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Abstract

Gradient-free black-box optimization (BBO) methods offer a flexible
framework for topology optimization (TO), enabling the discovery of novel
structural designs without requiring gradient information. However, their
success critically dependents on geometric parameterization of the de-
sign space, and the selection of a suitable optimizer. This thesis investi-
gates this optimizer—parameterization interplay in a structural TO case
study: minimizing compliance in a horizontal cantilever beam subject to
a connectivity constraint. The constraint, based on minimum connecting
distance, effectively guides the search toward feasible, connected designs
across all tested settings.

We evaluate the performance of three distinct geometric parameteri-
zations: Movable Morphable Components (MMCs); Curved MMCs; and
Honeycomb Tiling; combined with three distinct BBO algorithms: Dif-
ferential Evolution (DE), Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES), and Heteroscedastic Evolutionary Bayesian Optimization
(HEBO). These optimizers are benchmarked on the parameterizations
defining design spaces of three different dimensionalities: 10D, 20D, and
50D.

For this case study, our central finding is that parameterization quality
has a more significant impact on optimization outcomes than the choice
of optimizer. A well-designed parameterization enables robust and com-
petitive performance across all tested optimizers, whereas a poor param-
eterization creates a strong dependency on optimizer selection.

We further examine the applicability of Exploratory Landscape Anal-
ysis (ELA) for characterizing these real-world TO problems. Standard
ELA feature sets, developed for unconstrained benchmarks, prove of lim-
ited use due to the sparsity of the feasible design space, limiting their
value for both algorithm selection and for characterizing the different TO
parameterizations. We have not found a way to gain insight into our pa-
rameterizations from ELA. This highlights the need for constraint-aware
or domain-specific landscape analysis methods for practical TO applica-
tions.

Overall, this work provides new insights into the role of parameter-
ization in real-world BBO problems and its implications for optimizer
selection using a TO case-study.
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1 Introduction

1.1 The New Age of Engineering

Traditionally the search for optimal design relied on expert knowledge and the
centuries of engineering experience, however by utilizing black-box optimiza-
tion (BBO) techniques such as Evolutionary Algorithms (EAs) [I] and Bayesian
Optimization (BO) [2], it becomes possible to find novel and highly optimized
designs without prior domain expertise. Using these algorithms, a design auto-
matically and incrementally is improved according to the response of the system
and an objective set by the engineer. In that sense: the engineer’s task becomes
to describe the problem as suitable and properly as possible for the optimization
algorithm, opposed to coming up with designs themselves to be evaluated. The
main rationale for this is that the objective driven designs are highly special-
ized for a specific task and are beyond what a trained engineer with domain
knowledge could design in the same given time frame [3].

The increase in computational power has enabled the use of more advanced
numerical methods capable of addressing increasingly complex physical models,
thereby reducing the reliance on physical prototyping. Widely available Finite
Element Method (FEM) tools discretize geometry into a mesh, enabling the
simulation of a broad range of physical phenomena [4]. This (partially) removes
the requirement for physical prototyping and use of scale models, which is costly
material- and time-wise. There is however somewhat of an emphasis on par-
tially here: still a model is a model. For example, it is challenging to model
transitioning between physics regimes such as a rocket going transonic [5]. Yet
it is not so challenging to imagine such a simulation is often much simpler and
cheaper than sending an actual rocket to space. This resulted engineering in
the last decades shifted towards these simulation-based approaches, accelerating
the initial design phase.

Secondly, by the innovation in fabrication techniques such as additive man-
ufacturing and micro fabrication, highly complex designs such as interweaving
meshes or organic structures can now be 3D printed in different types of mate-
rials with relative ease [6]. For example, highly customized low quantity parts
are already fabricated with metal additive manufacturing in biomedical and
aerospace industries |7, [§]. In previous decades these were infeasible with tradi-
tional casting or subtractive machining techniques. These opened the door for
rapid prototyping as designs can be realized quickly on a desktop without the
requirement for expensive molds or a trained machine shop workerforce.

1.2 Introducing: Topology Optimization

One design challenge one might face is to find an optimal material distribution
in some bounded domain for weight- or material saving purposes; solving this
problem is what is known as Topology Optimization (TO) [9]. This bounded
domain may be a some sheet or block of material that functions for example
as the connecting frame of some design. Design objectives might involve saving



as much material as possible under the constraint of some maximal bending
threshold of the structure, or to maximize the stiffness given a predefined mate-
rial budget. Although this framework is general to any problem, TO typically is
applied to the minimization of compliance for static loading cases on structures,
dubbed structural TO. Other problems one could think of are: improving fluid
flows, vibro-acoustics, and heat transfer. The ultimate goal is to find a highly
specialized, optimized even, material distribution for a specific scenario.

shows an example of structural TO: (A—B) the sheet is treated as
canvas for which the amount of material is minimized. This is under satisfaction
of structural feasibility cases set by the engineers. To make the TO result
more suitable for fabrication, a Shape Optimization procedure can be performed
(B—C). However, in this thesis we focus solely on the TO phase. To give a

(A) Original Sheet  (B) Topology Optimization (C) Shape Optimization

Figure 1: Minimizing the weight of a sheet of metal (A) of a airplane wing rib
by means of Topology Optimization (B). And, making the Optimized Topology
production ready by means of Shape Optimization (C).

motivating industry application, corresponding to during a redesign
campaign, structural TO was applied on various parts for weight saving purposes
on the Airbus A380 [10], saving around 1000 kg of weight [I1]. Clearly, such
a redesign has quite a beneficial financial impact on the airliners operating
the Airbus A380. Swapping five additional passengers for the saved 1000 kg,
assuming one flight per day, and a ticket cost of €1000, results in 1.8M € /year
additional revenue thanks to TO[

1.3 A Brief History of Topology Optimization

The homogenization-based approach was introduced and pioneered by Bendsge
and Kikuchi in 1988 [12], initiating the field of TO. The design domain is divided
into a mesh of resizable micro structures (holes), the objective is to determine
the optimal size for each individual hole such that the overall design performs
optimally under static loading. Homogenization refers to the technique of ap-
proximating these microstructures with a less dense material for a given cell
based on the size of its hole [13]. Note that, despite the approximation of the

ITake this calculation with a grain of salt, it is merely a guesstimate.



microstructures by filling the cell with less dense material, the underlying design
still has a binary nature: it is either solid material or void.
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Figure 2: An overview of different methods TO applied on structural cantilever
problems: (A) iterations of the SIMP method; (B) iterations of the ESO method;
and (C) iterations of a MMC parameterized optimization. (Adapted from: [14]

)

A year later (1989) the Solid Isotropic Material with Penalization (SIMP)
method was introduced [15]; SIMP directly optimizes the relative material den-
sity by attributing cells a solid isotropic material opposed to the previously
used micro-structures (Figure 2JA). This density is continuous in the range (0,1)
opposed to a binary distribution, which is one that we can actually fabricate.
The penalization in SIMP refers to way the stiffness is penalized with respect
to the relative density: the stiffness is related to the density through a power
lawEl This promotes designs to not use intermediate densities as contributions
of these cells are artificially weakened.

To this day SIMP is one of the most widely used methods in structural
topology optimization due to its simplicity, effectiveness, and compatibility
with gradient-based solvers, namely the Moving Morphable Asymptotes (MMA)
method [16]. It is often used as a foundation or inspiration for extensions to
other domains like multiphysics, heat transfer, and dynamics.

The Evolutionary Structural Optimization (ESO) method, introduced by Xie
and Steven (1993), is a computational approach inspired by natural evolution

2For example using the conventionally used p = 3, a relative density of 50% gives the cell
a relative stiffness of (50%)3 = 12.5%.



to enhance structural performance [I7]. In its basic form, ESO heuristically
removes material with low stress from the initial design ) However, a
key limitation of this one-way removal strategy is that once material is deleted, it
cannot be restored, potentially leading to suboptimal designs. To address this, in
a follow-up paper the Bi-directional ESO (BESO) method was developed (1998),
allowing both the elimination of inefficient material and the reintroduction of
beneficial elements during the optimization process [I§]. Though this method
is limited to structural TO problems of minimizing compliance.

The Level Set Method (LSM), proposed by Wang et al. (2003) and Allaire
et al.(2004), instead of discretizing the domain in cells proposes to implicitly
describe the void-material interface using level set functions [19, 20]. Therefore
the level-set approach naturally maintains a crisp, well-defined boundary and
handles topological changes such as merging or splitting of material regions.
Direct optimization of this interface omits problems found in density-based ap-
proaches as: checkerboard patterns and regions with intermediate densities,
so-called gray areas. However, this does mean that like in SIMP a one value per
cell is optimized leading to high dimensional problems quickly for fine meshes.

Moreover, the original formulation of the LSM requires solving an advection
(Hamilton—Jacobi) equation, which introduces additional numerical complexity
and potential instability. Additionally, the resulting topology is often sensitive
to the initial design, as the number and distribution of holes must typically be
predefined, effectively warm-starting the optimization process and potentially
biasing the final outcome.

Another variant that can attributed to the LSM category are Morphable
Movable Components (MMCs), as proposed by Guo (2014) [21I]. Instead of
direct evolution of the boundary, the geometry is build out of multiple building
blocks: beam-like MMCs ) The geometry of each MMC is controlled
with a few shape- and size defining parameters. Also, as the name suggests, the
MMC is free to move in the design domain. Relatively complex designs can be
obtained with far less parameters as a single shape may occupy many elements
of the mesh. This is results in far less design parameters have to optimized to
the one parameter per element strategies found in SIMP and LSM. This also
benefits fabrication, as the optimized design is already composed of beam-like
components.

1.4 Challenges in Topology Optimization

The study of compliance minimization in TO resulted in highly specialized pro-
cedures that rely on the gradients of the objective with respect to the param-
eterization of the design and problem domain, dubbed sensitivity analysis [22].
To counter checkerboard patterns, considered disconnected structures, and gray
areas in SIMP, which blur the material/void distinction, specialized filtering
techniques are employed. An example of these gray areas can be seen in the
first couple iterations of [Figure 2A).

In multiphysics domains like vibroacoustics and viscothermal problems, tai-
lored physics interpolation schemes or specialized (problem-specific) optimiza-



tion methods are required [23]. Developing these demands significant math-
ematical expertise and is typically feasible only for experienced simulation-
optimization domain specialists.

Yet, in BBO methods such a sensitivity analysis is not required. These
methods treat the underlying simulation as an oracle, querying it iteratively to
explore and exploit designs. This makes them particularly attractive for prob-
lems where gradients are unavailable, unreliable, or prohibitively expensive to
compute. For instance, in crashworthiness optimization, the objective function
may stem from complex nonlinear simulations with discontinuities and contact
events, making gradient-based methods impractical [24].

The use of non-gradient methods—particularly EAs—in TO has faced crit-
icism, mainly due to early applications using dense grid-based representations
[25] 26], which led to high-dimensional, inefficient searches. Additionally, their
stochastic nature means results can vary significantly between runs, with near-
optimal solutions found in fewer than 10% of cases for simple benchmarks. To
justify their use, Sigmund [27] proposed two criteria, at least one of which should
be satisfied.

e Discretization: Must handle models with >1000 elements, match or
outperform gradient-based methods with numerical sensitivities, and avoid
artifacts like checkerboards.

e Problem type: Should address problems intractable by standard gradient-
based methods.

Since the strength of BBO methods lie in generality: they can handle complex,
multi-modal, discontinuous, and noisy problems. We support the use of EA and
BO for TO based on the second criterion, as they provide a general optimization
framework applicable to a wide range of problems, especially where gradient
methods are infeasible.

1.5 Exploratory Landscape Analysis

To characterize differences among BBO problems, Mersmann et al. in 2011 pro-
posed a Exploratory Landscape Analysis (ELA) prior to optimization runs [28].
The goal of the ELA phase is to capture the problem description in a feature
set. The rationale for this is that these features are correlated with optimizer
performance. For example, BO might perform well on problems with certain
characteristics whereas EAs perform better on others. This problem is known as
Algorithm Selection (AS), particularly prevalent in Automated Machine Learn-
ing (AutoML) [29).

The No Free Lunch (NFL) theorem for optimization [30], further supports
the motivation for problem characterization through ELA. It states that, aver-
aged over all possible problems, all optimization algorithms perform equally. In
other words, if an algorithm performs exceptionally well on a subset of problems,
it must perform worse on others. This implies that there is no universally su-
perior optimizer, and algorithm performance is inherently problem-dependent.



Consequently, the NFL principle reinforces the need for data-driven algorithm
selection strategies, where knowledge about the structure of a specific problem
(captured via ELA features) can inform the choice of an optimizer, rather than
relying on fixed or default strategies.

1.6 Challenges and Objectives

Gradient-free approaches offer a flexible framework for solving BBO problems.
However besides the underlying problem, their effectiveness depends heavily on
the representation of the design space. Specifically for TO, that is the way ge-
ometry is parameterized. Poor parameterizations can mislead the search, cause
premature convergence, or result in infeasible or low-quality designs. Thus, a
key research objective is to investigate how different parameterizations interact
with BBO methods and affect performance in TO settings.

Furthermore, ELA typically is studied with benchmark problems. In the
initial proposal, the BBO Benchmarking (BBOB) problems [31], are successfully
segmented into expert-designed classes based on their ELA features [28]. The
question if this methodology transfers to a real-world problem and how well the
feature-optimizer performance correlates to these benchmark problems.

This thesis is mainly an exploratory study, BBO methods are not adapted
to suit problems, we purely focus on the interplay between out-of-the-box opti-
mizers and parameterizations. The main objectives are:

e To investigate how different geometric parameterizations influence the per-
formance and effectiveness of BBO methods in a structural TO case-study.

e To investigate whether ELA can be used to meaningfully characterize real-
world TO problems and inform algorithm selection.

e To investigate the relationship between ELA features and optimizer per-
formance, both within the TO setting and in comparison to established
benchmark problems (e.g., BBOB).
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2 Background

2.1 Topology Optimization

As introduced the goal of TO is to optimize the material distribution in a
bounded design domain D according to an objective function f. The objective
in our case is to minimize the structure’s compliance. Intuitively minimizing
the compliance is equivalent to maximizing the stiffness of the structure.

Since we only consider 2D problems: D C R2. In essence we optimize a
binary distribution of the design domain described by some material indicator
function o : D — {0,1}, where 0 represents void and 1 represents material.
That is the material subset:

Q={ueD:afu)=1}CD (1)

and void D\2. This means the parameterization must implicitly or explicitly
imply the material indicator.

For example in LSM [32], this material indicator is implied by level-set func-
tions; material regions are implicitly described by level-set functions: ¢; : D —
R. Moreover, the boundary of the j-th geometry I'; is described by the Oth
iso-contour of ¢;. That is, the j-th geometry occupies the region in D for which

Q;={ueD:¢pj(u) >0} (2)
And, the boundary of the level-set imposed geometry:
Fj = 8(2] = {ll eD: (ZSj(ll) = 0} (3)

(B) 20

Figure 3: Level-set function parameterization: (A) a level-set ¢ describing mate-
rial domain €; and (B) the distinction between corresponding material domain
Q, void D\, and boundary 09 [24].

In the case of SIMP [I5], the design domain D is partitioned into fixed cells,
specifically a regular grid. By “turning on” the j-th cell, the region correspond-
ing to €); is added to the total geometry.

We define the total geometry set as,

Qgeo = {9} (4)

11



with cardinality [Qgeo| = 1, where n is the number of level-set functions, or the
number of individual shapes like cells if you will.

We let x € R? be the design vector describing the geometry through some
parameterization P : R? — {;}. From here the full material domain Q C D is
parameterized to:

ax= | o (5)

Q;eP(x)

and material indicator is parameterized as:
a(uix) = [u € Qx)]. (6)

Using the material indicator, implied from 2, the volume of the material

V®=A®®=memm (7)

Similarly any objective is a functional of the parameterized material indicator:

160 = [ clatux)in (8)

In our case, compliance is used as the objective. This involves first solving for
the displacement field corresponding to the material distribution, and then using
this displacement to compute the compliance. However, since the compliance
calculation depends on the underlying physics, we abstract it using an arbitrary
function c.

To ensure numerical stability in the FEM calculations, a strictly binary
material distribution (0/1) is avoided. Instead, void elements (0) are assigned a
small stiffness: 102 of the original material stiffness in our case. This approach
is commonly used in topology optimization and is known as the ersatz material
method [9].

Traditionally the compliance is minimized under restriction of a maximum
material budget Vi,.x which leads to the following optimization problem:

minimize: f(x) forx € X
subject to:  V(X) — Vinax <0

(9)
In here f is the objective, X is the space representing designs that can be
parameterized, and V is the volume correponding to design x € X.

As introduced, the question now is how parameterization, i.e. mathemati-
cal formulation of describing the geometry, affects the optimization of the TO
problem. We now consider a few parameterizations.

2.2 Parameterizations

In this thesis we focus on the effect of three different ways of parameterization
of the geometry in the design domain:

12



e Honeycomb Tiling;
e Movable Morpable Components (MMC); and
e Curved MMCs.

the Honeycomb tiling is a binary parameterization with cells that can be acti-
vated, MMCs represent straight beams, and the Curved MMCs add deformation
parameters to give MMCs more flexibility to form curved beams.

2.2.1 Honeycomb Tiling

Like in SIMP [15], the design domain can be partitioned into cells. Using
the SIMP grid, this leads to hundreds to thousands of elements which all are
attributed their own design variable x;. The dimension of this design space is
equal to the number of elements in the grid. To keep the discrete material /void
distinction the cell can be activated once its design variable exceeds a certain
threshold:

T; > T — Qj S Qgeo' (].0)

In here 7 is a global threshold, and 2; represents the j-th cell in the grid. The
number of cells in the grid dictate the dimension of such a parameterization.
Contrary to the gradient-based procedure in SIMP, BBO methods struggle
on parameterizations with hundreds of variables. To facilitate this gradient-
based approach, in SIMP the material/void is relaxed to be a continuous density.
Previously it was attempted to directly optimize the discrete grid parameteri-
zation using an EA method but resulted in tens of thousands of iterations [26].

This was achieved by progressively subdividing the elements in the grid, starting
from a coarse mesh to one that represent the full mesh (Figure 4A).

Figure 4: Grid-based parameterizations: (A) a rectangular grid solved by EA,
where cells progressively getting sub-dived [26]; and (B) Honeycomb parame-
terization solved using gradient-based methods [33].

Opposed to rectangular grids, a Honeycomb parameterization has some ben-
efits [33]. The hexagonal tiles in the Honeycomb pattern ensures continuous

13



edge connectivity and eliminates checkerboard patterns and stiffness singular-
ities, providing a well-defined material layout for efficient topology synthesis.
The former problems are prevalent in rectangular grids when pixels connect di-
agonally, only connecting the corners (Figure 4B). Such an individual cell could
be used to activate multiple elements of a rectangular grid while keeping the
dimension low, forming a potential entry point for EA-based optimization.

2.2.2 Movable Morphable Component Beams

In the case for the MMCs [21], the design vector x controls the shapes of the
beam. Such a beam is parameterized using a quintuple of parameters: a beam of
length [ and thickness ¢ is placed at position (zg, o) € D, and has an orientation

of 0 (Figure 5B). The level-set function is defined as:

l;/2
(11)
—sinf;(u — zq,;) +cosj(v —yo ;)\ " 1
( t;/2 > ]

In here j represents the j-th geometry, v and v correspond to z- and y
coordinates inside the design domain D, and m is a shape controlling parameter
set globally at m = 6. This shape is also known as hyperellipse (m > 2), as
m — oo the shape approaches a rectangle. For lower powers provides a smooth
continuous shape ([Figure 5A), which was initially required to drive the gradient-
based optimization [21].

¢(u,v)

(%0, %0)

Figure 5: A MMC based parameterization: (A) the level-set function of [Equa-]
(adapted from [34]); and (B) the projection onto the FEM mesh showing
the beam spanning multiple elements.

We explicitly denote the level-set with index j to correspond to the j-th
level-set function. This means a d-dimensional design vector is split-up in parts
of five-dimensional design vector x; such that x = (x1,...,X,), where x; =
(%0,5,Y0,5,05,15,t;), and n is the number of beams. This means in this case, the
dimension d of the parameterization of n beams is a multiple of five d = 5n.

14



Bujny et al. have shown promising application of this parameterization
using an EA approach [24]. They first validated on simple static load cases to
compare with the gradient-based SIMP. And then applied it to complex crash
scenarios, for which no gradient-based optimization method is available. The
EA used for this research was the CMA-ES method which will be discussed in
[subsubsection 2.6.2] In a follow-up paper by Raponi et al., this was extended by
comparing the EA approach with a special-purpose BO variant [35]. Showing
both BO and EA as promising candidates for TO problems, especially ones
where gradients are unavailable.

2.2.3 Curved Movable Morphable Component Beams

Curved MMCs add five additional parameters per beam to the original MMC
parameterization to deform the beam [36]. First the length of the beam is
split-up in I;, and lg, the left- and right length respectively (still from center
(20,90)). The thickness t is split into three parameters tr,, tys, and ¢, denoting
the left, middle, and right thickness respectively. The intermediate thickness
of the beam is interpolated using these three thickness parameters (this will
be discussed in more detail later in |[subsubsection 3.4.3). Additional to this, a
sinusoidal deformation is added to the centerline of the beam in the form of:

f(u') = asin(bu’). (12)

In here a and b control the deformation, and v’ is the u coordinate in the
f-rotated coordinate frame, corresponding to the beams orientation (Figure 6)).

f(u') = asin(bu’)

Figure 6: A schematic overview showing the deformation imposed by the ad-
ditional parameters introduced in the curved MMC parameterization (adapted

from [30]).

Yet, these additions do not lend itself easily to a single closed-form expression
as the original, for a mathematical treatment see the original paper: [36]; ex-

planation on how we handle the deformation is discussed later (subsection 3.4J).

Since the additional five deformation parameters per beam, now the dimension
d of this parameterization of n beams is a multiple of 10 d = 10n.

15



2.3 Black-Box Optimization

In BBO the goal is to minimize, or optimize in general, some cost function f
which is called the objective. This cost function relates a design vector x € X to
a performance metric f : X — R. Here we denote X as the design space; the set
that contains all configurations that can be evaluated. The absence of a closed-
form expression or insight into the internal workings of f is what characterizes it
as a black-box. Analogous to a mountainous landscape on earth, moving within
the search space x € X, heights f(x) are attributed to each point, forming a
so-called fitness landscape.

It could be the case a subset of designs are infeasible, i.e. f can be not be
evaluated, or it makes no sense to spend compute on it. For example in TO,
disconnected designs are infeasible since it is impossible to fabricate floating
structures. Still conducting the simulation with such a design could lead to
spurious a response. Yet a design exceeding its volume target could be feasible
in the sense of fabrication but is not in terms of volume.

To describe infeasibility, optimization problems include constraint functions
g : X = R. Whenever a constraint is activate g(x) > 0, the design deemed
infeasible and the objective function f is not evaluated. Incorporating such
a constraint can be done using several tactics, each with implications for the
optimization algorithm’s performance and the nature of the solution found.

These constraints can be binary in nature: active x +— 1 or inactive x — 0.
Optimizers benefit from expressing how far a design is from feasibility. For
example in TO when posing a material budget of 50%, a design exceeding the
budget by 10% is closer to feasibility than a design exceeding the budget by
25%. Hence it is intuitive to penalize the latter more to create a valley in the
fitness landscape towards feasible regions.

Conventionally, in general the optimization framework is written as:

minimize: f(x) for x € X

13
subject to:  ¢;(x) <0 Vi (13)

In here i is a index for constraint functions indicating that all constraints should
be met to be feasible. This means X can be partitioned into infeasible- (x) and
feasible (o) regions:

Xo={x € X :Vg(x) <0} Xy = X\ Xo. (14)
Then the optimal solution(s) x* € X, are denoted with

x* € argmin f(x). (15)
xeXo

That is f(x*) < f(x) for all x € A,. Note it may be the case that multi-
ple solutions that yield the same minimal achievable evaluation, for example
due to symmetries in the design space. In practice for real-world optimization

problems, finding this optimal solution x* is extremely hard, if not impossible.
Fundamentally it means either:
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1. all feasible designs should be evaluated in a total enumeration; or
2. the underlying structure or behavior of f should be known.

In continuous spaces, the first is impossible. The second is never true since
it is a black-box problem, there is no knowledge about the intrinsics of the
evaluations. Based on observation of evaluations alone it is impossible to say a
solution x’ is optimal or not, rather it is the best-found. That is, often it can be
said some solution is a local optimum. It means within a bounded neighborhood
N.(x) C X the solution x’ is the best, but unless point (1) or (2) is satisfied, it
can never be guaranteed this solution is the best globally.

Critically, BBO methods make assumptions about the structure of the objec-
tive landscape, despite it being unknown. These assumptions guide the choice of
optimization strategy, as different methods exploit different landscape features
(e.g., smoothness, locality, or structure). However, the shape of the landscape
varies significantly between problems, even within the same class, due to changes
in constraints, or parameterizations. This variability means no single strategy
performs best across all problems; instead, the effectiveness of an optimizer de-
pends on how well its underlying assumptions align with the landscape induced
by the problem.

2.4 Landscape Characteristics and BBOB functions

Over the decades, many conventions have been developed to describe differ-
ent characteristics of fitness landscapes [37]. shows three examples of
selected BBOB functions from different groups that represent different land-
scape characteristics. BBOB functions are grouped into categories based on
their structural properties, such as separability, conditioning, modality, and
global structure. These groupings help benchmark optimization algorithms un-
der varying levels of difficulty and landscape features.

1. Separable: Variables can be optimized independently; low interaction.
2. Moderate Conditioning: Mild variable interactions; moderately scaled.

3. High-Conditioned and Unimodal: Strongly stretched landscapes; sensitive
to search direction.

4. Multi-modal with Global Structure: Many local optima but with ex-
ploitable global trends.

5. Multi-modal with Weak Global Structure: Deceptive landscapes with
many traps and little usable global guidance.
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Figure 7: A three panel of example BBOB functions to be maximized: (A) f1
Sphere (group 1); (B) 8 Rosenbrock (group 2); (C) {15 Rastrigin (group 4) [38].

Modality of the fitness landscape refers to the number of local optima. Multi-
modal problems are generally harder to solve as some optimization strategies get
trapped in basins of attraction. These are local regions in the fitness landscape
that form a valley towards the local optimum. Unimodal problems contain only
a single (global) optimum, but are rare in complex real-world problems. These
are often much easier to solve but still might suffer from plateaus for example.

Plateaus are flat regions of the landscape: a change of decision variables
does not lead to change in the objective. In the case of TO this could be caused
by parameters describing geometry outside of the material domain, changing
these parameters does not affect the geometry inside the material domain and
hence the objective. Lack of structure is obviously not beneficial to any search
procedure, and simulation budget may be easily wasted on exploring regions
such as these.

Ruggedness quantifies rapid changes in the objective over small regions. A
high ruggedness is caused by many small peaks and valleys, which can again trap
local search methods. This often goes hand-in-hand with a high modality since
frequent optima (modality) imply frequent directional changes (ruggedness).
However, when an objective is noisy but has an unimodal global structure, the
landscape may exhibit high ruggedness despite low modality. This mostly affects
gradient-based approaches.

Separability refers to the measure of how much an objective can be decom-
posed into subproblems defined on subsets of the decision variables. Strong
interactions among decision variables might complicate the search. For example
f(x1,22) = 2% + 23 can be decomposed as f(x1,72) = fi(71) + f2(w2) where
fi(x1) = 23 and fo(x2) = 3. This separability means the decomposed objec-
tives can be be optimized individually. The objective f(z1,22) = (z1 +x2)? for
example contains the 2xy interaction term.

Convez-, such as the parabolic above, and linear functions are well-studied
and easier to optimize [39]. Real-world objectives are rarely perfectly convex or
linear, often exhibiting non-convexities due to noise, discontinuities, or complex
interactions.

1ll-conditioning refers to situations where small changes in one direction
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leads to a much bigger change in output than others, often due to steep cliff.
This typically arises when the function’s level-sets are highly elongated, such as
in ellipsoidal shapes with large aspect ratios. If not accounted for, algorithms
may take many small steps in the flat directions or oscillate in steep ones.

Whenever the dimension d increases, fully covering the search space becomes
exponentially more expensive, a phenomenon known as the curse of dimension-
ality [40]. For example dividing each search variable in 10 steps leads to a total
of 10 search points: in 1D a line, yields 10 search points; a 2D plane, 100 search
points; and a 3D cube, 1000 search points. For a 10 dimensional search space
this means 10 billion search points. Clearly, exhaustive search is computation-
ally infeasible, not even to speak about the coarse resolution of 10 points per
variable.

2.5 ELA Features

To characterize the previously introduced landscape features, the original ELA
paper proposes a several set of expert-designed features [2§]. Such a set ad-
dresses observables of the landscape, descriptive of a certain trait of the prob-
lem. To calculate the features, a dataset is collected consisting of design vectors
x € X and corresponding objective responses f(x). An unbiased Latin Hyper-
cube Sampling (LHS) strategy is used for covering the search space, however as
noted in the previous section, due to the curse of dimensionality this becomes
progressively harder for larger dimensions. Typically the number of samples is
linearly scaled with dimension.

Many of the originally proposed features are highly correlated, in a follow-
up paper, a selection of the features is proposed to be sufficiently descriptive
[41]. These were selected using the BBOB functions. Here the feature set is
decomposed into a 2D projection using a Principal Component Analysis (PCA).
We list these features with a description in

Although for the TO problem the objective is the same: finding the mate-
rial distribution that minimizes the compliance; the different parameterizations
describe this problem in different ways. As discussed previously, this results in
different landscape characteristics. If we can capture these different landscape
characteristics through this ELA feature set, they could be correlated to BBO
performance of different methods. This is shown to be the case for the BBOB
functions [42].
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Feature

Description

ela.distr.skewness

Skewness statistic of y-distribution [28].

ela.meta.lin_simple.intercept
ela.meta.lin_simple.coef.max

ela.meta.lin_simple.adj_r2

The intercept of a linear regression model fitted
on the landscape [28].
The largest slope factor of the linear regression

model [28].

The adjusted R? of the linear regression model

[28].

ela.meta.quad_simple.-
coef.min_by_max

ela.meta.quad_simple.adj_r2

Ratio of the smallest to the largest absolute val-
ues among the quadratic coefficients (squared
terms only) in a regression model excluding in-
teraction terms [28§].

The adjusted R? of the quadratic regression
model, excluding interaction terms [28].

ela.level.mmce_lda_25

ela.level.mmce_qda_25

ela.level.lda_qda_25

For the 25% level-set of Linear Discriminant
Analysis (LDA), the Mean cross-validation ac-
curacy [28].

For the 25% level-set of Quadratic Discriminant
Analysis (QDA), the Mean cross-validation ac-

curacy [28].

The ratio of the above metrics [28].

ic.eps_s
ic.eps_ratio

The information content settling sensitivity [43].
Half of the partial information sensitivity [43].

disp.ratio_mean_02

Ratio of the average pairwise distances among
the top 2% best-performing points to the aver-
age pairwise distances among all points in the
design space [44].

Table 1: Selection of the ELA features to be sufficiently descriptive of the BBOB

functions, as presented in [41]

2.6 Evolutionary-based search

Evolutionary Algorithms (EA) as the name implies is a field that aims to solve
problems using evolution-inspired mechanisms such as populations, cross-over
among individuals, mutation, and selection [I]. Traditionally, the field is split

up into:

e Genetic Programming (GP), finding programs/instruction sets;

e Genetic Algorithms (GA), finding coded representations;

e Evolution Strategies (ES), optimizing continuous design vectors.
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We focus on ES, though all three share the same biologically-inspired aspects.
The difference between GA and ES is that GA searches typically for coded
representations reminiscent of DNA strands, whereas ES is used for continuous
search spaces.

The genotype-phenotype mapping converts the encoded design vector (gen)
into a observable (pheno). An individual within a population caries its design
vector as DNA and is sometimes also attributed local information controlling
its mutation procedure. The genotypes of individuals are recombined to form
offspring: new individuals. Sometimes this recombination-mutation analogy is
somewhat blurred and forms just a more general reproduction concept. Then
according to selection, the weak individuals are removed from the population
and a new stronger generation emerges. This is survival of the fittest, only the
strong survive.

Let i > 1 denote the size of the population, and including generated offspring
A > u. In ES typically one of two selection schemes are used: the (u + A) or
the (u, A) selection. In the first the fittest new generation is selected from both
the old and the new individuals, the latter replaces the old generation with
a complete new one, i.e. only from offspring. shows a flowchart of
the standard EA. In here a population P9 at generation g consists of p or A
individuals, with an individual from the search space X.

Reproduction ] Initial population Ple=0) ¢ pA
\ 4

X ) X
Recombine — Mutate —» Evaluate —  Select

A

(A>p)

plotl) ¢ ym

Figure 8: A flowchart for the general working principle of an Evolutionary
Algorithm. X denotes the design space and P a population of individuals.

2.6.1 Differential Evolution

Differential Evolution (DE), a classic EA designed for continuous domains [45],
incorporates a differential mutation update. In the reproduction stage for each
individual (referred to as the target vector) x € P in the population, a po-
tential offspring x’ is generated. If this trial x’ outperforms the original x, it
replaces it in the population for the next generation PY+1)

DE generates its offspring by first performing a mutation operation. For each
target vector x, three other unique individuals are randomly sampled from the
current population: a,b,c € P . This implies the population size is bounded:
it > 4. Some subset of the coordinates of x’ is sampled with the crossover rate
to be replaced by some combination of a,b,c, the leftover simply take on the
value of the original coordinate in x. If j is such a selected index for crossover,
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then
x; <—aj+F(bj —Cj). (16)

In here F is a differential weight, a variation controlling scaling factor. If j is
not selected for crossover then,

T x5 (17)

This crossover rate is usually set quite high, often around 90%, meaning on
average only for 10% the original coordinates remain. This makes the terminol-
ogy maybe a bit confusing. To be clear, a is the base vector which is mutated
according to The difference b — ¢ gives direction and magnitude
to the mutation, hence the name DE. Typically, F ~ 80%. And, some ar-
bitrary information is retained using the crossover mechanism. Depending on
your standards, mating usually is performed in pairs; DE uses four individuals
to generate offspring. This and the rates are motivated primarily empirically.
This makes DE somewhat less grounded.

Then, the new offspring x’ is added to the new generation PY*Y if it out-
performs the original individual: f(x’) < f(x). Otherwise, the original persists
and is added to PY*1) . This means DE falls into the (+ ) category, so-called
elitist selection, a good individual can survive over multiple generations. In
it is shown how this selection procedure starts to occupy the valley of
the landscape towards the minimum.

Tteration 1 (N=60)  Iteration 5 (N=180) Iteration 14 (N =420)

Figure 9: Iterations of the DE method showing convergence to the minimum of
a landscape, with IV the total number of evaluations.

2.6.2 Covariance Matrix Adaptation Evolution Strategy

Unlike selecting and evolving individuals like in traditional EA, Covariance Ma-
trix Adaptation-ES (CMA-ES) models the population with a multivariate nor-
mal distribution [46]. Each generation offspring is sampled which is used to
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evolve the parameters of the distribution.

x0T o m® 4 @A(0,C9) with j=1,...,A (18)
In here m(@ € R” is the mean of the population, C(9) € R"*" the covariance
matrix, and o9 the step-size, all at generation ¢g. After evaluating the \ off-
spring, the best p are used to update the mean and covariance matrix. This
means CMA-ES falls into the (u, A) category. For a mathematical treatment
see [47].

In essence the goal of CMA-ES is to push the mean of the distribution
downhill and align the covariance matrix with the contours of the landscape
(Figure 10). Modeling the pairwise dependencies makes sampling offspring more
effective in sampling towards local minima. Over the decades many update
variations have been proposed including rank-one and rank-x updates, step-size
adaptation, and active covariance updates [47].

These refinements aim to improve convergence speed, robustness, and adapt-
ability to non-separable or ill-conditioned problems. Also thanks to the model-
ing of the pairwise dependencies CMA-ES is invariant to rotation of the land-
scape which makes it suitable for non-separable objectives. Since it is gradient-
free and has ranking-based selection, CMA-ES is robust to noise (ruggedness),
scale transformations, and discontinuities in the objective function, making it
well-suited for black-box optimization where derivative information is unavail-
able or unreliable.

Yet, still the stochasticity can result in widely different paths attributed to
different basins of attraction. Population-based algorithms consequently are: lo-
cal search algorithms, once converging to a particular region of the search space,
it is impossible to jump to the other side to explore. The goal of the covariance
matrix is to model the landscape locally to step into the right direction, but of
course lacks model complexity to describe the landscape globally .
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Iteration 0 (N=16) Iteration 10 (N=66) Iteration 50 (N=306)

Figure 10: Iterations of the CMA-ES method showing updating of the popula-
tion distribution converging towards the minimum, with N the total number of
evaluations.

2.7 Bayesian Optimization

Bayesian Optimization (BO) is a sequential black-box optimization method that
uses a probabilistic framework to model neighborhoods and uncertainty using
a surrogate model to exploit and explore promising regions [2]. For continuous
search spaces BO uses a Gaussian Process (GP) model to estimate the mean and
uncertainty around observations. Moving further away from an observation, the
less certain we are about its response . Generally this model-based
approach is more suitable for engineering applications with tight budgets [48],
such as TO where physics simulations take significant amounts of time.
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acquisition function v next observation location

v

Figure 11: A probabilistic surrogate model of the objective function (blue), and
selecting the next evaluation point by maximizing an acquisition function, which
balances exploration and exploitation by favoring regions likely to yield better
solutions, in this case attempting to maximize the function (adapted from [2])

Special Acquisition Functions (AF)s are devised to sample new designs; ex-
ploit the region when the model expects good designs, explore regions the model
is uncertain about . Variants of AFs balances exploitation and ex-
ploration differently. Some examples include: Probability Improvement (PI),
Expected improvement (EI), and Upper Confidence Bound (UCB) [48].

PI exploits more aggressively by suggesting points that have high probability
to improve the current best based only on the mean prediction. EI also takes
the uncertainty into account to maximize an improvement function; in general
EI is more exploratory than PI. UCB defines the acquisition function by adding
a tunable multiple of the model’s uncertainty to the predicted mean. This
means the exploration-exploitation trade-off in UCB is controlled through a
hyperparameter.

Unlike the local search in EA, BO aims to model the global landscape. Typ-
ically, the model is updated after each observation and is applied on problems
d < 20. For high dimensions this could lead to significant overhead in updating
and sampling the surrogate models: the training complexity of GPs is O(n?).
Yet, this overhead in high cost simulation problems is assumed to be negligible
in comparison to evaluation of the objective. BO is prevalent in hyperparameter
optimization problems with tight budgets ~ 100; budgets of this magnitude are
deemed small enough to ignore BO-induced overhead.
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2.7.1 Heteroscedastic Evolutionary Bayesian Optimization

Heteroscedastic Evolutionary BO (HEBO) addresses the homoscedasticity and
stationary assumptions made in Vanilla BO [49]. Real-world problems ex-
hibit varying noise levels (heteroscedasticity) and changing characteristics (non-
stationary) across the search space. This means that in HEBO compared to
Vanilla BO, the surrogate model’s behavior can vary across the design space
depending on the region, both in modeling the mean and uncertainty. HEBO
facilitates this by means of a parameterized input- and output transformations.
Figure 12| shows iterations of the HEBO method applied on a simple 2D land-
scape. It shows both the modeling of contours of the landscape and its uncer-
tainty of regions that are not explored (blue-shaded).

Besides this more flexible surrogate modeling, a GA is used to find good
trial points among an ensemble of AFs, this is the “evolutionary” in HEBO.
Since AFs might have somewhat of conflicting goals, in Vanilla BO selecting
the AF becomes a hyperparameter on its own. HEBO counters this by evalu-
ating several AFs and finding the non-dominated set (Pareto front); the set of
trials where the score of no trial can be improved in one AF without simultane-
ously worsening at least one other AF. In principle it means, that several AFs
are balanced to create a diverse set of trials not favoring one single sampling
strategy.
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Iteration 10 (N=10) Iteration 50 (N=50) Iteration 200 (N =200)

HEBO

Surrogate Uncertainty

Figure 12: Iterations of the HEBO method showing the surrogate model pro-
gressively better modeling the contours of the landscape , with N the total
number of evaluations.
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3 Methodology
3.1 Problem Definition

In accordance to previous work [24] [35], we study a horizontal cantilever beam
problem. The material domain is rectangular with a 2:1 ratio, its left-hand side
is fixed, and a load is applied to the center of the right-hand side .
This domain is subdivided into 100x50 square elements to form the mesh of
the FEM setup. The goal is to minimize the compliance of a binary material
distribution with a 50% material budget. To calculate this compliance the mesh
is simulated using membrane mechanics, in accordance to [50].

O
Fé¢ 50
4 i
| 100 >

Figure 13: (A) A schematic overview of the studied problem, showing the design
domain D and application of load F. (B) The optimal topology obtained by
SIMP for the same mesh using [51] (adapted from [52]).

Unlike most literature, no initial design is considered. Frequently, optimizers
are warm-started using an initial design that both satisfies the volume constraint
and is connected; this clearly biases search procedure. Previously, perturbations
of diagonal designs were used as initial designs [24} [35], and choosing this initial
design was found to be critical for finding good topologies.

Instead, our approach begins with a uniformly sampled design vector. This
enforces a more challenging and unbiased optimization process, requiring the
optimizer to construct viable structures from scratch. While this may result in
slower early convergence, it provides a clearer measure of the optimizer’s ability
to discover high-performing designs without prior assumptions. Additionally,
this setup avoids encoding any implicit topological preferences into the initial
design, such as cross shapes in structural TO, to ensure a fair representative
case for other problems where solutions are not intuitive.

Additional to the volume constraint, to limit unnecessary calls to the FEM
simulation, a connectivity constraint is introduced which is violated if the design
is disconnected. This leads to the general problem definition:

Minye(o,1]d f(x)
s.t. 91(x) = V(x) = Vipax <0 (19)
(x)=C(x) <0

IN

where C(x) is connectivity constraint. Again, f represents the compliance ob-
jective, V the volume of the design, and Vi, the volume budget. The volume
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budget is set at 50% of the domain area.

Previously, Raponi et al. used an underlying graph representation of MMCs
to constraint their connectivity [35]. The endpoints of the beam are connected
with an edge, in a sense this forms the figurative bone of a MMC beam. Hence a
skeleton of the structure can be devised as the collective of these bones, which is
said to be connected whenever the underlying edges intersect and are connected
to the edge- and load points. An objection to this method is that the thickness
of the beams is not considered. That is, the rectangular beam is parameterized
with two shape dimensions (¢;,1;) from which thickness ¢; is completely ignored
even though ¢; might be larger than ;.

Besides neglecting the thickness of the beam, this method is exclusive to
regular MMC beams. However, since we investigate the effect of parameteriza-
tion on optimizer performance, we seek a more general connectivity constraint
inspired by this graph representation, and works for any geometry generating
parameterization.

3.1.1 Connectivity Constraint Proposal

To counter these problems, we propose a more general connectivity constraint
which is independent from the parameterization by considering geometry it
produces, opposed to an underlying skeletal structure. To do this, the shortest
distance between the outline of connected components is used.

Several generated geometries might be overlapping and compose a single
connected component. The j-th and k-th geomtries are connected if the inter-
section is non-empty: Q; N Qy # (. By enumerating the geometries in a graph
and drawing edges between intersecting pairs j and k, connected components

C; are found (shaded in [Figure 14]).

Figure 14: An example for calculating the least distance to connect four compo-
nents of geometry to each other and edge- and load point boundary geometry.

Note even though if two components are not connected directly, they still
can be part of the same connected component by means of an intermediate

Qjﬁﬂk;ﬁ@and QkﬂQl#@ - {Qj,Qk,Ql}QCi. (20)
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That is only if I'; never produces disconnected structures, otherwise it needs to
be decomposed in separate connected structures. Hence we make the assump-
tion the parameterization only produces geometries that are fully-connected.
Besides internal connection of the structure, it also is required to be connected
to boundary conditions such as an edge or point. We clearly make the distinction
between these from Qge, = {2} as:

Qbounds = {th,j} U {Qline,j} (21)

= {p;} U{(1 ~t)aj” +tqi? : t € [0, 1]} (22)
In here p; represents individual boundary points, and qg-l) and q;_z) line control
points to defining the geometry of line boundaries.

Now we attribute all distinct connected components a node in a graph C; €
Ve . We let the weight of edges in this connected components graph
denote the shortest distance between the pair of connected components:

We = [wiy] = [wyi] = [dmin(Ci, Cj))- (23)

This means the graph is undirected and fully connected. We define the shortest
distance function between two components as follows:

dmin(Ci, Cj) = min{||x; — x| : x; € C; and x; € C}} (24)

This directly implies dmin(C;, C;) = 0; the edge-weight matrix We is 0 on
the diagonal. Now by assuming not all pairwise distances are identical, the
minimum spanning tree (MST) of the graph can be found. The MST is the
connected graph with the least amount of total edge weight [53]. Intuitively
this is the shortest distance to connect the structure.

The weights matrix W is transformed into W ¢ st representing the MST
graph by discarding the worst connections, i.e. setting them to 0.

We deliberately left out the boundary geometry out of this procedure since
they might form a bridge to connect the geometry. For example in[Figure 14] the
lower left component and the top one are connected both to the line boundary,
however they are hardly connected as both have no influence on each other and
form not a connected structure. Therefore besides the distance of the MST, we
add the least distance from geometry to boundary conditions explicitly, defining
the connectivity constraint as:

Cx) = (Wenst(x)ij+ > mindumin(,C)). (25)
(4,5) % Epounas
inter components components to boundaries

For some fully connected design x°, there is only one connected component
Cy. This means W¢e = [dimin(C1,C1)] = [0]. Also when fully connected, it is
connected to the boundaries s0 dpin(Q%,C1) = 0 for all boundary geometries
Q. Hence C(x°) = 0.
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For disconnected designs x* there are either multiple connected components
with such that dp;, > 0, or a singular component is not connected to the
boundaries, or both. All three these scenarios imply C(x*) > 0.

3.1.2 Constrained Objective

To solve the optimization problem using black-box optimizers, the
compliance objective for feasible designs is combined with the penalties from
the constraints into a single objective: fo,; which is defined both for feasible-
and infeasible regions. We first define the combined constraint as:

9(x) = ¢(91(x) + g2(x))- (26)

In here ¢ > 0 is a scale-factor, and gg(x) represents the normalized constraint
such that x — [0,1]. That is: O represents no violation (feasible), and 1 rep-
resents the worst violation for the problem domain. In the case of the volume
constraint this is just the exceeded volume fraction:

sy _o91(x)  max{(V(x) — Vinax), 0}
o (X) B Vdomain B Vdomain ) (27)

To prevent constraints balancing each other in §1(x) + g2(x), for example trad-
ing volume to violate the connectivity constraint, the max operator is used to
restrict g1(x) > 0.

The normalized connectivity constraint can be obtained by normalizing the
connected components C; linearly relative to the design domain D:

D =[0,d,] x [0,d,] = Cj={(x/ds,y/dy): (x,y) € C;} C[0,1]°.  (28)

From the normalized geometry a normalized version of the connectivity C(x)
can be calculated as:

g2(x) = —=. (29)

The normalized connectivity is divided by v/2 since this is the largest line dis-
tance in [0, 1]2. Since We nst (x) by definition only has positive elements, like
the volume constraint, go(x) > 0. From this we can guarantee g(x) > 0 in
general, and g(x°) = 0 for a feasible design x°.

Note g2 does not strictly to [0,1], it can exceed 1 for extreme scenarios. For
example if the total geometry consists of the boundary conditions and a single
point in the corner of the design domain:

Q(X) = {Qleft—edgea Qload—point} U Qg;eo where Qg;e-o = {(L 1)} (30)
Then

é(X) d(éleft—edgey CNvgeo) + d(égeo; C~'load—point) _ 14+0.5
V2 V2 V2

~1.06  (31)
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An objection to this method is that the aspect ratio is not preserved in the
normalization. Although this effect might be negligible due to the relatively
small aspect ratio 2:1, for more extreme domain this effect should be noted. An
aspect-ratio preserving normalization of the geometry for domain D = [0, d,.] x
[0,d,] can be calculated as:

C; = {(x/ max{d,,d,},y/ max{d,,d,}) : (z,y) € C;} C [0,1]%.  (32)

Now we define the constrained objective on both feasible- and infeasible
regions as follows:

Fong(x) = {f(X) if g(x) = 0, )

maxycpo,1]¢ f(X') +g(x) otherwise.

The compliance f(x) is computed only feasible designs, i.e. if g(x) = 0, other-
wise the design deemed infeasible gets its constraint score added to the worst
feasible design compliance. In a sense this creates an artificial valley towards
the feasible region and a smooth transition between infeasible and feasible.

This differs from the previous work in which the simulation was also ran
using infeasible designs [24] 35], a penalty was only added to this objective
response whenever the design was infeasible. However, we have to note this
can depletes the simulation budget unnecessarily. Especially for unconnected
designs, the compliance result for such a design in our case can be a factor 10°
as big as an arbitrary connected design. Yet, in the case of a connected design
that exceeds the volume budget by a small amount such a penalty strategy
could be useful, as the resulting objective values remain informative and within
a reasonable scale, guiding the model toward feasible regions.

Our definition is somewhat paradoxical; the objective requires
knowledge of the worst possible feasible design which is basically the inverse
objective. To a certain extent finding max f(x) might be of same complexity
as finding min f(x). It could lead to several tactics: (1) waiting until sufficient
amount of feasible designs are evaluated to make a reliable estimate; or (2) make
an educated guess based on domain-knowledge. This educated guess might be
one based on an intuitive bad design, or one based on a simplified mathematical
model for example.

In our case, we consider two candidates for bad feasible designs: a regu-
lar thin horizontal bar, and a thin outline tracing the border of the domain
(Figure 15). Both yield compliance values around but below 500, hence we
approximate max f(x) ~ 500. When increasing the thickness of the designs,
compliance drops quickly and is found below 1 for a material budget of 50%.
Since we therefore estimate the range of f spanning three orders of magnitude,
we set the scale of the constraints to the same range ¢ = 500/0.5 = 10%. This
approach is deliberately chosen to not tune ¢ for one of the optimizers directly
to make a fair comparison, and mimic a minimal simulation budget approach.
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Figure 15: (A) The two designs used for estimating the worst compliance with
increasing thickness: bar and outline. (B) Corresponding compliance and vol-
ume fractions corresponding to the designs presented in (A).

3.2 Program Structure

The program is build-up as modular as possible to facilitate different optimizer-
parameterization combinations. Since the optimizers are “out-of-the-box” black-
box optimizers, they essentially only require just a function f that responds the
system’s response for a trial design vector x. This means when a problem is
queried, first the parameterization realizes the design. Then the connectivity
constraint and volume constraint are checked. When they are met, the design
goes through the simulation and the systems response is returned. If not, a
penalized response is returned and the simulation budget N is not decremented

(Figure 16)).
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Figure 16: A flowchart showing the basic principles of the program.

A ProblemlInstance contains a Topology data class, Parameterization, Con-
straints, Model, and a Objective. Once queried the Parameterzation alters the
geometry (polygons) and the rasterized geometry (mask) in the Topology. The
Topology is passed into the Constraints to calculate the calculate the connec-
tivity and volume using the polygon representation. If met, the rasterized mask
representation is passed into the Model. The state of the Model is updated using
this new Topology. The Objective is a mapping from Model state to score. If the
Objective is called, the simulation budget N is decremented by one, if only the
constraints are used not. Essentially we see the constraints as “free” while the
Model update involves a high-cost calculation. The core modular Python setup,
an implementation for membrane physics model, and a problem builder for the
horizontal cantilever problem can be found on: github.com/jelle-westra/TO.

3.3 Practical Implications

As stated above, the geometry is calculated in the parameterization in the form
of polygons. This is done by first calculating the outline of the parameter-
ized shape, and placing it inside the design domain. This polygon is generated
using the Python Shapely package, a package that facilitates polygon opera-
tions [54]. From here the connected components are found as proposed in
by using union operations, and after obtaining the connected
components, the distance between polygons (of the connected components) is
calculated. After this the MST can be calculated with Scipy [55], and the vol-
ume constraint can be directly calculated from the polygon. We discuss the rest
of the used packages, and their use cases later in

Since the geometry must be rasterized onto the FEM mesh, it is possible that
a connected continuous representation becomes disconnected after rasterization,
especially in the case of thin structures. This is possible if the outline of the
polygon partially intersects a pixel of the mesh ) This could result
in a simulation call of a disconnected mesh.

We choose therefore before calculation of the constraints to rasterize the
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geometry to mesh. From this rasterized version we make again a polygon from
which the constraints can be easily calculated. This also ensures the calculated
volume corresponds to the same volume as used in the FEM mesh.

(A) :

Figure 17: (A) Rasterization of a continuous geometry onto a discrete mesh. (B)
Illegal checkerboard connections found in grid-based parameterizations and after
rasterization of continuous geometry. The different colors represent different
components and illegal connections are depicted with red crosses.

A problem that comes with prior rasterization before checking the connec-
tivity constraint is that the checkerboard problem can occur. When pixels are
solely connected diagonally, with one point, they are considered to be not con-
nected. To facilitate this, when calculating the connectivity after rasterization,
we shrink the components by a tiny fraction to separate the components. We
calculate weight in the component graph between the components
now as follows:

wij = max{dmin(Ci, Cj), pr/Q} (34)

Recall, C; and C; denote the i-th and j-th connected components respectively,
and dpyin finds the minimal distance between the two, and we define px,, as the
pixel width, assuming the pixels are square. This ensures full connections as
depicted with the shaded regions in [Figure 17B; pixels may only connect to a
diagonal by means of an intermediate side connection.

3.4 Parameterizations

We briefly discuss the implementation details of the different parameterizations
introduced infsubsection 2.2 We define a d-dimensional parameterization always
to operate on the design space [0, 1]%.

For all parameterizations y-symmetry is imposed, meaning the design do-
main D is split in half by a horizontal symmetry line. Any geometry drawn
using the parameterization will be mirrored among this line Since,
by definition we can only define geometry within the domain such that Q; C D,

we clip-off geometry produced outside the design domain (Figure 18)).
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Figure 18: Mirroring of geometry among the (red) horizontal symmetry line,
dark shaded geometry is generated by the parameterization, whereas the light
shaded is imposed by the symmetry condition.

3.4.1 Honeycomb Tiling

The Honeycomb Tiling achieved by instancing a grid of points representing
the centers of the tiles. All the tiles are pre-computed and activated when its
corresponding design variable exceeds half of its search domain: z; > 1/2.
Since we operate on a rectangular design domain, there does not exist a
perfect hexagonal grid fitting exactly inside, and completely filling the entire
domain. Hence the tiling will be projected on top of the domain. Also to
comply with a certain amount of tiles, it is sometimes necessary that tiling can
be stretched. shows two orientations the tiling can have. Given the
symmetry line we continue with horizontal orientation shown in and

A) [ B)[D ©Omn
YOO '\_/_\_/_\_l_g
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Figure 19: Examples of Honeycomb tiling: (A) in a vertical orientation; (B) a
horizontal orientation; (C) in a horizontal orientation with stretched tiles.

For fair comparisons with MMCs and Curved MMCs, we will only compare
parameterizations of the same dimension. However, this implies we should cre-
ate honeycomb grids of a particular dimension to be comparable, obviously this
is not always possible. For example contains 21 cells. For instance
comparing 20D parameterizations, requires the removal of one cell. For our
experiments, we remove the cells that are the least contributing to the design
domain: the bottom row. Given that the structure needs to be connected to
the left wall, we start from the right hand side removing cells (shaded in red

Figure 19C).

3.4.2 MMCs

In previous work, authors rasterize their beams directly to mesh using the im-

plicit level-set function (¢; : D — R (Equation 11]). However, since we compute
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the geometry in form of polygons explicitly, suiting the connectivity constraint,
instead the boundary is calculated directly:

N sgn(cos27rs)|cos27rs\2/m
Pls) = (Sgn(sin27rs)|sin27rs|2/m : (35)

In here I’ represents the points on the boundary of the normalized hyperellipse,
defined parametrically on s € (0,1), and m again is the shape controlling pa-
rameter set at m = 6. This normalized shape corresponds to the MMC where
length and thickness both are [ = ¢t = 2, the radius of the normalized hyperel-
lipse is 1. Also this normalized shape has no orientation 6 = 0, and is centered
at the world origin (zo, yo) = (0, 0).

Using Shapely’s Polygon operations the shape is scaled to correspond to its
dimensions: length [, and thickness ¢. After which it is rotated by 6 and trans-
lated to position (zg, yo) (Figure 20]). This corresponds to the same geometry as
obtained by using the level-set definition . The domain s € [0,1] is
sampled using 1000 linearly spaced points to ensure a sufficiently smooth shape
before rasterization.

® -» o =

(z0,y0)
(A) Base Shape (B) Scaling (C) Placing in Domain

Figure 20: Overview of generation of geometry in the MMC parameterization:
(A) first generation of the normalized base shape; (B) then scaling to correspond
to the right dimension; (C) and lastly placing it and orienting the geometry in
the design domain.

Capsule shape proposal Previous works use this hyperellipses as approx-
imation of rectangular beams, this creates smooth continuous boundaries suit-
able for gradient-based optimization [21]. However, since gradients are not
used in BBO, various other beams can be devised like with sharp discontinu-
ous corners like a rectangle. Since we use generic transformations to generate
the geometry, we only have to substitute the generation of the normalized base
shape (Equation 33).

After rasterization, a possible drawback of the hyperellipse beam representa-
tion is that the thickness of the beam slowly decreases approaching the corners
(Figure 21f). In the case of a 1 pixel thick beam, this even could result in dis-
appearing geometry towards the endpoints (disconnected geometry). Of course
the optimizer should be able to deal with this problem given the response of the
objective. However, the we attempt to avoid this entirely by proposing a more
cohesive capsule shape.
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Figure 21: Examples of the hyperellipse- and capsule shapes using the same
dimensions after rasterization.

Before rotating and translating the shape into the design domain, the capsule
can be build up by connecting two semi-circles, with radius ¢/2 and placed /2
apart. This still gives the advantage of the smooth endpoints but keeps the beam
thickness constant. This also avoids having to define a global shape defining
parameter such as m = 6 in the hyperellipse case. One could also argue to use
a rectangle with rounded corners but this also results in the former problem:
you either have to define a global hyperparameter that controls how much of
the shape is rounded, or an additional parameter to the beam formulation is
needed.

Endpoints representation proposal The angular representation of beams
may suffer from describing geometry outside the domain. Consider the case
where a beam’s origin is placed at the corner of the domain at an angle
ure 22). Since the beam is clipped by the domain boundaries, increasing its
length [ has no effect to the objective; the geometry within the domain stays
simply the same.

N/
4 "3’5
e

U7

Figure 22: An example of geometry being described outside the design domain,
when placing the beam in the corner of the domain using the angular MMC
parameterization.

Also not suiting a local search procedure for a cyclic parameter like § might
get the procedure stuck. Assuming a ranking based procedure like EAs, once
0 reaches steps towards a local minimum around the boundary, it is unable
to jump the other side of the search space, even though these geometries are
similar. For example the optimizer approaches 6 ~ 0 (representing 0°), since
X € [0,1]%, it is impossible to turn beam any further to negative angles, even
though the objective might be better. This means without explicit adaptation
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of this cyclic behavior, the optimizer has to jump to the other side of the design
space to represent this geometry.

We therefore propose another representation of the beam using two end-
points (z1,y1) and (z2,y2), and a thickness ¢ (Figure 23A). This means we
prevent defining geometry outside the domain and having a cyclic parameter.
If we let the endpoints describe the caps of the geometry and allow them any
position in D, only the tip of the beam can be connected to the wall. To prevent
this the geometry is extended by ¢/2 in both directions to allow the beam to be
connected to the domain bounds with full thickness.

5 =1 ®
'\‘ t
(.TQ,yQ)V (xl’yl) ($27y2)
(z1,91)

Figure 23: Proposal of the endpoints parameterization of MMCs: (A) a beam
placed inside the design domain; and (B) slightly extending the geometry by half
the thickness to ensure the beam can be connected to the domain boundaries
with full width.

A representation like this can easily be transferred into the original. Let,

Ax T — X
= . 36
<Ay> <y1 - y2> (36)
Using these we can transform the endpoints representation into the angular and

use the same method for calculating the geometry. The endpoints representation
is converted into angular as:

T x1/2+ x2/2
Yo Y1/2+ y2/2
= | arctan(Ay)/(Az) |. (37)

0
l t++/(Az)? + (Ay)?
t t

However, this representation comes at the cost of adding a symmetry: the
endpoints can be swapped to generate the same geometry.
This means we can either parameterize MMCs using the quintuple: (xq, yo, 8,1, t)
for angular representation; or (x1,y1,%2,Yys2,t) for the endpoints representation.
I both cases 5 parameters are necessary to parameterize a MMC beam meaning
a parameterization of n beams results in a search space dimension of d = 5n.
Permutations of Beams Problem We have to note the following issue
when it comes to the MMC parameterization, namely symmetries. Consider
a 15D parameterization of three controllable MMC beams, which become six
after the symmetry condition (Figure 24JA). Let the three 5D decision vectors
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x(M, %@ and x() represent the first, second, and third beam of this 15D
parameterization.

These 5D blocks are independent from each other; any permutation of these
blocks result in the same geometry. To put it simply it, it does not matter
in what order we draw the beams. For example, (x(!),x(?),x(3)) describes the
same geometry as (x(3), x() x(1)),

(A) B) [ 2 (©) 1
% él §%2

Figure 24: Schematic overview of symmetry implications: (A) order of drawing
does not affect geometry; (B) The cross-shape in (A) can also be drawn by using
the mirrored version of beam 2; and (C) swapping the ends points in comparison
to (B) also produces the same geometry.

In fact, all permutations of these blocks will result in the same geometry.
Let us assume we control n beams. Then for each configuration there are n!
configurations that produce exactly the same geometry simply by changing the
beam order.

Assuming we use the endpoints parameterization, the symmetry condition it-
self also produces another symmetry in the design space. As shown irfFigure 24B,
the same cross as in can be drawn by making use of the symmetry
condition. Since this can be applied for each beam individually, it introduces 2™
symmetries. Additionally, the endpoints for each beam can be swapped to pro-
duce the same geometry. This again, produces another 2" symmetries. Leading
to a total of

TotalSymmetries(n) = n! - 22" (38)

symmetries for a parameterization controlling n MMC beams represented by
endpoints. Obviously, this scales poorly with an increasing number of beams

(Table 2).

No. Controllable No. Beams No. Total
Beams n After Symmetry Permutations n! 22n Symmetries
1 2 1 4 4
2 4 2 16 32
3 6 6 64 384
4 8 24 256 6,144
5 10 120 1,024 122,880
10 20 3,628,800 1,048,576  3,805,072,588,800

Table 2: Calculation of the number of symmetries in the design space caused
by defining MMC beams as endpoints.
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3.4.3 Curved MMCs

To keep modularity of the code, a deformation of beams is defined as additional
parameters to the original MMC parameterization. For the thickness we add
the left- and right thickness t;, and tg respectively, we let the original thickness
t of the MMC represent the center thickness t5;. The deformation for curved
beams is only performed in the local coordinate frame of the beam [36]. This
means we can apply the deformation before transforming it in the design space.

/ +’U

ﬁ“' u; \/ v L
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(0, %0)
(A) Scaling (B) Deformation (C) Placing in Domain

Figure 25: Overview of generation of deformed geometry in the curved MMC
parameterization: (A) then scaling the normalized base shape as presented ear-
lier; (B) performing the deformation in the local coordinate frame (u/,v’); (C)
and lastly placing it and orienting the geometry in the design domain.

In general, after computing the base shape and applying scaling, the points
defining the polygon boundary are not equally spaced. For example, in a capsule
shape, a long straight edge connects the two semi-circular ends. This edge can
only deform smoothly if it is divided into smaller segments; otherwise, only the
endpoints can move, resulting in a straight edge again after deformation.

To enable smooth deformation across the entire boundary, including straight
sections, the polygon is re-sampled with 1000 equidistant points before defor-
mation.

Recall the deformation of Curved MMCs consists of two components: parabol-
ically interpolated thickness, and a sinusoidal offset. If we let (u/,v’) denote a
point on the boundary of the beam in the local coordinate frame, then this
deformation is given by:

(:’L:) ~ (ft(u/)vllifCL(u’O (39)

Here fi(u’) denotes a scaling factor for thickness, and fcr,(u’) is the sinusoidal
offset of the centerline. [Figure 26]A,B shows what it looks like to first apply the
parabolic interpolation of thicknesses, and in [Figure 26(C, we also include the
centerline offset.
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Figure 26: Examples of deformations on the beam where: (A) the problem of
self-intersecting geometry is possible for some thickness combinations; (B) show-
ing a valid interpolation of thicknesses; and (C) showing the full deformation
including the sinusoidal offset.

About the sinusoidal deformation we note the following: decomposing of
the length [ into left- and right components is de facto the same as adding a
phase; both effectively shift the center point (zg, %) of the deformation along
the horizontal centerline (see original presented image . This means
the regular MMC parameters can be kept as they are, and the deformation can
be defined on top of the original parameterization. Also, the center point of the
beam stays at origin of the local coordinate frame, which benefits transformation
to the design domain.

To realize this, we swap the decomposition of [ into I and lg from the
original proposal [36], for a phase variable in the sine deformation:

foL(W') = asin(b(u’ + ¢)). (40)

Again, a and b control the deformation, and v’ is the u coordinate in the 6-
rotated coordinate frame, and c is the our proposed phase-shift variable.
The parabolic scaling factor can be calculated as follows:

fe(u') = (tp, +tp —2tar)/4- (2u'J1)? + (tr —t1)/4 - (2u' /L) + ta. (41)

Since the endpoints of the beam stretch from —I/2 to /2, u’ is normalized
to [-1,1] by dividing it by /2. For some combinations of ty,tys, and tg, this
interpolation scheme can result in negative thickness for some parts of the beam
(Figure 25/A), especially when ¢,; gets close to 0. This results in self-intersecting
geometry. Guo et al. did not have this issue since gradient-based optimization
of good initial designs was considered [36].

To counter this, we calculate t;, and tg as portion of ¢,;, where they are at
least mapped to 0.25¢)7, and maximally to 4tp;. If we let 2, € [0, 1] denote the
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decision variable controlling 7, we calculate this thickness as follows:
ty, =1[(4—0.25)x + 0.25|tp (42)

The same holds for the right thickness tp.

Since we couple the variables like this, it is questionable whether this is the
best solution. The solution is empirical, and the range somewhat arbitrary.
However, it does ensure we do not generate invalid geometry. And we deem the
range is sufficient to enough freedom to the optimizer, while not coming up with
too extreme geometries. Another option is to check for this invalid geometry
and create some sort of constraint or repair procedure for it.

To close off, the deformation can be defined on top of either the angular
MMC representation (xg,yo,0,1,t) + (tr,tr,a,b,c), or the endpoints represen-
tation (z1,y1,x2,y2,t) + (tr,tr,a,b,¢) in a modular fashion. Both gain five
more shape-deformation parameters, resulting in a parameterization of n curved
MMC beams having a search space dimension of d = 10n.
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4 Experimental Setup

To limit the scope of the experiments we focus on three different dimensions:
10D, 20D, and 50D.

We consider the effect of three different parameterizations on the optimizer
choice. As discussed in these are the: MMC, curved MMC, and
Honeycomb Tiling parameterizations. We deem these to be diverse in enough in
parameterization. One that strictly has straight beams (MMC, 5D per beam);
one where we give beams more freedom (Curved MMC, 10D per beam); and a
static tiling (Honeycomb, 1D per tile).

The three optimizers under consideration (as discussed in and
are DE, CMA-ES, and HEBO. Although only three are selected,
they represent a diverse range of optimization strategies: DE is a local search
method driven by variation and selection within a population; CMA-ES adapts
a probabilistic model of the population distribution; and HEBO builds a global
surrogate model of the fitness landscape.

This should give enough variation to study the interplay between parame-
terization and optimizer for our TO case study.

4.1 Packages

For the calculation of the polygons the Shapely package is used, a package that
facilitates many polygon operations [54]. These operations are used for trans-
forming the geometry to the design domain, and for calculating inter-component
distances used in the connectivity constraint calculation. For rasterization, the
Rasterio package [56]. And, for calculating the MST, the SciPy package is used
[55].

For all three methods, we use publicly available implementations: for DE,
the SciPy package is used [55]; for CMA-ES, the pycma package maintained by
the original author [57]; and for HEBO, the package accompanying the original
paper [49].

The ELA features are calculated using a Python version of the original flacco
R-package: named conveniently pflacco [58]. The proposed feature set that in-
tend to use, contains one feature that is not available in this Python imple-
mentation, the authors of the original paper have used the original R-package
[41]. This is the ela.meta.quad simple.coef.min by max feature. We therefore
continue the ELA campaign without this feature. To find the PCA components
of the ELA feature sets, the scikit-learn package is used [59].

The FEM simulation code is adapted from: github.com/BayesOptApp/Topology_Optimization,
written by Elena Raponi and Ivan Olarte Rodriguez.

4.2 Parameterization Settings
4.2.1 Honeycomb Tiling

For the Honeycomb Tiling the number of tiles equals the dimension. We gener-
ate the tilings as follows: for 10D we take two rows of tiles; for 20D three rows;
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and for 50D four rows of tiles . In the 20D case this results in the
removal of one tile, and in the 50D case the removal of two tiles. In all cases
the outer columns of the tiling are at higher offset than the even columns. This
is done to keep the tilings as consistent as possible. Each tile is attributed its
own independent decision variable x; € [0, 1], which is used to activate the tile
if z; > 1/2.

10D

BEX

Figure 27: The proposed Honeycomb Tiling grids for the three different dimen-
sions: 10D, 20D, and 50D.

4.2.2 MMC and Curved MMC

Regarding the beam dimensions, note that for comparison of parameterizations
of the same dimension, Curved MMC designs contain half as many beams as
regular MMC. Due to the imposed y-symmetry condition, the number of beams
is effectively doubled, but only half are directly controlled by the optimizer. In
effect, each control parameter influences a pair of mirrored beams simultaneously
(see [Figure 18)). [Table 3|lists the number of total beams for MMC and Curved
MMC per dimension.

No. beams MMC No. beams Curved MMC

Dimension d  with symmetry with symmetry
10 4 2
20 8 4
50 20 10

Table 3: The total number of beams per dimension after mirroring of the ge-
ometry using the horizontal symmetry line.

We attribute different denormalization scales for the decision variables X €
[0,1]¢, for the angular parameterization (x¢,vo, 0, [,t) and the endpoints param-
eterization (z1, Y1, T2, Y2, t).

In accordance to previous works, because the symmetry condition,the center
of the beam (zg, yo) is confined to the lower half of the design domain. Still the
beam bridge the full domain by placing its center on the symmetry boundary

and extending its length (see [Figure 20)). Accordingly:

e g is mapped from [0, 1] — [0, d.], where d, is the domain width;

e yo from [0,1] — [0, d, /2], where d, is the domain height;
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e O from [0,1] — [0, 7]; and
e [ from [0,1] + [0, ,/d2 + d2], which is the maximum possible beam length.

For the endpoints parameterization to represent the same range of geome-
tries, the beam endpoints must be allowed in both halves of the domain. There-
fore, for both endpoints:

e the x coordinates are mapped from [0,1] — [0, d,]; and
e the y-coordinates from [0, 1] — [0, d,].

For the thickness ¢, we use two different denormalization ranges. For initial
exploratory experiments on the proposed endpoints representation and capsule
shape, the following mapping is used:

\J a2+ d2
0,1+ |0, 17

) )
n

where n denotes the number of beams.
In later experiments, this range is reduced to make it harder to fill the
domain too easily. The adjusted mapping is:

[0,1] = {O,min{cf;”,(d?!m}]

n

This choice is based on the maximum thickness that would just fill the design
domain if n beams were stacked vertically (d,/n) or horizontally ((d,/2)/n).
We use d,/2 to account for the symmetry conditions: filling the lower half
automatically fills up the upper as well.

This denormalization ensures it is possible to fill-up the full design domain,
while keeping the thickness range as small as possible. We make clear during
the experiments which range is used.

For denormalization of the deformation parameters in the Curved MMC
we stick to the proposed relative denormalization of t;, and tg in terms of ¢
(Equation 42)). For the sine deformation parameters a, b, and ¢ we set:

e a is mapped to the same range as t;

e b is mapped from [0, 1] — [72\/d926 +dj, 2\/dg + dj]; and
e ¢ is mapped from [—m,7].

The mapping of b implies that the deformation can be more than one full wave-
cycle in both phase directions. We assume this range is reasonable to give the
optimizer enough freedom while not resulting in too extreme beams with high
frequency deformation.
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Dimension d  Simulation budget N ‘ DE population size CMA-ES population size

10 200 150 10
20 400 300 12
50 1000 750 15

Table 4: Simulation budget and population sizes of DE and CMA-ES for corre-
sponding parameterization dimensions.

4.3 Optimizer Settings

For all three optimizers, always the default settings are used, with exception
to max iteration parameters. For DE and CMA-ES, the default population
size is dependent on the dimension of the problem (Table 4). The surrogate
model of HEBO on the other hand is updated after each iteration in sequential
fashion. For DE the default mutation parameter is set at (0.5,1), meaning the
differential weight F' is sampled uniformly in this range for each mutation step
(Equation 16|). The initial population is sampled using LHS.

In CMA-ES the initial step-size is set at ¢(9) = 0.25, and the initial popula-
tion mean is sampled uniformly on [0, 1]¢ . Although we activated
the implemented restart procedure, restarting is never triggered in our experi-
ments.

In default setup the HEBO uses a single AF: MACE, a variant of EI which
separately weights the predicted mean and uncertainty to better balance explo-
ration and exploitation. The Matérn 5/2 kernel is used in the Gaussian Process
model that forms the surrogate.

For all optimizers we limit the budget of simulation calls to be: N = 20 -d.
Given that our used optimization methods are stochastic, all experiments are
repeated 15 times using random states for reproducibility.
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5 Experiments

5.1 MMC Representation

We use the 10D MMC problem, 4 beams, we experiment with the two different
representations: the original angular- and the proposed endpoints representation
of beams (subsubsection 3.4.2). Recall the rationale for the endpoints represen-
tation was to avoid the cyclic angle parameter 6, and to avoid the parameter-
ization generating geometry outside of the design domain. Since CMA-ES is
known to be a robust and easy to use out-of-the-box algorithm, only CMA-ES
is considered in these experiments.

To investigate the angle-locking problem we run the problem twice with the
angular representation:

e once where 6 is mapped to [0, 7];
e and once by phase shifting this range with 90°: i.e., [1/2,37/2].

This is done to inspect how of the choice denormalization range affects the
procedure.
Both angular representations for the 10D case perform worse than the end-

points representation (Figure 28[). However, it is clear that the phase-shifted
representation performs much better than the regular range.

—— Endpoints
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Simulation Calls

Figure 28: Median convergence curves of CMA-ES applied on the 10D MMC
problem for different underlying parameterizations of MMCs. The shaded region
represent the Interquartile Range.

Observing individual designs shows how as expected significant amounts of
geometry are placed outside of the design domain in angular representations
(Figure 29). This confirms the endpoints representation is better to describe
geometry within the design domain.
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Figure 29: A selection of designs obtained on the 10D MMC problem for different
underlying parameterizations of MMCs obtained with CMA-ES.

In the 10D problem, about 1/3 of designs using the angular representation
include near-horizontal beams, which leads to worse compliance. However, this
isn’t necessarily true for higher dimensions: in the 15D case, the known optimum
includes horizontal beams, and similar trends may hold for 20D or 50D problems,
potentially aiding optimization.

The effect of the denormalization range has the following implication: the
performance of a representation is biased to the problem. In the case where the
problem is rotated 90°, such that the edge is on top and the load is applied
on the bottom, the results of the regular angular- and phase-shifted represen-
tations would be swapped. This is all even though optimal topology stays the
same; the problem is the same but rotated in world coordinates. The endpoints
representation however is invariant to this rotation of the problem and does not
rely on an arbitrary denormalization range.

For these reasons we continue for now using our proposed endpoints repre-
sentation, nevertheless the angular representations could still be an interesting
research topic for future research, especially in the context of other optimizers.

5.2 MMC Shape

We now consider the proposed Capsule shape (subsubsection 3.4.2)), and com-
pare it against the original Hyperellipse shape and a regular Rectangle shape.
Again the CMA-ES method is used, now with endpoints parameterization. In
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the 10D problem there was not found a difference in behavior, for thicker beams
the above problem is less prevalent. Hence we move towards the 20D problem:;
the number of beams is doubled to eight.

From we note that there still seems to be not much difference
among the curves and selecting a shape based on this would be more tuning the
CMA-ES behavior on 20D MMC than making a objective decision. Although
not presented here, the designs are all quite similar. However we observe slightly
better results with the capsule shape (Figure 31J).
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' —— Capsule
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.5 —— Rectangle
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g
3
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107t F

0 100 200 300 400

Simulation Calls

Figure 30: Median convergence curves of CMA-ES applied on the 20D MMC
problem for different underlying shapes of the MMC beams. The shaded region
represent the Interquartile Range.
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Figure 31: A selection of designs obtained on the 20D MMC problem for different
underlying shapes of MMC beams obtained with CMA-ES.

Even though the slight difference, we do continue using the capsule shape
for the simple fact that it produces beams that preserve their thickness. In the
10D /20D problems beams are not thin which mitigates this effect. Also, when
adding deformation of the beams results in awkward corners. Again, it does not
have to be a problem: it is after all the job of the optimizer to deal with these
peculiarities. Nevertheless, capsules simply produces smoother shapes when
deformed which is also a reason for continuing with the capsules.

5.3 Parameterization Optimizer Combinations

Now we consider all the proposed optimizers: DE, CMA-ES, and HEBO, in
combination with all parameterizations: MMC, Curved MMC, and Honeycomb
Tilings. In this experiment we choose the second denormalization factor for
MMCs as described in [subsubsection 4.2.2] For interested readers, all final

designs are presented in the

5.3.1 10D Parameterizations

For 10D we observe how regular MMCs are the most competitive
and . The Honeycomb Tiling is so simplistic that all optimizers find
exactly the same configuration (Figure 34]). In|Figure 32|all are on the horizontal
line below the legend, and all optimizers find this same design.
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Analyzing the designs we find the optimizers seem to struggle slightly with
a single curved beam ). A straight V-shape is more optimal but
often the optimizers find final designs of curved beams as shown in
This is especially the case for the HEBO method.

Interestingly, MMC remains competitive across all optimizers in the 10-
dimensional case , despite the fact that these optimizers are tra-
ditionally considered better suited to different types of landscapes. We observe
in this 10D case study that devising a good parameterization gives us competi-
tive results among all the optimizers.

10D
1 i CMAES HEBO DE
e R MMC - MMC - MMC
.|‘l ......... —— Curved MMC —— Curved MMC —— Curved MMC ..
‘\ -------- Honeycomb - Honeycomb - Honeycomb

Compliance

25 50 75 100 125 150 175 200
Simulation Calls

Figure 32: The average convergence curves over 15 runs for the 10D parameter-
izations.
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10D Final Compliance Distributions (15 runs)
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Figure 33: Final distributions of the 15 runs for the 10D parameterizations.

10D CMA-ES
0.75772 0.08351 0.09441
\_—
/
(A) Honeycomb (B) MMC (C) Curved MMC

Figure 34: Some selected example designs obtained using the CMA-ES optimizer
to show differences among the 10D parameterizations.
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5.3.2 20D Parameterizations

For 20D (Figure 35| and |[Figure 36|) we observe how dominance of the MMC
parameterization starts to shift to the Curved MMC. Now also for Honeycomb
parameterization we observe difference among the optimizers. Again to show
difference among the parameterizations, shows the best obtained de-
signs from CMA-ES.

Interestingly we now see difference in optimizer performance for the MMC
parameterization while the Curved MMCs are much more robust across differ-
ent optimizers, despite some outliers for HEBO . Given that regular
MMCs have double the amounts of beams, it could mean the complexity of the
design space starts to play a role here, as discussed with the number of sym-
metries . Again we note the following, the best parameterization
gives us competitive performance across all our selected optimizers.

To add to symmetry problem, we also add that the effect of deformation
parameters is much less than the regular MMC parameters. If changing the
endpoints of the beam, it will be either be disconnected or alter connections
significantly. The deformation parameters mostly alter the shape in between
the endpoints of the beam. We deem that the number of beams is descriptive
for the difficulty of the problem additional to the total dimension.

Also the Honeycomb parameterization is deliberately chosen as poor param-
eterization; given the static cells, it can represent much less diverse and complex
designs compared to the MMC parameterizations. In such a poor parameteri-
zation we observe that the choice of optimizer affects the final performance the
most (Figure 36)). This leads to the observation that: optimizer performance is
affected by quality of parameterization.
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Figure 35: The average convergence curves over 15 runs for the 20D parameter-
izations
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20D Final Compliance Distributions (15 runs)
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Figure 36: Final distributions of the 15 runs for the 20D parameterizations.

20D CMA-ES
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Figure 37: The best obtained designs using the CMA-ES optimizer to show
differences among the 20D parameterizations.
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5.3.3 50D Parameterizations

For 50D (Figure 38| and |[Figure 39)) the trend continues, the added complexity
from having a total of 20 beams in regular MMC in comparison to only 10
beams in Curved MMCs does not benefit the optimizers. For the Honeycomb
Tiling we see the same behavior as in 20D, the ranking of the optimizers stays
the same. Also for regular MMC the optimizer ranking stays the same but the
performance gap starts to grow.

From we can see how complex this MMC parameterization be-
comes with this many beams.

Again from the final performance we observe the following: for the best
parameterization, optimizer performance is competitive among all three. That
is, even comparing a state-of-the-art optimizer like HEBO to DE.

50D
1of CMAES HEBO DE
s MMC - MMC - MMC
I‘.‘ —— Curved MMC —— Curved MMC —— Curved MMC
(R Honeycomb - Honeycomb - Honeycomb

Compliance

-~

200 400 600 800 1000
Simulation Calls

Figure 38: The average convergence curves over 15 runs for the 50D parameter-
izations
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50D Final Compliance Distributions (15 runs)
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Figure 39: Final distributions of the 15 runs for the 50D parameterizations.
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Figure 40: The best obtained designs using the CMA-ES optimizer to show
differences among the 50D parameterizations.
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5.3.4 Final Remarks

In only one run out of 405 no feasible design was found, this was for the 10D
problem with Honeycomb parameterization.

Across all three problem dimensions, we find that designing a good pa-
rameterization is significantly more important than selecting a state-of-the-art
optimizer. For poor parameterizations, such as the Honeycomb Tiling or MMCs
with an increasing number of beams, even advanced optimizers are unable to
compensate for the inherent limitations. In such cases, the choice of optimizer
becomes critical to remain competitive. However, when a strong parameteriza-
tion is used, all three tested algorithms perform competitively, regardless of the
optimizer-parameterization combination.

In other words, the choice of parameterization has a larger impact on the
outcome than the choice of optimizer in our case study. For practitioners, this
implies that investing effort into designing or selecting an effective parameteri-
zation may yield greater returns than tuning or replacing the optimizer.

5.4 ELA

The philosophy of the BBOB functions is that they represent groups and char-
acteristics commonly found in real-world BBO problems. This means that if we
find correspondance in ELA feature space, we expect would similar optimizer
performance. To investigate this we visualize the selected ELA features using
two-component PCA, for all BBOB functions and our different TO parameter-
izations. For the ELA campaign a budget of 30 - d is reserved, this is generally
accepted as bare minimum. However, this already means 30 - 50 = 1500 sam-
ples are required calculating these features in the 50D case. For each BBOB
function, the first function instances are repeated each five times, for a total of
25 feature sets per BBOB function. For the TO parameterizations 15 random
seeds are considered.

We present all distributions for all BBOB and TO problems found in the
From these distributions, we observe that none of the features
exhibit values for TO that differ significantly from those observed on BBOB
functions. Also, for the linear meta-model features, we observe that both the
intercept and the maximum coefficient are exceptionally large only for BBOB
function 12, compared to all other functions. As a result, these values dominate
the PCA projection, causing all other functions to be compressed into a narrow
region. Therefore, we exclude these features from the PCA analysis to avoid
distortion.

shows the PCA projections for the 10D, 20D, and 50D problems.
With increasing dimension, a increase in structure is observed. In all three our
problem definitions are most similar to groups 4 and 5. According to the ELA
hypothesis, this means these particular overlapping functions ideally should have
the same optimizer behavior.
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Figure 41: PCA projections of ELA features for BBOB functions and our TO
parameterizations for: (A) 10D; (B) 20D; and (C) 50D.

Surprisingly, upon running the DE, CMA-ES, and HEBO optimizers on the
BBOB functions we note the following: HEBO is always the best. Clearly, this
is not the case in our results. Yet, our problems are projected in between BBOB
functions. For this reason, we must immediately question representativeness of
BBOB functions of real-world BBO problems.

Yet we note the following for 10D (Figure 41]A), MMC and Curved MMC
overlap quite well compared to Honeycomb Tiling. In our results for 10D we
also find similar performance among MMC and Curved MMC, except for HEBO.
For the Honeycomb Tiling the performance is far worse which could make sense
given the separation in ELA space. Despite the difference all three map still to
the same region.

For 20D (Figure 41B), the TO problems are now outside of the projection
of the BBOB functions, although they are still close to some BBOB functions.
We note the following: MMC is in between Honeycomb and Curved MMC. We
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see this also in the quality of the parameterization from the 20D final perfor-
mance box-plots . The curved MMC is least affected by optimizer
selection, MMC slightly more, and in Honeycomb optimizer selection is critical.
In correspondence to 10D this placement in ELA space could indicate quality
of parameterization.

However, in the 50D case this does not hold anymore (Figure 41IC). Now
Curved MMCs and Honeycomb Tiling overlap while we saw complete different
optimizer behavior of the two. Curved MMCs we found to be a good robust
parameterization for which the optimizer selection is insignificant, whereas for
Honeycomb Tilings is was found to be the complete opposite. Also surprisingly
we find that f11 of BBOB gets mapped to two separate regions.

One might argue that the overlap is caused by the PCA projection being
dominated by the BBOB functions. However, upon applying PCA only to the
TO parameterizations, the same overlap is found.

We have to make the following observation: the hypervolume of the feasible
space can be quite small compared to the infeasible. This means when sampling,
likely all configration-objective pairs sampled to calculate the ELA features
are from the infeasible space. For example in the 10D case, taking uniform
samples from [0, 1]10 results in an order of ~ 0.1% feasible designs for all three
parameterizations. This decreases for the larger dimensions. This results in
the ELA features being calculated only on the infeasible space: the constraint
function. The question then becomes: what does this imply. Still this does
not explain the difference among overlap in ELA space between the different
dimensions.

Also when trying to connect the different overlaps to the evaluations it takes
to find feasible space no connection can be made. For Curved MMCs the ranking
is: HEBO, DE, CMA-ES, and for DE the ranking is CMA-ES, HEBO, DE.
shows the number of simulation calls in comparison to the total
number of evaluations made to the problem.

For 10D we considered to calculate the ELA features solely on the feasible
space, by discarding infeasible points and only keeping the feasible design vec-
tors and corresponding objective responses. This results in around 300k total
samples for 300 feasible. Due to the distribution of feasible sampled design vec-
tors of the Honeycomb parameterization, the level-set and distribution features
can not be calculated.

For both MMC and Curved MMC, we observe differences in most ELA
features between the feasible and infeasible regions (see for the
box-plots of all features). However, these differences may reflect either genuine
difference in the underlying landscapes, or artifacts introduced by differences
in the sampling of design vectors across these regions. Since ELA is known
to be particularly sensitive to such sampling variations [60], we consider the
comparison between feasible and infeasible regions to be unreliable.
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6 Discussion

6.1 On the Use of ELA for TO problems

Our experiments have highlighted several limitations when using ELA in the
context of real-world constrained TO problems. While ELA features are orig-
inally selected to distinguish among well-studied BBOB benchmark functions,
their descriptive power for problems like ours, particularly those with complex,
constrained, and often discrete-like feasible regions, is questionable.

Possibly a dedicated feature set or a more rigorous analysis could benefit the
descriptive task of ELA. For now, we found it difficult to say some thing useful
about our problems based the selected feature set.

The most striking issue is the double landscape structure: the feasible and
infeasible regions of the design space may exhibit fundamentally different land-
scapes, both in structure and in difficulty. In our 10D analysis, we attempted
to isolate the feasible landscape by computing ELA features solely from feasible
samples. However, with feasible regions comprising less than 0.1% of the design
space, this approach produced highly biased and sparse estimates, especially
for the Honeycomb parameterization, where even basic ELA features such as
level-set and distribution measures became incalculable.

It remains a question on how to handle problems such as these in the ELA
framework where only feasible calls count towards the budget.

Further, since ELA is known to be highly sensitive to the distribution of the
sampled points [60], any comparison between feasible and infeasible landscapes,
especially when based on unequally sampled regions, must be interpreted with
extreme caution. As such, we consider our current ELA approach insufficient
for making robust conclusions about constrained TO parameterizations.

From reasoning about sampling the infeasible space we can argue that little
useful can be said about the full optimization performance. Consider the follow-
ing thought experiment about a 2D landscape. There is a thin ring containing
one of the BBOB functions. Outside the ring, the landscape funnels towards
the ring, such that the optimizer is guided into this “feasible” region. ELA
features from samples outside the ring can never say what happens inside the
ring. Since any function can be inside the ring, the optimizer performance can
be never known from only sampling the infeasible.

6.2 On the Importance of Parameterization

In we have shown the importance of the parameterization in
comparison to the optimizer for our horizontal cantilever case-study. A ques-
tion that remains is how well this transfers to other problem domains. That
is, different design domains with different boundary conditions. But also, prob-
lems with different objectives, other than the minimization of compliance. An
interesting direction could be to look again into the vehicle chrashworthiness
problem discussed in previous work [24], [35].
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Moreover, as our parameterizations are tightly coupled to the denormaliza-
tion ranges, future work could explore how sensitive performance is to these
ranges. We found this while experimenting with some ranges in the Curved
MMC parameterizations. It could be this denormalization range is as critical
to the parameterization as the geometric description.

Also, it would be nice to extend the simulation budget. We had trouble
getting HEBO towards 5000 simulation calls given the overhead of the surro-
gate model. However, we found designs representing the optimal design from
SIMP (Figure 13B) can be obtained reliably with CMA-ES by extending the

optimization run (Appendix F)).
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7 Conclusion

This thesis investigated the interplay between parameterization and optimizer
performance in constrained TO problems. The case-study in question is a hor-
izontal cantilever problem for which compliance is minimized. Through a sys-
tematic case study involving three parameterizations: MMC, Curved MMC, and
Honeycomb Tiling; across three problem dimensions (10D, 20D, and 50D); and
using three optimizers (CMA-ES, DE, and HEBO), we examined how selection
of parameterization and optimizer influence solution quality.

First we proposed a method for constraining infeasible designs using a con-
nectivity constraint. This constraint relies on finding the minimum distance
required to connect the design. Although we did not benchmark our proposed
constraint, it was found it does guide all three different optimizers to feasible
designs. In one single case: the 10D Honeycomb grid, in one run, HEBO con-
verged to an infeasible design. For all other experiments, feasible designs were
always found using all three different optimizers. Therefore we conclude the pro-
posed connectivity constraint is effective for finding connected designs, across
our case-study. Additionally, the proposed endpoint-based parameterization of
MMC was found to consistently keep the geometry within the design domain,
in contrast to the original angular representation.

Our results show that parameterization quality has a more significant impact
on optimization outcomes than the choice of optimizer. Poorly constructed
parameterizations, such as the Honeycomb Tiling or MMC with many beams,
were found to lead to large difference among optimizer performance. While for
a good parameterization all three optimizers were found to be competitive. We
found this to be the case in all three selected parameterization dimensions.

For our case study this indicates that the parameterization itself seems to
enable robust performance across different optimization strategies. While poor
parameterization leads to a reliance of optimizer selection or tuning for compet-
itive performance.

Additionally, we explored the application of ELA in this context. While
ELA has shown value in benchmarking standard BBO problems, like BBOB,
we found it to be of limited use in constrained TO problems. The sensitivity
of ELA features to sampling distributions, combined with the sparsity of the
feasible regions, undermines the reliability of many feature calculations. Solely
sampling the infeasible region can never infer performance in the feasible, be-
cause the performance of the feasible depends on the objective and not only
on the constraints. This suggests a need for constraint-aware or domain-specific
landscape analysis methods to properly characterize problems like ours. We have
not found way to get a better understanding of our parameterization through
the use of ELA features.

In this thesis, we observed that for our specific case study involving a con-
strained, real-world topology optimization (TO) problem, the choice of param-
eterization had a more significant impact on performance than the choice of
optimizer. The optimizer’s effectiveness appeared to be limited by the struc-
ture and expressiveness of the design space defined by the parameterization.

64



While this finding is based on a single case study, it suggests that thoughtful,
task-specific parameterization design may be a worthwhile focus before investing
heavily in optimizer selection or tuning.

7.1 Future Work

First, for future work we would suggest to extend the study by more optimiz-
ers and parameterizations. Although we have found strong evidence with three
different optimizers, broader selection would help confirm the generality of our
conclusions and potentially reveal interactions between specific optimizers and
parameterization strategies that were not captured in this study. Also, as denor-
malization range is a significant part of the parameterization, we would suggest
to assess its sensitivity in comparison to our presented results.

It would further interesting to see how our observations hold up in other
problem domains. That is, different structural problems besides the static hor-
izontal cantilever, to completely other problem domains such as the vehicle
chrashwortiness problem (which initiated this study) [24} B5].

Lastly, we recommend future work on developing constraint-aware ELA
methods tailored to TO. Existing ELA feature sets, largely based on BBOB,
may not capture the dual landscape structure of TO problems, where only fea-
sible solutions count toward the budget. We suggest exploring new features
or sampling strategies that account for feasibility, or applying representation
learning to model the feasible region directly, enabling ELA to operate more
meaningfully in constrained, real-world design spaces.

This work highlights the importance of thoughtful parameterization design
in real-world TO problems and underscores the need for constraint-aware land-
scape analysis methods.
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A Final Designs of Parameterization-Optimizer
Combinations

Figures below show all the final designs obtained in They are

sorted based on objective score.
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Figure 42: Final designs obtained with DE on the 10D Honeycomb parameter-
ization (budget 200).
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Figure 43: Final designs obtained with CMAES on the 10D Honeycomb param-
eterization (budget 200).
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10D HEBO Honeycomb
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Figure 44: Final designs obtained with HEBO on the 10D Honeycomb param-

eterization (budget 200).
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Figure 45: Final designs obtained with DE on the 10D MMC parameterization

(budget 200).
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Figure 46: Final designs obtained with CMAES on the 10D MMC parameteri-
zation (budget 200).
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Figure 47: Final designs obtained with HEBO on the 10D MMC parameteriza-
tion (budget 200).
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10D DE Curved MMC
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Figure 48: Final designs obtained with DE on the 10D Curved MMC parame-
terization (budget 200).
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Figure 49: Final designs obtained with CMAES on the 10D Curved MMC
parameterization (budget 200).
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10D HEBO Curved MMC
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Figure 50: Final designs obtained with HEBO on the 10D Curved MMC pa-
rameterization (budget 200).
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Figure 51: Final designs obtained with DE on the 20D Honeycomb parameter-
ization (budget 400).
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Figure 52: Final designs obtained with CMAES on the 20D Honeycomb param-
eterization (budget 400).
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Figure 53: Final designs obtained with HEBO on the 20D Honeycomb param-
eterization (budget 400).
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20D DE MMC
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Figure 54: Final designs obtained with DE on the 20D MMC parameterization

(budget 400).
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Figure 55: Final designs obtained with CMAES on the 20D MMC parameteri-

zation (budget 400).
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20D HEBO MMC
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Figure 56: Final designs obtained with HEBO on the 20D MMC parameteriza-
tion (budget 400).
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Figure 57: Final designs obtained with DE on the 20D Curved MMC parame-
terization (budget 400).
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20D CMAES Curved MMC
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Figure 58: Final designs obtained with CMAES on the 20D Curved MMC
parameterization (budget 400).
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Figure 59: Final designs obtained with HEBO on the 20D Curved MMC pa-
rameterization (budget 400).
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50D DE Honeycomb
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Figure 60: Final designs obtained with DE on the 50D Honeycomb parameter-
ization (budget 1000).
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Figure 61: Final designs obtained with CMAES on the 50D Honeycomb param-
eterization (budget 1000).
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50D HEBO Honeycomb
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Figure 62: Final designs obtained with HEBO on the 50D Honeycomb param-
eterization (budget 1000).
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Figure 63: Final designs obtained with DE on the 50D MMC parameterization
(budget 1000).
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Figure 64: Final designs obtained with CMAES on the 50D MMC parameteri-
zation (budget 1000).
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Figure 65: Final designs obtained with HEBO on the 50D MMC parameteriza-
tion (budget 1000).
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50D DE Curved MMC
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Figure 66: Final designs obtained with DE on the 50D Curved MMC parame-
terization (budget 1000).
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Figure 67: Final designs obtained with CMAES on the 50D Curved MMC
parameterization (budget 1000).
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50D HEBO Curved MMC
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Figure 68: Final designs obtained with HEBO on the 50D Curved MMC pa-
rameterization (budget 1000).
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B ELA Features BBOB and TO

[Figure 69| [Figure 70} and [Figure 71| show the distributions of all the calculated
ELA features are displayed. The numbers on the x-axis represent the BBOB
functions. Numbers 25, 26, and 27 are our TO parameterizations. With 25:
MMC, 26: Curved MMC, and 27: Honeycomb. These are highlighted in the
shaded region. Per problem we show three distributions, these correspond to
the three dimensions: 10D, 20D, and 50D. Besides these we also show the dis-
tributions for the feasible samples beyond the shaded region which were only
obtained for 10D: MMC and Curved MMC. A dedicated comparison between
the infeasible and feasible features is given in the next section.
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Figure 69: A selection of the ELA feature comparison between the BBOB func-
tions and TO parameterizations (shaded) for dimensions: 10D, 20D, and 50D

(1/3).
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Figure 70: A selection of the ELA feature comparison between the BBOB func-
tions and TO parameterizations (shaded) for dimensions: 10D, 20D, and 50D

(2/3).
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Figure 71: A selection of the ELA feature comparison between the BBOB func-
tions and TO parameterizations (shaded) for dimensions: 10D, 20D, and 50D

(3/3).

C ELA Features TO for Infeasible and Feasible

|[Figure 72| [Figure 73] and [Figure 74l show the comparisons of the feasible sample
and infeasible sample of ELA features for our TO problems.
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Figure 72: A selection of the ELA feature comparison between the feasible- and
infeasible TO samples on 10D (1/3).
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Figure 73: A selection of the ELA feature comparison between the feasible- and
infeasible TO samples on 10D (2/3).
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D BBOB Convergence Curves

We show the convergence curves for the 10D BBOB functions (Figure 75)), 20D
BBOB functions (Figure 76)), and the 50D BBOB functions (Figure 77)), for the
optimizers: CMA-ES, HEBO, and DE.
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Figure 75: BBOB convergence curves for the 10D problems, for optimizers:
CMA-ES, HEBO, and DE.
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Figure 76: BBOB convergence curves for the 20D problems, for optimizers:
CMA-ES, HEBO, and DE.
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BBOB 50D
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Figure 77: BBOB convergence curves for the 50D problems, for optimizers:
CMA-ES, HEBO, and DE.
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E Simulation Budget over Optimization Proce-
dures

In general we find that DE makes much more calls to the infeasible region of
the problem in comparison to CMA-ES and HEBO: [Figure 78| [Figure 79 and
These graphs show the total evaluations we make to the problem,
that is, feasible and feasible, in comparison to the simulation budget. The
dashed line represents the limit: assuming all evaluations of the problem are
feasible.
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Figure 78: The total evaluations made to the problem against the number of
simulation calls of these total evaluations, for the 10D parameterizations. And,
the dashed line representing the limit assuming all evaluations were feasible.
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20D (simulation budget: 400)
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Figure 79: The total evaluations made to the problem against the number of
simulation calls of these total evaluations, for the 20D parameterizations. And,
the dashed line representing the limit assuming all evaluations were feasible.
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Figure 80: The total evaluations made to the problem against the number of
simulation calls of these total evaluations, for the 50D parameterizations. And,
the dashed line representing the limit assuming all evaluations were feasible.
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F CMA-ES Extended Runs

Initially, a larger simulation budget was planned. However, it turned out to be
infeasible to reach 5000 simulation calls with HEBO due to the computational
overhead of its surrogate model. Despite this limitation, we still achieved results
close to the SIMP baseline by using the CMA-ES method with a budget of

N =100 d (Figure 81).
50D CMAES Curved MMC (budget 5000)
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Figure 81: Final designs found with the CMA-ES optimizer on the Curved
MMC parameterization on an extended budget of 100 - d for: (top) 50D; and
(bottom) 100D.
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