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1 Introduction

In some branches of mathematics we would like to do probability theory in a differen-
tiable setting. For example, stochastic differential equations, optimization processes
or stochastic gradient descent all require a combination of stochastic and smooth
structure. One approach to unifying these fields is through categorical methods, par-
ticularly the use of monads, which provide a structured way to handle probability
measures in a categorical setting.

The Giry monad, introduced by Michele Giry in 1982 [Gir82], is an example of a
probability monad, defined over the category of measurable spaces. It assigns to a
space the space of probability measures, equipped with natural transformations that
satisfy the monad axioms.

While the Giry monad provides a framework for probability theory on measurable
spaces, extending this construction to smooth manifolds or more general differen-
tiable spaces, such as smooth manifolds or extensions thereof, is non-trivial. One
problem occurs because probability theory over the category of smooth manifolds
often operates outside the category itself. For instance, the space of probability mea-
sures on a smooth manifold does not naturally inherit a smooth structure, making
it difficult to work within the category of smooth manifolds. This issue highlights
the need for a more flexible framework that can accommodate both smoothness and
measure-theoretic properties.

Furthermore, not all spaces can be described as a smooth manifold and in particular
to describe infinite-dimensional spaces an extension is needed. Some extensions in-
clude Banach, Fréchet or Hilbert manifolds. These are all valid contenders for doing
probability theory in a differentiable setting, however are quite complicated.

Diffeological spaces are a generalization of smooth manifolds, that can also describe
a much broader class of spaces, while retaining the ability to define smooth maps.
Unlike the aforementioned extensions, diffeological spaces provide a simpler approach
to smoothness, that include infinite-dimensional spaces, singular, quotient and func-
tional spaces. This makes diffeological spaces well-suited for probability theory, where
one frequently has to consider spaces of measures, distributions, and other infinite-
dimensional objects that carry a natural smooth structure.

The central objective of this thesis, is to adapt the Giry monad to the category of
diffeological spaces, Diff , by constructing an analogue of the original Giry monad
that operates within the smooth setting of diffeological spaces. We start by defining a
diffeology on the space of probability measures, ensuring that the evaluation maps are
smooth with respect to the piece-wise smooth diffeology on the unit interval. We then
verify that the map sending a diffeological space to its space of probability measures
is an endofunctor in the category Diff and define natural transformations such that
they satisfy the monad axioms.

Ultimately, we identify an approach based on the functional diffeology, which supports
the construction of a probability monad in a differentiable setting.

The interaction of smooth structures and probability theory is increasingly significant
in computer science, especially in areas such as machine learning and deep learning.
In particular, diffeological spaces may offer a more flexible framework that allow mod-
elling spaces that appear in shape analysis and Bayesian inference on non-manifold
spaces. Furthermore, the categorical approach to probability theory discussed here
play a key role in the semantics of probabilistic programming languages, where one
can reason about probabilistic composition, such as randomness and side effects.
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1.1 Structure of thesis

In section 2 we will discuss some background of previous attempts to combine proba-
bility theory with smoothness and explain the motivation of using diffeological spaces.
Section 3 provides preliminary definitions and explanation of necessary theory of cat-
egory theory and diffeological spaces. In section 4 we show how a diffeological space
can be constructed as a measurable space and describe how we can construct the
space of probability measure on a diffeological space as a diffeological space. Sec-
tion 5 contains the first attempt of trying to adapt the Giry monad on the category
Diff and section 6 shows alternative approaches of defining the space of probability
measures, in particular the space of probability measures defined using a functional
diffeology. Section 7 contains some examples of probability measures on diffeological
spaces. Finally, section 8 and 9 concludes the thesis and discusses further areas of
research.
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2 Background

We will begin by discussing some previous attempts to combine probability theory
with some smooth structure. First, we will review how probability measures have
been defined on manifolds, particularly in an infinite-dimensional setting. Next we
will discuss a coordinate-free formulation of stochastic differential equations (SDEs)
via jets, well-aligned with the idea of diffeology.

2.1 Probability theory on manifolds

Probability theory in a smooth setting often requires extending classical measure
theory to spaces with some differentiable structure. One challenge is that many con-
structions in probability theory, such as the space of probability measures, do not
naturally inherit a smooth structure. While we can define probability measures on
finite-dimensional manifolds using a reference measure, this requires some extra struc-
ture.
There are several well-established approaches to define probability measures on man-
ifolds.

Volume forms on Riemaniann manifolds

Definition 2.1 (Riemannian manifold). A Riemannian manifold is a smooth mani-
fold M equipped with a Riemannian metric g, which assigns to each point p P M an
inner product gp : TpM ˆ TpM Ñ R, varying smoothly in p.

One approach of defining probability measures on oriented Riemannian manifolds is to
use volume forms normalized to a probability measure [BBI01]. Let M be a manifold
with Riemannian metric g. This metric induces a volume form volg and if M is
compact and oriented, this volume form can be normalized to define a probability
measure:

µgpAq :“
1

ş

M
volgpMq

ż

A

volg

In particular, every compact, oriented Riemannian manifold carries a canonical prob-
ability measure associated to its metric volume [FT22].

Hausdorff measure via charts

Another approach is to extend the theory of Hausdorff measure from Euclidean spaces
onto Riemannian manifolds using local charts. Let M be a n-dimensional Riemannian
manifold and Hn be the n-dimensional Hausdorff measure induced by the Riemannian
metric. Let A Ď Rn and V Ď M open and let ϕ : A Ñ V be a local chart. The
pushforward of Hn using ϕ´1 is mutually absolutely continuous to the n-dimensional
Lebesgue measure.[Fed14]

Haar measure on Lie groups

For Lie groups, the Haar measure provides a canonical smooth measure. For compact
Lie groups, this measure can be normalized to obtain a probability measure [Chi12].
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Extension to infinite dimensions

In infinite-dimensional spaces, such as Hilbert spaces, there is no canonical measure.
Volume-based constructions fail, which makes defining probability measures more dif-
ficult. The paper of Bardelli and Mennucci [EG17] addresses two methods of defining
probability measures on manifolds that can be extended to infinite-dimensional mani-
folds, particularly focusing on Stiefel manifolds modelled on separable Hilbert spaces.
These manifolds are important in shape theory and computer vision.

The first approach wraps a Gaussian measure using the exponential map. This tech-
nique works well in finite-dimensional spaces, however in infinite dimensions the out-
come can be highly sensitive to small changes. A small rotation may map equivalent
measures (i.e. mutually absolutely continuous) to singular measures.

The second approach projects a Gaussian measure from a Hilbert space onto a sub-
manifold. In finite dimensions, projections are well-defined almost everywhere, and it
is possible to induce a measure on the submanifold. But in infinite dimensions, this
projection might not exist of positive probability. However, the authors show that
certain infinite-dimensional Stiefel manifold do behave well under such projections.

In infinite dimensions, standard operations such as rotation or projection can heavily
change the structure of probability measures. This motivates using alternative frame-
works, such as diffeological spaces, that may be better to combine smooth structure
with probability theory.

2.2 Intrinsic SDEs via jets

The paper intrinsic differential equations as jets by Armstrong and Brigo [AB18]
proposes a coordinate-free formulation of Itô stochastic differential equation (SDEs)
on manifolds [Itô50] using the concept of 2-jets of smooth functions. Jets are higher-
order generalizations of tangent vectors that encode derivatives of functions at a point.

Earlier attempts to define SDEs on manifolds relied heavily on local coordinate charts
and Itô’s original calculus, which complicates transformation rules under smooth
maps. This has led to attempts to develop coordinate-free approaches of defining
SDEs on manifolds, using Stratonovich integrals, which allow SDEs to be represented
as flows of vector fields [Elw82]. Further advancements introduced constructions such
as second-order tangent vectors, Schwartz morphisms and Itô bundles, which aim
to capture second-order effects in a coordinate-free manner [EM89]. However, these
approaches are quite complicated.

This has led Armstrong and Brigo to define SDEs intrinsically via 2-jets of curves. By
interpreting a SDE as a smooth assignment of a 2-jet at each point on a manifold, it
is possible to encode drift (first-order) and diffusion (second-order) data intrinsically,
without reference to coordinates.

Definition 2.2 (2-jet). Let M be a manifold and γx : R Ñ M a smooth curve, such
that γxp0q “ x. The 2-jet j2pγxq at x P M is the equivalence class of all smooth
curves γ̃x that agree with γx up to second order derivative. That is,

j2pγxq “ tγ̃x|γ̃x “ x, γ̃1
xp0q “ γ1

xp0q, γ̃2
xp0q “ γ2

xp0qu.

This equivalence class captures the local behaviour of a stochastic process at x P M ,
encoding the drift and diffusion of a curve at x.

Definition 2.3 (Intrinsic SDE). An intrinsic SDE on a manifold M is defined as a
smooth assignment of 2-jets j2pγxq at each x P M , written as

Xt ñ j2pγXt
qpdWtq.

Where Wt is a Brownian motion and j2pγXtq specifies the local behaviour of Xt at
time t via the assigned jet.
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This definition allows Armstrong and Brigo to define Itô’s lemma using the 2-jet to
make it coordinate-free.

Theorem 2.4 (Itô’s lemma via jets [AB18, Thm 2.3]). If Xt ñ j2pγXtqpdWtq is a
jet-based SDE and f : M Ñ R is a smooth function, then the process fpXtq satisfies
the SDE

dfpXtq “ dfpγ1
Xt

p0qqdt `
1

2
d2fpγ2

Xt
p0qqdt.

The authors introduce a numerical scheme for simulating jet-based SDEs.

Definition 2.5. Let T N “ t0, δt, 2δt, . . . , NδT “ T u be a set of discrete time points
for some fixed time T . The 2-jet scheme is defined by

Xt`ϵ “ γXt

´ ϵ

δt
pWt`δt ´ Wtq

¯

,

with t P T N´1, ϵ P r0, δts, X0 “ x0 and γXt
is the curve associated with the jet at Xt.

Under the assumptions that γXt is sufficiently regular, i.e. the first and second or-
der derivatives are Lipschitz and the third order derivative is uniformly bounded.
the scheme approximates the jet-based SDE and converges to the classical Itô solu-
tion. For γx to be sufficiently regular, the first and second order derivatives must be
Lipschitz and third derivatives must be uniformly bounded.

Theorem 2.6 (Convergence of 2-jet scheme [AB18, Thm 2.4]). Let Xt be the solution
of a classical Itô SDE. The limit of the 2-jet scheme defined in definition 2.5 converges
to Xt in mean square, as δt Ñ 0.

This theorem is one of the main results of the paper, which shows that an Itô SDE
can be represented by a 2-jet driven by Brownian motion.

Connection to diffeology

In the approach of Armstrong and Brigo, an SDE on a manifold is defined by a
smooth assignment of 2-jets at each point. These 2-jets are used to define and ap-
proximate stochastic flows in a coordinate-free manner, without the use of charts.
This coordinate-free approach aligns well with the idea of diffeological spaces, which
are not defined using coordinate charts, but rather with plots. This approach could
be used to define SDEs on diffeological spaces.

3 Preliminaries

In this section we will introduce the necessary background on diffeology and category
theory, where we discuss one of the main examples of a probability monad, the Giry
monad.

3.1 Category theory

Category theory offers an abstract framework for structuring and transferring ideas
across various branches of mathematics. Instead of focussing on internal details of
mathematical structures (objects), it concentrates on relationships (morphisms) be-
tween them. Morphisms can be composed, and this composition is associative and
respects identity. In the setting of probability theory, it allows us to compose condi-
tional probabilities in a structure-preserving manner.
As objects in a category are considered atomic, we aim to find universal constructions
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by their properties, i.e., how objects relate to all other objects in a category.
A direct application of category theory is functional programming, where types cor-
responds to objects and functions to morphisms [BW95].

To formulate probability theory over diffeological spaces, we will employ category
theory to define a probability monad on the category of diffeological spaces, Diff . In
this section, we will introduce the basic theory of categories and the notion of monads
on a category.

Definition 3.1 (Category). A category consists of a collection of objects X,Y, Z, . . .
and morphisms between these object f, g, h, . . . such that:

• Every object has an identity morphism idX : X Ñ X.

• For any pair of morphisms f : X Ñ Y and g : Y Ñ Z there exists a composite
morphism g ˝ f : X Ñ Z.

These satisfy two axioms:

• Identity. For all f : X Ñ Y , we have idY ˝ f “ f “ f ˝ idX .

• Associativity. For any three compositional morphisms f : X Ñ Y , g : Y Ñ Z,
h : Z Ñ W , we have ph ˝ gq ˝ f “ h ˝ pg ˝ fq and denote it simply as h ˝ g ˝ f :
X Ñ W .

Definition 3.2 (Cartesian closed category). A category C is Cartesian closed if:

• For every X,Y P C, the product X ˆ Y exists in C.

• For every pair X,Y P C, there exists an exponential object Y X in C, which can
be thought of as the space of maps from X to Y .

3.1.1 Monads

The construction of a monad relies on fundamental categorical concepts such as func-
tors and natural transformations. A functor is a morphism between categories, pre-
serving structure between objects and morphisms. A natural transformation, on the
other hand, provides a way to relate two functors.

Monads formalize how we can chain operations that we cannot directly compose. The
key idea behind a monad is to describe some extra structure and provide a way to
compose such structured values. For example, in functional programming a monad
can model computations with side effects, such as randomness.

Definition 3.3 (Functor, [Rie14, Def. 1.3.1]). A functor F between two categories
C and D is a map such that

• There exists an object Fc P D for each object c P C.

• For each morphism f : c Ñ c1 P C there exists a morphism Ff : Fc Ñ Fc1 P D,
such that the domain is equal to F applied to the domain of f and the codomain
of Ff is equal to the codomain of F applied to the codomain of f .

The functor must follow the two functoriality axioms

1. It respects identity morphisms: For each object c P C, F pidcq “ idF pcq

2. it respects composition: For any compositional pair f, g in C, Fg˝Ff “ F pg˝fq.

Definition 3.4. An endofunctor is a functor whose domain is equal to its codomain.
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Definition 3.5 (Natural transformation, [Rie14, Def. 1.4.1]). Let C, C1 be two cate-
gories and F,G : C Ñ C1 two functors. A natural transformation, α : F ñ G, consists
of for each object x P C a morphism αx : Fx Ñ Gx in C1 such that for any morphism
f : x Ñ y in C the following diagram commutes in C1:

Fx Fy

Gx Gy

Ff

αx αy

Gf

Notation 3.6. Natural transformations are a way to relate two functors on a cate-
gory, instead of the objects themselves. To distinguish their role from morphisms on
objects, we use the notation α : F ñ G.

Definition 3.7 (Monad, [Rie14, Def. 5.1.1]). A monad on a category C is a triple
pT, η, µq where:

1. T is and endofunctor T : C Ñ C,

2. η, the unit, a natural transformation η : idC ñ T ,

3. µ, the multiplication, a natural transformation µ : T 2 ñ T ,

such that the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µT µ

µ

T TT 2

T

ηT Tη

µ
1T 1T

The presence of this extra structure on morphisms complicates composition. The
Kleisli category associated to a monad handles this composition.

Definition 3.8 (Kleisli category associated to a monad). Let pC, T, η, µq be a monad
on a category C, where T : C Ñ C is a functor, η : idC ñ T is the unit, and µ : T 2 ñ T
is the multiplication natural transformation.

The Kleisli category of the monad T , denoted by CT , is the category defined as follows:

• The objects of CT are the same as those of C.

• A morphism f : X Ñ Y in CT is a morphism f : X Ñ TY in C.

• For morphisms f : X Ñ TY and g : Y Ñ TZ in C, the composition g ˝T f :
X Ñ TZ in CT is given by

g ˝T f :“ µZ ˝ Tg ˝ f, X
f

ÝÑ TY
Tg

ÝÑ TTZ
µZ

ÝÑ TZ.

• The identity morphism idX : X Ñ TX in CT is given by the unit ηX : X Ñ TX
of the monad.

3.2 Categorical probability theory

A classical technique of applying category theory to probability theory is to define a
probability monad on an already existing category, by treating probability distribu-
tions, random processes and conditional probabilities as morphisms and functors.
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3.2.1 The Giry monad

The Giry monad, introduced by Michele Giry in 1982 [Gir82], is one of the main
examples of a probability monad, defined over the category of measurable spaces,
Meas, and thus one of the main structures used in categorical probability theory.
The monad is implicitly used when working with e.g. Markov kernels or probability
distributions over probability distributions, used for example in de Finetti’s theorem.
The Kleisli category associated to the Giry monad gives rise to the category Stoch
of Markov kernels [Gir82].

Definition and structure

The Giry monad is situated in the category Meas, whose objects are measurable
space pX,ΣXq and morphisms are measurable functions.

For a measurable space pX,ΣXq, its functor P assigns the space of probability mea-
sures, PX, on X, equipped with the evaluation σ-algebra, the coarsest σ-algebra such
that the set of all the evaluation maps

evB : PX Ñ r0, 1s, evBpµq “ µpBq,

are measurable for all measurable set B P ΣX .
For measurable f : X Ñ Y , where X and Y are measurable spaces, Pf : PX Ñ PY
is given by the pushforward of measures

Pfpµq “ f˚µ, f˚µpBq “ µpf´1pBqq.

The unit ηX : X Ñ PX of the monad maps a point x P X to its Dirac measure
concentrated at x, δx. Its multiplication mX : PPX Ñ PX flattens a measure of
measures by integration:

mXpνqpBq “

ż

PX

µpBqdνpµq.

The Kleisli category

A morphism in the Kleisli category is a measurable map f : X Ñ PY .

The Kleisli category MeasP associated with the Giry monad can be seen as the cat-
egory of Markov kernels. Its objects are again measurable spaces and its morphisms
are Markov kernels, measurable maps f : X Ñ PY representing conditional probabil-
ity distributions. The composition of two morphisms f : X Ñ PY and g : Y Ñ PZ
is given by

X
f

Ñ PY
Pg
Ñ PPZ

mZ
Ñ PZ

pg ˝ fqpxqpBq “

ż

Y

gpyqpBqdfpxqpyq

3.2.2 The category of Markov Kernels

The category of Markov kernels is often denoted as Stoch. The objects of this
category are measurable spaces and its morphisms are stochastic or Markov kernels.

Definition 3.9 (Markov kernel). A Markov kernel between two measurable spaces
pX,ΣXq and pY,ΣY q is a map κ : ΣY ˆ X Ñ r0, 1s such that

1. For all B P ΣY , the map x ÞÑ κpB|xq is ΣX -measurable

2. For all x P X, the map B ÞÑ κpB|xq is a probability measure on Y .
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For two morphisms κ : X Ñ Y and λ : Y Ñ Z in Stoch, the composition λ˝κ : X Ñ

Z is given by the Chapman-Kolmogorov equation:

λ ˝ κpdz|xq :“

ż

Y

λpdz|yqκpdy|xq.

For any measurable space X, the identity morphism is the Dirac kernel:

idXpB|xq “ δpBq “

"

1 if x P B
0 otherwise

3.3 Diffeology

Diffeology is a branch of differential geometry that generalizes the concept of smooth
manifolds by using plots to define smooth structures on a set, unlike traditional man-
ifolds, which rely on atlases and local charts. This approach was first introduced
by Jean-Marie Souriau in his 1980 paper Groupes Différentieles [Sou80] to address
limitations in classical differential geometry, in particular when dealing with spaces
that are not locally Euclidean or have singularities.

We define a diffeological space as a set X equipped with a diffeology, a collection of
maps, called plots, that are used to characterize smoothness of the space.

Definition 3.10 (Diffeology). Let X be a set. A diffeological space is a pair pX,Dq

with X a set and D a diffeology. A diffeology on X is any set of parametrizations on
X satisfying the following three axioms:

1. Covering. Every constant map is a plot.

2. Locality. Let p : U Ñ X be a map. If every r P U has an open neighbourhood
V Ď U of r such that the restriction p|V belongs to D, then p itself is a plot.

3. Smooth compatibility. Let p : U Ñ X in be a plot and V a real domain and
F P C8pV,Uq, then p ˝ F is a plot.

Formally, a diffeological space is a pair pX,Dq, but we shall denote a diffeological
space with only a single letter X, where D is its diffeology.

Definition 3.11 (Smooth map). Let X and Y be two diffeological spaces. A map
f : X Ñ Y is called smooth if for every plot p : U Ñ X, f ˝ p : U Ñ Y is a plot for Y .

U X Yp f

Diffeological spaces do not generally come with a topology defined on the space,
however every diffeological space has a topology induced by the diffeology, the D-
topology, which ensures that every smooth map is also continuous.

Theorem 3.12 (D-topology, [IZ13, Art. 2.8]). Let X be a diffeological space with
diffeology D, then there exists a finest topology on X, called the D-topology, such
that all plots p P D are continuous. This means that for every subset A Ă X is open
for the D-topology if and only if, for every plot p P D, p´1pAq Ă Rn is open in the
Euclidean topology on the plots domain.

Theorem 3.13 (Product diffeology, [IZ13, Art. 1.55]). Let pX,DXq and pY,DY q be
two diffeological spaces. Then there exists a coarsest diffeology, called the product
diffeology, DXˆY on X ˆ Y , given by

DXˆY :“
!

p “ ppX , pY q

ˇ

ˇ

ˇ
pX P DX , pY P DY

)

,

such that pX “ πX ˝ p and pY “ πY ˝ p are the smooth projections to X and Y .
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We can define a diffeology on the set of all smooth functions between two diffeological
spaces, called the functional diffeology.

Theorem 3.14 (Functional diffeology, [Igl25, Thm. 5.5]). Let X and Y be two diffe-
ological spaces. The set of all smooth maps C8pX,Y q carries a functional diffeology,
where a parametrization p : U Ñ C8pX,Y q, u ÞÑ fu, is a plot if and only if the
associated evaluation map

ev : U ˆ X Ñ Y, pu, xq ÞÑ ppuqpxq

is smooth.

3.3.1 The category of diffeological spaces

The categoryDiff consists of diffeological spaces as object and (diffeologically) smooth
maps as morphisms. Diff is a Cartesian closed category, making it an ideal contender
for extending probability theory to generally smooth spaces.

Proposition 3.15. The category Diff is Cartesian closed:

• Given pX,DXq, pY,DY q, their product is X ˆ Y with the product diffeology.

• The exponential object Y X “ C8pX,Y q carries the functional diffeology.

This property is crucial for applying probability theory in a smooth setting, because
many constructions involve function spaces, such as the space of random variables
(measurable maps) or transition kernels. In Diff , we can treat such function spaces
as objects while remaining inside the category, unlike in the category of smooth man-
ifolds, which is not Cartesian closed.

3.3.2 Limitations of manifolds

Classical manifolds require a finite-dimensional, locally Euclidean structure, which
excludes many spaces such as infinite-dimensional spaces (e.g., most function spaces)
or spaces with singularities (e.g., quotients of manifolds, orbifolds).
A diffeological space has no such restrictions. It is possible to model even infinite-
dimensional spaces and spaces with singularities as diffeological spaces.

An example of a highly pathological space that cannot be described by a traditional
manifold is the irrational torus, as this is a space with singularities. We can however
define a diffeology on the irrational torus.

Example 3.16. Let Tα be the irrational torus given by the quotient R{pZ ` αZq for
an α P RzQ. Let πα : R Ñ Tα be the canonical projection that maps x P R to its
equivalence class rxs P Tα.
The set of all parametrizations p : U Ñ Tα such that for all u0 P U there exists an
open neighbourhood V of u0 and a smooth parametrization q : V Ñ R such that
πα ˝ Q “ P |V form a diffeology on Tα.

1. Covering. Let p : U Ñ Tα a parametrization such that for all u0 P U , ppu0q “

rx0s. Let q : U Ñ R a parametrization such that for all u0 P U , qpu0q “ x0.
Then πα ˝ qpu0q “ rx0s “ ppv0q for all u P U .

2. Locality. Let p : U Ñ Tα be a parametrization and tUiuiPI an open cover of U
such that P |Ui is a plot for every i P I. Then for every ui P Ui, there exists an
open neighbourhood Vi Ď Ui of ui and a smooth parametrization qi : Vi Ñ R
such that πα ˝ qi “ pp|Ui

q|Vi
“ p|Vi

.

3. Smooth compatibility. Let p : U Ñ Tα a plot and F P C8pV,Uq. Let v0 P V ,
then there exists a neighbourhood W Ď U of fpv0q and smooth q : W Ñ R such
that πα ˝ q “ p|W . Let V 1 “ F´1pW q (open as F is continuous), then

πα ˝ pq ˝ F |V 1 q “ pπα ˝ qq ˝ F |V 1 “ p ˝ F |V 1 .

12



3.3.3 Manifolds as diffeological space

We can describe any traditional manifold as a diffeological space using plots, without
mentioning topology or local coordinate charts.

Definition 3.17 (Local smooth map). Let X,Y be diffeological spaces, A ãÑ X and
f : A Ñ Y a map. Then f is called a local smooth map if, for every plot p : U Ñ X,
the parametrization f ˝ p : U Ñ Y defined on p´1pAq forms a plot for Y .

Definition 3.18 (Local diffeomorphism). A local diffeomorphism between two dif-
feological spaces X and Y is an injective local smooth map f : A Ñ Y with local
smooth inverse f´1pAq : fpAq Ñ X.

A manifold is a diffeological space that is locally diffeomorphic to Euclidean space.
Diffeological spaces form a category Diff , where the objects are diffeological spaces
and the morphisms are diffeologically smooth maps, in which the category of manifolds
is naturally a subcategory.

4 Probability measures on diffeological spaces

In order to define a probability monad over the category of diffeological spaces, we
must first make precise how to view such spaces as measurable and how to equip
spaces of probability measures with a suitable diffeology.

We begin by defining a measurable structure on a diffeological space via the D-
topology and the associated Borel σ-algebra. Using this measurable structure, we
then define a diffeology on the space of probability measures on a diffeological space
X, denoted PX. This diffeology ensures that evaluation maps are smooth with re-
spect to a reference diffeology on r0, 1s.

Finally, we introduce a subspace of absolutely continuous probability measures P 1X
with smooth densities relative to a reference measure, when such a measure exists.

Definition 4.1 (Measurable space associated to a diffeological space). Let pX,Dq

be a diffeological space. The measurable space associated to X is the pair pX,BpXqq,
where BpXq is the Borel σ-algebra generated by the D-topology on X.

Explicitly, BpXq is the smallest σ-algebra containing all subsets of X that are open
in the D-topology.

4.1 The space of probability measures

We will first consider a useful diffeology using piece-wise smooth maps. The piece-wise
smooth diffeology consists of all piece-wise smooth plots.

Definition 4.2 (Piece-wise smooth). Let U Ď Rn and f : U Ñ X a continuous map.
We call f piece-wise smooth if there exists finitely many subsets Ui Ď U such that
U “

Ť

iPI Ui and f |Ui is smooth for every i P I.

By defining the piece-wise smooth diffeology, as we will obtain more smooth maps,
which will be useful when defining the monad unit and multiplication in definition
3.7.

Definition 4.3 (Piece-wise smooth diffeology, [AM23, Def. 7.14]). The piece-wise
smooth diffeology on r0, 1s is defined by the set of all piece-wise smooth parametriza-
tions of r0, 1s. We will use the notation Dp for the piece-wise smooth diffeology on
r0, 1s.
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We use the piece-wise smooth diffeology on r0, 1s to include distributions with non-
smooth densities or discontinuities, while preserving smoothness.
Let X be a diffeological space. We construct a diffeology on the space of probability
measures PX on X as follows:

Definition 4.4 (Evaluation-based diffeology). Let X be a diffeological space and
PX be the set of all probability measures on X with respect to the Borel σ-algebra
BpXq, generated by the D-topology. For any open subset U Ď Rn, a parametrization
p : U Ñ PX is a plot if and only if for every set B P BpXq the composition

evB ˝ p : U Ñ r0, 1s, u ÞÑ ppuqpBq

is a plot for r0, 1s, where evB : PX Ñ r0, 1s is the evaluation map at B and r0, 1s is
equipped with the piece-wise smooth diffeology.

Theorem 4.5. The collection of plots defined above form a diffeology on PX.

Proof. We will verify the three axioms of a diffeology.

1. Covering. Let p : U Ñ PX be a constant map, i.e. ppuq “ µ for some µ P PX
and every u P U . Then for any B P BpXq the composition with the evaluation
map evB ˝ ppuq “ µpBq is a constant function, which is piece-wise smooth, thus
p is a plot.

2. Locality. Let p : U Ñ PX be a map such that for every u P U , there exists
an open neighbourhood V Ď U of u, for which p|V is a plot. Then for any set
B P BpXq the map evB˝p|V : V Ñ r0, 1s is locally piece-wise smooth everywhere
on r0, 1s by the locality axiom of the diffeology on r0, 1s, evB ˝ p is a plot for
r0, 1s, thus p is a plot for PX.

3. Smooth compatibility. Let p : U Ñ PX a plot and F P C8pV,Uq. For every B
we have the equality

pevB ˝ pq ˝ F “ evB ˝ pp ˝ F q.

Since p is a plot evB ˝ p is piece-wise smooth and F is smooth and therefore
pevB ˝ pq ˝F is piece-wise smooth. Then evB ˝ pp ˝F q is piece-wise smooth and
thus p ˝ F is a plot for PX.

5 Adapting the Giry monad

In this section, we will construct a probability monad over the category of diffeological
spaces, that is analogous to the Giry monad over the category of measurable spaces
[Gir82]. We will first construct a functor P that assigns to each diffeological space X
the space of all probability measures, PX. We will define Pf by the pushforward.

Definition 5.1 (Pushforward of a measure). Let pX,ΣXq and pY,ΣY q be two mea-
surable spaces, f : X Ñ Y a measurable function and µ : ΣX Ñ R` Y t8u a measure.
The pushforward of µ by f is the measure f˚pµq : ΣY Ñ R` Y t8u given by

f˚pµqpBq “ µpf´1pBqq for B P ΣY .

Lemma 5.2. Let f : X Ñ Y be a smooth map between diffeological spaces. If X and
Y are equipped with the Borel σ-algebras BpXq and BpY q generated by their respective
D-topologies, then f is measurable.
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Proof. Let X and Y be two diffeological spaces equipped with their respective D-
topologies and f : X Ñ Y a smooth map. By Art. 2.9 [IZ13], every smooth map is
continuous for the D-topology and thus is f continuous. As we equip X and Y with
their respective Borel σ-algebra generated by the D-topology, any continuous map is
also measurable, and therefore every smooth f is also measurable.

Theorem 5.3. Let f : X Ñ Y be a smooth map, i.e. a morphism in Diff. Then f
is also measurable. Define the pushforward as

Pf : PX Ñ PY, PfpµqpBq “ µpf´1pBqq

for µ P PX and B P BpY q. Then P is a functor in Diff .

Proof. We can construct PX as a diffeological space for any diffeological space X, as
seen in the proof of theorem 4.5, meaning for any object X in Diff , PX is also in
Diff . Now, we need to check whether Pf is a morphism in Diff . Let p : U Ñ PX
be a plot and B P BpY q, then evB ˝ pPf ˝ pq : U Ñ r0, 1s is given by

u ÞÑ PfpppuqqpBq “ ppuqpf´1pBqq

and thus evB˝pPf ˝pq “ evf´1pBq˝p. Since p is a plot and f´1pBq P BpXq, evf´1pBq˝p
is a plot for r0, 1s, meaning Pf ˝ p is a plot for PY and thus Pf is a morphism in
Diff .
Let X be an object in Diff and idX : X Ñ X and idPX : PX Ñ PX be identity
functions, then P pidXq is given by P pidXqpµqpBq “ µpid´1

X pBqq “ µpBq and idPX is
given by idPXpµqpBq “ µpBq, so P pidXq “ idPX for any object X.
Let f : X Ñ Y and g : Y Ñ Z be two compositional morphisms. Then for any B
measurable in X, P pg ˝ fq is given by:

P pg ˝ fqpµqpBq “ µppg ˝ fq´1pBqq “ µpf´1pg´1pBqqq

and Pg ˝ Pf is given by:

PgpPfpµqqpBq “ Pfpµqpg´1pBqq “ µpf´1pg´1pBqqq.

So P pg ˝ fq “ Pg ˝ Pf and thus P is a functor.

Now we have proven that P is an endofunctor on the category Diff , we will define a
unit and multiplication natural transform, that satisfy the monad axioms.

Definition 5.4 (Unit and multiplication). Let X be a diffeological space, We define
the unit and multiplication as follows:

1. Unit: The unit ηX : X Ñ PX assigns to each point x P X the Dirac measure
δx, where for any measurable B Ď X:

δxpBq “

"

1 if x P B
0 otherwise

2. Multiplication: The multiplication mX : PPX Ñ PX is defined by integrating
measures over a measure. Let ν P PPX and B Ď X measurable:

mXpνqpBq “

ż

PX

evBdν “

ż

PX

µpBqdνpµq.

The unit and multiplication are defined analogously to the unit and multiplication of
the Giry monad. One important difference is that they must be morphisms in the
category Diff .
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5.1 Smoothness of unit and multiplication

When we define the space of probability measures as in definition 4.4, the monad unit
and multiplication are not smooth, and thus not morphisms in Diff .

Remark 5.5. With P the functor of the monad as defined in definition 4.4 and
theorem 5.3, the unit map ηX of the monad is not a morphism in the category Diff .

Proof. Consider R equipped with the standard diffeology. The D-topology coincides
with the Euclidean topology. Let p : R Ñ R a plot given by ppuq “ u. Then
evB ˝ ηR ˝ ppuq “ χBpppuqq “ χBpuq.
Let B “ RzQ, the set of irrationals, which is measurable. Then

evB ˝ ηR ˝ ppuq “

"

1 if u P B
0 otherwise

has a discontinuity at every point u P R, meaning it is not piece-wise smooth and ηR
is not a morphism. In general, ηX is not a morphism in Diff .

6 Alternative approaches

As in our previous approach the unit and multiplication of the monad are not mor-
phisms, we will discuss some alternative approaches in this section.

6.1 Absolutely continuous measures

One possible approach is to restrict ourselves to absolutely continuous measures on a
diffeological space X, with respect to some reference measure on X.

Definition 6.1 (Diffeological space of absolutely continuous measures). Let X be
a diffeological space such that there exists a standard measure λX on X w.r.t. the
Borel σ-algebra generated by the D-topology and PX be the space of all probability
measures over X. We define P 1X Ď PX as the set of all absolutely continuous
measures on X w.r.t. a reference measure λX , given by

P 1X :“ tµ P PX|Df : X Ñ Rě0 such that µ “ fλX and f piece-wise smoothu

We equip P 1X with the subset diffeology from PX, making P 1X a diffeological space.

Remark 6.2. The definition of P 1X as measures with smooth densities depends
on the existence of a reference measure. For general diffeological spaces X, such a
reference measure may not exist. Thus, the construction of P 1X is not generally
available.

With this approach, we encounter the same problem as when attempting to define
probability measures on some extension of manifolds to infinite dimensions. There is
no canonical infinite-dimensional reference measure, and therefore we exclude many
spaces on which we can define the space of absolutely continuous measures P 1X.
As P 1X itself is infinite-dimensional, we cannot chain the functor and P 1P 1X is not
defined for any diffeological space X.
In particular, we can only define P 1 as a functor on a subcategory Diffλ of Diff ,
where the objects are diffeological spaces where a canonical reference measure exists.
This would not be an endofunctor, as P 1 maps objects in Diffλ to objects in Diff ,
but outside Diffλ, and we cannot use P 1 to define a monad.
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6.2 The functional diffeology on the space of probability mea-
sures

Another strategy of equipping the space of probability measures with a diffeology
would be using the functional diffeology on PX. We again interpret the space of
probability measures as a diffeological space, where we view PX Ă C8pX,Rq˚ as a
subset of the linear functionals ϕ : C8pX,Rq Ñ R.
We will begin this strategy with the following assumption, which may not hold for
arbitrary diffeological spaces.

Conjecture 6.3. For a diffeological space X, the space of probability measures PX
can be identified as a subset of the dual space C8pX,Rq˚ via,

µ ÞÑ

ˆ

f ÞÑ

ż

X

fdµ

˙

where f P C8pX,Rq and bounded.

Remark 6.4. It is possible that this map is not injective and maps different measures
to equivalent linear functionals, making them indistinguishable.

For arbitrary diffeological spaces PX might not be a subset of the linear functionals,
so for this section we will assume PX Ă C8pX,Rq˚.

Definition 6.5 (Functional diffeology on space of probability measures). Let X be
a diffeological space and PX Ă C8pX,Rq˚ the space of all probability measures on
X with respect to the Borel σ-algebra, BpXq, generated by the D-topology. For any
open subset U P Rn, a parametrization p : U Ñ PX is a plot if and only if

u ÞÑ ppuqpfq :“

ż

X

fdppuq

is smooth for any bounded smooth map f : X Ñ R.

By the functional diffeology the collection of plots defined above form a diffeology on
PX. The condition that f is bounded ensures that all integrals involved are finite
and we do not define the trivial diffeology.

Functoriality

We define the effect P has on morphisms in the same way as in definition 5.3, by
pushforward of a measure.

Lemma 6.6. The map Pf , defined by pushforward of a measure µ on a morphism
f : X Ñ Y , is smooth.

Proof. Let f : X Ñ Y be a morphism in Diff and Pf : PX Ñ PY . Let p : U Ñ PX
a plot and g P C8pY,Rq bounded, then

Pf ˝ ppuqpgq “ f˚ppuqpgq “

ż

Y

gdf˚ppuq “

ż

X

g ˝ fdppuq

As f and g are smooth, g ˝ f P C8pX,Rq and p is a plot, then by definition 6.5
Pf ˝ ppuqpgq is smooth and thus Pf is smooth.

As we define Pf as in 5.3, we can prove P is a functor analogously to the proof of
5.3.

Corollary 6.7. P , as defined in 6.5 forms a functor on the category Diff .

17



Unit

We define the monad unit in the same way again. ηX : X Ñ PX maps a point x P X
to its corresponding Dirac measure, δx.

Lemma 6.8. The map ηX : X Ñ PX, x ÞÑ δx is smooth.

Proof. Let p : U Ñ X a plot. Then for any (bounded) f P C8pX,Rq, the composition
ηX ˝ p : U Ñ PX is given by:

ηX ˝ ppuqpfq “

ż

X

fdδppuq “ fpppuqq “ f ˝ ppuq,

which is smooth as composition of smooth maps and thus the monad unit is smooth.

As ηX : X Ñ PX is a morphism in Diff , we can prove η : idDiff ñ P is a natural
transformation.

Lemma 6.9. η : idDiff ñ P is a natural transformation.

Proof. Let f : X Ñ Y a morphism. Then for any x P X and B Ď Y measurable,

ηY ˝ fpxqpBq “ δfpxqpBq

Pf ˝ ηXpxqpBq “ PfpδxqpBq “ δxpf´1pBqq “ δfpxqpBq

meaning the following diagram commutes

X Y

PX PY

f

ηX ηY

Pf

and thus η : idDiff ñ PX is a natural transformation.

Multiplication

Also, the monad multiplication is defined in the same way, by integrating measures
over a measure:

mX : PPX Ñ PX, mXpνqpBq “

ż

PX

µpBqdνpµq

Lemma 6.10. The map mX : PPX Ñ PX is smooth.

Proof. Let p : U Ñ PPX a plot, then for any bounded f P C8pX,Rq, the composition
mX ˝ ppuqpfq is given by:

mXpppuqqpfq “

ż

PX

ˆ
ż

X

fdµ

˙

dppuqpµq.

The inner map µ ÞÑ
ş

X
fdµ is smooth by the functional diffeology on PX, and p is

a plot for PPX. Then mX ˝ ppuqpfq is a plot for PPX and thus the map mX is
smooth.

As for the unit we have obtained the multiplication is smooth, and therefore can
proceed to prove that m : PP ñ P forms a natural transformation.

Lemma 6.11. m : PP ñ P is a natural transformation.
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Proof. Let ν P PPX, µ P PX, ξ P PY and B Ď X measurable. Then

Pf ˝ mXpνqpBq “ mXpνqpf´1pBqq

ż

PX

µpf´1pBqqdνpµq

mY ˝ PPfpνqpBq “

ż

PY

ξpBqdpPPfpνqqpξq

“

ż

PX

PfpµqpBqdνpµq “

ż

PX

µpf´1pBqqdνpµq

And the following diagram commutes.

PPX PPY

PX PY

PPf

mX mY

Pf

This makes m : PP ñ P a natural transformation.

Monad structure

With a functor, a unit and a multiplication natural transformation, we can construct
a monad on Diff . This requires checking if the diagrams in definition 3.7 commute.
It should follow in the same way that as in the original paper from Giry that pP, η,mq

form a monad on Diff , but now the unit and multiplication are smooth maps, instead
of only measurable.

Conjecture 6.12. pP, η,mq forms a monad on Diff .

Proof sketch. Let ν P PX and f P C8pX,Rq. Then mX ˝ ηPX is given by

mX ˝ ηPXpνq “ mXpδνq “

ż

PX

ˆ
ż

X

fdµ

˙

δν “

ż

X

fdν.

And thus mX ˝ ηPXpνq “ ν “ idPX for all ν P PX.
Now consider mX ˝ PηX . Here PηX is given by the pushforward, i.e. for measurable
B Ď X and a measure ν P PX

PηXpνq “ ηX˚ν.

Then mX ˝ PηX is given by

mXpPηXpνqq “

ż

X

fdpmXpPηXpνqqq

“

ż

PX

ˆ
ż

X

fdµ

˙

dpPηXpνqqpµq

“

ż

X

ˆ
ż

X

fdηX

˙

dν “

ż

X

fdν

And thus mX ˝ PηX “ idPX and the right-most diagram of definition 3.7 commutes.
Let ξ P P 3X. Then mX ˝ PmX : P 3X Ñ PX is given by

mXpPmXpξqq “

ż

PPX

ˆ
ż

X

fdpmXpµqq

˙

dξpµq

“

ż

PPX

ˆ
ż

PX

ˆ
ż

X

fdµ

˙

dµpνq

˙

dξpµq
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And mX ˝ mPX is given by

mXpmPXpξqq “

ż

PX

ˆ
ż

X

fdν

˙

dpmPXpξqqpνq

“

ż

PPX

ˆ
ż

PX

ˆ
ż

X

fdµ

˙

dµpνq

˙

dξpµq

And thus the left-most diagram of definition 3.7 also commutes.

The proof of this theorem is not exact, as it might be possible that not all integrals
converge. Also, since PX might not be a true embedding in the space of linear
functionals, it may map different measures to the same linear functional. Therefore,
ş

X
fdν might not be equal to idPX .

7 Examples

In this section, we will discuss two examples. The first example considers the unit
circle, which is a space that we can also define as a manifold. For the second example,
we will look at the irrational torus, a highly pathological space with singularities.

Example 7.1. Let S1 :“ tz P C : z̄z “ 1u be the unit circle, equipped with the
quotient diffeology. That is, a map p : U Ñ S1 is a plot if and only if for every u P U
there exists an open neighbourhood V of u and a smooth parametrization p1 : V Ñ R
such that p|V : u ÞÑ e2iπp

1
puq.

We define a probability measure on S1 by pushing forward a Gaussian measure on R
via the canonical projection q : R Ñ S1.

Let µ P R and σ ą 0, and let γ “ N pµ, σ2q be the Gaussian measure on R. The
wrapped normal distribution on S1 is defined as the pushforward measure

ν :“ q˚γ,

where qpθq “ e2πiθ. The density f of ν with respect to the standard Lebesgue measure
on S1 is given by

fpθq “
ÿ

kPZ

1
?
2πσ2

exp

ˆ

´
pθ ´ µ ` kq2

2σ2

˙

, θ P r0, 1q.

Then f is a smooth density function from S1 Ñ R, where R is equipped with the
standard diffeology.

Example 7.2. Let α P RzQ be an irrational number. The irrational torus Tα is
defined as the quotient space

Tα :“ R{pZ ` αZq,

and we let πα : R Ñ Tα denote the canonical projection sending x P R to its equiva-
lence class rxs P Tα.

We equip Tα with the quotient diffeology, defined as the pushforward diffeology
πα˚pDRq. That is, a map p : U Ñ Tα is a plot if and only if for every u0 P U ,
there exists a neighbourhood V Ă U and a smooth map q : V Ñ R such that

p|V “ πα ˝ q.

Let γ be the Gaussian probability measure on R. We define a probability measure ν
on Tα by pushing forward γ under πα:

ν :“ πα˚γ.

We can interpret ν via its action on smooth functions. For any f P C8pTα,Rq, we
define

ϕνpfq “

ż

Tα

fdν “

ż

R
pf ˝ παqdγ.
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8 Conclusion

In this thesis, we have constructed a probability monad over the category of diffeo-
logical spaces, Diff , analogous to the Giry monad over the category of measurable
spaces. We began by constructing measurable spaces out of diffeological spaces using
the Borel σ-algebra generated by the D-topology, and use this to define the space of
probability measures PX of a diffeological space X. We then used this to define a
functor P : Diff Ñ Diff that maps a diffeological space into its space of probability
measures.

We showed what effect the functor P had on morphisms using pushforward of mea-
sures along smooth maps and were able to show that for any morphism f in Diff , Pf
is also a morphism. Furthermore, P respects identity morphisms and composition of
morphisms, making P a functor.

In our first attempt, where we used evaluation maps and the piece-wise smooth dif-
feology on r0, 1s as a reference diffeology, we were able to show that the unit and
multiplication of the monad, defined analogously to the unit and multiplication of the
Giry monad, are not morphisms in Diff , breaking the monad structure. Therefore,
we had to find some alternative approach.

We explored two alternative approaches

Restriction to absolutely continuous measures

The first approach was to restrict to absolutely continuous measures on a diffeological
space, w.r.t some reference measure. The functor P 1 maps a diffeological space X to
its space of absolutely continuous measures P 1X. This raised two problems, however.
Firstly, there does not exist a canonical reference measure for any diffeological space,
so we are not able to define the space of absolutely continuous measures over a dif-
feological space in general. Secondly, we cannot construct P 1 as an endofunctor over
Diff , as the action P 1 has is not defined for every object and the space P 1X does not
have a canonical reference measure, making P 1P 1X undefined.

The functional diffeology on the space of probability measures

The final approach, was to construct a diffeology on the space of probability measures
using the functional diffeology. In this approach, we can construct a probability monad
over Diff , where the unit and multiplication were morphisms in Diff .

9 Discussion

The intuitive approach of defining PX using evaluation maps aligns with the con-
struction of the classical Giry monad, however this method fails to make the unit and
multiplication smooth.

Defining the space of probability measures using the functional diffeology may offer
a more promising solution, as we were able to construct a smooth unit and multi-
plication. Here, the diffeology is not defined directly in terms of plots for PX, but
rather in terms of how the measure acts on smooth test functions. This construction
however assumes that every probability measure µ P PX can be viewed as a smooth
linear functional on the space C8pX,Rq, that is PX Ď C8pX,Rq˚, which may not
hold for all diffeological spaces.

Unlike manifolds and other extensions of smooth manifolds, e.g., Banach or Fréchet
manifolds, diffeological spaces do not require coordinate charts. The coordinate-free
nature of diffeological spaces align well with the approach of Armstrong and Brigo
[AB18] of defining SDEs via jets.
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Future work

Several directions of further research are discussed here. These include, but are not
limited to:

• Prove or disprove the conjecture that PX Ď C8pX,Rq˚ holds for ar-
bitrary diffeological spaces: We strongly suspect conjecture 6.3 not to hold
for arbitrary diffeological spaces. It may hold for compact spaces. If the in-
clusion fails for some spaces, we could restrict PX to certain measures, such
that they are distinguishable as smooth linear functional. Another possibility
is to restrict the function space to functions with compact support, instead of
bounded functions.

• Develop a Kleisli category over Diff, based on the monad defined in
theorem 6.12: With a monad pP, η,mq, the next step would be to build the
associated Kleisli category. This would involve defining morphisms X Ñ PY as
smooth stochastic maps and understanding how they compose.

• Explore applications to intrinsic SDEs on diffeological spaces via jets:
Jet spaces and diffeological spaces seem very compatible. Jets may allow defin-
ing stochastic differential equations in settings where manifolds are insufficient.
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