lv yg,h wl)’ (37;727 y:z,Qv w2)a T (ajg,mav y(/l,ma’ wma)’ (*/va Y, 1)7 ('Ta ma+1’t 1))
That is, we first play the overlapping cards of suit a (excluding z,,/y;). Then we play z,,/y; such
that player 1 can open the trick. Player 1 can open the trick in suit a and since player 2 has no
more cards of this suit, he is free to play the critical card and win the game.

To conclude our proof we must show that all games that do not satisfy the 3 given properties are losing.
Now imagine a game where none of the properties hold and say this game is winnable. The final/winning
trick of a winning playout of the game must be started by player 1 in a different suit (otherwise property
1 would hold) and player 2 must play the critical card. If it is the first trick and player 2 can play a card
of a different suit then that would mean that player 1 has all cards of the suit, but that would imply
property 2 holds. Therefore, we assume it is a later trick. But if this is the case and player 1 does not have
all the cards of a non-critical suit, then this would imply that player 1 has at least one directly winning
card over player 2. Moreover, player 1 must have strictly more cards of a different suit (since player 1
does not have all cards of any suit, but can get a winning trick where player 2 plays a different suit),
which would imply that property 3 holds. In other words, any winning game must satisfy at least one of
the given properties.

]

Corollary 3.19 (Losing 2-player, 1-task games where the task card is in player 2’s hand). A 2-player,
1-task The Crew game, where the critical card is in the hand of player 2 is losing if and only if all of the
following properties hold:

1. Player 1 has no cards that directly win over the critical card.
2. Player 1 does not have all cards of any (non-critical) suit.

3. There is no directly winning card in the hand of player 1 over player 2 and/or player 1 does not have a
majority of cards in a non-critical suit.

Proof. This is the complement of Theorem 3.18. O]

Theorem 3.20. The number of losing 2-player, 1-task The Crew games with the critical card in the hand of
player 2 for critical suit r and non-critical unique suits a, b, c € S is equal to S5 + S4, where

9 ty—1 8 8

Z Z Z Z Z L4kt hytke=18 * Lku>5 v ky>5 Vv ke>5 (6)

ty=1 k=0 kqe=0 kp=0 k=

and

CEEEEE() Q) Q) Q) v o

to=T kp=6 kqa=2 ky=2 ko=2
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Proof. Properties 1 and 2 of Corollary 3.19 must always hold and 3 can be split into two cases. Either
player 1 has no majority in any non-critical suit or he has no directly winning card over player 2. We
must ensure that the game that have both of the options for property 3 are only counted once.

To find the total number of games, we will first determine the number of games satisfying properties 1
and 2, where there is no directly winning card in the hand of player 1 over player 2, but excluding initial
games in which player 1 does not have a majority of a non-critical suit. After that, we will determine
the number of games satisfying properties 1 and 2 in which player 1 does not have a majority of a
non-critical suit and where there might also be a directly winning card in the hand of player 1 over
player 2. Note that (only) the second case includes games which satisfy both parts of property 3.

We will first determine the games where properties 1 and 2 do not hold and player 1 has no majority of
non-critical cards (including games where there is also no directly winning card in player 1’s hand over
a card in player 2’s hand).

For the first case (given in Formula (6)) player 1 must only hold cards that directly lose to all cards of the
same suit in player 2’s hand. Hence, if player 1 has £, cards of suit s, he should have the lowest £, cards
of that suit. Obviously, he cannot hold any cards that directly win over the task card (otherwise property
1 would not be satisfied) and he holds at most 8 cards in any suit (otherwise property 2 would not be
satisfied). Moreover, to exclude all cases where there is both not a directly winning card in player 1’s
hand and no majority of cards, we add the requirement that at least one of the non-critical suits has at
least 5 cards.

For the second case (given in Formula (7)) note that player 1 must have no more than 4 cards of any
non-critical suit, since 5 is a majority of cards. This also means that he must hold at least 2 cards of each
of the other suits. After all, player 1 holds at most 8 cards of the critical suit, which leaves at least 10
cards to be divided over the three non-critical suits. If he has less than 2 cards of any of the non-critical
suits, one of the others would have at least 5 cards. This also means that player 1 must always have
at least 6 cards of the critical suit (since having 13 cards of the non-critical suits means at least one
non-critical suit with 5 cards). On the other hand, player 1 holds at most ¢, — 1 cards of the critical suit
(i.e., only cards lower than the task value). Otherwise, he would have a directly winning card over the
task card. This implies that ¢, > 7. Otherwise, there are no requirements for which cards are chosen,

since this time it is no problem if player 1 holds one or more directly winning cards.
O

We now have all the necessary formulae to calculate the total number and percentage of losing games.

Corollary 3.21 (The number/percentage of winning/losing 2-player, 1-task The Crew games). The
number of losing games for 2-player The Crew with a single task is equal to

51+SQ+53+S4:
2037 + 112,402,080 + 2037 + 112,402,080 = 224,808,234 .
This means that the total losing percentage of the game is

224,808,234

~ 0.2 .
81,676,217,700 0.28%
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We conclude that the number of winnable games of this version of The Crew is equal to 81,451,409,466 or
99.72% of all games.

Proof. This can be easily verified using a brute-force calculation of Theorem 3.17 and Theorem 3.20 and
combining the result with Lemma 3.13. [

3.4 The relation between the two types of 2-player, 1-task games

A surprising result is that the two different types of games described in of Section 3.3 have the exact
same number of losing games. This equality leads us to the question if there is a similarity between the
two sets. In this section, we give an explanation of the relation between the two subsets of these game
types that we counted as Sy and Sy in Theorem 3.17 and Theorem 3.20 respectively. The sums Sy and S
can be rewritten into each other using the symmetry of binomial coefficients, but this does not give an
intuition of the underlying relation between the sets. In this section, to provide an intuition behind the
relation between these two subsets, we define a bijection between the two sets. Since both sets are finite,
this once again proves they are of the same size. At the end of this section, we provide an argument as
to why any possible relation between the subsets counted in \S; and S5 is more difficult to define.

To define the bijection we first define the complement of a card.

Definition 3.22 (The complement of cards). Given a card x := (s,v), we define its complement as
¢ = (5,9 —v+1).

In other words, a complement of a card is a card of the same suit but the ‘opposite’ value. For example,
the complement of a green 8 is a green 2 (and vice versa).

Theorem 3.23 (Bijection between two subsets of losing 2-player, 1-task games). The mapping that
changes a game by

1. Taking the complement of each card of the critical suit and the task card,
2. Swapping the playing cards of both players,

is a bijection that maps the set of losing games as described in Corollary 3.16 that satisfy Formula (3) to the
set of losing games as described in Corollary 3.19 where player 1 does not have a majority of cards in any
non-critical suit.

Proof. 1t is easy to see that the mapping is its own inverse mapping and that the images of the mapping
are valid game instances. Furthermore, the images of the mapping are different if the inputs are different,
i.e. the mapping is injective. All that remains to be proven is that the given domain and codomain are
correct. That is, let L; be the losing games as described in Corollary 3.16 that satisfy Formula (3) and let
L5 be the losing games as described in Corollary 3.19 where player 1 does not have a majority of cards
in any non-critical suit, we want to show that the given mapping maps L; to L, (and vice versa).

We begin by showing that all games of L; get mapped to games of Lo, by showing that the images of the
games must satisfy properties 1 and 2 as described in Corollary 3.19 and satisfy property 3 by player 1
not having any majority of cards in non-critical suits.

Take | € L; and let I’ denote the image of game [ under the given mapping. We know that, in game /,
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player 2 has no cards that directly lose to the critical card. We also know that player 2 must have at least
one card in the critical suit. Note that for the cards x, y where x is directly winning over y, x¢ is directly
losing to y°. Likewise, when taking the complement over all of the cards of the critical suit in a game,
player 2 now has no cards that directly win over the critical card. After swapping hands, player 1 has no
cards that directly win over the critical card, thus the first property of Corollary 3.19 is satisfied in ['.
From (the proof of) Theorem 3.17 we know that in /, player 1 cannot have 0 cards in any suit. Equivalently,
player 2 cannot have all cards of any suit in /. This means that after applying the mapping, player 1 does
not have all cards in any suit, thus the second property of Corollary 3.19 is satisfied in [.

Lastly, in the proof of Theorem 3.17 we showed that player 1 must have at least 5 cards of each non-
critical suit. Therefore, after applying the mapping, player 1 has at most 4 cards of each non-critical suit.
Thus, in [’ player 1 has no majority in any critical suit and the required part of the third property of
Corollary 3.19 is also satisfied.

We conclude that I’ is a game in set Lo.

We now show that all games of L, get mapped to games of L;, by showing that the images of the
games must satisfy properties 1 and 2 as described in Corollary 3.16 and satisfy property 3 by satisfying
Formula (3).

Take | € Lo and let I’ denote the image of game [ under the given mapping. We know that, in game [,
player 1 has no cards that directly win over the critical card. We also know that player 1 must have cards
in the critical suit, otherwise (as shown in the proof of Theorem 3.20) player 1 cannot have a minority of
cards in all non-critical suits. When taking the complement over all of the cards of the critical suit in a
game, all of the cards of the critical suit of player 1 now win over the critical card. After swapping hands,
player 2 has no cards that directly lose to the critical card, thus the first property of Corollary 3.16 is
satisfied in /.

From (the proof of) Theorem 3.20 we know that in [, player 1 cannot have less than 2 cards in any suit.
Equivalently, player 2 has no more than 7 cards in any given suit. Therefore player 2 cannot have all
cards of any suit in /. This means that after applying the mapping, player 1 does not have all cards in
any suit, thus the second property of Corollary 3.16 is satisfied in ['.

Lastly, in the proof of Theorem 3.20 we showed that player 1 must have between 6 and 8 cards of the
critical suit and between 2 and 4 cards of each non-critical suit. After applying our mapping, player 1
therefore ends ups with between 1 and 3 cards the critical suit and between 5 and 7 cards for each
non-critical suit. As noted in our proof of Theorem 3.17, these bounds correspond with games that satisty
the requirements of Formula (3). Therefore the required part of third property of Corollary 3.16 is also
satisfied.

We conclude that I’ is a game in set L.

In conclusion, the described map is a bijection that maps the set of losing games as described in
Corollary 3.16 that satisfy Formula (3) to the set of losing games as described in Corollary 3.19 where
player 1 does not have a majority of cards in any non-critical suit.

O]
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It is unclear whether such a relation also exists between the smaller sets. If there is one, it is not as
obvious. A difficulty with this particular case is that the smaller set of Corollary 3.19 contains games
where player 1 has no cards of the critical suit. In all games described in Corollary 3.16 both players
must always have cards of the critical suit. Additionally, in both cases, player 2 may have all cards of a
non-critical suit and player 1 may not. A mapping that includes swapping the players’ hands, as was
done in Theorem 3.23, would not be possible. Furthermore, games of the smaller set of Corollary 3.19
exist with all possible task values, whereas games in the smaller set of Corollary 3.16 cannot have tasks
with value 9. These differences make it very unintuitive to find a mapping between the two sets.
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4 Algorithms

In this section we will compare several strategies (agents) for playing a game of The Crew. We separate
the agents based on the two phases (task-taking and playing) of the game. Moreover, we make the
distinction between simple ‘rule-based’ agents and more complex agents based on Monte Carlo methods.
The agents from both phases can be combined into players for the full game. We combine and evaluate
the agents on their ability to win 3-player games in Section 5.

4.1 Rule-based agents

To help identify suitable strategies for The Crew we first define four rule-based algorithms, whose
performance we will compare later. We define two algorithms for the task-taking phase and two for
the playing phase of the game. Within these algorithms each card c is a pair ¢ := (x, y), where ¢, := x
is the suit of the card and ¢, := y is the value of the card (as was the case in Section 3). We begin by
defining the two task-taking agents, see Algorithm 1 and Algorithm 2.

Algorithm 1 The Random task-taking Player

T unchosen tasks
t task to-be-taken

t < random card from T’
Take(t)

Algorithm 2 The Tactical task-taking Player

T = {ty,...t,} unchosen tasks
P cards of current player
t task to-be-taken

fort; € T do
calculate z; := Score(t;, P)
end for
Mp:={t;eT |z; >z;Vje{l,2,..,n}and i # j}
t < random task from M

Take(t)
In Algorithm 2,
(xy —5)-2+|P,,| ze€P
Score(x, P) = < | Ps,| x ¢ Pand|Ps,| >0 (8)
—|P,. x ¢ Pand|Ps,, | =0,

where we define
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P.,={cePlcs=xsand ¢, > x,} 9)

P,,={ce€ P|cs =4} (10)

The first case of the scoring formula represents the situation where the player picking the task has the
associated playing card in hand. First, cards are evaluated on their value. It is intuitive that a player
wants to take tasks associated with high value cards in his hands and avoid tasks associated with low
value cards in his hand. For example, say a player has both the green 9 task card and the green 9 playing
card. He is guaranteed to have the ability to complete this task if there is any trick opened with a green
card. On the other hand, it is difficult for a player to complete a green 1 task if he has the green 1 playing
card on hand. After all, this is only possible, if he can start a trick when no other players have any green
cards. The scoring is scaled over all cases in such a manner that a task for a card with value 1 in hand is
the lowest possible base score (-8). Likewise, a task for a card with value 9 in hand gives the highest
possible base score (8). Note that if a given player has more cards in a given suit, it becomes easier for
all other players to discard their cards of that suit. This is due to the facts that 1. the other players will
have fewer cards of the suit to discard and 2. more tricks can safely be opened in that suit with the
purpose of others discarding more cards of that suit without the player with the task being forced to play
the critical card. When a player has both a task and the corresponding critical card, allowing the other
players to discard all their directly winning cards is crucial. We capture this intuition using the term
+| P, |- This gives a bonus for each card you have in the given colour (note that this is always at least (+1)).

The second case represents the case where a player does not have the critical card in hand, but does
have at least one directly winning card over the critical card. Intuitively, the more cards a player has
that directly win over the critical card, the easier it becomes to complete the task. Therefore the score of
this task is equal to the number of directly winning cards the player has.

The third case represents the situation where a player does not have the critical card in hand and cannot
win the critical card directly. Intuitively, completing this task is rather difficult. In this case, the player
must win the card by opening a trick in a different suit and the player with the critical card in hand must
discard it during this trick (i.e. he must not have any cards of the suit in which the trick was opened).
This case requires you to have more cards of the non-critical suits, so it is disadvantageous to have more
cards matching the suit of the task-card. Therefore the score of this task is equal to minus the number of
cards the player has of the critical suit.
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Note that this scoring-function is not intended to be optimal (and most likely is not), but simply an
improvement over picking tasks randomly. After all, picking tasks randomly appears to be a big factor
in limiting the winnability of a game of The Crew [d]21].

Improvements might still be made, for example, by making the scoring function non-linear (winning
a task associated with a card in hand with value 9 might be exponentially easier than with a 6/7/8).
Alternatively, in the second case you might also want to change the scaling value or take into account
how much higher the values are compared to the task (a card with value 1 is much easier when you have
a 9 of the same suit than when you only have a 2 of that suit). In the third case you might also want to
consider how many cards you have in the different suits. For example, having all cards of a suit as the
initial starting player allows you to win any card you do not have in hand. In this case, when you start a
trick in this suit you are guaranteed to win the trick and all other players may play any of their hand cards.

Next, we define agents for the playing phase of the game, see Algorithm 3 and Algorithm 4.

Algorithm 3 The Random Player
P cards of current player
p card to-be-played
s required suit

if s is not-defined then > First card to be played
p < random card from P
5 4 Ps

else > Play card of requested suit if possible

P,:={cePlc,=s}
if P, # () then
p < random card from P,
else
p < random card from P
end if
end if

Play(p)

For a simple improvement upon the random player, we can ensure that the player will play a card (of
the required suit) with a high value if there is a card in play he has a task card for (and he has cards
of the required suit). Likewise, we can ensure that a player will play a card with low value if there is a
card in play that a different player needs to win (and he has cards of the required suit). Random(P) in
Algorithm 4 refers to applying Algorithm 3. max,/min, is taking the card with maximum/minimum
value.
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Algorithm 4 The RandomSmart Player

T; tasks of player ¢

x current player

P cards of current player

R cards in play in current trick
p card to-be-played

s requested suit

if R is empty then > No cards played yet: play random card
p < Random(P)
5 4 Ps

else if RN T, # () then > Card in play this player wants: play highest value card of suit

P,:={ce P|c,=s}
if P, # () then
p < max,(P;)
else
p < Random(P)
end if
else if RN T; # () for some i # x then > Card another player wants: play lowest value card of suit
P,:={ce P|c;=s}
if P, # () then
p < min,{ P}
else
p < Random(P)
end if
else > Base case: play random card
p < Random(P)
end if

Play(p)

As said, the player in Algorithm 4 aims to play his highest card (of the required suit) if a card is in play
he wants, and his lowest card if another player wants a card in play. It is possible to have both cases at
once, at which point the game is guaranteed to be lost. The player will still opt to play the highest card
of the required suit if possible rather than the lowest card of the required suit, but in practice it does
not matter, since the game is already lost. Note, that the highest card might not be high enough or the
lowest card might not be low enough. In these cases the game is also already lost and the player can do
nothing to prevent it.
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4.2 Monte Carlo based agents

To consider more advanced strategies for playing The Crew, we define Monte Carlo based agents. We
begin by defining Monte Carlo Tree Search and a method often used in combination with Monte
Carlo Tree Search, called the Upper Confidence bound applied to Trees. After that, we will detail two
implementations of Monte Carlo agents, which can be used for both phases of the game.

4.2.1 Monte Carlo Tree Search

In Monte Carlo Tree Search (MCTS) the search-space is expanded by several play-outs. Within MCTS
we consider a search tree, where each of the nodes represents a game-state. The children of each node
are the game-states that can be reached by doing a valid move from the original node. The root R of the
search tree is the current game-state. The leaf nodes of the tree are any nodes from which no play-out
has been initiated. Each round of MCTS consists of four steps (see [ 1, [ 1):

« Selection: Starting from the root node, children are repeatedly chosen based on a selection criterion,
until a leaf node L is reached. This leaf node will be expanded in the following steps. Typically, the
selection criteria prioritises nodes with either high uncertainty (i.e. there have been relatively few
play-outs from a node, so not a lot is known about it) and/or high valuation (i.e. the node seems
relatively promising so far).

 Expansion: This step is optional. Expand the tree (from leaf-node L) by adding one or more child
(leaf-)nodes to the tree. Typically, at least the first move of the play-out of the Simulation step is
included. We will elaborate on our expansion method in Section 4.2.3.

« Simulation: Complete one or more play-outs from node C, one of the children of L (or L itself
if no children were added). Commonly, Monte Carlo play-outs use random moves, but it is also
possible to do play-outs based on heuristics.

« Backpropagation: The result of the play-out is used to update all nodes on the path from C back to
the root node.

Rounds are repeated until a certain threshold is reached. Typically, this is either a maximum number
of rounds being completed or a fixed amount of time running out. Afterwards, a move is chosen based
on the information of the direct children of the root node. We will refer to this phase of MCTS as the
conclusion phase.
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Figure 4: Example of the four MCTS phases, taken from [ ].

4.2.2 Upper Confidence bound applied to Trees

A common method for node selection in the Selection phase (and one we will use for one of the Monte Carlo
agents) is Upper Confidence bound applied to Trees (UCT) [ ]. This method balances prioritising

nodes with high uncertainty and high valuation as follows (notation is based on [ ]):
; In (N
Ui:&—l—c n ) with
n; n;

v; : the value/score of child node 7,
c : a constant that values expanding nodes with high valuation if low, and high uncertainty if high,
N : The number of times the parent node has been visited,

n,; : The number of times the child node ¢ has been visited.

The child with the highest U; value will be chosen until a leaf node is reached. In our implementation
we will consider the value of U; to be oo whenever n; = 0.

¢ is a value that can be fine-tuned to the specific use-case, but is often set to the theoretical value v/2
(see [ ]). This is also the value we will use.

4.2.3 Applied implementations

We implemented two distinct versions of MCTS: one that selects randomly in the selection phase and
one that selects based on UCT. Moreover, we have two different scoring functions that can be applied to
both of the methods. In both cases the Monte Carlo agents make use of complete information of the
game state, that is: information is used about the hands of all players.

At first only a basic MCTS function that evaluates winning games with 41 was considered. However,
this method seemed insufficient, when considering high numbers of tasks. Based on prior research done
by [d]J21] there is reason to believe that games with a higher number of tasks should also be winnable
in many cases. This discrepancy might be due to it being difficult to find any winning games during the
first (possibly most critical) moves. This is caused by increasingly larger search spaces and increasingly
lower fraction of winning playouts. Note, that even when a playout is not won, we might still consider
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a playout that has more tasks completed to be ‘closer’ to a win than a game where fewer tasks were
completed. To account for this intuition we will incorporate the number of tasks won in our update
function as follows. Let ¢ be the number of tasks completed in a random playout of node i and let S(7)
be the score that will be added to the value of 7 (v;) and the values of its ancestors.
, 100, random playout won
S(i) =
t, random playout not won.

The value of 100 was chosen since we still want to weigh a proper win much heavier than a game where
only a subset of the tasks was won and the maximum number of tasks we will consider in Section 5 is 20.

We have implemented two different Monte Carlo agents for playing The Crew, as specified in Algorithm 5
and Algorithm 6. There are two variants for both agents, one for each of the scoring functions described
above.

Both defined Monte Carlo agents can be used in both phases. When the agents are used only in the task
phase, the playouts will still continue into the playing phase and nodes for the playing phase will also
be added to the search tree. The full playout is needed in order to score the different possible moves
from the root node properly.

Algorithm 5 The Pure Monte Carlo Player (PMC’, can be applied to both task and playing phases)

This is a Monte Carlo Tree Search agent with the following properties.

Selection: Repeatedly choose a random child until a leaf is reached.

Expansion: All children are added to the tree.

Simulation: Play random moves until the game reaches a conclusion (win/loss).
Backpropagation: Standard scoring: update the score of the leaf and each of its ancestors with +1 on
a win. After a loss do nothing.

Smart scoring: update the score of the leaf and each of its ancestors with +100 on a win. Update the
score of the leaf and each of its ancestors with +t, where ¢ is the number of tasks that were completed
after a loss.

Conclusion: the eventual ‘best move’ is a (random) child of the root-node that has the highest score.

In literature, Pure Monte Carlo is either described as a method where a fixed (equal) number of random
playouts are done for each possible move (e.g. [d]21]) or as a method where each move of the playout
is done randomly (e.g. [ ]). In the used implementation defined by Algorithm 5, the moves are
chosen randomly each time, since both the children chosen in the Selection phase and the moves done in
the Simulation phase are random. Since the children of the root node (and all subsequent children) are
chosen randomly, the total number of playouts of each direct child will be roughly equal. Therefore, the
implementations are practically equivalent regardless.
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Algorithm 6 The Monte Carlo Tree Search using Upper Confidence bound applied to Trees Player
(‘MCTS-UCT’, can be applied to both task and playing phases)

This is a Monte Carlo Tree Search agent with the following properties.

Selection: Repeatedly choose the child with highest UCT score.

Expansion: All children are added to the tree.

Simulation: Play random moves until the game reaches a conclusion (win/loss).
Backpropagation: Standard scoring: update the score of the leaf and each of its ancestors with 41
for a win. After a loss do nothing.

Smart scoring: update the score of the leaf and each of its ancestors with +100 on a win. Update the
score of the leaf and each of its ancestors with +t, where ¢ is the number of tasks that were completed
after a loss.

When calculating the UCT for node i the value of node - is multiplied by a factor of
for the higher score values. Z

L

100 to correct

Conclusion: the eventual ‘best move’ is a (random) child of the root-node which has the highest
score (v;).

Note that there are many more variations of MCTS that can be applied to this problem. An example
would be evaluating the score of each of the direct children of the root node by also taking into account
the number of visits to that node (i.e. divide the score by the number of visits) in the conclusion phase.
Since this particular implementation did not lead to better performance in trial runs of the algorithms
compared to the regular scoring function, this variation will not be considered in this thesis.
Sometimes MCTS implementations will also evaluate losses with a penalty (in the form of a —1 update
to the scores in the backpropogation phase for example). However, this is again not logical in this
implementation due to the cooperative nature of the game. There will be no opposing player trying to
move towards a losing state. Moreover, the number of losing playouts is much larger than the number of
winning playouts in most cases. This means that implementing this scoring method would simply lead
to devaluing nodes that are visited more often.
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5 Experiments

We have tested the various agents for both the task-phase and the playing phase of the game described
in Section 4. Specifically, we have simulated every possible combination of the task and playing phase
agents for games with task numbers ranging from 1-20. For each task number 1000 random seeds where
generated to seed each of the games. This ensures that the initial state of each trial is the same for each
agent. Moreover, the random seed was set again after the task-phase, ensuring that the playing-phase
agent played the same, regardless of the choices of the task-phase agent (e.g. the Random-player will
always do the same moves no matter how the tasks were distributed). The full results of these experi-
ments can be found in Appendix A. In this appendix, two views on the data can be found: one based on
the task-phase used and one based on the playing-phase used.

We now highlight a few interesting results.

First of all, the MCTS-UCT agent showed the best results overall, followed by the PMC agent. However,
the difference between the two is only truly apparent, when the ‘smart’ scoring function is used, as can
be seen in Figure 5. An explanation for this result would be that, when no winning solution has been
found, both agents end up doing random playouts for random direct children of the root node. The only
difference is, that PMC selects children in a uniform random manner and MCTS-UCT selects based on
the UCT score. When no solution has been found, however, MCTS-UCT selects purely based on high
uncertainty. This would also lead to each child being selected roughly the same number of times, just
like selecting in a uniform random manner.

On the contrary, when the smart scoring function is used, MCTS-UCT is able to distinguish between
children for which no winning playout has been found yet. Children with playouts that end in a higher
number of tasks completed are more likely to have winning playouts, and UCT ensures that more visits
will be done to these children. This leads to MCTS-UCT being more likely to find a winning playout
even during the first few moves when the search space is very large and, thereby, being able to select
the moves that are better than the moves PMC selects.
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PMC vs MCTS-UCT (both game phases)
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Figure 5: Comparison of the performance of PMC (‘Pure’ Monte Carlo player) and MCTS-UCT (Monte
Carlo Tree Search using the Upper-Confidence Bound for Trees), when both are applied to both game-
phases. The pure Random player (both phases of the games played by random agents) is also visible as a
baseline. With the smart-scoring MCTS function both agent types perform better than with the regular

scoring function. Moreover, a clear difference in performance between the PMC and MCTS-UCT players
can be seen when applying the smart scoring function.

31



Secondly, distributing tasks randomly severely limits the potential of all agents, which is in line with
the results found in [d]21] using SAT-solvers. However, selecting tasks based on even just the simple
evaluation function used by the Tactical task-taker improves the winnability of the game significantly.
This can be seen in Figure 6.

Random vs Tactical task-taking phase agents

1000 - Random, PMC (smart)

—&— Tactical, PMC (smart)

i
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Figure 6: Comparison between the Random and Tactical task-taking agents (using smart-scoring PMC
and MCTS-UCT players for the playing phase). In both cases using the Tactical task-taking agent
improves the performance significantly for both Monte Carlo agents, especially for the ‘standard’ task
numbers (< 10). This shows the importance of the Task-taking phase as well as that even a simple
intuitive function to pick tasks significantly improves the chance of winning over just picking at random.
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Thirdly, the RandomSmart player shows clear improvement over the true Random player, as can be seen
in Figure 7. The number of games won by both agents is still very limited when compared to the number
of games won by Monte Carlo agents.

Random vs RandomSmart playing-phae agents

400 Random, Random
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Figure 7: Comparison between the Random and RandomSmart playing-phase agents (using MCTS-UCT
with the smart scoring function for optimal task-selection), the pure random player is also visible as a
baseline. The RandomSmart player clearly outperforms the Random player. Both players can only win a
significant number of games for small numbers of tasks.

Lastly, the maximum number of tasks specified by the The Crew rulebook is 10 and the pure MCTS-UCT
player is capable of winning > 90% of these games. To test the limits of our Monte Carlo agents we
increased the maximum number of tasks considered in our experiments to 20. At 20 tasks very few
games can be won even by the Monte Carlo agents. It is interesting to note that for more than 10 tasks
the number of games won by our strongest player begins to drop quickly. Whether intentional or not,
The Crew has picked the maximum number of tasks described by its rules in a manner that matches well
with the idea of difficulty/achievability given by our agents. However, [d]21] has shown that even these
games are expected to be winnable most of the time, so perhaps with more adjustments an agent can be
created that is able to win nearly all games for up to 20 (or more) tasks, too.
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6 Conclusions and Further Research

In this thesis we have formally defined a 2-player version of The Crew. We calculated the total number
of games of this form with a single task, accounting for symmetries over colourings of all cards and
for symmetries relating to the task card specifically. We have defined when such a game is winnable.
Moreover, we calculated the total number of (non-)winning games accounting for symmetries over the
task-card, as well as the fraction of the total number of games. Particularly, the percentage of winnable
games of this form is 99.72%. It is difficult to prove this formally for unbounded numbers of players/-
tasks (as is shown in | ]). However, these results are in line with SAT-solver experiments done for
4-player games with up to 23 tasks (see [d]21]). Therefore, it seems a high percentage of winnability is
not exclusive to 2-player 1-task games. We have also found that, when splitting losing games into the
categories based on whether or not the critical card is in the hand of player 1 and player 2, the amount
of losing games is the same in each category. We have defined a bijective mapping over a large subset of
these games.

Additionally, we have defined and evaluated several agents for both the task-taking and playing phases
of the game The Crew. We implemented these agents on a simplified 3-player game of The Crew. We have
established a baseline for a player agent taking purely random tasks and playing purely random moves.
We have improved on this baseline slightly in the playing phase by introducing the RandomSmart player
for the playing phase. We have improved upon the baseline in the task-taking phase by introducing the
Tactical player. Furthermore, we have considered two implementations of Monte Carlo players: a Pure
Monte Carlo player (PMC) and a Monte Carlo Tree Search player using Upper-confidence Bound for
Trees selection (MCTS-UCT). We can conclude that Monte Carlo methods using complete information
can be used to play the game effectively, especially when combining it with a ‘smarter’ scoring function
and Upper Confidence Bound for Trees. Using the Monte Carlo agents we were able to conclude that
the simple heuristic used for the Tactical task-taking player is a great improvement over selecting tasks
randomly.

There are many options for further research on The Crew. Firstly, more rules of the game can be incor-
porated into the simulation and the agents. These rules include adding trump cards and incorporating
communication or distress signals into the agents’ strategies. Moreover, the Monte Carlo agents we
have defined, make use of complete information, whereas this is not the case in the actual game. Using
determinizations (for example those described in [d]21]) to determine possible game states would allow
Monte Carlo agents to be used with incomplete information. This would asses their ability to win The
Crew more accurately, as information is incomplete in the actual game.

Furthermore, the scoring functions for the Tactical task-taking agent players can be fine-tuned to a
much higher degree. The same holds for the scoring and the selection functions of the Monte Carlo
agents. In this thesis, the goal for these functions was simply to make an improvement over the random
task-taker and the ‘standard’ scoring function, so there are most likely better optimized alternatives for
further improvements.
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Moreover, the rule-based algorithmic agents can be improved upon by taking into account more details
of the game. These details could include taking note of which players do not have cards in a certain
colour or what cards they have communicated (if communication is added to the simulation).

Lastly, the theoretical analysis can also be expanded upon. Particularly to games with more players,

more tasks and/or with trump cards. It might also be interesting to analyse to what extend adding the
‘distress signal’ rule (which allows players to swap playing cards once) will improve winnability.
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Appendices

A Full experimental results

All results of the experiments can be found here. The results are given in two different views (one based
on task-phase and one based on playing phase) that both represent the same data.
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A.1 Results by task-phase
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Figure 8: Experiment graphs based on task-taking-phase for the Random and Tactical agents. Tasks won
(out of 1000) with the given task-taking-phase agent and various playing-phase agents.
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Results for task heuristic: PMC Results for task heuristic: PMC (smart MCTS)
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(a) Results for the PMC task-taking agent. (b) Results for the PMC task-taking agent, with smart
MCTS scoring for Monte Carlo agents.
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(c) Results for the MCTS-UCT task-taking agent. (d) Results for the MCTS-UCT task-taking agent, with
smart MCTS scoring for Monte Carlo agents.

Figure 9: Experiment graphs based on task-taking-phase for the Random and Tactical agents. Tasks
won (out of 1000) with the given task-taking-phase agent and various playing-phase agents. The ‘smart’
MCTS scoring function is used (or not used) in both the task-taking and the playing phase in all cases
(when applicable).
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A.2 Results by playing-phase

Results for playing phase: Random

Results for playing phase: RandomSmart
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(a) Results for the Random playing-phase agent.
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(c) Results for the PMC playing-phase agent.
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(b) Results for the RandomSmart playing-phase agent.
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(d) Results for the MCTS-UCT playing-phase agent.

Figure 10: Experiment graphs based on playing-phase. Tasks won (out of 1000) with the given playing-
phase agent and various task-taking agents. The ‘smart’ MCTS scoring function is used (or not used) in
both the task-taking and the playing phase in all cases (when applicable).
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