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Abstract

While liquid handling robots are ubiquitous in high-throughput molec-
ular biology assays, their precision and accuracy at low-volume transfers
limit their utility in many small-scale yet repetitive manual processes in
the laboratory. Here, we present lil optimizer (low-volume incremen-
tal liquid-transfer optimizer), an automated, hardware-agnostic system
that can e�ciently optimize the precision and accuracy of low-volume
liquid transfers in a closed loop system based on an arbitrary perfor-
mance evaluation method. The system is compatible with any stochastic,
continuous, n-dimensional, black box optimizer and has been validated
with Bayesian optimization, policy gradient methods, and hierarchical
optimistic optimization, concluding that the last of those should gener-
ally be preferred. With gravimetric evaluation, we e�ciently optimize
500 nanoliter transfers, an order of magnitude lower than conventionally
recommended in the field, and reach superhuman performance on 1uL
transfers. We hope lil optimizer will accelerate biological and biomedical
research by enabling the automation of common, low-throughput liquid
handling tasks. Source code is freely available at https://github.com/
rickwierenga/lil-optimizer.
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1 Introduction

Pipetting, the fundamental operation in basic biological research essentially
consists of four steps: mounting a disposable tip onto a pipette, aspirating liquid
into the tip, dispensing the liquid out of the tip, and then discarding the tip.
Liquid handling robots automate this pipetting process, typically using a head
on a 2D gantry on which one or multiple pipetting channels are mounted. The
head moves over a deck where tips, microplates, tubes and other containers are
placed. Like manual pipetting, robotic channels often use an air displacement
mechanism and mount disposable plastic tips.

Liquid handling robots are most commonly used for automating high-throughput
assays, primarily in industrial and clinical settings [1, 2]. More advanced ex-
periments use closed-loop control systems for dynamically updating protocols
mid-run, for example to maintain bacterial cell cultures or to autonomously
explore protein fitness landscapes [3, 4, 5]. At the same time, many biologists
still spend a considerable amount of time manually pipetting. One reason for
this is that liquid handling robots are notoriously hard to program and often
require ‘lab automation engineers’ as specially trained middlemen between sci-
entists and robots. This layer of humans decreases iteration time for scientists
considerably, thus lowering their ability to automate protocols. PyLabRobot [6]
aims to make programming robots easier and more accessible to a wide audience
while simultaneously giving programmers more control.

Another reason why liquid handling robots are not widely used for low-throughput,
day to day tasks is that by default many liquid handling robots have insu�-
cient accuracy and precision at the many required low-volume transfers (¡5uL).
This problem is recognized and robot manufacturers like Hamilton conveniently
sell optimization platforms at an estimated cost of $20.000 dollars, (just 25%
of which is for hardware; the remaining $15k are software costs)1. This pro-
prietary program is inflexible because it only works with Hamilton robots and
a specific Mettler-Toledo scale, it does not support volume-based parameter
adjustments, and it does not support channel-specific calibrations. Manual op-
timization and Design of Experiments (DOE) are alternative strategies for opti-
mizing low-volume transfers[7]. Due to higher iteration time and low walkaway
time, these methods only a↵ord a limited number of iterations which can be
insu�cient for attaining the required accuracy and precision.

The problem of expensive, stochastic black-box optimization, such as the prob-
lem of liquid transfer calibration, is well-studied in computer science and many
approaches exist, such as hierchical optimistic optimization (HOO) [8], vanilla
policy gradients (VPG) [9], Bayesian optimization (BO) [10, 11, 12], genetic al-
gorithms (GA) [13], simulated annealing (SA) [14], particle swarm optimization
(PSO) [15], and covariance matrix adaptation evolution strategy (CMA-ES)
[16]. In essence, all of those methods evaluate an expensive, non-di↵erentiable

1https://www.hamiltoncompany.com/automated-liquid-handling/small-devices/
liquid-verification-kit

3



function and suggest the most informative next trial. While it is intuitive that
those methods can be used to iteratively improve low-volume liquid transfers,
this has not been done due to the historically closed nature and developer-
unfriendly ecosystem of lab automation software. In this project we evaluate
whether these methods can be used by answering the research question which

stochastic black-box optimization algorithms, if any, can be used to reliably and

e�ciently optimize automated, low-volume liquid transfers?

Here, we introduce ‘low-volume iterative liquid-transfer optimizer’ (lil opti-

mizer): an open source, e�cient, closed-loop, and hardware agnostic low-volume
liquid transfer optimizer. By iteratively optimizing precision using any arbitrary
blackbox optimizer, like the ones described above, and optimizing accuracy using
linear translations, transfers of arbitrary performance can be reached, including
on volumes as low as 500nL. Thanks to its flexible nature, and being built on
PyLabRobot, lil optimizer overcomes limitations of proprietary software and
can be used for volume-based and channel-specific parameterization.

Lil optimizer has been tested with HOO, VPG and BO, all of which lead to
acceptable results. While training with HOO is generally the most stable and
the fastest, VPG is architecturally preferred because it is most easily extensible
to non-context-free settings, and Bayesian optimization has the best validation
performance. We further find, both using full experiments and a cheap heuristic,
that doing more transfers per estimation of transfer precision, a hyperparame-
ter of lil optimizer, can improve performance while not meaningfully impacting
running time. After optimization with lil optimizer, the tested liquid handling
robot no longer fails at microliter transfers but instead reaches statistically sig-
nificant superhuman performance at those transfers. We hope that lil optimizer

accelerates biological discoveries by improving the e�ciency and reproducibil-
ity of low-throughput experiments through more viable automation (GitHub:
https://github.com/rickwierenga/lil-optimizer).
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2 Related work

Little has been published on the problem of liquid transfer optimization itself,
presumably due to the historically closed nature of lab automation software. We
do, however, start by introducing automated liquid transfers and how to define
performance objectives. We then provide the theoretical, mathematical con-
text around this problem, describe some of its characteristics, and how related
problems are addressed elsewhere.

2.1 Background on liquid transfers

Each liquid transfer is fundamentally parameterized by a number of discrete and
continuous parameters, such as the aspiration and dispense flow rates and the
volume of air that is pre-aspirated to provide additional blow out on dispense.
For automated transfers, the exact parameters depend on the capabilities of
the hardware used. This currently ill-defined set of continuous parameters form
the input space. The goal is find a point in this space, a ‘parameter set’, for
which liquid transfers are both precise (close together) and accurate (close to
the desired value).

The output of liquid transfers can be measured in various ways, most commonly
with a scale (gravimetric analysis) or a microplate reader (e.g. photometric
analysis), both yielding real-valued scalars. The di↵erence of the measurement
before and after the dispense, w1 and w2 respectively, is the ‘dispense score’. As
mentioned above, even though this score is measured as a scalar, there are two
components to a liquid transfer performance. First, the accuracy measures the
closeness to the target value to the mean as the absolute di↵erence of the mea-
sured mean and the target mean. In contexts where the volume of a transfer is
variable, the ‘trueness’ is a volume-independent quantity defined by the average
absolute error divided by the target volume (known as the R-score, often a per-
centage). Second, the precision refers to the repeatability of measurements as
given by the standard deviation of a number of transfers. A volume-independent
quantify of precision is the coe�cient of variation (CV), defined by the ratio of
standard deviation to the mean. Both the accuracy and precision need to be
optimized [17], making this a double-objective optimization problem.

2.2 Stochastic black-box optimization

The problem of liquid transfer optimization has several interesting mathematical
properties that make it di�cult. First, there is no known function that defines
the mapping of the input space (transfer parameterization) to the output space
(accuracy and precision), meaning no gradients can be computed (making this
a ‘black box problem’). Next, both the pipetting operations and measurements
are noisy (making this problem ‘exotic’ and ‘stochastic’). Further challenges are
posed by the parameters not being independently optimizable: the parameters
interact to change the final output (making this problem ‘non-separable’). Liq-
uid transfers in a given tip depend on the history of liquids in that tip, giving
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rise to a problem ‘context’, although this e↵ect is not further studied here; each
transfer is done in a ‘context-free’ manner. Intuitively, one might expect the
output landscape to be reasonable convex, but this has not been validated and
cannot be assumed. Finally, the input space is potentially unconstrained, and
almost certainly consists of a number of continuous dimension, making table-
based optimization unpractical.

Problem with these characteristics (stochastic, non-separable, non-convex, black
box optimization) are common in reinforcement learning and are abstractly
known as ‘context-free continuum-armed bandits’ [18]. A real-world analogy of
such problems is sketched with a casino with an infinite grid of slot machines,
where the challenge is to find which machine to pull for the highest average
reward. Note that individual pulls might be considerably below or above the
average reward for a given machine [9] (stochastic). The inherent characteristic
of the machine, its true mean value, is not known and cannot be analyzed
except by ‘pulling’ (black-box). The problem being ‘context-free’ means that the
inherent, unknown mean output of each machine is constant over time.

In some settings, a fixed pulling budget is given and the cumulative reward over
the entire optimization process needs to be maximized. These are known as
‘regret minimization problems’. This introduces an interesting exploration vs
exploitation trade-o↵ because one might either aggressively pull levers presumed
to be good (exploitation) or risk bad pulls for the chance of finding a better lever
(exploration). In other settings, one is interested in having maximum confidence
in having found the best arm with minimal function evaluations. While the
exploration vs exploitation trade-o↵ persists in the sense of determining whether
the algorithm should look at entirely unexplored regions or look near regions
known to be promising, the algorithm is always exploring new inputs (there is
no reason to repeat an input) which some describe as ‘pure exploration’[19]. The
problem of liquid transfer optimization studied here is of the latter type.
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3 Baseline hardware characterization

In this section, we quantify relevant characteristics of the hardware used to
provide intuition for the maximal performance we can reach with this setup.
Additionally, we measure the baseline accuracy and precision of automated liq-
uid transfers using default parameters, and the accuracy and precision of expert
human pipetting. These are targets which we aim to surpass.

3.1 Characterization of the analytical scale

The scale used in the following experiments is the Mettler Toledo WXS205SDU.
This scale has a readability of 0.01 mg and an advertised repeatability (std) of
0.07 mg at nominal load. This scale was chosen because it is used in the Hamil-
ton Liquid Verification Kit (LVK), meaning many prospective lil’ optimizer

users are likely to already have one. Second, this scale has good specifica-
tions. Its performance was verified locally using the Rice Lake ‘12504 20 Piece
Stainless Steel Calibration Metric Test Weight Set’, which meets the National
Institute of Standards and Technology (NIST) Class F specification for com-
mercial “Legal-for-Trade” weighing operations2. The results are given in Table
1. The standard deviation of some tens of milligrams (tens of nanoliters of
water) provide the lower bound on the precision that can be reached. In all
experiments, PyLabRobot was used as the interface to the scale.

Weight (mg) Mean (mg) STD (mg) Min (mg) Max (mg)
1 1.057 0.085 0.930 1.220
2 2.042 0.026 2.000 2.100
5 5.055 0.047 4.980 5.130
10 10.017 0.039 9.960 10.070
100 100.050 0.013 100.030 100.070
1000 999.831 0.032 999.790 999.900

Table 1: Empirical characterization of the Mettler Toledo WXS205SDU scale
using Rice Lake test weights at various loads. Each weight was measured N=10
times. Weights were handled using the tweezers to avoid contamination.

3.2 Evaporation rate and scale drift

Evaporation of water in the test tube was manually verified by taking a weight
measurement every 60 seconds over an hour long window, during which -7.170
mg of water evaporated. To correct for scale drift, the same program was run
for another hour without liquid on the scale, during which the scale drifted by
+0.07mg (Fig 1). Ignoring the negligible drift in the scale, 0.03 mg of water
evaporates per 15 seconds (an estimated average duration of a dispense). This
value could be relevant for long dispenses, or when target precision or accu-
racy are near this magnitude, in which case a correction can simply be added

2https://www.amazon.com/gp/product/B006MWG13U/
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(a) Evaporation (b) Scale drift

Figure 1: The evaporation rate of water on the scale is 7.170 mg / h; the
scale drifts by +0.07mg over this time frame. Evaporation could impact results
when a lot of time passes between measurements, or when targeting extremely
low thresholds, in which case it is easily corrected for. Such correction was not
applied in experiments described here. Drift is unlikely to impact measurements.

back into the post-dispense measurement. In the following experiments, such
correction was not performed.

3.3 Characterization of liquid transfers using before opti-
mization

VENUS, the default proprietary program typically used for programming the
liquid handling robot used in these experiments, has pre-optimized transfer pa-
rameters for a number of liquids, including water, and for the tips one might
use. These liquid transfer parameters were ported to PyLabRobot, using which
we performed transfers at various volumes to provide baseline pipetting accu-
racy. These experiments were conducted using o�cial Hamilton Co-Re II tips.
The results are given in Figure 2 and the tables in Appendix A, providing a
reference for deciding when further optimization is necessary.

It is noteworthy that for  5µL transfers using 10 µL tips, the dispense con-
sistently fails entirely (Fig. 2a). This is seen in the error being the same size
as the target volume with a low standard deviation. Between 5 and 10 µL, the
accuracy error ranges from approximately 80% to 10%, decreasing with target
volume, while the standard deviation remains around 10%. This demonstrates
that transfers at volume around this order of magnitude are impossible without
optimization surpassing default performance.

3.4 Inter-channel variance in accuracy and precision

The robot used in these experiments has 8 independent channels. There is a
significant di↵erence between certain channels in terms of accuracy (between
channel 0 and 7: p < 0.0005) (Fig. 3). For this reason, transfers for channels
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(a) 10uL (b) 50uL

(c) 300uL (d) 1000uL

Figure 2: Characterization of liquid transfers using default parameters for 10,
50, 300 and 1000uL tips. For 10uL transfers, the transfer fails consistently (as
seen by the error being of the same size as the target volume).

have to be optimized independently. This is noteworthy because this is impos-
sible with Hamilton’s liquid transfer optimizer program LVK and proprietary
control software VENUS, even though it is clearly needed. The fine-grained
control granted by PyLabRobot does allow channel-specific parameters, and lil

optimizer does one channel at a time.

3.5 Human pipetting accuracy and precision

To compare optimized robotic pipetting against human pipetting, 9 human
scientists performed 10 1uL transfers using the pipette they would normally
use for transfers of this volume. The results are given in Table 2. The observed
mean and STD provide target values for lil’ optimizer.

Let it be highlighted that even though the macro-averaged mean is close to 1,
implying high accuracy, the means of the 10 transfers performed by individual
scientists might di↵er significantly from this mean. For example, one scientist
had a mean of 0.876mg which is significantly lower than the expected mean of
1mg (p < 10�5). While these di↵erences are easily correctable with pipette cali-
brations, and this di↵erence is likely the result of incorrect calibration and not a
skill issue, this result shows that in practice pipettes often go uncalibrated and
that human-performed transfers might have significant error in accuracy.

9



Figure 3: There is a significant between the mean in channels pipetting channels
when performing the “same” transfer (between channel 0 and 7: p < 0.0005).

Statistic Value
N 9

Macro-averaged mean 0.97 mg
Macro-averaged STD 0.08 mg

Min mean 0.88 mg
Max mean 1.12mg

Table 2: Statistics of 9 expert human scientists performing 10 1uL transfers
each. The macro-averaged mean and standard deviation are given, as well as
the most extreme mean observed for individual scientists.
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4 Automatic optimization

Optimization of liquid transfers requires simultaneous optimization of accuracy
and precision. In lil optimizer, this is done using a double loop where the in-
ner loop minimizes the standard deviation across N transfers by sequentially
evaluating and updating a transfer parameter set, and the outer loop applies a
linear transformation to shift the accuracy into an expected acceptable range.
In this way, the double-objective optimization, which is di�cult, is e↵ectively
split into two separate optimization problems: most parameters a↵ect precision
and are optimized with an arbitrary STD minimizer, and accuracy is simply
corrected with translations to the volume requested on the machine, which is
expected to map onto the observed mean linearly. Combining both objectives
into a single objective is theoretically possible, but would introduce more hy-
perparameters (how is each weighed?) and restricts user freedom to specify
thresholds for each. The program ends when both accuracy and precision reach
the user-defined threshold (Algorithm 1; Fig. 4).

By default, liquid transfers are optimized for a single pipetting channel and a
single volume, but the program can simply be run multiple times for extending
results to other volumes and channels. Here, the search space of future optimiza-
tions can easily be constrained using results found in a previous optimization to
accelerate the process. This can also be done to fine-tune previous calibrations
for changed environmental conditions, where necessary.

4.1 Accuracy maximization

The score accuracy is the absolute di↵erence between the average measured
value mm of the previous set of N liquid transfers (where the standard deviation
is less than or equal to the threshold ms  �) and the target value vt, i.e.
|mm�vt|. This quantity is minimized until some threshold ✏ is reached by simply
adjusting the volume sent to the machine vm which is expected, by physical
principles, to linearly shift the mean of observations mm. This design choice
proved to work well in practice (see Results). Since optimizing precision after an
accuracy-shift might re-introduce precision-ine�ciencies, the precision optimizer
is always run after an accuracy adjustment. In the best case, the precision check
exits in one STD check (if still ms  �) and the result is immediately used by
the accuracy maximization algorithm. However, if ms > �, it is first adjusted
to provide a more accurate mean measurement (see ‘Precision maximization’
below). The accuracy shift might not have led to a desired mean measurement,
possibly necessitating multiple translations.

The translation needed is computed di↵erently based the number of iterations
done. With one recorded meanmm (iteration 1), the volume sent to the machine
is corrected using the absolute error (vt � vo) (intuitively: how much is missed)
and the expected e�ciency vm

mm
(intuitively: how much of the requested liquid

is expected to be dispensed), forming the first update rule: vm +(vt� vo) · vm
mm

.
With two or more recorded values, a linear model is fitted over the list of past

11



Algorithm 1 Double optimization loop for the simultaneous optimization of
accuracy and precision, until thresholds ✏ and � respectively. vt is the target
volume measurement, vm is the current volume sent to the machine, starting at
vt; mm and ms are the mean and standard deviation of the latest STD check;
p is the set of transfer parameters.

1: vm  vt

2: p ...

3: ms  1
4: while |mm � vt| > ✏ or ms > � do

5: while ms > � do

6: p std minimizer.next trial() . Arbitrary STD minimizer
7: mm,ms  perform transfers(vm, p)
8: p std minimizer.score(m s)
9: end while

10: if |ms � vt| > ✏ then . Linear shift for correcting accuracy.
11: linear model.update((vm,mm))
12: if first iteration then

13: vm  vm + (vt �mm) · vm
mm

. Ratio-adjusted volume update
14: else

15: vm  linear model.predict y(vt) . Update from linear model
16: end if

17: ms  1
18: end if

19: end while

12



Figure 4: Systematic representation of lil optimizer. The algorithm repeatedly
minimizes STD until it is below a certain threshold using an arbitrary black-
box optimizer on a user-defined parameter space. STD is evaluated using an
‘STD Check’, consisting of N transfers (a hyperparameter). After the desired
STD is reached, the mean of the last STD check is evaluated. If it is above
the threshold, the volume requested on the machine is adjusted using a linear
translation, following which STD is minimized again, starting from the current
parameter-set. When the mean is su�cient, the lil optimizer returns the found
parameter-set as well as the volume correction that needs to be applied.

(vm,mm) tuples, enabling fast convergence on the prediction of any following
vm. A linear curve is expected to be the most realistic model in this setting,
and proves more robust to noisy measurements than the simple update rule that
only looks at the last data point (data not shown).

4.2 Precision maximization

Maximizing precision is done by minimizing the standard deviation over a set
of N transfers (an STD check). Contrary to the linear shift for adjusting ac-
curacy, which is done in a single step, precision maximization might require a
number of function evaluations (STD checks). Each new check requires a new
parameterization, which can be provided by any optimizer compatible with con-
tinuous n-dimensional inputs and a single scalar objective in a non-di↵erentiable,
stochastic setting, with the goal of achieving an STD score below the threshold
value in as few STD checks as possible. More formally, each iteration at time
step t has past observations of STDs rt0<t 2 R and corresponding parameter-
izations at0<t 2 A ✓ Rn, and now the optimizer has to suggest the next at to
reach the lowest possible rt until it reaches a threshold �. The number of time
steps is unconstrained but should be minimal:
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Parameter Range

Dispense flow rate 5.0µL/s - 40.0µL/s
Blow out air volume 3.0µL - 10.0µL
Dispense mix speed 5.0µL/s - 19.0µL/s
Dispense swap speed 1.0µL/s - 8.0µL/s
Dispense settling time 0s - 8s

Table 3: The parameters of the liquid transfer that are optimized in the listed
experiments, unless mentioned otherwise. The set of parameters that are opti-
mized and their corresponding ranges are configurable.

min
t

rt  � where rt = f(at) (1)

where f : A ! R is the unknown stochastic function mapping the transfer
parameters to the standard deviation of measurements when multiple transfers
are done at this parameterization.

Several of such optimizers were evaluated here: hierarchical heuristic optimiza-
tion [8], vanilla policy gradients on a continuous action space [9], and Bayesian
optimization[10, 11, 12]. The parameters that are optimized are given in Ta-
ble 3. Below we describe the three STD minimizers in more detail. In each
case, the reward or objective function was either the STD of N transfers (‘STD
check’) directly, or its negative, depending on whether the algorithm maximizes
or minimizes (VPG and HOO maximize).

Discretization is a common method of handling continuous parameters in rein-
forcement learning (e.g. [20]). However, it is impractical to apply this technique
here and it was not evaluated for a couple of reasons. First, discretization nec-
essarily leads to a loss of precision, ignoring values in between bins. This is
particularly important when slight di↵erences lead to large impacts, as might
be the case here. Second, large but unknown parts of the parameter space are
hypothesized to have insu�cient performance and it is wasteful to ‘assign’ bins
to these parts.

4.2.1 Hierarchical heuristic optimization

Hierarchical heuristic optimization (HOO) is a binary tree based optimization
algorithm based on uncertainty estimates. At its core, HOO maintains a di-
rected binary tree where each node corresponds to the subspace spanned by its
descendants. Iteratively, 1) a leaf node is selected for evaluation, based on an
optimistic value estimate, 2) the point in the center of the optimization space
corresponding to the selected node is evaluated, 3) the node is expanded by
adding two child nodes, and 4) the statistics in the tree are updated. HOO’s
adaptive exploration of the landscape can be construed as a variable-resolution
discrete encoding of a hyperdimensional continuous space[8].
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More formally, a general parameter n is used to track the number of evaluations.
Each node maintains a visit count T , its depth in the tree h, the index in
that depth 1  i  2h, its cumulative reward so far cum reward, the mean
reward µ̂ = cum reward

T , as well as an estimate of the maximum mean-payo↵ in
the subspace it associated with:

U =

(
µ̂+

q
2 lnn
T + ⌫1⇢

h
, if T > 0;

+1, otherwise.
(2)

The actual upper bound is recursively constrained by the maximum mean-payo↵
of a node’s children, if defined:

B =

(
min {U,max {Bleft, Bright}} , if Bleft, Bright defined;

+1, otherwise.
(3)

⌫1 and ⇢ are hyperparameters to control the maximum variation in the region
of a node; both are set to 0 in these experiments. Further, in these experiments,
the term lnn is the numerator was replaced by ne = 10, which the authors of
the original work find to achieve the same regret as the original equation when
the time horizon is known, while the reducing the computational complexity of
the update step from O(n2) to O(log n). Even though the time horizon is not
technically known here, it is empirically extremely low compared to the original
context, and setting it to a fixed value works well.

In the selection step, the tree is traversed from the root down by repeatedly
selecting the child with the highest B value until a leaf is reached. Ties are
broken randomly. In the update step, T , cum reward, and all quantities thereof,
are updated, as well as the global parameter n.

Using a binary tree to discretize a single dimension is trivial. By defining a
{0, 1}h ! Rn mapping for each depth level h, going from a node in the bi-
nary tree to a point in the search space, HOO can be used on n-dimensional
hypercubes. Note that Rn here refers to the user-defined optimization space
and is independent of number of evaluations, also labeled n. In this thesis, the
mapping at depth h is defined by cutting the remaining subspace in half along
its longest dimension h times (Fig. 5), though any deterministic discretization
of action space A ✓ Rn into h subspaces (partitions) may be used.

4.2.2 Vanilla policy gradients

Many reinforcement learning algorithms learn values for discrete actions, some-
thing that is not feasible or possible with large or continuous action spaces[9].
One way of applying reinforcement learning in continuous action spaces, sug-
gested by Barto and Sutton, is by using policy gradient methods to learn the
statistics of a probability distribution over the action space instead of values for
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Figure 5: Hierarchical heuristic optimization (HOO) divides the remaining space
of a hypercube in half along the longest remaining dimension. Each possible
splitting point at depth h has a unique identifier, forming a {0, 1}h ! Rn

bijective mapping connecting nodes in the binary tree to the n-dimensional
continuous search space. While higher h a↵ords higher resolution in the entire
space, selection in HOO optimistically prioritizes regions of high expected value
and explores only certain regions.

actions directly[9]. To get an action, one simply samples from the parameterized
distribution.

For a Gaussian distribution, for example, the probability density function is
defined as follows:

p(x)=̇
1

�
p
2⇡

exp

✓
� (x� µ)2

2�2

◆
(4)

The mean µ and standard deviation � can be parameterized functions instead
of constants:

⇡(a|✓)=̇ 1

�(✓)
p
2⇡

exp

✓
� (a� µ(✓))2

2�(✓)2

◆
(5)

Continuing Barto and Sutton’s example, the parameterized functions could be
as below. Note that parameters are stateless constants here, but could easily
be functions of some state, even neural networks. The exponent of ✓� is taken
to ensure �(✓) is positive.

µ(✓)=̇✓µ �(✓)=̇ exp (✓�) (6)
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In order to use this parameterization with policy gradient methods, eligibility
vectors have to be formulated. These vectors, based on ther lnx = rx

x identity,
give the ‘direction in the parameter space that most increases the probability
of repeating the action in the future’[9].

r ln⇡(a,✓µ) =
r⇡(a,✓µ)
⇡(a,✓)

=
1

�(✓)2
(a� µ(✓)), and (7)

r ln⇡(a,✓�) =
r⇡(a,✓�)
⇡(a,✓)

=

✓
(a� µ(✓))2

�(✓)2
� 1

◆
. (8)

From here, any policy optimization algorithm can be used. We used ‘vanilla
policy gradients’ (VPG), for 1-timestep this is the same as REINFORCE, which
simply moves the parameters in the direction of the eligibility vectors with step-
sizes proportional to the return Gt =

P
t rt = r0.

✓t+1 = ✓t + ↵Gt
r⇡(At, ✓t)

⇡(At, ✓t)
. (9)

As seen in equations 7 and 8, the denominator of the eligibility vector is the
current action. This causes large updates to small parameters, which in simula-
tion lead to unstable convergence (data not shown). Normalizing all dimensions
worked better in simulation, and was used when applying this algorithm in
reality.

4.2.3 Bayesian optimization

Bayesian optimization is a popular technique for sequential, non-di↵erentiable
(“black-box”) optimization problems. A probability distribution is defined over
all possible functions that match the observed data points using the ‘surrogate
model’ (often a Gaussian process), approximating the objective function. This
surrogate model is continuously updated as the function is evaluated. Points
are sampled as suggested by the ‘acquisition function’, a function of both the
values (exploitation) and corresponding uncertainties (exploration) the surro-
gate model. Each time a new data point is observed, the prior distribution (the
initial belief about the function) is updated to form the posterior distribution
(the updated belief about the function), which is again represented as a Gaus-

sian process, following Bayes’ rule P (f |D) = P (D|f)P (f)
P (D) where f is a possible

fitting function and D is the data [10, 11, 12].

A Gaussian process is fundamentally a stochastic process where each random
variable, or any linear combination thereof, is normally distributed. Di↵erent
from multivariate Gaussian distributions, a Gaussian process (GP) models not
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over finite vectors, but over entire functions. Some view this as an infinite-
dimensional extension of multivariate Gaussian distributions. This is impor-
tant, because we want to get estimates over the entire continuous output space
(in this case, standard deviation of transfers as a function of an arbitrary in-
put space), rather than estimates of certain points (as you would get with a
finite, multivariate Gaussian distribution). Looking at how this information is
represented mathematically, we find that the other key di↵erence to simple mul-
tivariate distributions is that the mean vector µ is replaced by a mean function
m(x) of the input values, and that the covariance matrix ⌃ is replaced by a
kernel function k(x1, x2) where x1, x2 are arbitrary parameters between which
the covariance needs to be known[21].
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5 Results

In this section, we demonstrate lil optimizer ’s ability to optimize 500nL trans-
fers, an order of magnitude lower than previously recommended. We also in-
vestigate the e↵ects of parameter N for each STD minimizer (HOO, VPG and
BO).

5.1 Optimization of 500nL transfers

Lil optimizer achieved 500nL transfers to an accuracy and precision of 50nL
with both HOO and Bayesian optimization (Fig. 6, Table 4). This precision
is near the minimum achievable with the evaluation setup used (the analytical
scale). Policy gradient methods were not tested on 500uL transfers due to time
constraints.

For both algorithms, the experiment was repeated twice. In all cases except
HOO repeat 2, the first iteration saw a slight loss of liquid in the first iteration,
due to liquid sticking to the side of the tip. To compensate, the following
iterations aspirated the di↵erence, resulting in considerably higher requested
machine volumes vm of 0.922, 0.838, 1.046, and 0.903 µL.

It is noteworthy that both algorithms sometimes converge faster (2nd repeat)
than other times (1st repeat). This di↵erence is ascribed to randomness inherent
to both optimization algorithms, or potentially stochasticity in the physical
environment.

Precision (STD in mg) Accuracy (Mean - Target in mg)
HOO (1) -0.0337 0.0954,
HOO (2) 0.0462 0.0524,

Bayesian (1) 0.013 0.0628,
Bayesian (2) -0.06 0.0998

Table 4: Results after optimizing a 500nL transfer with HOO and BO. Two
technical repeats.

5.2 The optimal number of transfers per STD check

Intuitively, the number of transfers done per STD check (N) yields higher quality
data at the cost of a longer running time per evaluation. In this section, we
study the e↵ects of changing this hyperparameter for all algorithms and we
provide a heuristic for e�ciently finding an optimal value.

5.2.1 Hierarchical heuristic optimization

For all N 2 {3, 5, 7, 9, 12, 15}, lil’ optimizer with HOO reached the desired
accuracy and precision thresholds of 50nL for 1uL transfer in 2 iterations (Fig.
7). The number of STD checks per iteration was generally small. With N = 9,
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(a) HOO Repeat 1 (b) HOO Repeat 2

(c) Bayesian Repeat 1 (d) Bayesian Repeat 2

Figure 6: Optimization of a 500nL transfer with HOO (a and b) and Bayesian
optimization (c and d). Each new color represents a new iteration of the outer
loop, on which an accuracy adjustment is made.

the number of STD checks in the first iteration was high compared to other runs
(7), which seems to have been an outlier. In the second iteration of this run,
only 1 STD checks was required, meaning the STD was still below the threshold
value after the accuracy adjustment.

Results of the first STD check during the entire run are generally excellent: the
STD is low and the mean is close to the target. This e↵ect is very much depen-
dent on the user-specified range of optimizable parameters: HOO always bisects
those in every dimension. Note that with good initial parameters (determined
by their range) as shown here, results can be good from the start, whereas with
worse parameters, it may take a number of additional STD checks, proportional
to the base 2 logarithm of the search space size (HOO bisects).

The stability of the results was verified by performing 16 transfers with the
parameters found with each N . It is seen that the higher N , the more precise
and accurate the result (Fig. 8). For N = 3, the STD during validation is
particularly high and it seems that the algorithm reached threshold values just
by chance: at such a low number of transfers per STD check, the standard
deviation and mean were coincidentally very low, and the algorithm stopped
because thresholds were reached. In such cases, obviously, a larger number of
transfers using the same parameterization is not expected to have the same
mean and STD; the results do not generalize.
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Figure 7: Optimization of 1uL transfers to accuracy and precision thresholds of
50nL with HOO for a di↵erent number of transfers N per STD check. Iterations
refers to iterations of the outer loop and are color-coded (precision and accuracy
adjustments); the inner loop (precision adjustments) may consist of multiple
STD checks, depending on when the threshold is reached. In both cases fewer
is better. Per STD check, the measured mean is visualized by a cross and one
standard deviation by the error bar; the target is visualized with a dashed line.

Figure 8: Unbiased estimates of real-world performance after HOO optimization
with di↵erentN . 16 transfers were performed for each of the transfer parameters
obtained from runs in Figure 7.
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5.2.2 Vanilla policy gradients

The optimization process with VPG was successful for N 2 {3, 5, 7, 9, 12} (Fig.
9). Similar to with HOO, the program converges in at most 2 or 3 iterations
with few STD checks per iteration, with one interesting exception for N = 3.
Here, most iterations only require one, or very few, STD checks to reach good
precision. However, a great number of iterations is needed which is likely the
result of non-representative means causing inaccurate predictions in the linear
regression model. Optimization with higher N do not su↵er from this problem
because the observed means are more representative of the population mean.
Validation with VPG has not yet been performed due to time constraints.

The reason for fast convergence and good initial results with VPG is similar
to HOO as was described above. Explicitly, VPG likely converges fast because
the initial means of the Gaussian cloud are centered in the center of the search
space, causing sampled parameters to be close to this center, and as seen with
HOO, values close to the center provide good results. This is an optimistic
signal because it shows that with some insight and carefully designed search
spaces, fast results can be achieved with VPG (and HOO). However, contrary
to HOO, it is harder to predict that VPG will swiftly arrive at acceptable
parameters given a larger search space because parameters are sampled from a
normal distribution; not bisected. This is potentially addressable by tuning the
initial standard deviation.
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Figure 9: Optimization of 1uL transfers to accuracy and precision thresholds of
50nL with VPG for a di↵erent number of transfers N per STD check. Iterations
refers to iterations of the outer loop and are color-coded (precision and accuracy
adjustments); the inner loop (precision adjustments) may consist of multiple
STD checks, depending on when the threshold is reached. In both cases fewer
is better. Per STD check, the measured mean is visualized by a cross and one
standard deviation by the error bar; the target is visualized with a dashed line.
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5.2.3 Bayesian optimization

Compared to HOO and VPG, lil’ optimizer configured with Bayesian optimiza-
tion takes many iterations to converge, and for N 2 {3, 7, 12}, it takes (much)
more than 2 iterations. N = 5, needing few iterations, seems to be an outlier
compared to other runs (Fig. 10).

The longer optimization time with Bayesian optimization can be explained
by the inherent preference for exploration in, and non-systematic nature of,
Bayesian optimization. Out of the three algorithms evaluated here, it is the only
algorithm that does not start with parameters close to (VPG) or in the center
of (HOO) the search space. This means many points have to be tried before it
is established that certain parts of the search space are unproductive.

The fact that many iterations are needed means the accuracy maximizer (by
ratio-adjusted or linear-regression based translations) is failing to converge. This
is likely explained by the high STD during the earlier trials: measured means are
extremely noisy and unrepresentative, making it hard to use those measurements
to predict what good machine volumes are.

The validation data looks similar to HOO. It is notable that with N 2 {3, 5},
many transfers fail (0 mg di↵erence between w1 and w2) (Fig. 11).
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Figure 10: Optimization of 1uL transfers to accuracy and precision thresholds of
50nL with BO for a di↵erent number of transfers N per STD check. Iterations
refers to iterations of the outer loop and are color-coded (precision and accuracy
adjustments); the inner loop (precision adjustments) may consist of multiple
STD checks, depending on when the threshold is reached. In both cases fewer
is better. Per STD check, the measured mean is visualized by a cross and one
standard deviation by the error bar; the target is visualized with a dashed line.

Figure 11: Unbiased estimates of real-world performance after BO optimization
with di↵erentN . 16 transfers were performed for each of the transfer parameters
obtained from runs in Figure 10.

25



5.2.4 A heuristic for N

Doing full optimizations for many di↵erent values of hyperparameterN is expen-
sive in terms of time and number of pipetting tips required. As an alternative,
simply doing a small number of transfers N

0
> N , can give insight into the

quality of variance estimates for a given N , without having to run full optimiza-
tion runs for each. With this approach, we might quickly estimate the required
number of transfers to get a reasonable STD estimate, which can be used during
the actual optimization process.

To investigate this, N 0 = 96 transfers were performed assuming that variance
here is approximately equal to variance for N 0 =1. This dataset was shu✏ed
50 times. For all subsets consisting of the first 2  N  N

0 items of a random
permutation, the STD was computed. This gives insight into how good a sample
of N estimates the variance compared to the full N 0 (Fig. 12).

At N = 8, the average observed standard deviation was 61.73nL±29.15nL (95%
confidence) compared to the 63.94 nL standard deviation over all 96 samples
(Fig 12). While higher N continued to lead to more precise results, the rate
of progression in terms of range slowed after N=8. Pragmatically, a value of 8
is convenient because it is equal to the number of tips in a standard tip rack
(8x12).

Looking at the experiments (Fig. 7, 9, 10), no clear trend is observable in the
number of STD checks that are required until the threshold is reached and N .
It is notable, however, that with training with VPG (Fig. 9), the run with
N = 3 takes considerably more iterations than runs with N > 3. This can be
connected with Figure 12, where the range of values (max-min) rapidly drops
until approximately N = 3. It seems advisable to use an N at least after this
range of rapid improvement. Looking at the validation data (Fig. 8, 11), N = 3
is far worse than N > 3 in terms of STD achieved. With HOO, there is a
trend in validation data getting better, both in terms of accuracy and precision,
until N = 15, the highest value tested. With BO, some transfers fail after
optimization with N = 5 (seen by the 0mg measurements), but the validation
results are generally good in terms of accuracy and precision with N > 5. These
results further support the idea that this heuristic measure can provide some
insight into an appropriate N , but it is not a conclusive signal.

5.2.5 Comparing the overall runtime for di↵erent N

Revisiting the original question of this subsection of how many transfers should
be done for a predictive STD check, we looked at the total number of STD
checks needed to reach threshold values (Fig. 13) as well as the number of
liquid transfers done before convergence (Fig. 14). As hypothesized, the number
of STD checks required decreases gradually with the number of transfers per
STD check N (VPG), or peaks around N = 9 (HOO), presumably due to
HOO and VPG being able to use this higher-quality data. The number of STD
checks required with BO appears independent of N , suggesting that Bayesian
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Figure 12: Determination of hyperparameter N at 1µL transfers. To estimate
how many transfers are needed in each evaluation (N) for a good estimate of
the standard deviation over an infinite time horizon, a total of 96 1µL transfers
were performed before optimization. The results were shu✏ed 50 times, and
each time the standard deviation of the first 2  N  96 items was computed.
Plotted here are the minimum and maximum std for each window size N , along
with the total standard deviation and an estimated optimal value.

optimization is unable to make use of higher-quality data e�ciently.

The total number of transfers, the product of N and the number of STD checks,
is a more practical measurement of performance (Fig. 14). Here, BO’s inability
to use data at higher N e�ciently is even more pronounced as can be seen by the
huge number of transfers requried compared to the other algorithms. For VPG,
the number of transfers required still roughly decreases, although this could also
be due to noise (the pattern is not seen consistently). For HOO, the number
of transfers required is roughly constant after N = 9 (around 50), meaning
that high-quality data is e↵ectively used to reduce the number of evaluations
required.

An unpredicted but fully explainable result is that with low N , a certain trial
can be ‘lucky’ and have characteristics (mean or standard deviation) under
the thresholds. This leads to fast ‘convergence’. However, the parameters ob-
tained in this manner lead to transfers that do not generalize well. This was
demonstrated by running N = 16 transfers given the resulting parameters and
observing the mean and standard deviation. Given that this e↵ect does not
occur at higher N , this e↵ect is a parameter-specific limitation, easily fixed by
setting N at an appropriate value, and not a limitation of lil optimizer as a
system.
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Figure 13: Number of STD checks until convergence; the number of times the
inner loop of the double-optimization algorithm ran; the number of data points
used by the STD minimizer during the run. Lower is better.

Figure 14: Number of liquid transfers until convergence. Lower is better.
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6 Discussion

In this section, we reflect on a select number of technical decisions made in lil

optimizer and why those may not be optimal. We additionally highlight known
limitations of lil optimizer while making simultaneous suggestions for future
work to address these limitations.

6.1 Evaluation of technical decisions

Single-pass accuracy adjustments. One assumption that was made in the
current version of lil optimizer is that accuracy adjustments, by linear transla-
tion, would shift the mean of measurements into an acceptable range in one pass.
This led to the design decision of implementing the accuracy in a single step,
rather than a while not threshold reached loop. In any case, a precision
check needs to be run to check for the precision after the accuracy adjustment
and make any adjustments if necessary (the mean may be significantly higher
after an accuracy adjustment, requiring di↵erent parameters), but it was not
tested whether this precision check and potential correction needs to happen
after every accuracy adjustment, as is the case now, or only after an accept-
able accuracy was reached (i.e. running accuracy adjustment in a while-loop).
The benefit of the current approach is that data fed into the linear regression
model for accuracy is all guaranteed to be of acceptable precision, which is not
the case when not running intermediate precision-updates. This comes at the
risk of optimizing precision for an accuracy (machine volume) that is not ac-
tually used. Whether or not such optimization is redundant or useful remains
unclear.

Discretization. Discretization was originally thought to provide insu�cient
resolution. However, the HOO algorithm worked surprisingly well even at few
STD checks: the depth of the tree after running so briefly is still low, and so
the resolution of HOO’s discretization is still very rough. This suggests that
perhaps discretization would be a viable strategy in this problem. However,
it is not clear how this would impact the users’ ability to define their own
optimization spaces. The obvious benefit of discretization with HOO is that the
resolution is dynamic, and can be arbitrarily high in regions of interest.

Black box optimizers. Only 3 black box optimizers were evaluated here
(HOO, VPG, BO) while many more exist in the literature (Section 2.2). While
it is possible other optimizers might reach threshold values even faster, it is
unlikely to make significant improvements over HOO and VPG, both of which
convergence using less than 10 STD checks in most cases (Fig. 13). Other
STD minimizers may be preferred for their inherent qualities, however (e.g. as
described ‘Each optimization is done from scratch’ below).
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6.2 Limitations and future directions

No non-water liquids were tested. All tests were performed using sterile wa-
ter. While significant improvements in pipetting precision and accuracies were
made compared to previous methods, many experiments additionally use other
liquids such as DSMO, protein solutions, DNA solutions, etc. It would be good
to evaluate how well lil’ optimizer optimizes transfers of those liquids.

Sensitivity to noisy mean-volume measurements. The accuracy opti-
mizer uses a ratio-adjusted volume update for the second iteration, and linear
regression after that. As is seen in the optimization history with Bayesian
optimization (Sec. 5.2.3), a number of noisy measurements can prolong the ac-
curacy maximization considerably. In the future, the linear regression process
may weigh recent measurements more, hopefully leading to faster convergence
in the outer loop.

Each optimization is done from scratch. While providing the search range
for each parameter can be a way to carry over information from one optimization
to the next, this is a manual process and such data may not always be available.
It would be interesting to explore if a model of the inherent liquid properties
can be learned based on past parametersets and observations (a ‘latent space’ in
this context), which could provide more targeted parameter suggestions based
on past observations than these from-scratch, problem-independent optimizers
discussed here. One particularly promising and simple extension of the current
implementation would be to make VPG stateful (context-aware) so that it may
use a liquid’s density or viscosity in optimizing transfer parameters for that
liquid. Alternative contextual bandit optimizers might also be evaluated.

Stateless transfers. The liquid transfers here are ‘stateless’ in the sense that
they are performed with clear tips each time, and only a single aspiration and
subsequent dispense are optimized. Many protocols consist of serial dispenses,
following a single aspiration, or re-use tips. Both of these settings can be op-
timized easily by concatenating parameters and optimization the composite-
operation as a normal run, or the optimization algorithms (particularly the
STD minimizer) can incorporate a tip’s past operations to optimize sequential
transfers.
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7 Conclusion

Lil optimizer enables e�cient, closed-loop optimization of automated low-volume
liquid transfers, which we hope will accelerate the adoption of automation for
low-throughput biology experiments. A precision maximizer (‘STD minimizer’)
pulls all transfers close together along the target axis, gravimetric measurements
in these experiments, while a linear translation shifts the mean of the expected
distribution into a desirable accuracy range. The precision and accuracy of the
current parameter set are evaluated by doing N transfers (a hyperparameter)
and observing its mean and standard deviation.

Using iterative precision and accuracy updates, it is possible to reach signifi-
cantly superhuman performance. The macro-averaged standard deviation of 9
humans, together doing 90 1uL transfers (Section. 3.5), is 0.08 mg. Transfers
optimized with HOO and BO, independently validated, reach significant super-
human performance with standard deviations of 0.039 and 0.033 mg respectively
(p < 0.005; p < 0.0005) while having a mean of 0.99125 and 0.998125 (an accu-
racy error less than 10µL). Optimization, from scratch, can be done in around
30 minutes.

The precision maximizer is an interchangeable component, and any optimizer
suitable for continuous, non-di↵erentiable, stochastic, non-seperable problems
can be used. Here, three such models were evaluated: hierchical optimistic op-
timization (HOO), vanilla policy gradients (VPG), and Bayesian optimization.
It is observed that HOO and VPG require considerably less trials than Bayesian
optimization, presumably because both initially start at values around the cen-
ter of the optimization space. This leads to successful initial trails, and the
algorithm quickly adjusts to find an acceptable parameter set. With Bayesian
optimization, on the other hand, the initial trial is e↵ectively random, and
measurements can be extremely noisy. This means a high number of trials is
required before a suitable parameter set is found.

It is also observed that with low standard deviation in the measurements, accu-
racy adjustments are often precise, leading to a small number of iterations (HOO
and VPG). However, for Bayesian optimization, a comparatively large number
of iterations is needed. This could be the result of inaccurate data, where the
observed mean of transfers, on which the next iteration is dependent, is not the
real mean of those transfers if the sample size had been larger. This hypothesis
is based on the large standard deviation observed at those STD checks. The
regression model, and particularly ratio-adjusted volume updates, are sensitive
to these inaccuracies.

There is a trade-o↵ between high-quality data at high N and faster optimization
time of a parameter set at lower N . The overall number of transfers required
needs to be minimal to save tips and time. It was hypothesized that higher N
will lead to lower total run time, until a certain level because the higher-quality
(less noisy) data will allow better predictions by the STD minimizer. This
hypothesis might be true for HOO and VPG, but was rejected for BO which
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appeared unable to use higher-quality data for improving next evaluations and
instead just had a greater overall runtime.

With the correct input parameter space, one example is given in Table 3, lil
optimizer very quickly optimizes transfers to accuracy and precision far beyond
the default transfer parameters in PyLabRobot, and even reaches superhuman
performance. This makes it a useful tool that enables the use of laboratory
automation in low-throughput settings. Further improvements can be made
by sharing information between optimization runs of di↵erent liquids and op-
timizing sequential transfers, both of which are relatively simple architectural
changes to lil optimizer.
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A Default pipetting statistics

The tables below show the default transfer accuracy and precision in PyLabRobot.
These can be used to determine whether further optimization with lil optimizer

is necessary in a certain context. Initially, it also provided baselines for lil

optimizer to beat. All results are using o�cial Hamilton Co-Re II tips.

A.0.1 10 uL Tips

Target STD (mg) Mean error (mg) Precision (%CV) Trueness (%R)
1.000000 0.007440 -1.106250 -7.002577 -10.625000
2.000000 0.009258 -2.105000 -8.817334 -5.250000
3.000000 0.043239 -3.148750 -29.068482 -4.958333
4.000000 0.267475 -4.380000 -70.388149 -9.500000
5.000000 0.006409 -5.098750 -6.489822 -1.975000
6.000000 0.504506 -5.318750 74.055997 11.354167
7.000000 3.890130 -2.783750 92.265168 60.232143
8.000000 0.871940 -2.547500 15.991555 68.156250
9.000000 0.717391 -1.797500 9.960307 80.027778
10.000000 2.040014 -1.136250 23.015243 88.637500

A.0.2 50 uL Tips

Target STD (mg) Mean error (mg) Precision (%CV) Trueness (%R)
10.000000 0.025877 -1.728750 0.312860 82.712500
15.000000 0.154220 -2.111250 1.196550 85.925000
20.000000 0.017678 -2.396250 0.100420 88.018750
25.000000 0.121413 -2.676250 0.543873 89.295000
30.000000 0.115380 -2.906250 0.425854 90.312500
35.000000 0.143222 -3.096250 0.448919 91.153571
40.000000 0.168014 -3.330000 0.458177 91.675000
45.000000 0.200958 -3.628750 0.485742 91.936111
50.000000 0.165308 -3.518750 0.355645 92.962500

A.0.3 300 uL Tips

Target STD (mg) Mean error (mg) Precision (%CV) Trueness (%R)
1.000000 0.038079 -3.617500 -1.454780 -261.750000
2.000000 0.045336 -3.663750 -2.724931 -83.187500
5.000000 0.024495 -3.320000 1.458030 33.600000
10.000000 0.041662 -3.342500 0.625789 66.575000
15.000000 0.060460 -3.056250 0.506202 79.625000
20.000000 0.055404 -2.671250 0.319725 86.643750
25.000000 0.021876 -2.607500 0.097695 89.570000
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30.000000 0.066748 -2.496250 0.242689 91.679167
35.000000 0.043239 -2.371250 0.132519 93.225000
40.000000 0.079899 -2.221250 0.211493 94.446875
45.000000 0.123375 -2.112500 0.287672 95.305556
50.000000 0.196905 -1.900000 0.409365 96.200000
100.000000 0.089273 -1.053750 0.090224 98.946250
110.000000 0.084853 -0.950000 0.077811 99.136364
120.000000 0.127139 -0.777500 0.106640 99.352083
130.000000 0.120409 -0.591250 0.093045 99.545192
140.000000 0.061281 -0.491250 0.043926 99.649107
150.000000 0.097943 -0.297500 0.065425 99.801667
160.000000 0.059702 -0.137500 0.037346 99.914062
170.000000 0.081766 0.005000 0.048096 99.997059
180.000000 0.027999 0.171250 0.015540 99.904861
190.000000 0.028754 0.466250 0.015097 99.754605
200.000000 0.034200 0.633750 0.017046 99.683125
210.000000 0.031820 0.728750 0.015100 99.652976
220.000000 0.038707 0.848750 0.017526 99.614205
230.000000 0.060415 0.882500 0.026167 99.616304
240.000000 0.050639 0.982500 0.021013 99.590625
250.000000 0.054756 1.053750 0.021810 99.578500
260.000000 0.069642 1.107500 0.026672 99.574038
270.000000 0.153710 1.436250 0.056628 99.468056
280.000000 0.054100 1.968750 0.019186 99.296875
290.000000 0.054494 2.046250 0.018660 99.294397
300.000000 0.314299 1.628750 0.104201 99.457083

A.0.4 1000 uL Tips

Target STD (mg) Mean error (mg) Precision (%CV) Trueness (%R)
1.000000 0.047790 -25.696250 -0.193513 -2469.625000
5.000000 0.077724 -25.691250 -0.375639 -413.825000
10.000000 0.065192 -25.047500 -0.433242 -150.475000
15.000000 0.045806 -24.968750 -0.459499 -66.458333
20.000000 0.069269 -24.633750 -1.494883 -23.168750
25.000000 0.086644 -24.502500 17.415833 1.990000
30.000000 0.046904 -24.375000 0.833852 18.750000
35.000000 0.068400 -24.142500 0.629980 31.021429
40.000000 0.056061 -24.030000 0.351041 39.925000
45.000000 0.072494 -23.816250 0.342214 47.075000
50.000000 0.050071 -23.637500 0.189934 52.725000
100.000000 0.062436 -23.218750 0.081316 76.781250
110.000000 0.058797 -23.095000 0.067657 79.004545
120.000000 0.099058 -23.018750 0.102141 80.817708
130.000000 0.029155 -23.027500 0.027254 82.286538

37



140.000000 0.099391 -22.892500 0.084872 83.648214
150.000000 0.086685 -22.865000 0.068183 84.756667
160.000000 0.078819 -22.841250 0.057466 85.724219
170.000000 0.099857 -22.845000 0.067858 86.561765
180.000000 0.091016 -22.696250 0.057860 87.390972
190.000000 0.118736 -22.728750 0.070984 88.037500
200.000000 0.124377 -22.721250 0.070159 88.639375
210.000000 0.096474 -22.567500 0.051471 89.253571
220.000000 0.098959 -22.687500 0.050153 89.687500
230.000000 0.106024 -22.658750 0.051135 90.148370
240.000000 0.047340 -22.641250 0.021780 90.566146
250.000000 0.034949 -22.557500 0.015366 90.977000
260.000000 0.778496 -22.456250 0.327727 91.362981
270.000000 1.240550 -21.552500 0.499321 92.017593
280.000000 0.159860 -22.831250 0.062162 91.845982
290.000000 0.097358 -22.337500 0.036373 92.297414
300.000000 0.225859 -22.021250 0.081251 92.659583
310.000000 0.080000 -22.800000 0.027855 92.645161
320.000000 0.075593 -22.845000 0.025439 92.860938
330.000000 0.052355 -22.943750 0.017051 93.047348
340.000000 0.087668 -22.965000 0.027653 93.245588
350.000000 0.065014 -22.976250 0.019880 93.435357
360.000000 0.078456 -22.941250 0.023277 93.627431
370.000000 0.041726 -22.996250 0.012025 93.784797
380.000000 0.096649 -23.043750 0.027076 93.935855
390.000000 0.107138 -23.007500 0.029194 94.100641
400.000000 0.159860 -22.721250 0.042372 94.319687
410.000000 0.134104 -22.871250 0.034641 94.421646
420.000000 0.151658 -22.820000 0.038184 94.566667
430.000000 0.177799 -22.858750 0.043670 94.684012
440.000000 0.169953 -22.903750 0.040747 94.794602
450.000000 0.176473 -22.950000 0.041324 94.900000
460.000000 0.095879 -22.907500 0.021936 95.020109
470.000000 0.097358 -22.967500 0.021779 95.113298
480.000000 0.133142 -22.971250 0.029132 95.214323
490.000000 0.205339 -23.127500 0.043982 95.280102
500.000000 0.246805 -23.426250 0.051787 95.314750
510.000000 0.381742 -23.468750 0.078462 95.398284
520.000000 0.303727 -23.472500 0.061170 95.486058
530.000000 0.224436 -23.655000 0.044325 95.536792
540.000000 0.274994 -23.787500 0.053271 95.594907
550.000000 0.276043 -24.105000 0.052490 95.617273
560.000000 0.774651 -23.963750 0.144515 95.720759
570.000000 0.504713 -24.282500 0.092486 95.739912
580.000000 0.642089 -24.202500 0.115526 95.827155
590.000000 0.721218 -24.041250 0.127433 95.925212
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600.000000 0.640753 -24.632500 0.111364 95.894583
610.000000 0.641125 -24.021250 0.109411 96.062090
620.000000 0.783371 -24.181250 0.131478 96.099798
630.000000 0.560249 -23.942500 0.092442 96.199603
640.000000 0.428117 -23.556250 0.069449 96.319336
650.000000 0.296621 -23.621250 0.047355 96.365962
660.000000 0.254527 -23.381250 0.039981 96.457386
670.000000 0.353066 -23.536250 0.054615 96.487127
680.000000 0.269228 -23.726250 0.041024 96.510846
690.000000 0.242355 -23.672500 0.036372 96.569203
700.000000 0.094074 -23.762500 0.013911 96.605357
710.000000 0.361781 -23.810000 0.052723 96.646479
720.000000 0.131882 -23.972500 0.018948 96.670486
730.000000 0.196977 -23.950000 0.027898 96.719178
740.000000 0.290563 -23.973750 0.040580 96.760304
750.000000 0.176266 -24.028750 0.024280 96.796167
760.000000 0.195991 -24.251250 0.026638 96.809046
770.000000 0.744339 -25.611250 0.099993 96.673864
780.000000 0.176387 -24.243750 0.023339 96.891827
790.000000 0.138764 -24.123750 0.018118 96.946361
800.000000 0.180693 -24.472500 0.023299 96.940938
810.000000 0.196355 -24.631250 0.025002 96.959105
820.000000 0.169706 -24.755000 0.021340 96.981098
830.000000 0.305509 -24.742500 0.037939 97.018976
840.000000 0.147739 -24.783750 0.018123 97.049554
850.000000 0.191642 -24.791250 0.023223 97.083382
860.000000 0.248592 -24.973750 0.029771 97.096076
870.000000 0.162739 -24.973750 0.019258 97.129454
880.000000 0.376070 -24.785000 0.043974 97.183523
890.000000 0.268804 -24.683750 0.031064 97.226545
900.000000 0.198494 -24.645000 0.022676 97.261667
910.000000 0.366038 -24.538750 0.041339 97.303434
920.000000 0.270383 -24.592500 0.030197 97.326902
930.000000 0.337382 -24.763750 0.037270 97.337231
940.000000 0.186198 -24.638750 0.020341 97.378856
950.000000 0.267258 -24.783750 0.028886 97.391184
960.000000 0.203540 -25.050000 0.021770 97.390625
970.000000 0.211778 -25.087500 0.022412 97.413660
980.000000 0.302581 -25.171250 0.031690 97.431505
990.000000 0.911200 -26.235000 0.094546 97.350000
1000.000000 0.482551 -26.403750 0.049564 97.359625

A.0.5 1000 uL tips with jet dispense
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Target STD (mg) Mean error (mg) Precision (%CV) Trueness (%R)
1.000000 2.595058 -0.311250 376.777952 68.875000
2.000000 1.187109 -2.285000 -416.529591 -14.250000
5.000000 2.282705 1.460000 35.335993 70.800000
10.000000 1.626626 -0.656250 17.408708 93.437500
15.000000 2.571375 -0.386250 17.595587 97.425000
20.000000 1.127081 -0.463750 5.769180 97.681250
25.000000 2.247214 1.670000 8.426000 93.320000
30.000000 3.477735 3.561250 10.362353 88.129167
35.000000 2.280936 0.431250 6.437639 98.767857
40.000000 1.959989 -1.118750 5.040961 97.203125
45.000000 2.553842 0.882500 5.566047 98.038889
50.000000 0.599208 -1.267500 1.229586 97.465000
100.000000 1.872508 -0.165000 1.875603 99.835000
110.000000 2.106758 0.905000 1.899606 99.177273
120.000000 2.418151 0.223750 2.011376 99.813542
130.000000 2.331266 0.290000 1.789290 99.776923
140.000000 1.372318 -0.110000 0.980998 99.921429
150.000000 2.041872 2.168750 1.341847 98.554167
160.000000 2.153534 3.492500 1.317206 97.817188
170.000000 2.884153 0.076250 1.695800 99.955147
180.000000 2.829651 1.801250 1.556453 98.999306
190.000000 0.495680 -0.921250 0.262155 99.515132
200.000000 2.417324 0.320000 1.206731 99.840000
210.000000 1.703219 -0.031250 0.811177 99.985119
220.000000 0.667521 -1.148750 0.305011 99.477841
230.000000 2.423987 0.710000 1.050664 99.691304
240.000000 0.585526 -1.081250 0.245073 99.549479
250.000000 1.975959 0.418750 0.789062 99.832500
260.000000 1.874549 -0.132500 0.721348 99.949038
270.000000 2.824474 1.766250 1.039303 99.345833
280.000000 2.674261 1.931250 0.948551 99.310268
290.000000 0.774697 4.701250 0.262875 98.378879
300.000000 0.649654 4.162500 0.213588 98.612500
310.000000 0.688243 4.127500 0.219097 98.668548
320.000000 0.540628 4.202500 0.166756 98.686719
330.000000 0.615676 4.190000 0.184229 98.730303
340.000000 0.464095 4.158750 0.134849 98.776838
350.000000 0.580085 4.021250 0.163856 98.851071
360.000000 0.527013 3.465000 0.144997 99.037500
370.000000 0.795362 3.305000 0.213059 99.106757
380.000000 0.539045 3.566250 0.140535 99.061513
390.000000 0.876567 2.986250 0.223053 99.234295
400.000000 0.813019 2.725000 0.201879 99.318750
410.000000 0.658071 2.855000 0.159395 99.303659
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420.000000 2.352151 0.081250 0.559928 99.980655
430.000000 1.980851 -0.656250 0.461367 99.847384
440.000000 0.541570 -2.088750 0.123671 99.525284
450.000000 2.380216 1.246250 0.527476 99.723056
460.000000 1.745048 -0.882500 0.380087 99.808152
470.000000 2.477049 -0.310000 0.527380 99.934043
480.000000 0.629603 -1.985000 0.131712 99.586458
490.000000 1.467368 -1.263750 0.300237 99.742092
500.000000 1.793160 -0.572500 0.359043 99.885500
510.000000 1.681698 -1.007500 0.330397 99.802451
520.000000 1.442201 1.405000 0.276599 99.729808
530.000000 2.181611 0.250000 0.411431 99.952830
540.000000 1.824365 -1.312500 0.338668 99.756944
550.000000 2.711048 -1.178750 0.493977 99.785682
560.000000 1.818516 -2.240000 0.326039 99.600000
570.000000 1.443641 -2.041250 0.254181 99.641886
580.000000 2.834899 -3.462500 0.491711 99.403017
590.000000 2.053045 -2.672500 0.349557 99.547034
600.000000 2.855806 -3.533750 0.478787 99.411042
610.000000 2.243151 -4.871250 0.370690 99.201434
620.000000 1.722701 -2.528750 0.278993 99.592137
630.000000 1.665565 -5.002500 0.266491 99.205952
640.000000 2.183450 -3.796250 0.343200 99.406836
650.000000 0.667913 -2.397500 0.103136 99.631154
660.000000 0.631099 -2.325000 0.095959 99.647727
670.000000 0.557001 -2.027500 0.083387 99.697388
680.000000 0.589708 -1.451250 0.086907 99.786581
690.000000 0.763245 -1.645000 0.110880 99.761594
700.000000 0.571908 -1.852500 0.081918 99.735357
710.000000 0.646439 -1.926250 0.091295 99.728697
720.000000 0.562391 -1.913750 0.078318 99.734201
730.000000 0.419436 -2.141250 0.057626 99.706678
740.000000 0.551148 -1.857500 0.074667 99.748986
750.000000 0.548921 -1.600000 0.073346 99.786667
760.000000 0.665989 -1.826250 0.087841 99.759704
770.000000 0.589358 -2.195000 0.076759 99.714935
780.000000 0.742058 -2.097500 0.095392 99.731090
790.000000 0.674641 -2.006250 0.085615 99.746044
800.000000 0.678296 -2.120000 0.085012 99.735000
810.000000 0.401711 -1.825000 0.049706 99.774691
820.000000 0.706782 -2.023750 0.086406 99.753201
830.000000 0.240115 -1.616250 0.028986 99.805271
840.000000 0.480994 -1.571250 0.057369 99.812946
850.000000 0.406307 -1.240000 0.047871 99.854118
860.000000 0.597680 -1.277500 0.069601 99.851453
870.000000 0.597040 -1.665000 0.068757 99.808621
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880.000000 0.716200 -1.720000 0.081546 99.804545
890.000000 0.933427 -1.505000 0.105057 99.830899
900.000000 2.209699 -1.915000 0.246046 99.787222
910.000000 0.085189 -0.570000 0.009367 99.937363
920.000000 0.668533 -1.192500 0.072761 99.870380
930.000000 0.751987 -1.433750 0.080984 99.845833
940.000000 1.557019 -2.297500 0.166046 99.755585
950.000000 0.549570 -2.206250 0.057984 99.767763
960.000000 2.041239 -2.600000 0.213207 99.729167
970.000000 0.814458 -0.526250 0.084010 99.945747
980.000000 1.971323 -2.160000 0.201600 99.779592
990.000000 2.707700 -3.361250 0.274437 99.660480
1000.000000 0.661901 0.703750 0.066144 99.929625
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