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Abstract

Artificial intelligence (AI) has long been tested through games, which serve as a benchmark for
reasoning and problem-solving. This paper explores the capabilities of Large Language Models
(LLMs) in playing the 2D puzzle game Baba is You, a game in which players manipulate rules
by rearranging text blocks that define object properties and behaviours. Unlike traditional
games with fixed rules, Baba is You requires dynamic rule changes, making it a compelling
challenge for LLMs.
This research investigates whether LLMs can understand and play Baba is You, focusing on

their ability to manipulate rules and solve puzzles. Two approaches are investigated: prompt-
based learning and fine-tuning. Six LLMs — GPT-4o, Gemini Flash 1.5, Mixtral 8x7B, Mistral
7B, OLMo 7B and OLMo 13B — are evaluated using different prompts, including simple,
rule-extended and action-extended prompts. In addition, the Mistral and OLMo models are
fine-tuned using textual and structural data extracted from the game.
Experimental results show that while larger models such as GPT-4o perform better in

reasoning and puzzle solving, smaller models struggle to recognise game mechanics and apply
rule changes. Fine-tuning improves on analysing the levels, but does not significantly improve
solution formulation. The results highlight the potential and limitations of LLMs in dynamic
rule-based environments and provide insights into their applicability to complex problem-solving
tasks.
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1 Introduction

Artificial Intelligence (AI) has a long history in games. It has been a benchmark for reasoning,
decision-making, and problem-solving. From early games like chess, to complex dynamic
environments [3, 5, 28, 33–35], games provide a controlled but challenging testbed for AI
research. This thesis investigates the use of large language models (LLMs) in the context of
the 2D puzzle game Baba is You [37]. Unlike conventional games, Baba is You allows players
to manipulate the rules of the game environment by rearranging text blocks that define object
properties and behaviours. Success in the game requires players to dynamically adapt their
strategies by analyzing existing rules, breaking them, or creating new ones to achieve the
desired outcome.
LLMs have attracted significant attention because of their capabilities in natural language

processing (NLP). They excel in tasks across various domains including text generation, machine
translation, conversational agents and code generation [23]. The transformer architecture
revolutionized NLP by introducing the self-attention mechanism [40]. This mechanism improved
the contextual understanding of the model compared to earlier architectures such as recurrent
neural networks (RNNs) and long short-term memory networks (LSTM). LLMs are trained on
massive text data using unsupervised or semi-supervised learning techniques. Where the model
learns to generate or predict missing tokens based on the surrounding context. To improve
the output of LLMs different techniques are used, such as fine-tuning [45], reinforcement
learning with human feedback (RLHF) [8] and prompt-based learning [17]. Fine-tuning adapts
a pre-trained model to specific tasks or domains. RLHF helps with creating better outputs by
incorporating human-generated evaluations to refine the model’s responses. Lastly, prompt-based
learning can be used to optimize the model’s output by crafting good input prompts.
LLMs have shown promise in handling various tasks that involve language understanding

and generation, but their use extends beyond typical language processing tasks. LLMs are also
used as agents in games [1, 38]. Baba is You is particularly interesting for LLMs due to its
language manipulation mechanics. Its dynamic rule changes make the game unique. Firstly,
in most games rules are fixed, but here they constantly change. Secondly, a core mechanic
of Baba is You is breaking, modifying, and creating rules by rearranging words in the game
world. This requires understanding how language shapes the mechanics in the game. The model
then has to use this understanding to solve puzzles. Since LLMs are trained on large amounts
of text, they recognizing patterns in language bit according to Mirchandani et al. [21] LLMs
are not just language models but general pattern models, meaning that their capabilities go
beyond mere language pattern recognition. The game Baba is You goes beyond simple pattern
recognition. To succeed, an LLM must understand how rule changes affect the game state and
apply that understanding. Some solutions require unconventional thinking, where the player (or
AI) must redefine what is possible within the logic of the game. This makes Baba is You a
compelling test for LLMs. Not only does it challenge their ability to follow instructions, but also
their ability to learn, apply, and manipulate context-based rules, as well as for solve problems
creatively.
While LLMs perform well on some reasoning tasks [18, 47], few studies examine their

effectiveness in games like Baba is You. A study by Nathan Cloos et al. [9] found that state-of-
the-art LLMs struggle with generalizing rule manipulations. This suggests a need for further
exploration of fine-tuning and prompting techniques.
In this thesis, we tested the two types of learning. We first test how LLMs do out of the box

on Baba is you with prompt-based learning. Secondly, we fine-tune two different LLMs. For
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prompt-based learning, we show the result of six different LLMs: GPT-4o [13], Gemini-Flash
1.5 [36], OLMo 2 13B [26], OLMo 2 7B [26], Mixtral 8x7B [16] and Mistral 7B [15]. For each
LLM, three different prompts were tested. We fine-tuned the Mistral 7B and OLMo 7B LLMs
with textual data from the game Baba is You. Our choice of GPT-4o is based on its status as
one of the current state-of-the-art LLMs as well as its branding as a better reasoning model,
while Gemini-Flash 1.5 is not branded as a reasoning model, it ranks highly as a promising
alternative. We selected Mistral and OLMo because they are relatively easy to fine-tune and,
despite their smaller size, have shown strong performance compared to other models in their
category.

1.1 Research question

This research investigates the ability of LLMs to play Baba is You assessing their capacity to
understand and manipulate in-game rules. Level solving refers to identifying the problem within a
level and generating a correct solution based on the given rules, while rule manipulation is a tool
that allows players to break existing rules or create new rules. By analyzing their performance
across different puzzle types and prompting techniques, this study provides insights into the
limitations and potential of language-based AI in complex problem-solving environments. Our
main problem statement is:

Is an LLM able to understand and play the game Baba is You?

We operationalize this into the following research questions:

RQ1: How does the choice of pre-trained LLMs affect the performance on
level-solving tasks in Baba is You? .

RQ2: To what extent can an LLM create new rule manipulations and apply
them in the game Baba is You to solve the puzzles?

RQ3: How does fine-tuning with textual and structural data from Baba is You
affect the performance of an LLM in learning to play the game compared to models
without such fine-tuning?

1.2 Thesis overview

The thesis is structured as follows: Section 2 provides the background information. Section 3,
describes the game mechanics of the game Baba is You. Section 4 outlines the methodology
used. Section 5 presents the experiments and their outcome. Finally, Section 6 concludes the
thesis.
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2 Related work

2.1 Prompt-based learning

We will now explain why it is interesting to study a reasoning game, by looking at step by step
LLM reasoning. With the advent of LLMs, a new type of learning has emerged: Prompt-based
Learning [17]. This type of learning occurs at inference time, which means that the model
parameters are not changed during training. The general idea behind prompt-based learning
is to provide the LLM with a task-relevant prompt accompanied by a question. The prompt
consists of a task instruction, which is a description of the task the model should perform.
Next, there are examples, which are input-output pairs that demonstrate the task. They assist
the model in recognizing the pattern or relationship between inputs and expected outcomes.
The prompt does not always include examples, depending on the type of learning being used.
Finally, there is a query prompt, which typically includes a new input or query for the model to
solve. Depending on the number of examples provided in the prompt, three distinct learning
types emerge: Zero-shot learning, one-shot learning, and few-shot learning [4].
Zero-shot prompt-based learning refers to a model’s ability to perform a task without seeing

any examples of it during inference. In this case, the model generates an output based solely
on the task description and query provided by the prompt. One-shot prompt-based learning
gives the model a single example of the task, in addition to the task description and query.
Few-shot prompt-based learning, as the name implies, involves providing the model a few
samples (usually 2-5) in the prompt, as well as the task description and inquiry. [4].

Figure 1: Example of CoT prompting vs standard prompting (CoT reasoning process is
highlighted) [43, Fig. 1].

After this, the idea of having the model generate intermediate steps, work through these
steps and then answer the final question is raised. To unlock these reasoning abilities, letting
LLMs generate intermediate steps, or a chain of thought (CoT), can be achieved in several
ways.
The first attempt was through supervised learning [25] after this few-shot CoT prompt was

tried [43]. The general idea is that the prompt is created by including a series of demonstrations
or examples that consist of three main components: the input, the chain of thought, and the
output. Here is how the prompt is constructed: The prompt begins by presenting a task or
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question (such as a mathematical word problem, a common sense question, or a symbolic
reasoning task). This is the initial input to the model to be solved. After the input, instead of
providing the answer directly, a sequence of natural language reasoning steps is introduced.
These steps break down the process required to arrive at the final answer. The reasoning is
clearly explained step by step, similar to how a human would think through the problem. The
final part of each example is the correct output, which represents the final answer to the task
after going through the intermediate reasoning steps (Figure 1). The paper concludes that CoT
improves performance in solving complex reasoning tasks on sufficiently large language models.

Figure 2: Example of Zero-shot CoT prompting [19, Fig. 1].

Koijma et al. [19] propose a zero-shot CoT template for reasoning. The difference with Wei et
al. [43] is that it does not require a few examples in the prompt, they unlock the reasoning step
by adding the ”Let’s think step by step” sentence at the end of each prompt see Figure 2. This
prompting method involves two steps: the reasoning extraction and the answer extraction. The
reasoning extraction exists of the input question and the ”Let’s thinks step by step” sentence.
The answer extraction exists of the prompt sentence created in the reasoning extraction, the
output of the reasoning extraction prompt and the sentence to trigger the answer. This prompt
is self-augmented because it contains the sentence that is generated by the same model.
Wang et al. [42] introduce a plan and solve prompting (PS) see Figure 3. A new zero-shot

CoT prompting method has been developed which enables LLM systems to formulate a plan
for solving a given problem and generate the intermediate reasoning process before making a
final prediction for the input problem. Like Zero-shot-CoT, PS Prompting involves two steps as
well. The proposed prompt template begins with an inference in step 1 to create the reasoning
process and solution to a problem. In the second stage, it collects the responses to be evaluated
using the answer extraction prompt. The prompt consist of a question followed by ”Let’s first
understand the problem and devise a plan to solve the problem. Then, let’s carry out the plan
and solve the problem step by step.” They extend this sentence with more detailed instructions
to reduce errors in the reasoning step.
Another approach is self-ask [29] (Figure 4). This builds on one- or few-shot CoT but instead

of using examples of the Chain-of-Thought the prompt has to explicitly state the next follow-up
question it wants to ask before answering it. Self-ask uses also one- or few-shot prompt that
shows the question and how to formulate follow up questions and answers and ends with the
question that wants to be answered together with ”Are follow up questions needed here:”.
The model starts with giving follow-up questions and answers until it thinks it has enough
information to answer the original question and gives the final answer.
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Figure 3: Example with Plan-and-Solve (PS) prompting [42, Fig. 2].

Figure 4: Example prompt with self-ask [29, Fig. 2].

2.2 Fine-tuning

Another approach to learning a pre-trained LLM to perform a new task is fine-tuning, where
the parameters of the model are adjusted [14]. Fine-tuning is used to train LLMs to specialise
in specific tasks or domains. LLMs are initially trained on large amounts of general data,
resulting in a lack of precision in specific tasks; fine-tuning bridges this gap by updating
the model’s parameters using smaller domain-specific data sets. This method relies on the
existing knowledge of the model to improve performance on specific tasks using less data and
computational resources. Fine-tuning involves transferring the patterns and features learned
by the pre-trained model to new tasks, improving performance and minimising the amount of
training data required. One of the most commonly used techniques for fine-tuning an LLM is
supervised fine-tuning (SFT), which uses labelled data to train the model for the target task.
Instruction-tuning is a form of SFT that involves feeding natural language instructions to

the LLM. The LLM learns to interpret these instructions, allowing it to perform specific tasks
without requiring huge amounts of labelled data for each task. The data consists of (Instruction,
Output) pairs where the Instruction is a human instruction and the Output is the desired
response by the LLM for that instruction [48].
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Figure 5: Different PEFT methods [11, Fig. 4].

2.3 Techniques for updating pretrained LLM weights

2.3.1 Full Fine-tuning

Full tuning involves updating all the parameters in the model. This technique can be costly
and time consuming, as the pre-trained model often contains billions of parameters that need to
be updated. This fine-tuning method, seen in models such as OpenAI’s Generative Pre-trained
Transformer (GPT) [31], involves minimal addition of task-specific parameters. Instead, it
adapts the model to new tasks by adjusting all pre-trained parameters through direct fine-tuning
on the target tasks.

2.3.2 Parameter-efficient Fine-tuning (PEFT)

Parameter-efficient fine-tuning (PEFT) is an alternative to full fine-tuning. PEFT is more
resource and time efficient, since it focuses on adjusting a minimal set of parameters to enhance
performance compared to full fine-tuning on downstream tasks [11].

Reparametrized fine-tuning is a category of PEFT (Figure 5c) that introduces new low-rank
trainable parameters during training, which are later merged with the original model. A notable
method in this category is Low-Rank Adaptation (LoRA) [12], an approach that aims to improve
the efficiency of fine-tuning by reducing the number of parameters that need to be updated.
Instead of modifying the entire model, LoRA approximates the difference between pre-trained
and task-specific weights using a low-rank matrix. This technique not only minimises memory
and computational requirements, but also results in a more compact set of fine-tuned weights.
The efficiency of LoRA comes from its use of low-rank decomposition, where large weight

updates are replaced by the multiplication of two smaller matrices. By updating only the smaller
matrices during fine-tuning, LoRA significantly reduces the computational load.

2.4 Puzzling with LLMs

The rise of AI agents achieving dominance in gaming begins in the 1990s with Deep Blue [5],
as demonstrated in the match against Garry Kasparov. IBM’s Deep Blue made history by
defeating world chess champion Garry Kasparov in a match under standard time controls,
marking the first time a computer surpassed a reigning champion in chess. This achievement
showcased the potential of brute-force search combined with domain expertise.
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As AI matured, research shifted the focus on solving entire games Schaeffer, J., et al. [32]
solved the game of checkers. Demonstrating that with optimal play the game always ends in a
draw. This accomplishment required an exhaustive search of the game’s state space and served
as a milestone in deterministic game-solving.
After this there was a shift in AI agents playing games. Machine and reinforcement learning

was used to tackle increasingly complex games. DeepMind’s AlphaGo [34] defeated world
champion Lee Sedol in Go by combining deep neural networks with Monte Carlo Tree Search
(MCTS). This was followed by DeepMind’s AlphaZero [35], which mastered Chess, Shogi
and Go without any domain-specific knowledge. It relied solely on self-play and reinforcement
learning. This demonstrated the power of general-purpose algorithms to achieve superhuman
performance across games. Another milestone was DeepMind’s MuZero [33]. An evolution
of AlphaZero. MuZero mastered chess, shogi and Atari video games without being explicitly
programmed with the rules of these games. Instead, it learned both a model of the environment
and optimal strategies through reinforcement learning. This demonstrated the potential of
model-based learning to solve problems in unknown or partially understood domains.
With the introduction of LLMs a new kind of AI emerged in the field of AI agents playing

games. This development has opened up new possibilities using LLMs as agents in various
games. An example is ChessGPT [10], a substantial game and language dataset for chess
has been created, upon which two models, ChessCLIP and ChessGPT, have been introduced.
Furthermore, an evaluation strategy has been devised to assess the models’ capabilities in terms
of modeling, value judgment and policy.
In a study by Li et al. [20], the ability of LLMs to play Minesweeper was evaluated. The

study compared two ways of inputting information – tabular and coordinate representations –
to determine how they affected LLM performance. While GPT-3.5 demonstrated a basic grasp
of the game, techniques such as few-shot prompting only improved performance marginally.
By contrast, GPT-4 was better at identifying mines but was not always able to complete a
level. This finding underscores the efficacy of Minesweeper as a reliable metric for assessing
the problem-solving capabilities of LLMs.
Noever and Burdick [24] introduce an approach to the solution of puzzles such as mazes,

Sudoku and the Rubik’s Cube. This method employs GPT-2 to generate solutions to these
puzzles, a technique which is distinct from both traditional search-based and heuristic-driven
approaches. The method involves training a language model on a database of solved puzzles,
thereby enabling it to generate plausible solutions without the need for explicit human guidance.
This approach demonstrates the potential of generative models to address complex problems in
combinatorial spaces, highlighting a shift from search-based methods to text-based reasoning.
The study by Xu et al. [46] propose a framework, using tuning-free LLM agents to play the

game Werewolf, which is a communication game. They investigate how historical experiences
shape the capabilities of LLMs. Interestingly, they notice the emergence of unplanned strategic
behaviors in LLMs during gameplay, including trust, confrontation, camouflage, and leadership.
These studies highlight the growing potential of LMMs in solving puzzles and playing games
across various domains.
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3 Environment

The game Baba is You [37] is a 2D puzzle game with levels, a level is represented as a grid
filled with objects and text blocks (see Figure 6). Text blocks can be used to create rules; these
rules can be created from left to right or from top to bottom. The rule is active if there is at
least one object, one verb, and one object or property aligned in a valid syntax (Figure 7).
Objects are elements in the game, for example BABA, WALL or ROCK, verbs are IS or HAS

and properties determine the action of objects, for example PUSH, STOP, WIN or YOU. Rules
in the game determine how objects in the game behave, and these rules can be created or
broken during the level, except for TEXT IS PUSH, which means that text tiles can always be
pushed, and BORDER IS STOP, which means that it is not possible to cross the border of the
grid, these rules are always on by default without text tiles saying so. Some rules cannot be
broken for the whole level if they are placed against the border or in an inaccessible corner.
The level is completed when the object that is part of the IS YOU rule touches the object that
is part of the IS WIN rule, or when the is you object itself is also IS WIN. An important aspect
of the game is that if the IS YOU rule is broken, or if there are no IS YOU objects left in the
game, the player cannot continue and should restart the level or redo an action.
Every solvable level should have a win condition and a object that can be controlled by the

player. In this game an object does not really matter until there is a rule assigned to the object.
If there are multiple objects of the same kind they all act the same when a rule is assigned to
it. The three basic formats of the rules are:

• < Object > IS < Property >. This rule gives an object a property and determines how
an object behaves in the game.

• < Object1 > IS < Object2 >. This means that all instances of object 1 transforms into
object 2.

• < Object1 > IS < Object1 >. This rule sets an object to be itself and therefore override
the transformation rule.

The most common properties and rules are explained in Table 1.
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Figure 6: Example level with a baba
and flag object. Where the baba ob-
ject is controlled by the player be-
cause of the rule BABA IS YOU and
the flag object has no rule assigned
to it yet.

Figure 7: Same level where the rule
FLAG IS WIN is created, meaning
that the flag object has become the
win object. To win this level baba
needs to move to the tile where the
flag object is located.

<object 1> IS
<object 2>

Transforms all instances of object 1 into object 2

<object 1> IS
<object 1>

Set an object to be itself and therefore becomes immutable for the
transformation rule.

<object> IS
WIN

Makes the object the win condition anything controlled by you
touches or is the object wins.

<object> IS
YOU

Objects that are set to be YOU can be controlled by you. All
objects will move simultaneously.

<object> IS
PUSH

Objects set to PUSH can be moved by either an object controlled
by you or other movable objects, shifting them one tile forward
and occupying the new tile if possible.

<object> IS
MOVE

Objects move one space per turn in their facing direction, reversing
direction if they hit an object, and if an object is both YOU and
MOVE, it moves two spaces per turn.

<object> IS
STOP

Objects becomes impassible, important is that nature of the PUSH
rule overrides the blocking mechanism.

<object> IS
SINK

Objects that are set to SINK will destroy themselves as well as any
other object that comes in contact with them.

<object> IS
HOT, <object>

IS MELT

Objects set to HOT will destroy anything set to MELT that
touches them. If an object is both HOT and MELT, it will destroy
itself.

<object> IS
KILL

Objects set to KILL destroy all objects controlled by you when
they touch them, while remaining intact themselves. Note that the
nature of the PUSH rule overrides this mechanic.

Table 1: Explanation of common rules in the game BABA IS YOU.
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3.1 ASCII representation

For the research we used a simplified version of the game, in this version we used the jam
version of Baba is You 1 and a section of the game mechanics of ”Game Module” from Baba
is Y’all [7]. A Python version of parts of the ”Game Module” was created and adapted. The
functionality of the program is outlined as follows: an input string of characters, where each
character corresponds to an object or text tile in the level, forms an ASCII representation of
the level, see figure 8. A sequence of moves is then given to the program, and the level is
loaded, with the sequence of moves being played through the level, updating the currently
active rules after each move. The game ends when the sequence of moves is completed or
when the winning condition is met. The use of ASCII representation allows for a straightforward
representation of the levels to an LLM.

__________

_B12 ...13_

_........_

_........_

_.....F.._ -->

_.b....f._

_........_

_........_

_........_

__________

Figure 8: ASCII representation of a level.

In the simplified version of the game, the player is able to perform four distinct actions.
Firstly, the player can move the object they are controlling towards an object or text block.
Secondly, the player can break a rule, which involves pushing a text block away from the rule
with the object they are controlling, thereby the rule becomes inactive. Thirdly, the player can
make a rule, which involves aligning text blocks with the object they are controlling so that
it has a valid syntax, thereby it becomes an active rule. The final action involves the act of
pushing objects or text blocks with the object under control; however, it should be noted that
objects can only be pushed if they are set to PUSH by a rule. Making a rule consists of a
sequence of push to and move to actions (Figure 9).

1https://hempuli.itch.io/baba-is-you
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(a) Level 4: A flag object is the win
condition but there is currently no flag
object to reach.

⇒

(b) The rule ROCK IS FLAG is created
and the rock object is transformed into
a flag object.

(c) Level 6: The flag object, which
serves as the win condition, is sur-
rounded by pushable rock objects.

⇒

(d) Two rock objects are pushed away
by the baba object to clear the path to
the flag object.

(e) Level 12: The path towards the flag
object (win condition) is blocked by
lava because its hot and baba object is
set to melt.

⇒

(f) The rule BABA IS MELT is broken
this means baba will not melt when
touching the lava. This way the path
toward the flag object is cleared.

Figure 9: Examples of different game mechanics using the flag as a win condition. Each
sequence shows how obstacles are manipulated or rules are changed to create a path to
the flag.
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4 Method

In this chapter, we describe the methodologies used in our study, including data collection,
experimental setup, and analysis techniques.

4.1 LLM models

We use six different LLMs for this research. The first is GPT-4o [13], developed by OpenAI.
It is considered a state-of-the-art model due to its strong performance on various tasks, making
it a valuable candidate for this study. Secondly, GPT-4o is the beginning of a transition where
a model can reason at inference time [39], which is where it differs from the other models.
OpenAI has not disclosed the exact number of parameters. GPT-4o has an input context
window of 128K tokens, allowing it to process large amounts of information at once.
Gemini 1.5-Flash [36], developed by Google DeepMind, is designed for cost efficiency and fast

inference. Its exact number of parameters has not been disclosed. It features a long context
window that supports up to 1M tokens by default. This allows it to handle extended text
histories, processing over 700,000 words in a single prompt. The model is optimized for speed,
prioritizing fast inference.
Mistral 7B Instruct[15], created by Mistral AI, is a model with 7 billion parameters, making it

relatively compact for an LLM. The ”Instruct” designation indicates fine-tuning for instruction-
following tasks. Another model from Mistral AI, Mixtral 8x7B[16], as a Mixture of Experts
(MoE) architecture with a total of 45 billion parameters, but only 12 billion parameters are active
at a time, as it selects two out of eight experts per prompt. This design reduces computational
cost while maintaining efficiency. Both models have a 32K token context window.
The OLMo models [26] (7B and 13B) were developed by the Allen Institute for AI (AI2) to

support open research. OLMo 7B has 7 billion parameters and is designed for general NLP
tasks, while OLMo 13B has 13 billion parameters and offers increased reasoning capabilities.
We used the instruct version of both models. AI2 is the only organization among these model
developers that has disclosed the exact dataset used for pretraining. Both models are trained
on Dolma, an open dataset that includes a mix of web content, academic publications, code,
books, and encyclopedic materials. Multiple versions of this dataset are available. The OLMo
models are designed with a focus on research accessibility, interpretability, and transparency.

4.2 Prompt-based learning

To enable the model to understand and play the game Baba is You, we first construct
a prompt. This prompt consists of a short description of the game mechanics, followed by
definitions of the characters to interpret the given level. Next, we explain the different rules
that can be created in the game. After this a question is given to solve the given grid level
with at the end a PS sentence to activate CoT.
We developed three distinct types of prompts: the simple prompt, which contains only the

above description (see Figure 10); a rule-extended prompt, which additionally includes the
active rules of the level (see Figure 11); and an action-extended prompt, which further expands
upon the previous version by including an explicit description of the possible actions that can
be performed in the game (see Figure 12). Following the approach by Nathan Cloos et al. [9],
we adopt the sequence of actions they introduced in their prompt, modify them slightly, and
add an additional action to improve the push mechanism of the game.
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The construction of these prompts is manual, with the process being developed through
a process of trial and error. Following the submission of a prompt to ChatGPT with version
GPT-4o, the result output was examined to identify areas for improvement. The prompt was
then adjusted and re-submitted until a satisfactory result was obtained. Subsequently, the
refined prompt was submitted to ChatGPT with GPT-4o version, requesting that it be further
refined. This process ultimately led to the creation of the final prompt.

Model Input
You are helping to solve a gridworld game. In Baba is You, the player can change the game rules by moving text blocks around. The grid contains object text and property text.

Text Blocks:
Object Text: Words representing game objects.
Property Text: Words that describe actions or properties.

Active Rules:
A rule is formed when the text blocks are aligned in a valid way, either horizontally or vertically. Valid rule formats include:
<object text> IS <property text>: Grants a property to an object.
<object1 text> IS <object2 text>: Changes one object into another.
<object1 text> IS <object1 text>: Makes an object immutable.
The goal is to use these rules to solve the level by moving the text blocks and controlling the objects.

The level is displayed in a 2D grid, where each character has the following meaning:
Text blocks in the game which always can be pushed:
<object text>:

B = BABA,
S = SKULL,
F = FLAG,
O = FLOOR,
A = GRASS,
L = LAVA,
R = ROCK,
W = WALL,
K = KEKE,
G = GOOP,
V = LOVE

<property text>:

1 = IS,
2 = YOU,
3 = WIN,
4 = KILL,
5 = PUSH,
6 = STOP,
7 = MOVE,
8 = HOT,
9 = MELT,
0 = SINK

Objects in the game:
<object>:

b = object baba,
s = object skull,
f = object flag,
o = object floor,
a = object grass,
l = object lava,
r = object rock,
w = object wall,
k = object keke,
g = object goop,
v = object love,

= border,
. = empty space

<object text> IS YOU: Makes the object you control in the game. You can move it and push blocks.
<object text> IS WIN: The object you need to reach or to be to win the level.
<object text> IS STOP: Makes the object impassable (you can’t move through it).
<object text> IS MELT: Makes the object melt when touched by something marked as HOT.
<object text> IS HOT: Makes the object destroy any object marked as MELT when they touch it. If the same object is both HOT and MELT it self-destructs.
<object text> IS MOVE: Makes the object move one step in its direction every turn.
<object text> IS KILL: Makes the object destroy anything you control when touched, but it stays intact.
<object text> IS PUSH: Lets you push the object or have it pushed by other moving objects.
<object text> IS SINK: Makes the object destroy itself and anything it touches when it is touched.

Question: Give a solution to the following grid level:

__________\n_B12 ..F13_\n_ ........_\n_ ........_\n_ ........_\n_.b....f._\n

_........_\n_ ........_\n_ ........_\n__________\n

Let’s first understand the problem, extract the relevant objects, text blocks and rules (explain the rules) in the level and make a plan to solve the problem. Then let’s carry out the plan by giving the
intermediate actions (using common sense). Solve the problem step by step and show the solution.

Figure 10: Simple prompt: consisting only of a short game description and definitions of
the characters and rules. Followed by a question to solve a level with at the end a sentence
to activate zero-shot CoT.
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Model Input
You are helping to solve a gridworld game. In Baba is You, the player can change the game rules by moving text blocks around. The grid contains object text and property text.

Text Blocks:
Object Text: Words representing game objects.
Property Text: Words that describe actions or properties.

Active Rules:
A rule is formed when the text blocks are aligned in a valid way, either horizontally or vertically. Valid rule formats include:
<object text> IS <property text>: Grants a property to an object.
<object1 text> IS <object2 text>: Changes one object into another.
<object1 text> IS <object1 text>: Makes an object immutable.
The goal is to use these rules to solve the level by moving the text blocks and controlling the objects.

The level is displayed in a 2D grid, where each character has the following meaning:
Text blocks in the game which always can be pushed:
<object text>:

B = BABA,
S = SKULL,
F = FLAG,
O = FLOOR,
A = GRASS,
L = LAVA,
R = ROCK,
W = WALL,
K = KEKE,
G = GOOP,
V = LOVE

<property text>:

1 = IS,
2 = YOU,
3 = WIN,
4 = KILL,
5 = PUSH,
6 = STOP,
7 = MOVE,
8 = HOT,
9 = MELT,
0 = SINK

Objects in the game:
<object>:

b = object baba,
s = object skull,
f = object flag,
o = object floor,
a = object grass,
l = object lava,
r = object rock,
w = object wall,
k = object keke,
g = object goop,
v = object love,

= border,
. = empty space

<object text> IS YOU: Makes the object you control in the game. You can move it and push blocks.
<object text> IS WIN: The object you need to reach or to be to win the level.
<object text> IS STOP: Makes the object impassable (you can’t move through it).
<object text> IS MELT: Makes the object melt when touched by something marked as HOT.
<object text> IS HOT: Makes the object destroy any object marked as MELT when they touch it. If the same object is both HOT and MELT it self-destructs.
<object text> IS MOVE: Makes the object move one step in its direction every turn.
<object text> IS KILL: Makes the object destroy anything you control when touched, but it stays intact.
<object text> IS PUSH: Lets you push the object or have it pushed by other moving objects.
<object text> IS SINK: Makes the object destroy itself and anything it touches when it is touched.

Question: Give a solution to the following grid level:

__________\n_B12 ..F13_\n_ ........_\n_ ........_\n_ ........_\n_.b....f._\n

_........_\n_ ........_\n_ ........_\n__________\n

Current active rules: BABA IS YOU.
Let’s first understand the problem, extract the relevant objects, text blocks and rules (explain the rules) in the level and make a plan to solve the problem. Then let’s carry out the plan by giving the
intermediate actions (using common sense). Solve the problem step by step and show the solution.

Figure 11: Rule-extended prompt: In addition to the simple prompt the active rules of
the level are added in the question part.
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Model Input
You are helping to solve a gridworld game. In Baba is You, the player can change the game rules by moving text blocks around. The grid contains object text and property text.

Text Blocks:
Object Text: Words representing game objects.
Property Text: Words that describe actions or properties.

Active Rules:
A rule is formed when the text blocks are aligned in a valid way, either horizontally or vertically. Valid rule formats include:
<object text> IS <property text>: Grants a property to an object.
<object1 text> IS <object2 text>: Changes one object into another.
<object1 text> IS <object1 text>: Makes an object immutable.
The goal is to use these rules to solve the level by moving the text blocks and controlling the objects.

The level is displayed in a 2D grid, where each character has the following meaning:
Text blocks in the game which always can be pushed:
<object text>:

B = BABA,
S = SKULL,
F = FLAG,
O = FLOOR,
A = GRASS,
L = LAVA,
R = ROCK,
W = WALL,
K = KEKE,
G = GOOP,
V = LOVE

<property text>:

1 = IS,
2 = YOU,
3 = WIN,
4 = KILL,
5 = PUSH,
6 = STOP,
7 = MOVE,
8 = HOT,
9 = MELT,
0 = SINK

Objects in the game:
<object>:

b = object baba,
s = object skull,
f = object flag,
o = object floor,
a = object grass,
l = object lava,
r = object rock,
w = object wall,
k = object keke,
g = object goop,
v = object love,

= border,
. = empty space

<object text> IS YOU: Makes the object you control in the game. You can move it and push blocks.
<object text> IS WIN: The object you need to reach or to be to win the level.
<object text> IS STOP: Makes the object impassable (you can’t move through it).
<object text> IS MELT: Makes the object melt when touched by something marked as HOT.
<object text> IS HOT: Makes the object destroy any object marked as MELT when they touch it. If the same object is both HOT and MELT it self-destructs.
<object text> IS MOVE: Makes the object move one step in its direction every turn.
<object text> IS KILL: Makes the object destroy anything you control when touched, but it stays intact.
<object text> IS PUSH: Lets you push the object or have it pushed by other moving objects.
<object text> IS SINK: Makes the object destroy itself and anything it touches when it is touched.

A solution exists of one or more actions. An action can be one of the following:
Move To[ ]:
The player-controlled object moves to a valid target in the grid:
<object>, <object text>, or <property text>.
This action is valid only if the specified target is present in the grid.

Break Rule[ ]:
Removes an active rule unless it’s at the border. Effects depend on the rule:
[<object text> IS <property text>]: Removes the property from the object.
[<object1 text> IS <object2 text>]: No changes occur.
[<object1 text> IS <object1 text>]: Makes the object mutable.

Make Rule[ ]:
Creates a new rule using valid text blocks in the grid, with effects depending on the rule:
[<object text> IS <property text>]: Grants a property to the object.
[<object1 text> IS <object2 text>]: Transforms <object1> into <object2>.
[<object1 text> IS <object1 text>]: Makes <object1> immutable.
This action requires all components of the rule to be present in the grid.

Push[ ]:
The player-controlled object pushes another object or text block in the grid. Effects depend on what is pushed:
Text blocks <object text>, <property text>: Can be pushed to arrange or create rules.
Objects <object>: Can be pushed towards other objects if the pushed object is set to ”push.”
This action is valid only if all elements are present in the grid and not placed at the border.

Question: Give a solution to the following grid level:

__________\n_B12 ..F13_\n_ ........_\n_ ........_\n_ ........_\n_.b....f._\n

_........_\n_ ........_\n_ ........_\n__________\n

Current active rules: BABA IS YOU.
Let’s first understand the problem, extract the relevant objects, text blocks and rules (explain the rules) in the level and make a plan to solve the problem. Then let’s carry out the plan by giving the
intermediate actions (using common sense). Solve the problem step by step and show the solution.

Figure 12: Action-extended prompt: In addition to the rule-extend prompt an action
format is given to help formulating the solution steps.
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4.3 Evaluation of Reasoning

In order to investigate how well LLMs perform in reasoning and solving Baba is You levels,
a manual analysis was performed to examine the reasoning chains generated by LLMs while
solving Baba is You levels. The reasoning chain can be divided into four distinct sections:
the interpretation of the level, the formulation of the problem statement, the formulation of
the solution for the problem, and the formulation of the actions that should be taken for
the solution. The first two sections are part of the analysis of the level, while the latter two
sections are part of the solution process so formulating an answer consists of four steps. Table 2
summarizes errors encountered in these steps. If a step is correct, it is marked with a c label to-
gether with the number of the step, otherwise errors are classified according to the subcategories.

The process of interpreting the level involves the identification of the objects and text blocks
present within the level, as well as the rule definition of all the currently active rules within
the level. An incorrect interpretation of the level can result from the hallucination of the
model, incorrect definition of terms, or lack of complete information. Hallucination refers to
the identification of objects, text blocks, or rules that are not present on the level. An incorrect
definition may include the incorrect classification of an object or text block (e.g., ”F is an
object FLAG”) or the failure to define a rule. Incomplete information can be defined as the
absence of defining objects, text blocks, or rules that are present in the level.

The formulation of the problem statement should include a clear definition of the objective of
the level, together with any obstacles that may stand in the way of achieving the goal. An incor-
rect formulation of the problem statement could be the transfer of errors, incomplete information,
incorrect assumptions or hallucinations of the model. The transfer of errors can be defined as the
propagation of errors from a preceding step to the current step, by which the current step is also
affected due to the presence of errors. Incomplete information refers to missing elements in the
problem statement. Wrong assumptions include, for instance, the assumption that a flag object
in the game, in the absence of a corresponding rule (FLAG IS WIN), constitutes a win condition.

The formulation of the solution incorporates a solution that is accurate and appropriate for the
level in question. A correct solution comprises a description of the steps that can be performed
in the level and which result in the level being solved. An incorrect formulation may manifest
itself in one or more of the following ways: Transfer of mistakes, hallucinations, wrong reasoning
or incomplete solution. The transfer of errors can be defined as the propagation of errors from
the preceding steps to the current step. Hallucination is defined as the introduction of rules that
cannot be derived from the text blocks present in the level, the breaking of rules that are not
present at all, or actions with objects that are not present in the level. Incorrect reasoning can be
defined as: misinterpreting the syntax of the rules, meaning struggling to correctly interpret the
specific format and structure of the rule blocks. Failure to consider rule interactions, where the
game operates on the principle of rule manipulation, where different rules interact in complex
ways, a failure to fully understand how the interactions between rules lead to constraints or
unintended outcomes. Overlooking constraints means that they generate strategies that do not
take into account the specific constraints of the level. Failure to deal with ambiguity, in levels
where the correct solution is not immediately obvious, leads to incorrect assumptions about
the state of the game or overly simplistic strategies that ignore the complexity of the level. In-
complete solution means that the formulated solution misses components to fully solve the level.
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The action formulation includes the actions the player must take within the level to successfully
solve the problem. An incorrect formulation can result in error transfer, incomplete actions,
inappropriate format, incorrect actions, or hallucination. Error transfer can be defined as the
propagation of errors from the previous steps to the current step. Incomplete actions refer to
the absence of a necessary step that should be included to solve the level. The term ”wrong
format” is only relevant to the third prompt, as the LLM should provide actions in a specific
format. ”Wrong actions” refer to the generation of actions that do not solve the problem when
followed. Finally, we have hallucination, which means that new objects or rules are mentioned
in the generated actions that were not mentioned before.
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Category Sub-Category Description

Level Interpre-
tation (w1)

(1) Hallucination
When information is completely out of
context and not present in the levels.

(2) Incorrect def-
initions

Incorrect classification of an object or
text block or incorrect definition of a
rule.

(3) Incomplete
Information

Absence of defining objects, text blocks,
or rules that are present in the level.

Formulating
Problem State-
ment (w2)

(1) Transfer of er-
rors

Wrong problem statement derived from
a previous incorrect statements .

(2) Incomplete
information

Missing elements in the problem state-
ment.

(3) Wrong as-
sumptions

Assuming a condition or rule applies
without explicit evidence.

(4) Hallucination
When information is completely out of
context and not present in the levels

Formulating
Solutions (w3)

(1) Transfer of er-
rors

Wrong solution derived from a previous
incorrect statements

(2) Hallucination
When information is completely out of
context and not present in the levels.

(3) Wrong rea-
soning

Drawing incorrect conclusions due to
misinterpreting rules, neglecting con-
straints, or failing to account for rule
interactions and ambiguities.

(4) Incomplete
solution

Missing steps to fully solve the level.

Formulating
Actions (w4)

(1) Transfer of er-
rors

Wrong actions derived from a previous
incorrect statements.

(2) Incomplete
actions

Missing actions to complete the level.

(3) Wrong for-
mat

The actions are in the wrong format
(only prompt 3).

(4) Wrong ac-
tions

Actions proposed are not solving the
level.

(5) Hallucination
When actions are completely out of con-
text.

Table 2: Error Categorization.
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4.4 Levels

To evaluate the LLMs, each model and prompt format was tested in 14 different levels, each
of which tests a different aspect of the game, see Figure 13. Most of these levels are demo
levels of the Keke AI competition [6], except level 14. The first level is the simplest, as it
does not require any rule manipulation to solve. In this level, the player must move towards
the flag to win. Levels 2-4 test the ability to create a rule, where three different aspects of
the game are tested. Level 5 tests the understanding of the immutable rule. Level 6 tests the
understanding of pushing objects. Level 7 deviates from the typical structure by not including
the IS YOU rule at the beginning. Instead, it introduces the MOVE rule, which is activated by
player input. Levels 8-10 focus on the ability to break rules with different properties. Level 11
tests understanding of the SINK rule, where there are stones that can be pushed into the goop
to create a path to the flag. Level 12 is about understanding the HOT and MELT rules. This
level can be solved in two ways: either by breaking the BABA IS MELT rule and going for the
flag, or by breaking the BABA IS MELT rule and using the bricks to establish the BABA IS
WIN rule. Levels 13 and 14 test the ability to create new rules, one involving understanding
how to make another object the controllable object. The other is to create a new winning
condition.

(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

(f) level 6 (g) level 7 (h) level 8 (i) level 9 (j) level 10

(k) level 11 (l) level 12 (m) level 13 (n) level 14

Figure 13: Levels used for the evaluation of the LLM models in playing Baba is You.

These levels require some logical thinking, but are relatively easy for humans. This is due to
our natural ability to reason. For example, humans can intuitively understand that breaking the
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WALL IS STOP rule will allow movement through the wall. In addition, it is easier for humans
to determine which rules can and cannot be broken by looking at the placement of the rules in
the grid.
However, LLMs encounter a challenge when confronted with the task of solving these levels.

These models must not only interpret the rules and mechanics of the game from the text, but
also apply them in the environment. Unlike humans, LLMs have no inherent understanding of
the world. These models rely entirely on the information provided to decide how to interact
with and manipulate the game state. The levels are designed to assess specific components of
the game, including rule creation, transformation, immutability and logical reasoning, which
are needed to determine the model’s ability to play the game Baba is You. While these puzzles
may appear simple to humans, they serve as a benchmark for evaluating the reasoning and
problem-solving abilities of different LLM models.
We tested these levels on the six different models. With the Mistral and OLMo models

the response was always exactly the same when trying one prompt multiple times. However
this was not the case with GPT-4o and Gemini Flash 1.5. GPT-4o exhibits variability in its
responses when attempting to solve a level of Baba is You with the same prompt. When it
provides an incorrect solution, repeated attempts often result in different formulated but still
incorrect answers. However, when it generates a correct solution, subsequent responses tend to
be consistent with only minor rewording or reformulations while preserving the same correct
strategy. In contrast, Gemini Flash 1.5 showed inconsistency, sometimes giving the correct
solution and other times an incorrect one for the same prompt. To evaluate accuracy, each
prompt was tested five times, and a solution was considered correct if it appeared at least three
times; otherwise, it was classified as incorrect.
For the OLMo and Mistral models, we used the ALICE high-performance computing facility

to generate the output. For the other two models we used their own API.

4.5 Fine-tuning

For fine-tuning, we combined three different datasets into a single dataset. Each dataset
contains a specific type of data. The largest dataset [2] consists of various questions designed
to improve the model’s reasoning ability. These questions cover a range of logical and analytical
challenges. The second dataset [44] contains questions specifically related to the game mechanics
of Baba is You. It includes questions about the interactions between different game elements,
the effects of specific rule changes, and the general logic of the game (Table 4). The third
dataset [44] is the smallest and consists of different levels of Baba is You. In this dataset, the
input corresponds action-extended prompt of the level description, while the output represents
the expected solution that the model should generate (Table 5). Together, these three data sets
form a combined data set used for fine-tuning see Table 3 for the exact size of each dataset.

Dataset Size

CoT-logic-reasoning 10500
Questions game mechanics 289
Levels & answers 15

Table 3: The size of the three datasets used for fine-tuning.

The dataset containing questions about the game mechanics of Baba is You was created
through the following process. Initially, a set of questions was crafted, focusing on the rules
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and mechanics of the game. Then, GPT-4o was prompted to generate additional unique
questions based on the ones we had already created. These generated questions and answers
were reviewed and, when necessary, corrected. This iterative process allowed us to quickly build
a solid dataset of questions related to the game’s mechanics.
The other dataset, which consists of levels and their solutions, is entirely handwritten. As a

result, this dataset is smaller, as more time was spent on creating detailed solutions for each
level rather than on increasing the dataset size.
We trained Mistral 7B and OLMo 7B on the combined dataset using LoRA for parameter-

efficient fine-tuning.

Dataset game mechanics
Question Answer
Describe the action

’Make Rule[<object text>

IS <property text>]’?

The ’Make Rule[<object text> IS <property text>]’ action creates

a rule that assigns the specified property to the <object text>.

This action can only be taken if <property text>, ’IS’, and

<object text> are all present in the grid level.

What happens if ’BABA

IS YOU’ and ’SKULL IS

KILL’ are active, and Baba

touches a Skull?

If ’BABA IS YOU’ and ’SKULL IS KILL’ are both active, and Baba

(the player-controlled object) touches a Skull, Baba will be

destroyed, causing the player to lose control of their character,

and likely fail the level unless another ’YOU’ object is present.

How does the ’MOVE’

property affect an object?

If an object has the ’MOVE’ property set by the rule ’<object text>

IS MOVE’, it will move one step in its facing direction on each

turn, either blocking or potentially colliding with other objects

based on its movement path.

What does ’BABA IS WIN’

do?

If the rule ’BABA IS WIN’ is active, then Baba (the object

associated with ’BABA’) becomes the winning condition. The

player could win by controlling Baba (if ’BABA IS YOU’ is active)

to instantly win the level or reach the Baba object with the

controlling object.

Table 4: Examples of questions about the game mechanics of Baba is You.

4.5.1 Parameter settings

For fine-tuning Mistral 7B and OLMo 7B we used the high performance computing facility
ALICE. For fine-tuning we used one GPU node on the A100 MIG 4g.40GB GPU.
For Mistral 7B we use a learning rate of 2e-5, which is a common value for fine-tuning trans-

former models. The per device train batch size is set to 4 and the gradient accumulation step

is set to 8, giving an effective batch size of 32. The num train epochs is set to 4, which
means that the entire data set is processed 4 times during training. To enable mixed-precision
training, where some computations use 16-bit float instead of 32-bit, we set fp16 to True;
this setting reduces the amount of memory used on the GPU.
For OLMo 7B we use a learning rate of 3e-5, which is slightly higher than for Mistral 7B.

We set the parameter auto find batch size to True which means that the batch size is
automatically adjusted to the available GPU memory and gradient accumulation step is
set to 6. The num train epochs is set to 7, which means that the entire dataset is processed
7 times during training. Again we used mixed precision training, so fp16 is set to True. We
also set lr scheduler type to cosine, which means that it uses a cosine decay learning rate
schedule that starts high and gradually decreases over time.
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Dataset level & answer
ASCII Representation Active Rules Level Description Text Solution

________

_......_

_......_

_.Sb.s._

_.1..s._

_.4b..1_

_B12 ..3_

_......_

________

BABA IS YOU

SKULL IS KILL

Current active rules are BABA IS

YOU (B12) meanig we can control

the baba object (b).

SKULL IS KILL (S14) meaning skull

objects (s) destroys all objects

controlled by you when they touch

them, while remaining intact

themselves.

The level has two skull objects

and two baba objects.

Also there are unused text blocks

IS and WIN against the right

border.

Currently there is no win

condition yet.

Problem: Currently there is

no win condition so we should

make one with the available text

blocks IS and WIN.

Solution:

- Break Rule[SKULL IS KILL], push

IS text block away.

- Move To[SKULL], move Baba toward

the SKULL text block.

- Push[SKULL], push SKULL text

block to IS.

- Make Rule[SKULL IS WIN], set

skull as win condition.

- Move To[s], move Baba to skull

to win.

____________

_v ...... V12_

_...f..... F_

_.R.....b.1_

_B12 ......3_

_...S.S14.._

____________

LOVE IS YOU

BABA IS YOU

FLAG IS WIN

SKULL IS KILL

The current active rules are

LOVE IS YOU (V12) meaning we can

control and move around the love

object (v).

BABA IS YOU (B12) meaning we can

can control and move around the

baba object (b).

FLAG IS WIN makes the flag object

(f) the win condition anything

controlled by you touches or is

the object wins.

SKULL IS KILL (S14) meaning skull

objects (s) destroys all objects

controlled by you when they touch

them, while remaining intact

themselves but are not present in

the current grid.

The level has one love object (l),

one flag object (f), one baba

object (b) and unused text blocks

ROCK (R) and SKULL (S).

Problem: There are no obstacles

in the way to solve this level.

Solution: Move To[f], move with

baba or love object towards the

flag to win the level.

____________

_.........._

_.r....f..._

_..... bssss_

_.R....... F_

_B1..f..b.1_

_AO ........_

_.rssssssss_

_......... F_

_ss...R...1_

_.... B12W.3_

_oS14 ...1.._

____________

BABA IS YOU

FLAG IS WIN

ROCK IS FLOOR

SKULL IS KILL

The current active rules are

BABA IS YOU (B12) meaning we can

control and move around the baba

object (b). FlAG IS WIN (F13)

makes the flag object (f) the win

condition anything controlled by

you touches or is the object wins.

SKULL IS KILL (S14) meaning skull

objects (s) destroys all objects

controlled by you when they touch

them, while remaining intact

themselves. ROCK IS FLOOR (R1O)

meaning all rock objects (r)

transform in floor objects (o).

The level has two baba objects

(b), two flag objects (f), two

rock objects (r), multipe skull

objects (s) in a row and one

floor object (o). The level has

the following lose text tiles,

BABA (B), GRASS (A), ROCK (R),

WALL (W) and IS (1).

Problem: there are no obstacles

in the way to solve this level.

Solution: Move To[f], move with

a baba object towards one of the

flags objects to win the level.

Table 5: Examples of the levels and answers in the level & answer dataset. The ASCII
level will be inserted in the action-extended prompt together with active rules. The
corresponding answers consist of the level description together with the text solution.
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5 Results

In this chapter, we present the findings of our study, analyzing the outcomes based on
predefined metrics.

5.1 Prompt-based learning

5.1.1 Simple prompt (1)

For the simple prompt, the biggest challenge for all models was their difficulty in correctly
identifying the active rules. GPT-4o performed better because it had less difficulty identifying
objects and text blocks in the grid (Figure 14, prompt 2). It was able to identify the correct
active rule in the first step more often, but still struggled to formulate all the active rules
especially the rules that are placed vertical. If the initial rules are not correctly identified, it
becomes much more difficult to determine the correct problem statement and solution. Both
the OLMo and Mistral models struggled to identify the correct objects and text blocks in the
grid. This made it extremely difficult for these models to generate the correct rules, which was
a critical step that they failed to bridge. As a result, the output for the simple prompt was
largely incorrect due to misinterpretation of the rules, which is why the results for this prompt
are not displayed.

5.1.2 Rule-extended prompt (2) and Action-extended prompt (3)

GPT-4o and Gemini Flash 1.5 Overall, GPT-4 performs relatively well when it comes to
solving Baba is You levels, demonstrating a strong ability to understand the grid and formulate
the correct problem statement. This is evident in the results presented in Figure 14, where
GPT-4o has fewer errors in interpreting the grid compared to other models. Additionally, it
shows reasonable performance in generating solutions for levels, as shown in Figure 15. This
suggests that GPT-4o can be useful for providing solutions to specific levels, potentially assisting
players in progressing through the game.
However, its ability to formulate actions directly on the grid itself appears to be less reliable.

Often, the actions it suggests do not align with the solutions provided in the previous step,
which can lead to inconsistencies when attempting to execute them.
One specific area where GPT-4 faces challenges is in identifying the rules that can be modified

or broken within the game. In certain levels, such as levels 13 and 14, both of which feature
obstacles blocking the path to the objective. In both levels the rule to remove the obstacle can
not be broken. But GPT-4o gives in both levels as solution to break this rule and walk towards
the flag. This highlights a particular difficulty for GPT-4o in determining which rules can and
cannot be broken due to placement in the grid.
These observations suggest that while GPT-4o is quite capable in many aspects of solving

Baba is You levels, there are certain areas where its performance could be improved, particularly
when it comes to actions within the grid and understanding the placement constraints of rules.
For GPT-4o, the addition of an action format in the third prompt resulted in a small im-

provement over the rule-extended prompt. The model demonstrated an increased tendency
to formulate correct solutions, showcasing a better understanding of the game’s mechanics.
However, despite this improvement, GPT-4o did not always strictly adhere to the specified
action format.
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Figure 14: Frequency of errors per step and subcategory in the reasoning chains generated
by the models when solving the Baba is You levels. The findings reveal that GPT-4o has
the least number of errors when formulating the reasoning chain for the levels. Furthermore,
it is demonstrated that OLMo 7B generates the most errors in the reasoning output for
the levels, primarily when defining the text blocks and objects in the grid. Finally, it is
notable that all models encounter difficulties in formulating actions on the grid itself.

Gemini Flash 1.5 demonstrates a slightly worse performance compared to GPT-4o in some
aspects, particularly in terms of identifying the correct objects and text blocks within a grid.
This issue often results in a higher frequency of errors, which, in turn, affects the overall
problem-solving process. In most cases, these errors were not a major obstacle when it came
to formulating the problem statement. However, it is important to note that the problem
statement was often incomplete, typically only mentioning the objective but neglecting to
describe the obstacles that need to be overcome. On one occasion, the problem statement was
entirely omitted.
Another noteworthy observation is the increase in hallucinations within the steps when

utilizing the third prompt. The hallucination in the first step was not that big of a problem
because it did not transfer into the other steps. But there was also more hallucination in
formulating the solution.
Interestingly, level 12, when using prompt 2, produced an unconventional solution. In this

case, the solution suggested breaking the rule ”BABA IS MELT” and creating a new rule
”LAVA IS MELT.” This modification caused the lava to disappear, which was a novel approach
to the puzzle. Furthermore, the output advised breaking this new rule and creating the rule
”BABA IS WIN,” which led to a successful solution. This solution is particularly intriguing
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Figure 15: Correctness frequency per step in the reasoning chain generated by the LLM
models. It is observed that GPT-4o has generated the most correct steps in the reasoning
chain for the levels. Furthermore, it is noted that GPT-4o and Gemini Flash 1.5 benefit from
the action-extended prompt, while the smaller models encounter difficulties irrespective of
prompt structuring.

because it is not the most straightforward approach, demonstrating a creative way to solve the
puzzle.
For action formulation Gemini Flash 1.5 shares similar challenges with GPT-4o when it comes

to generating the appropriate actions needed to successfully complete a level.
A notable difference between the rule-extended and action-extended prompt is that Gemini 1.5

Flash showed difficulty in breaking rules when using the rule-extended prompt, rarely suggesting
it. However, with the action-extended prompt, rule-breaking was suggested more frequently.

Both of these models have better overall performance when using the action-extended prompt
with fewer errors and more steps formulated correctly; see Figures 16 and 17. In Table 6 are
some examples of error snippets of the reasoning chain of GPT-4o and Gemini Flash 1.5.

OLMo and Mistral We also carried out experiments with different models from OLMo
and Mistral to evaluate their performance on the fourteen levels of Baba is You. Table 7 shows
examples of error snippets of the reasoning chain of these models. Compared to GPT-4o and
Gemini Flash 1.5, these models exhibited a significantly higher number of errors, particularly in
terms of correctly identifying objects and text blocks within the game grid (Figure 14).
Starting with OLMo-7B, this model struggled considerably in identifying the correct objects

and text blocks. It frequently hallucinated during this step, which had a negative impact on
the formulation of the problem statement. The inability to accurately identify key elements
on the grid resulted in repeated errors and inconsistencies in the output. In addition to these
issues, OLMo-7B was particularly prone to generating hallucinations throughout the process.
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LLM Model Error Snippets

GPT-4o
Level 13: Goal:

To win the level, BABA (controlled by the player) must reach the

FLAG (f). However, the WALL blocks the direct path.

Strategy:

Modify the rules to bypass or remove the obstacle created by the

WALL: Remove or break the "WALL IS STOP" rule.

Create an accessible path for BABA to reach the FLAG.

Level 4: Identify Barriers:

BABA (controlled by the player) must reach the FLAG, but there is

no direct path. ROCK (r) is blocking BABA’s movement, and it has

no properties assigned.

Use Rules to Clear the Path:

Assign ROCK IS PUSH by moving the text blocks R, 1, and 5 (if

present) to form the rule.

This will allow BABA to push the ROCK (r) out of the way.

Reach the FLAG:

With the ROCK out of the way, BABA can move directly to the FLAG.

Gemini 1.5 Flash
Level 4:**Objects:** We have Baba (b), a Rock (r), and Flags (f).

**Text Blocks:** BABA (B), IS (1), YOU (2), FLAG (F), and WIN (3).

**Current Rules:** BABA IS YOU (you control Baba) and FLAG IS WIN

(reaching a flag wins the level).

**Plan**

Currently, the "FLAG IS WIN" rule is broken because the IS (1) and

WIN (3) are not next to the FLAG (F). We need to move the IS and

WIN next to the FLAG to make the rule active again.

Level 5: Plan
The goal is to reach the Flag. However, the initial rules make all

Rocks into Flags, which can be confusing and potentially block the

path. We need to change the rules to make the Flag a win condition

again and allow Baba to move freely.

Level 13:**Solution**
1. **Breake Rule[GOOP IS SINK]:** Remove the rule "GOOP IS SINK."

This will prevent the Goop from destroying itself.

2. **Make Rule[ROCK IS HOT]:** Create the rule "ROCK IS HOT." This

will make the Rocks hot.

3. **Make Rule[GOOP IS MELT]:** Create the rule "GOOP IS MELT."

This will make the Goop melt when it touches the hot Rocks.

Table 6: Examples of error snippets in the reasoning chains of GPT-4o and Gemini 1.5
Flash LLM models, where the red-colored text indicates incorrect reasoning. These errors
highlight challenges such as hallucinations, incorrect assumptions, and overlooking key
constraints.

OLMo-13B, while showing a slight improvement in object and text block identification, still
encountered significant challenges. Although the performance of this model was marginally
better than that of OLMo-7B, errors remained frequent and detrimental to the overall problem-
solving process. Notably, both OLMo-7B and OLMo-13B exhibited difficulties in understanding
the distinction between objects and text blocks. This misunderstanding often led them to treat
the ”WIN” text block as the primary goal, rather than the intended objective. As a result, the
solutions generated by these models often appeared confused or misdirected.
Another notable issue was that both OLMo models failed to follow the instructions provided

in the action-extended prompt, specifically the requirement to formulate the actions in the
correct format.
In general, the solutions generated by both OLMo-7B and OLMo-13B gave the impression

that these models did not fully grasp the mechanics of the game. It was often out of context con-
cerning the game mechanics. Their inability to accurately identify and interpret key elements of
the puzzle, combined with frequent hallucinations and wrong reasoning, resulted in suboptimal
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LLM Model Error Snippets

Mistral 8x7B
Level 1: Step 3 Devise a plan

- We need to move the BABA object to the FLAG object.

- To do this, we need to change the rule BABA IS YOU to BABA IS

MOVE.

- Then, we need to push the ROCK object to the WALL object to

create a path for the BABA object to reach the FLAG object.

Level 3: Step 1: Understand the problem and extract the relevant

objects, text blocks, and rules.

Objects: BABA, FLOOR, GRASS, WALL, SKULL

Text Blocks: 1, 2, 3

Rules: BABA IS YOU

Step 2: Devise a plan to solve the problem.

1. Make BABA IS YOU to BABA IS MOVE.

2. Move BABA to the position of the SKULL.

3. Make SKULL IS YOU.

Level 4: Step 2: Extract the relevant objects, text blocks and

rules

- Objects: BABA, SKULL, FLAG, FLOOR, GRASS, ROCK, WALL, KEKE, GOOP,

LOVE, and empty space.

- Text blocks: BABA, IS, YOU, FLAG, IS, WIN.

- Rules: BABA IS YOU, FLAG IS WIN.

Step 3: Devise a plan

- Make BABA the object you control.

- Make FLAG the object you need to reach to win the level.

Mistral 7B
Level 1: The goal is to move the BABA to the FLAG to win the level.

Plan:

1. Move the BABA to the flag by pushing the blocks in the way.

2. Make the BABA move towards the flag.

3. Make the BABA push the flag towards itself.

Level 3: Plan:
1. Move BABA to the 1 text block.

2. Change BABA into the flag (f) using the 1 text block.

3. Move the flag to the exit (the empty space next to the 3 text

block).

Level 9:
The goal is to move the flag to the exit (position B12) without

getting killed by the skull.

OLMo 13B
Level 3: **Objective:**
Reach the WIN block to win the level.

Level 4:**Plan:**
1. **Make Baba movable:** Ensure Baba has the "MOVE" property.

Level 9: 1. **Neutralize SKULL:**

- We cannot directly push SKULL because it will kill BABA.

- We need to use text blocks to change SKULL’s properties.

- **Make Rule:** SKULL IS STOP. This will make SKULL impassable and

safe for BABA.

OLMo 7B
Level 1: ### Plan

1. **Identify the Goal:** Move BABA to the FLAG (F13).

2. **Current Obstacles:** BABA starts at B12, and there are walls

(W) and empty spaces (.) blocking the path.

Level 2: 2. **Initial Setup:**

- BABA is currently next to a WALL (W) and a KEKE (K).

- There’s a FLAG (F) adjacent to BABA.

Level 9: ### Plan:

1. **Move BABA away from SKULL:** To avoid immediate death, move

BABA away from SKULL.

2. **Create a path to FLAG:** Use the environment to create a path

to FLAG.

3. **Utilize GOOP:** GOOP can be used to block SKULL or create a

bridge

Table 7: Examples of error snippets in the reasoning chains of OLMo and Mistral LLM
models, where the red-colored text indicates incorrect reasoning. These errors highlight
challenges such as hallucinations, incorrect assumptions, and wrong reasoning steps.
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Figure 16: Correct steps per model across the 14 Baba is You levels with the rule-
extended prompt. The rule-extended prompt, which provides the active rules present in
the level, improves performance across models but still highlights major differences in
reasoning capabilities. GPT-4o outperforms other models, demonstrating stronger multi-
step problem-solving skills. While Gemini 1.5 Flash show partial success, its performance
remains inconsistent. The results suggest that simply providing active rules helps but does
not bridge the gap in logical reasoning ability between smaller models and more advanced
LLMs like GPT-4o.

performance. Overall, while these models exhibited some capability, they were far less effective
in solving the Baba is You puzzles compared to GPT-4o and Gemini Flash 1.5 (Figure 16 and 17).

The Mistral models demonstrate slightly better performance compared to the OLMo models,
particularly in defining objects and text blocks within a grid see Figure 14. However, their overall
ability to provide well-structured and effective solutions remains limited. While they exhibit
some improvements over OLMo models in certain areas, they still struggle with generating
high-quality solutions.
A notable observation regarding the Mixtral 8x7B model is its approach to problem-solving

when given the action-extended prompt. This model consistently omitted descriptions of the text
blocks and rules, as well as the formulation of the problem statement. Instead of outlining the
problem before attempting to solve it, Mixtral 8x7B directly proceeded to a solution formulation.
This often led to incomplete or suboptimal solutions, as the model did not establish a clear
understanding of the problem space before attempting to resolve it.
Another recurring issue observed in Mixtral 8x7B’s solutions is its handling of rule-breaking

as a mechanic. The model does not seem to recognize that breaking a rule can be a valid
action to remove it. Instead, it tends to suggest creating an alternative rule rather than utilizing
a rule-breaking move when explicitly provided as an option. This suggests a fundamental
misunderstanding of the flexibility of the rule manipulation within the game.
Additionally, a repeated pattern in Mixtral 8x7B’s responses is its disregard for active rules.

The model frequently claims that certain rules do not yet exist and must still be created, even
when they are already active in the level. This indicates a potential issue with tracking the
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Figure 17: Correct steps per model across the 14 Baba is You levels with the action-
extended prompt. The action-extended prompt, which provides additional details about
possible actions, leads to notable improvements for some models, particularly Gemini
1.5 Flash and GPT-4o. However, GPT-4o remains the strongest performer, consistently
solving more steps across all levels. While some smaller models show slight improvements,
their overall performance remains limited, suggesting that improving prompts alone is not
sufficient to overcome their reasoning limitations. These results highlight the importance
of both prompt design and underlying model capability in tackling complex rule-based
reasoning tasks.

current state of the rules within the problem environment.
A notable aspect of Mistral 7B is that it often interprets the rules as a single text block

rather than distinct elements. It also frequently suggests moving to the rules themselves to win
the level, indicating that it does not fully grasp the separation between objects and rules as
independent entities.
Both Mistral 7B and Mixtral 8x7B perform well in following the instruction to format action

formulations in a specific manner. However, despite their ability to adhere to the required
format, the actions they propose often lack effectiveness or logical coherence. A notable thing
for level 13 was that both models suggested creating the rule ”KEKE IS BABA,” which, in
theory, could be a valid approach. However, in the given context, there is no available ”IS”
block that could be used to construct this rule without first breaking the ”IS YOU” rule. This
suggests that the models do not fully account for the constraints of the environment when
generating solutions.
Another notable flaw in their reasoning process is the way they approach movement mechanics.

In some of their solutions, both models incorrectly assume that ”BABA IS MOVE” must be
established before Baba can be moved. This misunderstanding reflects an incomplete grasp of
the mechanics in the game.
With the action-extended prompt, the Mistral models more frequently suggested breaking

or forming rules, while in the rule-extended prompt, it rarely mentioned breaking rules mostly
suggesting to form an other rule. The action-extended prompt also led to solutions that were
more readable and better aligned with the game mechanics, though still mostly incorrect. In
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contrast, the rule-extended prompt frequently mentioned ”use” this rule to let something
happen but using a rule is not really an action that can be done in the grid.

Figure 18: Frequency of errors per step and subcategory in the reasoning chains generated
by the models when solving the Baba is You levels. The findings reveal that both fine-tuned
models have less errors in the analyzing part of the level in the reasoning chain after
fine-tuning compared to the original model.

Overall, while the Mistral models show some improvements over OLMo models in terms of
object and text block definition, they still exhibit significant weaknesses in solution formulation.
Their inability to fully grasp rule-breaking mechanics, track active rules, and account for problem
constraints limits their effectiveness in generating optimal solutions.

With these models, the action-extended prompt has no clear improvement on the models
performance. So, it is different for each model how they respond on the inclusion of explicit rules
and structured action formats in prompts. While GPT-4o and Gemini 1.5 Flash benefit from
additional structure, OLMo and Mistral do not clearly benefit from these extra instructions.
Across all models, levels 4 and 5 proved particularly challenging when using the rule-extended

prompt (Figure 16). Both levels include the active rule FLAG IS WIN, which led most models
to incorrectly assume that a flag object must already exist in the grid. However, in these levels,
the correct solution involves creating or breaking a rule to introduce the flag object, a step
that none of the models consistently recognized.
This pattern suggests that models struggle to distinguish between active rules and their

actual objects in the game. They often interpret an active rule as implying the immediate
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presence of the associated object, rather than understanding that additional steps may be
required.
Another common misinterpretation observed was in level 5, this level contained the rules

FLAG IS ROCK and ROCK IS ROCK. Some models incorrectly concluded that the flag was
inside the rock itself, leading them to believe that touching the rock would satisfy the FLAG IS
WIN condition. This suggests a difficulty in distinguishing between identity transformations (X
IS Y) and persistent object properties, leading to incorrect assumptions about win conditions.
These errors highlight the limitations of current LLMs in handling dynamic rule interactions
and game logic.

Figure 19: Correctness frequency per step in the reasoning chain generated by the LLM
models. It is observed that both fine-tuned models have more correct steps after fine-tuning.
For Mistral 7B there is an improvement in classification of objects and text blocks in the
grid. For OLMo 7B there is an improvement in the problem statement formulation.

5.2 Fine-tuning

5.2.1 Mistral 7B

After fine-tuning Mistral 7B on the combined dataset there is an improvement on classification
of the objects and text blocks in the grid see Figure 19. There was less misclassification and
incomplete information during this step (Figure 18) and more often is was formulated correctly.
However, unfortunately this did not lead to a clear improvement of formulating the problem
statement and solution of a level compared to the original model. The formulation of the
problem statement was often incomplete or there were wrong assumptions made about objects
in the grid. These error often transferred into the solution formulating step which resulted that
most of the time the solution was also incorrect. The biggest improvement is on level 1 where
it formulated the first two steps correctly see Figure 20. However, there were also some levels
where the original model was closer to the correct answer than the fine-tuned model.
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5.2.2 OLMo 7B

After fine-tuning OLMo 7B on the created dataset, we observe an improvement in the formu-
lation of the problem statement (Figure 19) and a reduction in classification errors for objects
and text blocks (Figure 18). However, the model still struggles with correctly distinguishing
between them. Furthermore, it continues to face challenges in the solution process, often failing
to differentiate objects from text blocks and occasionally misidentifying the ”WIN” text block
as the primary target. The generated solutions suggest that the fine-tuned model still has
difficulty grasping the game mechanics, rarely proposing actions such as breaking or creating
rules. Additionally, it sometimes treats text blocks as the objects you control. Thus, fine-tuning
did not yield significant improvements in solution formulation.

Fine-tuning the models with textual data from the game Baba is You led to improvements
in level analysis for both models. In the case of Mistral 7B, there was an improvement in
classifying text blocks and objects, while for OLMo 7B, the problem statement formulation
showed better results. However, for both models, there was no clear improvement in the solving
process, as the generated solutions and actions still contained many errors.

Figure 20: Correct steps per model across the 14 Baba is You levels with the action-
extended prompt. It is observed that the fine-tuned models have more correct steps across
the levels but it is still not enough to fully solve the levels.
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6 Discussion & Conclusion

We have seen multiple LLMs try to solve different levels of Baba is You. We will now answer
the proposed research questions.

RQ1: How does the choice of pre-trained LLMs affect the performance on level-
solving tasks in Baba is You? .

The choice of pre-trained LLM affects the performance in solving Baba is You levels. GPT-4o
and Gemini Flash 1.5 have better performance in object identification, problem formulation
and solution. However, they still show inconsistencies in formulating actions in the grid. They
also struggle with recognising which rules can be broken or modified.
Mistral models (7B and Mixtral 8x7B) perform slightly better than OLMo models in object

recognition but fail to generate coherent solutions due to difficulties in tracking active rules
and understanding rule-breaking mechanics. OLMo models (7B and 13B) perform the worst,
frequently hallucinating objects and failing to grasp fundamental game mechanics.
Overall, larger, more advanced models like GPT-4o and Gemini 1.5-Flash benefit from

structured prompts, whereas smaller models (Mistral and OLMo) struggle regardless of prompt
structuring.

RQ2: To what extent can an LLM create new rule manipulations and apply them
in the game Baba is You to solve the puzzles?

LLMs show varying abilities in creating and applying rule manipulations. GPT-4o and Gemini
1.5-Flash occasionally generate novel rule-based solutions, such as modifying ”BABA IS
MELT” to ”LAVA IS MELT” to remove obstacles. However, they sometimes suggest breaking
unbreakable rules or fail to recognize constraints imposed by the game grid.
Mistral models struggle with rule-breaking as a valid mechanic, often opting to create new

rules rather than removing existing ones. OLMo models show little understanding of rule
manipulation, frequently misinterpreting game mechanics.
While some LLMs can generate (creative) rule manipulations at certain levels, their effective-

ness is inconsistent.

RQ3: How does fine-tuning with textual and structural data from Baba is You
affect the performance of an LLM in learning to play the game compared to models
without such fine-tuning?

Fine-tuning with textual and structural data from Baba is You led to improvements in specific
areas for both Mistral 7B and OLMo 7B, but did not result in a clear overall enhancement
in solving the game. Mistral 7B showed improvements in classifying objects and text blocks,
reducing misclassifications and incomplete information. However, this did not translate into a
significant improvement in problem statement formulation or solution generation, with errors
in assumptions persisting and negatively impacting the solution process.
OLMo 7B, on the other hand, showed improvement in problem statement formulation and a

reduction in classification errors, yet it continued to struggle with distinguishing between objects
and text blocks. The model sometimes misidentified key game elements, such as treating the
”WIN” text block as a primary target or failing to propose valid actions like breaking or creating
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rules. As a result, its ability to generate correct solutions remained limited.
Overall, fine-tuning with Baba is You data enhanced level analysis but did not significantly

improve the models’ ability to solve game levels. Both models still exhibited fundamental
misunderstandings of game mechanics, suggesting that fine-tuning with the used data was not
enough to improve the reasoning of these models.

To answer the question of whether an LLM is able to understand and play the game Baba
is You, we can say that there is still room for improvement. Although GPT-4o comes quite
far in its chain of reasoning to solve the levels, we have to give the active rules and an action
format in the prompt, otherwise it is much less effective in giving correct answers. Also, all
LLMs performed very poorly in formulating the action to be taken directly on the grid. This
suggests that they do not fully understand how to interpret the grid as a two-dimensional space.
It also explains why GPT-4o has difficulty recognising which rules can be broken and which
cannot. It therefore gives the most straight forward solution without taking these constraints
into account. Also, sometimes in a chain of reasoning it is questionable whether the models
really understand the mechanism of braking and creating a rule, that you create or break a rule
by pushing text blocks with the object you are controlling. So we can conclude that high-end
models such as GPT-4o and Gemini 1.5 Flash give promising results in solving Baba is You
levels, but they still sometimes lack the ability to fully interpret the two-dimensional space.
This leads to incorrect solutions. For the smaller models OLMo and Mistral, with or without
fine-tuning, it is currently too difficult to understand and play the game. They are not able to
fully interpret the levels and also give the impression that they do not fully understand the
game mechanics. So whether an LLM is able to understand and play the game Baba is You:
there are promising results with larger models, but there is still a lot of room for improvement.

6.1 Limitations & Further work

This research used a PS [41] sentence which is a form of zero-shot Chain-of-Thought
(CoT) prompting approach, but there are numerous ways to construct prompts that can affect
model performance. Alternative prompting techniques, such as few-shot CoT [43], step-by-step
prompting or self-ask [30] could potentially yield different results and should be explored in
further work. In addition, the dataset used for fine-tuning was relatively small, particularly in
terms of training data for solution of levels. Only 15 examples were included in the mixed dataset
for this research. In addition, the game mechanics questions dataset contained 298 questions,
which, while useful, may not be sufficient to capture the full complexity of the game’s logic.
Expanding the data set with a larger and more diverse collection of Baba is You content, such
as more solution examples, varied puzzle structures, and broader mechanics-related questions,
could improve the generalisation and performance of the model across different levels.
The evaluation was conducted on only 14 different levels, which is informative but a limited

sample size. These levels were relatively easy for human players, meaning that the results may
not fully capture the model’s performance on more complex puzzles. Expanding the evaluation
set to include a wider range of difficulty levels could provide deeper insights into the LLM’s
ability to solve Baba is You puzzles. Furthermore, while the fine-tuning was performed using
the available dataset, it is possible that a more optimal configuration of hyperparameters could
improve performance. Exploring different fine-tuning strategies, parameter settings (such as
varying the learning rate, batch size, or number of training epochs), and larger training datasets
could lead to improved model reasoning and problem-solving abilities.
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The methodology in this research relied on classifying errors and correct steps at different
stages of the reasoning process and analyzing their frequency. Although this approach provides
quantitative information on model performance, error classification was performed manually,
making it vulnerable to subjective bias. In addition, human evaluators can interpret mistakes
differently. To improve objectivity, future work could establish automated techniques to aid in
error classification.
Further work could also investigate the performance of other language models, as new versions

are released frequently. Testing different models could provide a broader perspective on how
architectural improvements affect puzzle solving performance. Another possible direction is to
experiment with different prompt inputs. It is also possible to explore the use of images instead
of text-based level descriptions. This could provide an alternative way for models to process
game states. Comparing text-based and image-based input may provide further insights into
how models interpret and solve these types of puzzles.
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