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Abstract

Within the maritime oversight domain, illegal ship breaking is an un-
lawful type of ship disposal process that constitutes a serious threat to
human life and environmental sustainability. To combat these hazardous
events, the Dutch Human Environment and Transport Inspectorate aims
to generate a reliable supervised classification model trained on historical
data to predict which currently sailing ships near their end-of-life are the
most probable candidates for such activities. However, given inherent sys-
temic biases present in the data used for learning, the resulting predictive
models tend to overemphasise certain ship country flags, leading to poor
generalisation and loss of performance under concept drift. To address
this, the current work explores the application of fair machine learning al-
gorithms to the task, aiming to develop models that are as unbiased as pos-
sible while maintaining robust predictive performance. Specifically, this
study investigates three traditional machine learning algorithms: (1) Ran-
dom Forest, (2) Logistic Regression, and (3) Neural Network, and three
fair machine learning algorithms: (1) Fair Random Forest, (2) Fair Logis-
tic Regression, and (3) Fair Adversarial Learning. These algorithms were
chosen for their ability to balance predictive performance with fairness
by incorporating performance-fairness trade-off hyperparameters. Com-
prehensive experimentation was conducted to assess the feasibility of our
task. We experimented with traditional and fair machine learning al-
gorithms optimised for classification performance and traditional and fair
machine learning algorithms optimised for both classification performance
and fairness simultaneously, using fairness-aware hyperparameter optimi-
sation with a functional model-agnostic fairness-aware objective function.
Furthermore, benchmark experiments were performed to validate our ex-
perimental design. Our results show that Fair Random Forest offers a
reliable solution for balancing performance and fairness, achieving the
broadest range of predictive performance and fairness scores. For both tra-
ditional and fair machine learning algorithms, their fairness and tunability
in regard to the performance-fairness trade-off was severely improved by
enhancing these algorithms with fairness-aware hyperparameter optimisa-
tion, by incorporating a compound performance-fairness objective func-
tion into the hyperparameter optimisation step. Ultimately, this study not
only advances the understanding of the trade-off between predictive per-
formance and fairness in this domain-specific machine learning problem
but also demonstrates the broader applicability of pairing fair machine
learning algorithms with fairness-aware hyperparameter optimisation to
enhance control over this critical balance.
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1 Introduction

Machine learning models have become increasingly ubiquitous in aiding human
decision-making over the years (Lu and Yin, 2021). These models are trained
on data, which means they can carry over any inherent biases present in that
data (Mehrabi et al., 2022). When not adequately addressed, this preserva-
tion of bias can have severe adverse implications(European Commision, 2024).
Notorious examples include Amazon abandoning their automated recruitment
system due to discrimination against women (Goodman, 2018), the Correctional
Offender Management Profiling for Alternative Sanctions (COMPAS) predict-
ing black defendants to be at a higher risk of re-offending than white defendants
with all other variables controlled (Larson et al., 2016), and a model used by US
hospitals underestimating thee medical needs of black patients, thereby disqual-
ifying them from extra care disproportionately with respect to white patients
with the same medical needs (Grant, 2022). However, not all biased data trans-
late to ethical concerns; consider the present use-case within the international
maritime transport domain, which is the focus of our work.

Certain countries are known for poorly implementing international maritime
law, which translates to financial gain for the companies involved as they spend
less on compliance. Moreover, these countries offer popular low-cost “last-
voyage” packages for ships nearing the end of their life. This often results
in ships being illegally beached rather than properly dismantled, leading to se-
vere environmental damage, hazardous working conditions, and health risks for
workers (NGO Shipbreaking Platform, 2024). Consequently, the data describ-
ing this reality is biased towards these specific country flags (known as flags
of convenience), under which the illegally-beached ships were sailing. In the
Netherlands, the Human Environment and Transport Inspectorate (ILT) is the
legal authority responsible for, among other duties, ensuring compliance with
proper ship dismantling practices to mitigate the environmental and health haz-
ards associated with illegal beaching (Ministerie van Infrastructuur en Milieu,
2023). The ILT has developed a model to predict which ships will be beached,
but it is biased towards ships sailing under flags of convenience. The concern
over this specific bias is non-ethical, but rather that it makes the model myopic,
overly focusing on flags of risk, which may cause it to miss ships sailing un-
der non-target flags and increase false positives by overselecting on target flags.
Additionally, ships can change flags at the last moment to evade detection and
accountability (de Bruin et al., 2022), meaning the model may not always work
with accurate flag information. To address this critical issue, an unbiased model
is essential.

Learning unbiased models from biased data is the goal of fairness algo-
rithms (Weerts et al., 2023). These algorithms can be categorised into three
distinct approaches based on when they are applied within the model learning
process: (1) pre-processing, (2) in-processing, and (3) post-processing. Pre-
processing approaches adjust the data before feeding it into a model to elimi-
nate certain associations between sensitive attributes and targets. In-processing
approaches incorporate fairness constraints within the algorithm by adapting
existing algorithms or using wrapper methods. Post-processing approaches ad-
just trained models through post-processing predictions or by modifying model
parameters. Pre-processing and post-processing methods for bias mitigation
do not alter the machine learning model, preserving the use of existing li-
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braries (Caton and Haas, 2024), but may reduce model interpretability. In
contrast, in-processing methods optimise fairness during training, only requir-
ing an optimisation function towards a fairness measure in conjunction with the
traditional classification performance.

In this paper, we propose to address the critical issue of illegal ship breaking
through fair classifier learning. We will do so by implementing three fairness
approaches: (1) Fair Random Forest, a probabilistic tree learning algorithm
that optimises both performance and fairness; (2) Fair Logistic Regression, a
logistic regression model which minimises classification error subject to fairness
constraints; and (3) Fair Adversarial Learning, a neural network which lever-
ages adversarial training to classify while remaining unbiased. We chose these
algorithms for their ability to balance fairness and predictive performance (i.e.,
performance-fairness trade-off), which is especially important for this use case.
We formulate our problem statement as follows:

How can we best minimise the bias present in the illegal ship breaking
prediction model of the ILT whilst maintaining adequate classifica-
tion performance?

To make the problem statement tractable, we decompose it into three research
questions:

1. How do traditional machine learning algorithms perform in terms of both
predictive performance and fairness?

2. How do the fairness parameters of fair machine learning algorithms influ-
ence their predictive performance and fairness?

3. How do the predictive performance, fairness, and the trade-off between
these measures change for traditional and fair machine learning algorithms
when employing fairness-aware hyperparameter optimisation?

By answering the aforementioned research questions and therein addressing our
problem statement, we propose the following three contributions: (1) improving
the fairness of the ILT’s ship breaking model, (2) proposing a functional model-
agnostic fairness-aware objective function, and (3) proposing the practice of
employing fair machine learning algorithms in combination with fairness-aware
hyperparameter optimisation.

The remainder of this paper is structured as follows: Section 2 defines our
problem formally. Section 3 reviews related work from the fairness literature.
Section 4 describes the methods that we employ. Section 5 describes the data
used in this study. Section 6 outlines the methods and experimental setup em-
ployed to answer our research questions. Section 7 presents our results. Section 8
includes a discussion of our findings, addresses some limitations, and suggests
directions for future research. Finally, Section 9 concludes the paper.

4



2 Problem Definition

We aim to develop a machine learning classifier that predicts whether a ship near
the end of its life will be illegally dismantled. A key priority is ensuring fairness
in these predictions by removing any undue influence of the flag under which
a ship sails; specifically, whether it is a flag of convenience or an alternative
flag. We must assess the performance and fairness of the model directly based
on its outputs rather than relying on a predetermined decision threshold. By
doing so, we can prevent any biases that can be brought about by artificial
thresholds that would distort justice. Ultimately, our goal is to create a fair
classifier that offers control over the trade-off between predictive performance
and fairness. This adjustable balance is essential since no single solution may
meet both requirements simultaneously, consequently enabling the appropriate
stakeholders to define their trade-off point of interest.

Formally, we consider a dataset with n instances, m attributes, and two
classes. We assume the existence of an additional sensitive attribute. Ac-
cordingly, instances are represented by (xi, yi, si), for i = 1, 2, . . . , n, in which
x ∈ X ⊆ Rm, y ∈ {y+, y−} ⊆ Y , and s ∈ {s+, s−} ⊆ S. In practice, this
amounts to a matrix of size n×m (i.e., X), and a pair of n-length column vec-
tors (i.e., Y and S). Furthermore, we define a classification model as a mapping

function f ∈ F : x ∈ X ⊆ Rm → z ∈ Z ⊆ R t∈T⊆R−−−−→ ŷ ∈ {y+, y−} ⊆ Ŷ ,
where prediction scores Z may be reduced — via a decision threshold t — to
label predictions Ŷ , such that z → y+ if z > t, and z → y− otherwise. Lastly,
function f must be learned from the dataset via a machine learning algorithm
h ∈ H of hyperparameters λ ∈ Λ, formally hλ : (X,Y, S) → fhλ

. Note: while
learning algorithm h takes S as part of its input, classification model f does
not. Our goal is, therefore, to find a fair classification model f of which the
output Z must simultaneously (1) maximise P [(Z|Y=y+) > (Z|Y=y−)] and (2)
minimise |P [(Z|S=s+) > (Z|S=s−)] − P [(Z|S=s−) > (Z|S=s+)]| (for simplic-
ity, let us denote these terms as (1) performance and (2) bias —or fairness
under maximisation of the additive inverse— respectively; in turn, f must be
found under a trade-off constraint between the two optimisation terms, given
a performance-fairness trade-off coefficient Θ ∈ [0, 1] set a priori, such that
f∗ = argmaxf∈F [Θ · performance+ (1−Θ) · fairness].
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3 Related Work

Fairness in machine learning has garnered significant attention in recent years.
This section covers measures of fairness in Section 3.1, and fair machine learning
in Section 3.2.

3.1 Measures of Fairness

Fairness measures assess equality across sensitive attribute groups with re-
spect to some computable statistic, and can be placed into two categories: (1)
threshold-dependent fairness measures; and (2) threshold-independent fairness
measures. We note that, regardless of threshold category, fairness measures
have their values in the range [0, 1], in which 0 translates to complete fairness
while 1 indicates total bias.

Threshold-dependent fairness measures rely on class predictions, induced
by a decision threshold t onto the model output score Z, rather than directly
using Z. Prominently, we mention three such measures: (1) demographic par-
ity; (2) equal opportunity; and (3) equalised odds. First, demographic par-
ity requires the proportion of positively predicted instances to be equal across
groups (Dwork et al., 2011); formally, P (Ŷ=y+|S=s+) = P (Ŷ=y+|S=s−). As
a measure of fairness, it is computed as the absolute difference between the
two terms: |P (Ŷ=y+|S=s+) − P (Ŷ=y+|S=s−)|. Second, equal opportunity ac-
counts for fairness with respect to model performance, by focusing on the true
positive rate, rather than solely on the positive class predictions, ensuring
equality of true positive rates between the sensitive attribute groups (Hardt
et al., 2016); formally, P (Ŷ=y+|Y=y+, S=s+) = P (Ŷ=y+|Y=y+, S=s−). To
serve the purpose of fairness measure, it is computed as the absolute dif-
ference: |P (Ŷ=y+|Y=y+, S=s+) − P (Ŷ=y+|Y=y+, S=s−)|. Lastly, the measure
of equalised odds extends the model performance considerations of equal op-
portunity by adding the two requirements of (1) equal false positive rates
across the sensitive attribute groups, and (2) equal true positive rates and
false positive rates (Hardt et al., 2016); formally, P (Ŷ=y+|Y=y+, S=s+) =
P (Ŷ=y+|Y=y+, S=s−) = P (Ŷ=y+|Y=y−, S=s+) = P (Ŷ=y+|Y=y−, S=s−). Com-
putationally, it is given as: |[|P (Ŷ=y+|Y=y+, S=s+)−P (Ŷ=y+|Y=y+, S=s−)|]−
[|P (Ŷ=y+|Y=y−, S=s+)− P (Ŷ=y+|Y=y−, S=s−)|]|. Ultimately, these threshold-
dependent measures of fairness are ill-suited to address the current maritime
use-case under our stipulated requirements (see Section 2), as the values of
fairness may vary significantly depending on the selection of decision threshold.

Threshold-independent fairness measures do not rely on a decision threshold.
Instead, they consider the model output score Z. The measure of strong demo-
graphic parity ensures that the output of a classification model is, on average, in-
dependent of sensitive attributes regardless of the decision threshold used (Jiang
et al., 2019); formally, P [(Z|S=s+) > (Z|S=s−)] = P [(Z|S=s−) > (Z|S=s+)].
As a measure, strong demographic parity is calculated as the absolute dif-
ference |P [(Z|S=s+) > (Z|S=s−)] − P [(Z|S=s−) > (Z|S=s+)]|, simplifying
to |2 · P [(Z|S=s+) > (Z|S=s−)] − 1| (Barata et al., 2024). The probabil-
ity term is equal to the Receiver Operating Characteristic Area Under the
Curve (ROC-AUC): AUC (Z, S) = P [(Z|S=s+) > (Z|S=s−)] (Mason and
Graham, 2002), and computed as the traditional classification performance
AUC (Z, Y ) = P [(Z|Y=y+) > (Z|Y=y−)], by replacing Y with S. These mea-
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sures align perfectly with our stipulated threshold-independence requirements.

3.2 Fair Machine Learning

The application of fairness in machine learning is the process by which inher-
ent data biases are minimised within the final learned model. As described
in Section 1, fairness processes may be categorised as either (1) pre- (2) post-
or (3) in-processing, related to when in the learning pipeline (before, after, or
during, respectively), fairness is enforced. The decision of which approach to
select heavily depends on the level of algorithmic and data freedom of access
and manipulation.

First, pre-processing involves the most freedom within the data themselves
and minimises model bias by applying data transformations prior to model
learning. These transformation learn a new representation of the data in which
fairness is ensured while still preserving the fidelity of the task (Caton and
Haas, 2024). Feldman et al. (2015) discuss an approach to remove information
about sensitive attributes from a set of numeric covariates, by transforming
the distribution of the variable towards the median while still retaining the
rank order for instances. In practise, however, it has been shown that pre-
processing methods generate classification models that still exhibit substantial
bias (Agarwal et al., 2018).

Second, post-processing assumes that the degree of freedom is severely lim-
ited to solely the output of an already learned model. In other words, it takes
into consideration that different sensitive attribute groups should have, for in-
stance, unique decision thresholds to decide whether or not their predicted class
is positive. This method is, however, not always appropriate since the usage
of a sensitive attribute (either directly or indirectly (Petersen et al., 2021)) to
decide upon an outcome may be, case-dependent, unethical in nature.

Lastly, in-processing assumes full control over the algorithmic development;
i.e., the learning process via the arbitrary manufacturing of the learner. Dif-
ferent approaches exist to achieve this goal, of which we mention three of the
most prominent in the literature: (1) constraint optimisation, (2) regularisation,
and (3) adversarial learning. Constraint optimisation involves imposing addi-
tional (fairness) constraints to the objective function of the learner, in which
the imposed constraints must be solvable under a convex optimisation problem
definition; these constraints are usually formalised as either weak — such as the
correlation between output and sensitive attribute (Kamishima et al., 2012) —
or strong, as is the case with demographic parity and equalised odds (Agarwal
et al., 2018). Regularisation approaches add penalty terms that include notions
of fairness in the loss function, to reduce discrimination; this may be done, for
example, in the form of a compound splitting criterion in a decision tree archi-
tecture (Barata et al., 2024), in which a split will be selected during learning
based on a joint consideration of performance and fairness. Adversarial learning
uses an adversary layer to deliver feedback on whether the training process is
fair, and this feedback is used to improve the model; Zhang et al. (2018) present
a framework where the adversary penalises the model if the sensitive attribute
is predictable from the model output, encouraging the model to reduce bias and
improve fairness. Since we have full control over the algorithmic decision-making
in this work, and provided their prevalence and well-established performance in
literature, our solution will be driven by in-processing methods.
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4 Methods

This section covers the (fair) machine learning methods that we utilise in our
experiments, with the purpose of finding the best setup for our current problem.
In Section 4.1 we discuss the (fair) classification algorithms, and in Section 4.2
we discuss fairness through hyperparameter optimisation.

4.1 (Fair) Algorithms

In our methodology, we implemented both traditional and fair machine learn-
ing algorithms. We chose three learning algorithms known to perform well on
classification tasks and their fair counterparts, following the aforementioned
in-processing approaches: (1) Logistic Regression and Fair Logistic Regression
(constraint optimisation, Section 4.1.1), (2) Random Forest and Fair Random
Forest (regularisation, Section 4.1.2), and (3) Neural Network and Fair Adver-
sarial Learning (adversarial learning, Section 4.1.3).

4.1.1 Logistic Regression & Fair Logistic Regression

The traditional Logistic Regression models the log-odds of a label as the linear
combination of the available features (McCullagh and Nelder, 1989). Therein,
the model extends to the fair case via a reductions approach to fair classifi-
cation (Agarwal et al., 2018). It treats the underlying classifier (i.e. Logistic
Regression) as a black box, in which the loss function is subject to fairness
constraints which can be reduced to a sequence of cost-sensitive classification
problems. The solutions to these cost-sensitive classification problems yield a
classifier with the lowest error, subject to the desired fairness constraints.

The fairness constraints can be expressed as linear inequalities, using the
definition of fairness most suitable to the use-case problem, so long as it falls
under a solvable convex optimisation problem (e.g., demographic parity). To
this end, Lagrange multipliers are introduced to handle these constraints. La-
grange multipliers are used as a mathematical technique to find extreme values
of a function under constraints. The idea is to convert the function under con-
straints to a form such that the derivative test of a function that is not under
constraints can still be applied. The Lagrange multiplier scales the gradient of
the constraint so that the gradient of the objective function and the gradient
of the constraint function are of the same magnitude. Therein, a new func-
tion (Lagrange function) is generated which, by setting all partial derivatives to
zero, ensures that an extreme point of the objective function is found under the
stipulated constraints.

The Fair Logistic Regression tries to minimise the classification error using
a cost-sensitive classifier, while adjusting the Lagrange multipliers (which can
be seen as the penalties for unfairness) to ensure the fairness constraints are
respected, until an equilibrium is reached. This equilibrium corresponds to the
balance between performance and fairness, determined by a constraint weight
parameter set a priori, which stipulates the relative importance put on the con-
straint violation when selecting the best model, with constraint weight ∈ [0, 1]
where constraint weight = 0 promotes classification performance and constraint
weight = 1 promotes fairness.

8



4.1.2 Random Forest & Fair Random Forest

A traditional Random Forest algorithm fits multiple decision tree classifiers
with a specific splitting criterion (traditionally Gini or Entropy) onto subsets
of the original dataset, averaging the output across all decision tree outputs to
generate the output of the Random Forest model (Breiman, 2001). Each tree
will split its assigned sub-dataset into smaller partitions recursively, so long as
the new data split increases the splitting criterion score comparatively to the
score of the node from which the split originated.

The Fair Random Forest (Barata et al., 2024) works similarly to its tradi-
tional counterpart, but instead uses fair tree classifiers, which take the Gini
index splitting criterion and add to it the fairness component corresponding to
the strong demographic parity, termed Splitting Criterion AUC For Fairness
(SCAFF), given in the following Eq. 1:

SCAFF (Z, Y, S,Θ) = (1−Θ) · |2 ·AUC (Z, Y )− 1|−Θ · |2 ·AUC (Z, S)− 1| (1)

Here, AUC (Z, Y ) —the classification performance term— and AUC (Z, S) —the
fairness term— are the ROC-AUC computed as per Section 3.1. The terms are
then scaled to account for the symmetry of the binary AUC case; i.e., a split of
AUC = 0.1 is as optimal as a split of AUC = 0.9. Finally, SCAFF incorporates
an elastic-net-like linear combination of performance and fairness terms via the
parameter Θ ∈ [0, 1], controlling for an allowed performance-fairness trade-off, in
which Θ = 0 promotes classification performance and Θ = 1 promotes fairness.

4.1.3 Neural Network & Fair Adversarial Learning

A traditional Neural Network classification model consists of layers of neurons
that apply non-linear transformations to weighted sums of its inputs (Hinton,
1989). The model is learned via backpropagation towards towards the minimi-
sation of a loss function, traditionally cross-entropy, under which optimisation
algorithms (e.g., Stochastic Gradient Descent) adjust the weights of the network,
until the loss converges.

Fair Adversarial Learning modifies this process by introducing an adversarial
network on top of the final output layer (Zhang et al., 2018). In this approach,
two networks are trained simultaneously: the primary neural network, which
focuses on classification accuracy, and an adversarial network that tries to pre-
dict the sensitive attributes from the classifier outputs. The classifier learns to
minimise both its classification error and a fairness penalty that reflects how
well the adversary can predict the sensitive attributes.

Succinctly, the predictor network has loss term LP (the error towards Y ) and
network weights W , while the adversary network has loss term LA (the error
towards S), and network weights U . While weights U are updated to minimise
LA according to the gradient∇ULA weightsW are updated to minimise LP , and
are updated via ∇WLP − proj∇WLA

∇WLP − α∇WLA. Accordingly, the term
proj∇WLA

∇WLP prevents the predictor from moving in a direction that helps
the adversary decrease its loss, while the term α∇WLA attempts to increase
the loss of the adversary. Finally, α ∈ (0, 1] is a hyperparameter which controls
the balance between accuracy and fairness; a higher α penalises unfairness more
(promoting fairness), while a lower value places more emphasis on classification
performance.
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4.2 Fairness Through Hyperparameter Optimisation

Unfairness emerges when optimising classification models solely for predictive
performance (Cruz et al., 2021). From the literature, fairness-aware hyperpa-
rameter optimisation attempts to mitigate this unfairness via a general model-
agnostic fairness-aware objective function given as the following Eq. 2:

g(λ) = Θ · ρ(λ) + (1−Θ) · ϕ(λ) (2)

Here, λ ∈ Λ is a hyperparameter configuration, g is the objective function we
wish to maximise, ρ is a predictive performance function, ϕ is a fairness function,
and Θ is a weighting parameter which determines the relative importance of
predictive performance and fairness. In this general function, ρ and ϕ can be
replaced with custom performance and fairness functions. We note that g is
functionally identical to the optimisation term defined in our requirements used
to find the optimal classification model f∗ (see Section 2).

Explicitely, given a learning algorithm h ∈ H with hyperparameters λ ∈ Λ
which generates a classification model fhλ

under data input X, Y , and S, with
output Z, a performance term AUC (Z, Y ), a fairness term AUC (Z, S), and a
performance-fairness trade-off parameter value Θ ∈ [0, 1] set a priori, we find
the optimal classification model f∗ via:

f∗ = argmax
fhλ

∈F
[(1−Θ) ·AUC (Z, Y )−Θ ·AUC (Z, S)∗], (3)

AUC (Z, Y ) = P [(Z|Y=y+) > (Z|Y=y−)], (4)

AUC (Z, S)∗ = 0.5 + |AUC(Z, S)− 0.5|, (5)

AUC (Z, S) = P [(Z|S=s+) > (Z|S=s−)], (6)

fhλ
= hλ(X,Y, S), h ∈ H, λ ∈ Λ, (7)

Z = fhλ
(X) (8)

We use a compound hyperparameter optimisation criterion (i.e., objective
function) which is defined as a linear combination between fairness and classifi-
cation performance measures as per the splitting criterion in Eq. 1 (Section 4.1).
Note that AUC (Z, S)∗ represents the fairness measure strong demographic par-
ity, adjusted to range [0.5, 1] where any original value below 0.5 gets ”mirrored”
at 0.5; e.g., 0.4 becomes 0.6. In doing so, we ensure that both performance and
fairness terms are optimized within the same target range, ensuring that the
impact of increasing/decreasing values of Θ is linear and thus more intuitive for
the end user.
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5 Data

This section addresses the data used in our experiments. In addition to the
data provided by the ILT, a benchmark fairness dataset was used. Section 5.1
focuses on the characteristics of the ILT dataset, while Section 5.2 describes the
benchmark in question.

5.1 ILT

The ILT dataset consists of 423 instances (NGO Shipbreaking Platform, 2024;
Lloyd’s List intelligence, 2024). Each instance represents a ship that has ei-
ther been appropriately dismantled according to legislation or illegally beached,
which is the target variable of interest. Notably, no ships currently sailing are
included in this dataset; it only contains ships that have definitively reached
their end-of-life. The dataset includes 11 variables, comprising both the target
variable and the sensitive attribute. They constitute a mixture of numerical and
categorical variables. For security reasons, we are not disclosing the variables
used specifically.

The relationship between target and sensitive attributes is displayed in Ta-
ble 1. It can be observed that of all the ships in the dataset sailing under a flag
of convenience, 83.17% were beached. Of all the ships not sailing under a flag
of convenience, 59.94% were beached. Additionally, 30.32% of all the beached
ships sailed under a flag of convenience, while 11.64% of the non-beached ships
sailed under a flag of convenience.

Table 1: The numbers of ships in the dataset that were (not) beached and (not)
a flag of convenience.

Flag of convenience No flag of convenience Total
Beached 84 193 277
Not beached 17 129 146
Total 101 322 423

While the dataset provides valuable insights, its relatively small size of 423
instances poses certain limitations, especially for the current supervised fair
machine learning task. It is generally accepted that small sample sizes may
lead to overfitting, where the model performs well on the training data but
poorly on unseen data. This issue is particularly pronounced in fair classifier
learning, where the goal is to ensure that the model’s decisions are unbiased
across different groups. A specific challenge arises from the very low number
of instances (see Table 1) where the target variable is negative (not beached)
and the sensitive attribute is positive (flag of convenience). In this dataset,
there are only 17 such instances. This scarcity significantly undermines the
model’s learning potential. With such few examples, the model may struggle
to accurately learn the relationship between these variables, leading to poor
performance-fairness trade-offs.

Towards methodological assurance under this caveat, an additional fairness
benchmark dataset is used to validate our design choices.
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5.2 Benchmark

In addition to the primary dataset of ships, the Adult dataset from the UCI
Machine Learning Repository (Becker and Kohavi, 1996) is used as a benchmark
in the experimental setup. This dataset is widely recognised in the field of
machine learning and is frequently utilised for studying fairness.

The benchmark dataset consists of 30, 913 instances, with 12 attributes, and
is used to predict whether an individual’s annual income exceeds $50, 000 based
on census data. The target variable is binary, indicating whether income is
greater than $50K (positive) or not (negative). The dataset includes a mix of
continuous and categorical variables, such as age, education level, occupation,
and gender, which are essential for various machine learning and fairness stud-
ies. In our case, gender was selected as the sensitive attribute as it is encoded
binarily, just as the sensitive attribute for our use-case dataset.

The larger sample size of the Adult dataset (30, 913 instances) significantly
alleviates the caveats associated with the relatively small ships dataset (423
instances), helping to assure methodological quality, and providing a robust
foundation for our experimental design. Moreover, the sensitive attribute and
class relationship imbalances are also mitigated.

The relationship between target and sensitive attributes is displayed in Ta-
ble 2. It can be observed that of all the people in the dataset that were female,
10.96% had an annual income greater than $50K. Of all the people that were
male, 30.79% had an annual income greater than $50K. Additionally, 14.90% of
all the people that had an annual income greater than $50K were female, while
38.74% of the people that did not have an annual income greater than $50K
were female.

Table 2: The numbers of people in the Adult dataset whose annual income was
(not) greater than $50K and who were (fe)male.

Female Male Total
Greater than $50K 1, 117 6, 381 7, 498
Not greater than $50K 9, 070 14, 345 23, 415
Total 10, 187 20, 726 30, 913
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6 Experiments

This section will cover the preprocessing steps in Section 6.1, the algorithms in
Section 6.2, the measures in Section 6.3, and detail the experimental setup in
Section 6.4.

6.1 Preprocessing

The dataset preprocessing involves four steps to prepare the data such that it
may be used in our experiments: (1) feature scaling to standardise features,
(2) handling of missingness, (3) categorical aggregation, and (4) one-hot encod-
ing. First, all numerical columns were scaled using the median and the quantile
range, as to ensure more robust scaling than when using the mean and standard
deviation. The median value is removed from the observations and the result
is divided by the inter-quantile range. The scaling did not consider missing
values when computing the statistics with which scaling was performed. Sec-
ond, missing values of the numerical columns were systematically managed by
using binary indicators for their identification and mean imputation for their
handling, providing a balanced approach to preserving data integrity. For cat-
egorical columns, missing values were indicated using the category “missing”.
Third, all categorical columns were clamped such that rare categories were ag-
gregated into one, so as to avoid a lot of low-frequency categories. This was done
by firstly computing the frequency of each unique category. Based on these fre-
quencies, the relative frequency of each category was calculated. A threshold
is set as the reciprocal of the number of unique categories. This threshold rep-
resents an idealised relative frequency that would result if all categories were
perfectly evenly distributed. Next, the index was identified of the category in
the list of categories (sorted in descending order based on frequency) where the
absolute difference between the relative frequency and the threshold was min-
imised, implying the most evenly distributed frequency up to that index. A
visualisation can be found in Appendix A. Lastly, the categories were one-hot
encoded. This is a technique that is used to represent categorical variables as
binary values in a machine learning model. The categorical variables will pre-
pare separate columns for all unique values that occur, denoting each instance
as a “0” or a “1” for these columns.

6.2 Algorithms

We implemented both traditional and fair machine learning algorithms, such
that for each traditional algorithm, a fair algorithm counterpart is applied.

On the one hand, three traditional approaches were selected: (1) Random
Forest (Breiman, 2001), (2) Logistic Regression (McCullagh and Nelder, 1989),
and (3) Neural Network (Hinton, 1989). The Random Forest classifier and the
Logistic Regression classifier were implemented using the Scikit-learn Python
package (Pedregosa et al., 2011), while the Neural Network classifier was im-
plemented using the AI Fairness 360 Python package (Bellamy et al., 2018).
These approaches serve as baselines, providing a reference point for evaluating
classification performance.

On the other hand, the three fair counterparts considered were, logically: (1)
Fair Random Forest (Barata et al., 2024), (2) Fair Logistic Regression (Agarwal
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et al., 2018), and (3) Fair Adversarial Learning (Zhang et al., 2018). The Fair
Random Forest was implemented using the fair trees Python package (Barata
et al., 2024), while the Fair Logistic Regression and Fair Adversarial Learning
were implemented using the AI Fairness 360 Python package (Bellamy et al.,
2018). These fair machine learning algorithms were selected for their ability
to incorporate fairness constraints while maintaining adequate performance in
classification tasks.

By implementing both traditional and fair algorithms, this approach allows
for a thorough comparative analysis, offering insights into the trade-offs involved
in applying fairness constraints.

6.3 Measures of Performance and Fairness

Throughout our entire experimental design, (1) the measure of performance
ROC-AUC, and (2) the strong demographic parity measure of fairness were
used. Their selection was based on our requirements, as stipulated in Section 2.
First, the ROC-AUC can be interpreted as the probability that a model ranks a
randomly-selected positive instance more highly than a randomly-selected neg-
ative instance (see Section 3.1); i.e., it is calculated using the model’s outcome
scores, thereby circumventing the need for a choice of label-inducing decision
threshold, as per our requirements. Under expected conditions, ROC-AUC
∈ [0.5, 1], in which the greater the ROC-AUC value, the greater the classifica-
tion performance of a given model.

Second, the strong demographic parity can be interpreted as the ROC-AUC,
but with respect to the sensitive attribute, rather than the target variable. As
such, it too is a threshold-independent measure. The strong demographic parity
∈ [0, 1], in which the smaller the value, the lower the bias and, conversely, the
greater the fairness of the model in question; i.e., it is technically a measure of
bias.

To ensure robust and generalisable expected measures of performance and
fairness, including hyperparameter optimisation, 10-fold nested cross validation
(CV) was used in all our experiments. Nested CV involves two layers: (1) an
outer loop that computes the expected performance and fairness measures, and
(2) an inner loop that identifies the best set of hyperparameters for training a
model and evaluating the performance on the test set of the corresponding outer
fold. This structure ensures no leakage or overfitting, as no training and test
sets overlap. Hyperparameter optimisation was conducted using the Hyperopt
Python package, which uses the Tree-structured Parzen Estimator algorithm to
find an optimal set of hyperparameters (Bergstra et al., 2013). This is a sequen-
tial model-based optimisation approach. The maximum number of evaluations
for Hyperopt was set to 100 as it should provide adequate optimisation within
a reasonable computation budget. An exhaustive list of all the hyperparame-
ters that were optimised for each algorithms and their ranges can be found in
Appendix B.

When testing results for significance, p-values are obtained from two-tailed
independent t-tests.
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6.4 Experimental Setup

Four distinct experimental setups were considered, each focusing on different
combinations of traditional and fair algorithms with the specific criteria used
for hyperparameter optimisation: (1) traditional machine learning algorithms
optimised for classification performance, (2) fair machine learning algorithms
optimised for classification performance, (3) traditional machine learning algo-
rithms optimised for both classification performance and fairness simultaneously
and (4) fair machine learning algorithms optimised for both classification per-
formance and fairness simultaneously.

The first setup corresponds to the traditional approach with which to com-
pute expected performance under a standard classification problem. Its purpose
is to generate benchmark performance and fairness measures with which we can
compare the following fair machine learning experimental setups.

For the remaining setups, a range of fairness parameter values are inspected
to assess the resulting performance-fairness trade-off: Θ ∈ [0, 1] in Fair Random
Forest, constraint weight ∈ [0, 1] in Fair Logistic Regression, and α ∈ [0, 0.1] in
Fair Adversarial Learning. For Θ and constraint weight, values range from 0
up to and including 1 in increments of 0.1, while for α, values range from 0 up
to and including 0.1 in increments of 0.01. The second experimental setup sets
each fairness parameter a priori. Subsequently, model learning ensues whilst
optimising for classification performance exclusively.

Finally, the remaining experimental setups do not set the fairness parameters
a priori, but rather allow them to be optimised just as if they were any other
hyperparameter. The hyperparameters are then optimised using fairness-aware
hyperparameter optimisation. Performance-fairness trade-off parameter Θ in
our compound criterion is evaluated in our experiments in increments of 0.1,
from 0 and up to and including 1. The third experimental setup combines
traditional machine learning with fairness-aware hyperparameter optimisation
and the fourth experimental setup combines fair machine learning with fairness-
aware hyperparameter optimisation.

Every setup described was applied to two datasets in question: (1) ILT,
and (2) Adult. The sensitive attribute is not used as a predictor in any of
the experiments. For reproducibility, our experiments can be found in https:

//github.com/LWijne/Predicting-illegal-ship-breaking-via-fairnes

s-aware-classifier-optimisation.git.
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7 Results

In this section, we will outline the results of the experiments that were con-
ducted to answer the problem statement. The results are organised according
to the research questions outlined in Section 1. Section 7.1 covers the predictive
performance and fairness of the traditional machine learning algorithms in rela-
tion to the ILT and the Adult datasets. In Section 7.2 we will discuss the results
of setting the fairness parameter of the fair machine learning algorithms a priori.
In Section 7.3 we will discuss the results of using fairness-aware hyperparameter
optimisation. In Section 7.4 we will compare all results.

7.1 Traditional Machine Learning Algorithms

The results of our experiments with respect to the traditional classification
algorithms can be seen in Figure 1. It depicts the ROC-AUC (vertical axis)
and strong demographic parity (horizontal axis) values for each of the three
algorithms (green, red, and blue) applied to the ILT (left) and Adult (right)
datasets.

For both datasets, it can be observed that Random Forest achieves the high-
est average ROC-AUC while also exhibiting the highest strong demographic
parity scores, indicating higher classification performance than the other two al-
gorithms but also lower fairness. Logistic Regression performs the worst across
the three algorithms on both datasets, with an ROC-AUC score significantly
lower than Random Forest on the ILT dataset (p = 0.0003), and significantly
lower than Random Forest (p < 0.0001) and Neural Network (p < 0.0001)
on the Adult dataset. Logistic Regression does perform better than the other
two in terms of fairness, with a strong demographic parity score significantly
lower than Random Forest on the ILT dataset (p = 0.0093), and significantly
lower than Random Forest (p < 0.0001) and Neural Network (p < 0.0001) on
the Adult dataset. Neural Network is in between Random Forest and Logistic
Regression in terms of both predictive performance and fairness.

With respect to the ILT dataset, both measures of classification performance
and fairness show more variation for Neural Network and Logistic Regression
than for Random Forest, suggesting that Random Forest might be more stable
on both accounts. The results on the ILT dataset show more variation than
the results on the Adult dataset. As discussed in Section 5, the ILT dataset
is relatively small and on top of that has imbalanced classes, contributing to
greater variation in the results as the training data for each fold in the CV might
not be sufficiently representative of the overall dataset.
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Figure 1: ROC-AUC and strong demographic parity scores across 10-fold nested
CV of traditional machine learning algorithms on the ILT (left) and Adult
(right) datasets.

7.2 Fair Machine Learning Algorithms

Here, we investigate the impact of fair machine learning algorithms and how
varying their fairness parameters influences their performance and fairness. Fig-
ure 2 shows this influence across different evaluations of their respective fairness
parameters. It depicts the ROC-AUC and strong demographic parity (both on
the vertical axis) for different fairness parameter values (horizontal axis) values
for each of the three algorithms (green, red, and blue) applied to the ILT (left)
and Adult (right) datasets.

For Fair Random Forest, it is clear that adjusting the fairness parameter
Θ influences both performance and fairness for both datasets, with the strong
demographic parity reaching 0.0 for Θ = 1. For Fair Logistic Regression, the
impact that shifting the fairness parameter has on classification performance and
fairness is far lesser than for Fair Random Forest for these two datasets, although
still visible. For Fair Adversarial Learning, adjusting the fairness parameter α
influences fairness more than it influences performance on both datasets.

The results on the ILT dataset show more variation for all of the fair al-
gorithms, due to the relatively small size of the dataset and the imbalanced
classes, as mentioned before.
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Figure 2: ROC-AUC and strong demographic parity scores of distinct fairness
parameters across 10-fold nested CV of fair machine learning algorithms on the
ILT and Adult datasets.

To gain further insight into the trade-off between performance and fairness
for all of these algorithms, Figure 3 shows the pair-wise ROC-AUC and strong
demographic parity values at each sequential fairness parameter evaluation. It
depicts the ROC-AUC (vertical axis) and strong demographic parity (horizontal
axis) values for each of the three algorithms (green, red, and blue) applied to
the ILT (left) and Adult (right) datasets.

It is clearly visible that Fair Random Forest has the largest performance-
fairness trade-off range. For both datasets, Fair Random Forest achieves much
lower strong demographic parity scores than the other two fair machine learning
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algorithms. In the case of the Adult dataset, it also dominates over the other
two algorithms at any point. This is not the case for the ILT dataset, although
the differences are small.

It is also clear that the algorithms produce more smooth, concave curves on
the Adult dataset than on the ILT dataset. Again, this is most likely due to the
relatively small size and imbalanced classes of the ILT dataset.
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Figure 3: ROC-AUC scores plotted against strong demographic parity scores
of distinct values of the fairness parameters across 10-fold nested CV of fair
machine learning algorithms on the ILT (left) and Adult (right) datasets.

7.3 Fairness-aware Hyperparameter Optimisation

We now optimise the parameters found in Table 3 in Appendix B, along with
the fairness parameters Θ, constraint weight, and α of the fair machine learn-
ing algorithms, for both classification performance and fairness simultaneously
as set out in Section 6.4. Section 7.3.1 covers the results on the traditional
algorithms, and Section 7.3.2 covers the results on the fair algorithms.

7.3.1 Traditional Machine Learning Algorithms

Figure 4 shows the influence of adjusting Θ using fairness-aware hyperparameter
optimisation on the traditional algorithms. It depicts the ROC-AUC and strong
demographic parity (both on the vertical axis) for different Θ values (horizontal
axis) values for each of the three algorithms (green, red, and blue) applied to
the ILT (left) and Adult (right) datasets.

Pairing all three algorithms with fairness-aware hyperparameter optimisa-
tion, Random Forest achieves the lowest unfairness scores on the Adult dataset,
in line with the results from the original study on the Adult dataset, which also
experimented with these three algorithms (Cruz et al., 2021). We see that Θ has
the most impact on Random Forest, the least impact on Logistic Regression,
and Neural Network is in between these two.

On the ILT dataset, higher values of Θ produce more unstable results in
terms of both ROC-AUC and strong demographic parity.
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Figure 4: ROC-AUC and strong demographic parity scores of distinct values of
Θ across 10-fold nested CV of traditional machine learning algorithms on the
ILT and Adult datasets.

To gain further insight into the trade-off between performance and fairness
for all of these algorithms, Figure 5 shows the pair-wise ROC-AUC and strong
demographic parity values at each sequential Θ evaluation. It depicts the ROC-
AUC (vertical axis) and strong demographic parity (horizontal axis) values for
each of the three algorithms (green, red, and blue) applied to the ILT (left) and
Adult (right) datasets.

Paired with fairness-aware hyperparameter optimisation, Logistic Regres-
sion shows the smallest performance-fairness trade-off range of these three al-
gorithms. On the ILT dataset, Logistic Regression achieves higher ROC-AUC
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scores than the other two algorithms at any point where those achieve the same
fairness score. The lowest unfairness score is obtained by Neural Network. On
the Adult dataset, Random Forest completely covers the Pareto-efficient fron-
tier.

Again, the curves are a lot smoother on the Adult dataset compared to the
ILT dataset.
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Figure 5: ROC-AUC scores plotted against strong demographic parity scores
of distinct values of Θ across 10-fold nested CV of traditional machine learning
algorithms on the ILT (left) and Adult (right) datasets.

7.3.2 Fair Machine Learning Algorithms

Figure 6 shows the influence of adjusting Θ using fairness-aware hyperparam-
eter optimisation on the fair algorithms. It depicts the ROC-AUC and strong
demographic parity (both on the vertical axis) for different Θ values (horizontal
axis) values for each of the three algorithms (green, red, and blue) applied to
the ILT (left) and Adult (right) datasets.

We notice that for Fair Random Forest, the plot overlaps with the one in
Figure 2. This is due to the fact that the objective function is actually the
same as SCAFF in Fair Random Forest. For Fair Logistic Regression, signifi-
cantly lower unfairness scores are obtained in this manner, compared to purely
adjusting the fairness parameters, for both the ILT dataset (p < 0.0001) and
the Adult dataset (p < 0.0001). The same holds for Fair Adversarial Learning
for the Adult dataset (p = 0.0002). As opposed to all other experiments, in this
case all three algorithms reach strong demographic parity scores below 0.2 on
both datasets.

The results on the ILT dataset show a lot more variation than the results
on the much larger Adult dataset, especially in the case of Fair Adversarial
Learning.
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Figure 6: ROC-AUC and strong demographic parity scores of distinct values of
Θ across 10-fold nested CV of fair machine learning algorithms on the ILT and
Adult datasets.

To gain further insight into the trade-off between performance and fairness
for all of these algorithms, Figure 7 shows the pair-wise ROC-AUC and strong
demographic parity values at each sequential Θ evaluation. It depicts the ROC-
AUC (vertical axis) and strong demographic parity (horizontal axis) values for
each of the three algorithms (green, red, and blue) applied to the ILT (left) and
Adult (right) datasets.

Fair Random Forest still has the biggest performance-fairness trade-off range,
although the other two algorithms have greatly improved their ranges using
fairness-aware hyperparameter optimisation. On the ILT dataset, Fair Adver-
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sarial Learning achieves the highest performance score, Fair Random Forest
achieves the lowest unfairness score, and the Pareto-efficient frontier is made up
of points from all three algorithms. This means that based on the desired perfor-
mance and fairness, all three algorithms could be most suitable in this case. On
the Adult dataset, Fair Random Forest shows a really nice performance-fairness
trade-off curve that dominates over the Fair Adversarial Learning curve. Fair
Logistic Regression shows strong demographic parity scores of ≤ 0.1 while main-
taining relatively high performance scores, on both datasets.

Again, the much larger Adult dataset has more smooth, concave curves.
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Figure 7: ROC-AUC scores plotted against strong demographic parity scores of
distinct values of Θ across 10-fold nested CV of fair machine learning algorithms
on the ILT (left) and Adult (right) datasets.

7.4 Comparing All Methods

Figure 8 depicts the ROC-AUC (vertical axis) and strong demographic parity
(horizontal axis) values for each employed method (shades of green, red, and
blue), with(out) fairness-aware hyperparameter optimisation (solid and dotted
lines) applied to the ILT (left) and Adult (right) datasets.

The darker shades of green, red, and blue, respectively, represent the tradi-
tional methods. The lighter shades represent the fair methods. The solid lines
represent algorithms that were optimised for performance. The dotted lines rep-
resent algorithms that were optimised for both classification performance and
fairness simultaneously.

For (Fair) Random Forest, the two lightest shades overlap completely, since
our objective function is identical to SCAFF in Fair Random Forest. For the ILT
dataset, the traditional Random Forest achieves the highest performance, while
Fair Random Forest achieves the lowest unfairness and a larger performance-
fairness trade-off range. For the Adult dataset, Fair Random Forest completely
covers the Pareto-efficient frontier.

For (Fair) Logistic Regression, remarkably Fair Logistic Regression paired
with fairness-aware hyperparameter optimisation achieves much lower unfair-
ness scores than “plain” Fair Logistic Regression, while still achieving decent
classification performance scores.
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For Neural Network and Fair Adversarial Learning, the traditional Neural
Network achieves the lowest unfairness on the ILT dataset, although the results
are unstable. On the Adult dataset, Fair Adversarial Learning achieves the
lowest strong demographic parity scores while still maintaining relatively high
ROC-AUC scores.

While all results on the ILT dataset show instability, the results on the
Adult dataset consistently show that fair machine learning algorithms paired
with fairness-aware hyperparameter optimisation achieve the lowest unfairness
scores.
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Figure 8: ROC-AUC scores plotted against strong demographic parity, showing
performance-fairness curves for all methods using 10-fold nested CV on the ILT
(left) and Adult (right) datasets.
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8 Discussion

This section reflects on the findings presented in Section 7, discussing the im-
plications, limitations, and potential directions for future work.

The results presented in this work demonstrate the complex interplay be-
tween fairness and predictive performance in (fair) classification models, and
the difficulty that is added when dealing with a small dataset.

Random Forest was the highest performing in terms of classification per-
formance, but showed the highest unfairness. The inherent low complexity of
Logistic Regression might limit its performance on complex tasks (reflected in
lower ROC-AUC scores) but simultaneously refrain it from exploiting biases
that lead to unfairness (reflected in lower strong demographic parity scores).

We saw that pairing traditional machine learning with fairness-aware hyper-
parameter optimisation achieves much lower unfairness scores than with regular
hyperparameter optimisation, and gives more control over the performance-
fairness trade-off.

Experimenting with fair machine learning algorithms, Fair Random Forest
exhibited a significant inherent ability to manage the trade-off between fairness
and performance. This suggests that Fair Random Forest may be particu-
larly suited for scenarios where having control over the balance between these
measures is important. In contrast, Fair Logistic Regression and Fair Adver-
sarial Learning showed less sensitivity to changes in their fairness parameters,
not achieving the same low unfairness scores as Fair Random Forest. However,
pairing these algorithms with fairness-aware hyperparameter optimisation led to
the desired, previously mentioned control and to much lower unfairness scores.
While ultimately the best choice depends on preference, in terms of fairness
combining fair machine learning algorithms with fairness-aware hyperparame-
ter optimisation shows promising results.

For the ILT dataset, depending on the desired balance between predictive
performance and fairness, either Fair Random Forest, Fair Logistic Regression
paired with fairness-aware hyperparameter optimisation, or Fair Adversarial
Learning paired with fairness-aware hyperparameter optimisation is the most
sensible choice. Looking at the results for the Adult dataset, which were ob-
tained to help assure methodological quality and provide a robust foundation
for our experimental design, Fair Random Forest shows the highest performance
overall, the lowest unfairness overall, and the most reliable control over the
performance-fairness trade-off.

8.1 Limitations

While this work provides valuable insights, it has some limitations that must
be acknowledged. First, the ILT dataset classification task is difficult to solve,
given the heterogeneity (non-uniformity) and sparsity of the target-to-sensitive
attribute distribution. This is why we conducted our experiments on one other
dataset. While our experiments were thoroughly performed and our results are
valid, additional experimentation on benchmark datasets would increase the
robustness of our work.

We have conducted our experiments using Random Forest, Logistic Regres-
sion, Neural Network, Fair Random Forest, Fair Logistic Regression, and Fair
Adversarial Learning. There exist many other (fair) machine learning algo-

25



rithms for binary classification that we have not experimented with. Hence,
caution should be taken with generalising the findings to other algorithms. For
hyperparameter optimisation, we used the Tree-structured Parzen Estimator
algorithm. Fairness-aware hyperparameter optimisation can be used in combi-
nation with any hyperparameter optimisation algorithm. We have not exper-
imented with other algorithms, and our findings may not be generalisable to
them.

The maximum number of evaluations for Hyperopt was set to 100 to be able
to realise a reasonable computation budget. Setting a higher maximum number
of evaluations could potentially affect results. Similarly, adjusting the ranges
that we set for the hyperparameters (found in Appendix B) might affect results.

8.2 Future Work

Given the current results, several directions appear promising for future work.
Specifically for the ILT dataset, incorporating more sophisticated techniques
for dealing with small and/or imbalanced datasets, such as advanced sampling
methods, cost-sensitive learning, outlier detection or model combination, could
potentially enhance the performance and fairness of algorithms (Ramyachitra
and Manikandan, 2014).

Extending the experiments to multi-class classification tasks and other tasks
that involve sensitive attributes could provide more insights into the flexibility
and robustness of combining in-processing fairness algorithms with fairness-
aware hyperparameter optimisation. As of now, we only experimented with
binary classification tasks. It would be interesting to find out if our findings are
generalisable to other tasks.

Exploring alternative fair classification algorithms, hyperparameter optimi-
sation algorithms, and (threshold-independent) fairness measures and their im-
pact on predictive performance across a range of datasets would also be ben-
eficial. We conducted our experiments with three traditional classification al-
gorithms and three fair “counterpart” classification algorithms. Our findings
may be tested for robustness by conducting the experiments with different
traditional and fair classification algorithms. Similarly, we conducted our ex-
periments with one hyperparameter optimisation algorithm and we would be
interested if the results are affected by utilising different hyperparameter opti-
misation techniques. As a performance measure, we used the ROC-AUC score.
As a fairness measure, we used the strong demographic parity score. Using
different threshold-independent performance measures such as log-loss and/or
different threshold-independent fairness measures such as matching conditional
frequencies (Hardt et al., 2016) could provide more insights into the flexibility of
combining in-processing fairness algorithms with fairness-aware hyperparameter
optimisation.

Lastly, an analysis of the trade-offs between computational cost, perfor-
mance, and fairness could aid practitioners in their decision making.
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9 Conclusion

This work explored the application of fair machine learning algorithms on the
binary classification task related to predicting illegal ship breaking for the ILT
and the intricate balance between performance and fairness. Three traditional
machine learning algorithms were implemented: (1) Random Forest, (2) Logistic
Regression, and (3) Neural Network, and three fair machine learning algorithms
were implemented: (1) Fair Random Forest, (2) Fair Logistic Regression, and
(3) Fair Adversarial Learning. We experimented with the traditional and fair
machine learning algorithms optimised for classification performance and the
traditional and fair machine learning algorithms optimised for both classification
performance and fairness simultaneously.

For the traditional machine learning algorithms, our findings show that Ran-
dom Forest had the highest predictive performance scores, but also showed the
highest unfairness scores. Logistic Regression had the lowest predictive perfor-
mance scores, but also showed the lowest unfairness scores. Neural Network
scored in between these two on both counts. We found that employing tradi-
tional machine learning paired with fairness-aware hyperparameter optimisation
greatly improves fairness over “plain” traditional machine learning. For the fair
machine learning algorithms, our findings suggest that Fair Random Forest of-
fers the most reliable solution for balancing performance and fairness in compar-
ison to the two remaining fair algorithms. Its fairness parameter Θ offers control
over the performance-fairness trade-off. For Fair Logistic Regression, its fairness
parameter constraint weight had a much smaller impact on both performance
and fairness. For Fair Adversarial Learning, adjusting its fairness parameter
α had more influence on fairness than on performance on both datasets. For
the latter two algorithms, while ultimately their performance-fairness trade-
off points lacked with respect to the Fair Random Forest, their tunability was
severely improved by enhancing the algorithms with fairness-aware hyperparam-
eter optimisation by incorporating a compound performance-fairness objective
function into the hyperparameter optimisation step. When inspecting the re-
sults on the Adult dataset, Fair Random Forest showed both the highest ROC-
AUC, the lowest strong demographic parity, the largest performance-fairness
trade-off range, and the most reliable control over this trade-off. Ultimately,
for the ILT dataset, either Fair Random Forest, Fair Logistic Regression paired
with fairness-aware hyperparameter optimisation, or Fair Adversarial Learning
paired with fairness-aware hyperparameter optimisation is the best choice. This
depends on the desired balance between classification performance and fairness.

In conclusion, we presented the following contributions: (1) we gave recom-
mendations for the improvement of the fairness of the ILT’s ship breaking model,
(2) we proposed a functional model-agnostic fairness-aware objective function,
based on SCAFF in Fair Random Forest, and (3) we proposed the practice of
employing fair machine learning algorithms in combination with fairness-aware
hyperparameter optimisation. This work advances our knowledge in the field of
fair machine learning and provides a foundation for future work.
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A Clamper

Figure 9: The rare category aggregation method for an example use case with
117 original categories and 23 resulting categories.
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B Hyperparameters

Table 3: The hyperparameters that were optimised for each algorithm and their
ranges.
Algorithm Model Hyperparameters

Random Forest classifier RandomForestClassifier

n estimators ∈ [10 . . 1, 000],
criterion ∈ {‘gini’, ‘entropy’},
max depth ∈ {None, [2 . . 200]},
min samples split ∈ [2 . . 10],
min samples leaf ∈ [1 . . 10],
max features ∈ {‘sqrt’, ‘log2’, None},
bootstrap ∈ {True, False},
class weight
∈ {‘balanced’, ‘balanced subsample’, None}

Logistic Regression classifier LogisticRegression

penalty ∈ {‘l1’, ‘l2’, ‘elasticnet’, None},
tol ∈ [0.00001, 0.001],
C ∈ [0.01, 10],
fit intercept ∈ {True, False},
class weight ∈ {‘balanced’, None},
max iter ∈ [10 . . 1, 000],
l1 ratio ∈ [0, 1]

Neural Network classifier
AdversarialDebiasing
(debias=False)

num epochs ∈ [5 . . 500],
batch size ∈ [8 . . 2, 048],
classifier num hidden units ∈ [20 . . 2, 000]

Fair Random Forest FairRandomForestClassifier

(theta ∈ [0, 1]),
n bins = 256,
bootstrap = True,
max depth ∈ [1 . . 20],
max features ∈ [0.05, 0.95],
n estimators ∈ [100 . . 500],
min samples leaf ∈ [1 . . 10],
min samples split ∈ [2 . . 10]

Fair Logistic Regression GridSearchReduction

penalty = ‘elasticnet’,
(constraint weight ∈ [0, 1]),
grid size ∈ [2 . . 50],
grid limit ∈ [0.4, 10],
tol ∈ [0.00001, 0.001],
C ∈ [0.01, 10],
l1 ratio ∈ [0, 1]

Fair Adversarial Learning
AdversarialDebiasing
(debias=True)

(adversary loss weight ∈ [0, 1]),
num epochs ∈ [50 . . 500],
batch size ∈ [16 . . 1, 024],
classifier num hidden units ∈ [40 . . 1, 000]
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