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Abstract

A Rummikub puzzle is a one-player variant of the Rummikub game. The objective is to form
valid groups and runs to maximize the total points, which are determined by the value of the
tiles used in these valid groups and runs. This thesis addresses the optimization problem of
solving Rummikub puzzles, with a focus on reducing the memory usage and categorizing puzzle
difficulty. To achieve this, a state-encoding mechanism is introduced to prevent redundant
computations, which is extended by dynamic memory allocation to only handle reachable
states. Additionally, a set of pre-computable features is proposed to categorize the difficulty
of Rummikub puzzles.
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1 Introduction

The game of Rummikub is a tile-based game for two to four players that combines elements of
strategy and luck. To provide a clear understanding of its rules, we first outline how the game is
played based on the official rules [Lem].

1.1 Rules and Game Play

Rummikub uses 106 tiles (or playing cards); 104 of them are numbered from 1 to 13, and are
colored by one of the four colors in the game. For this thesis, we use {black, green, red, yellow} as
available colors. There is exactly one duplicate of every number-color combination in the game.
The remaining two tiles are jokers, which can substitute for any other tile.

The game starts with every player drawing 14 tiles. The remaining tiles are referred to as the pool.
The players then take turns in which they can either draw a tile from the pool and add it to their
current hand or play a subset of the tiles in their hand (if they are allowed to do so according
to the rules described later). During the game, the players are not able to see the hands of other
players. This makes Rummikub an imperfect information game, similar to Poker, as players do not
have access to all information, such as the hands of opponents.
The player can play their tiles in two ways: runs or groups. A run (also called street) consists of
three or more consecutive numbers of the same color, and a group is defined as 3 or 4 tiles with
the same number but consisting of different colors. For the initial meld, which is the first valid
sets of tiles a player lays down, the numbers on the tiles of the player must add up to 30 or more
points. The player can achieve this by forming any number of valid runs and/or groups, as long as
they total at least 30 points and come from their hand. After this initial play, the player is free to
manipulate the tiles on the table with their own tiles as long as the table at the end of the player’s
turn still consists of valid runs and groups and the tiles that were on the table before their turn
must still be present on the table afterward. If a player fails to play one of their hand’s tiles on
the table in their turn, they have to take a tile from the pool. The objective of the game is to be
the first player to play all their tiles as valid runs and/or groups on the table. If the pool becomes
empty during the game, and no player can make a valid move, the player with the fewest points
remaining in their hand wins. When playing multiple rounds of Rummikub, players count the
points remaining in their hands at the end of each game, which are then added to their total score.
The player with the lowest score after all rounds wins.

In Figure 1, an example of a possible valid run is shown. This run consists of tiles numbered from
4–9 of the same color (black/clubs). A player could manipulate this run by taking tiles at each end
of the run or splitting the run into multiple runs, as long as the created run(s) are still valid. In
Figure 2, a possible manipulation of the previous run is shown. For this manipulation, a player
used the black/clubs four tile to make a group of fours and the black/clubs nine tile to make a new
run with the duplicated eight tile. The previous run now becomes a run of 5–8.
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Figure 1: An example run laid on the table at the beginning of a player’s turn.
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Figure 2: A possible manipulation of the run using a subset of the player’s tiles, where the hearts,
diamonds and clubs indicate different color tiles.

In this thesis, we study a one-player variant of the Rummikub game, which we will refer to as
the Rummikub Puzzle. Unlike the standard version, this variant has no turns and no pool of tiles
to draw from. Instead, the player has a fixed set of tiles to form valid groups and runs according
to the game rules. The goal of the puzzle is to maximize the total points, which is defined as the
sum of the values of all tiles used in valid groups and runs. The puzzle becomes an optimization
problem for a given tile configuration.

1.2 Research Question

Given our Rummikub puzzle definition, this thesis addresses the following research questions:

1. How can we reduce the memory usage by encoding Rummikub puzzle states, based on the
initial puzzle configuration?

2. How can we attach a difficulty measure to a given Rummikub puzzle?

1.3 Thesis Overview

The remainder of this thesis is organized as follows. Section 2 formally defines the Rummikub puzzle
and introduces the notation used throughout this thesis. Section 3 reviews research that has been
conducted on the game of Rummikub, including early work using Integer Linear Programming,
computer vision applications, and one-player puzzle variants. Section 4 presents a naive brute-force
approach to solving the puzzle, followed by some optimizations. Section 5 discusses memory usage
and introduces a memory-efficient representation. Section 6 introduces upper and lower bounds
for Rummikub puzzles, as well as techniques for reducing the problem size. Section 7 introduces
a classifier that predicts the difficulty of a Rummikub puzzle based on features from the initial
configuration.
This research is part of the bachelor project of the Computer Science program at LIACS, Leiden
University, under the supervision of dr. W.A. Kosters and dr. J.K. Vis.
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2 Definitions

In this section, we formally define the Rummikub puzzle using the following parameters:

• Let k > 0 be the number of distinct colors (or suits, if using cards instead of tiles).

• Let n > 0 be the maximum value a tile can take.

• Let m > 0 be the maximum number of copies available for each tile. Thus, for every color-value
pair (c, v), at most m copies are present.

• Let s ≥ 3 be the minimal set size required to form valid groups and runs.

• Let j ≥ 0 be the number of joker tiles, which can substitute for any color-value pair (c, v).

In order to avoid additional complexity, we will fix j = 0 (no joker tiles) and the minimal set size
for both groups and runs as s = 3 in this thesis.
Given these parameters, we define the universal tile set as:

T (k,m, n) =
⋃

c∈C,v∈V

{(c, v)i | 1 ≤ i ≤ m}.

Here:

• C = {1, 2, . . . , k} is the set of colors.

• V = {1, 2, . . . , n} is the set of possible values.

A Rummikub puzzle instance G(k,m, n) is then defined as a subset of T (k,m, n):

G(k,m, n) ⊆ T (k,m, n).

The Rummikub puzzle can now be stated as an optimization problem:

Given a configuration G(k,m, n) of the Rummikub puzzle, with parameters k,m and n,
what is the maximum number of points that can be obtained by forming valid groups
and runs?

The points are calculated as the sum of all the tile values included in the valid groups and runs.

Another approach to the Rummikub puzzle could be to minimize the number of unused tiles. These
tiles are not included in the valid groups or runs formed, given a Rummikub puzzle configuration
G. However, for this thesis, maximizing the number of points is chosen since, for the original
Rummikub game, the points on the remaining tiles matter. That being said, the algorithms in
this thesis can easily be adapted to minimize the number of unused tiles. This can be achieved by
assigning a value of one to each tile instead of the actual tile values.
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3 Related Work

Compared to other combinatorial games such as Chess or Poker, there is limited research on the
game of Rummikub.
The earliest research on Rummikub is by Den Hertog and Hulshof [dHH06]. Their research question
aligns closely with ours: What is the maximum number or value of the tiles you can place on the
table? To address this question, they formulated the problem as an Integer Linear Programming
(ILP) model. ILP is a mathematical optimization technique that finds the best solution under a set
of linear constraints, with the decision variables being integers. The ILP model was later extended
with constraints to minimize the change to the existing sets on the board. This produced optimal
solutions with minimal changes to runs and groups on the table.

The most recent research [VMLV25] about Rummikub has been conducted in the field of Computer
Vision. In this study, the authors evaluate a method in which an Artificial Neural Network is
combined with background knowledge and reasoning through the IDP-Z3 system in order to
improve the detection and validation of Rummikub game states. The authors showed that for this
Rummikub problem, the background knowledge is worth as much as two-thirds of the data set or
slightly more than half of the training time.

Further research has been done in the Reinforcement Learning field [KK03]. In this research, the
authors compare the training of an agent with two methods: Temporal-Difference learning versus
Evolutionary learning. The agents are learning to play Rummy, which is a 52-card game variant
of the Rummikub game. After letting the different learning agents play against each other. The
Evolutionary learning agent produced superior results.

Research more directly aligned with this thesis has been conducted on one-player Rummikub
puzzles. In [vRTV15], the authors addressed the same Rummikub problem and used the same
input parameters according to the above given definition of the Rummikub problem. Given a subset
of the Rummikub tile set, form valid sets of runs and groups such that the score is maximized.
The authors provided a polynomial algorithm with a dynamic programming approach to solve this
Rummikub problem. In this paper, the problem of counting winning hands is also briefly researched.

A bachelor thesis [Fei23] further investigated the counting of winning Rummikub hands. The
author proposed the CWH algorithm, which produces all winning tile configurations in the game of
Rummikub. The problem, however, was excessive running time and memory usage. The author intro-
duced some interesting optimizations, such as pruning and parallel processing, to tackle this problem.

Another thesis [Gul19] explored a recursive method and a heuristic guided state space search.
However, due to restricted access, this thesis could not be examined in more detail.

4



4 Initial Approach

The first approach to solve the Rummikub puzzle for a Rummikub configuration: G(k,m, n), is a
brute-force method. Here, every possible combination of taken runs and groups is calculated to get
the maximum number of points possible. First, all the tiles of the Rummikub puzzle are stored
in a two-dimensional array, where the first axis represents the tile number and the second axis
is the tile color (suit). The value at any given position in this array corresponds to the number
of copies of that given tile. The algorithm begins at the last row (row n) and iterates through
all the possible combinations of runs for each column. The possible run sizes are {0, 3, 4, 5}. A
run of size 0 represents an empty run, which is necessary to account for permutations where no
runs are formed and only groups are used. Since the minimal set size is s = 3, only runs of length
three or greater are considered. Runs of size six can be split into two runs of size three, so only
runs sizes smaller than six are included. Generally, for arbitrary s we only consider run sizes in
the range {0, s, . . . , 2s− 1}, since any run of size 2s or larger can be split into two or more valid
runs. After determining a combination of possible runs for the current row, the remaining tiles are
used to calculate the group value for that row. Then, we recursively call this method on the row
above until we reach the first row in which we know the total sum of all the tiles that are present
in valid groups and runs according to the current configuration of runs and groups. The current
configuration score is compared to the maximum score found. This will ensure that after executing
the maximum number of points given a Rummikub configuration is found.
This approach correctly answers some smaller test configurations of theRummikub puzzleG(4, 2, 40).
But for the larger test configurations G(4, 2, 100), the algorithm failed since it is too computationally
expensive. The problem with the first brute-force approach is it recursively calculates all possible
configurations of runs and groups. As the number of tiles n or the number of copies m increases,
the complexity grows exponentially.

4.1 Test Files

The test files created by the authors of [vRTV15] are used in this thesis to test the correctness of
algorithms for the Rummikub puzzle. In these test files, there are multiple Rummikub puzzles
defined and every puzzle consists of multiple Rummikub tiles.

The test files are built as follows. The first line has the number of Rummikub puzzles found in
the test file. The following lines are the Rummikub puzzles, which consist of two lines. The first
indicates the number of tiles present in this puzzle. The second line has all these tiles, which are
represented by the number of the tile followed by the first letter of the color of the tile (b = black,
g = green, r = red and y = yellow), the tiles are separated by spaces.

An example of such a test file is the following:

2

28

1b 1b 1g 1y 1y 2b 2y 3b 3b 3g 3g 3r 3r 3y 3y 4b 4g 4g 4r 4r 5b 5b 5g 5g 5r 5r 5y 5y

23

1g 1r 1r 1y 2b 2g 2r 2r 2y 3b 3b 3g 3g 3r 3y 3y 4b 4g 4y 5b 5b 5g 5y
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This gives the two Rummikub puzzles from Figure 3. The input parameters for these Rummikub
puzzles are: k = 4,m = 2, n = 5.

row b g r y
1 2 1 0 2
2 1 0 0 1
3 2 2 2 2
4 1 2 2 0
5 2 2 2 2

(a) First Rummikub puzzle.

row b g r y
1 0 1 2 1
2 1 1 2 1
3 2 2 1 2
4 1 1 0 1
5 2 1 0 1

(b) Second Rummikub puzzle.

Figure 3: Two-dimensional representation of the two examples Rummikub puzzles.

The output file in which the maximum number of points per Rummikub puzzle is shown looks like
this:

93

65

The largest test file has the following Rummikub configuration: G(4, 2, 100), and has 10,000
Rummikub puzzles.

4.2 Group Value

After forming runs from the current row, the algorithm calculates the current group value. The
group value is the maximum number of points that can be obtained by forming valid groups given
a set of tiles with the same number, which is a row in the two-dimensional representation of the
Rummikub puzzle. To compute this, the algorithm takes the number of occurrences of each tile in
the row and sorts them in ascending order.
Table 1 and Table 2 list all possible combinations of tile counts in a row, representing how a specific
number may occur across the different colors. For m = 2, there are 15 combinations and for m = 3,
there are 35.
The total number of group value combinations can be computed. Given parameters k and m, we
select k integers from the range 0 to m, allowing repetitions and disregarding the order. This
corresponds to the number of combinations with repetition, given by the following formula:(

m+ k

k

)
. (1)

For instance, with k = 4 and m = 2, the number of combinations is:(
2 + 4

4

)
=

(
6

4

)
=

6!

4!(6− 4)!
= 15,

which corresponds to the 15 combinations shown in Table 1.
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Similarly, for k = 4 and m = 3, we get:(
3 + 4

4

)
=

(
7

4

)
= 35,

matching the 35 combinations in Table 2.

For calculating the group value with m = 3 (which also applies to m = 2) and k = 4, Algorithm 1
is used. The main idea of the algorithm is to compute the group value for a given combination
without the need for a table storing all possible combinations and their corresponding group values.
The counts of each tile color in a row are denoted as a, b, c and d, where 0 ≤ a ≤ b ≤ c ≤ d ≤ m.
The key steps of the algorithm are as follows:

1. Case a = 0:

• At least one color does not contain a tile for the current number/row.

• The only valid group consists of the remaining three colors.

• Since b is the smallest number of copies, the group value is b× 3.

2. The total number of tiles ntiles in the row is computed.

3. Check whether the group value equals the total number of tiles:

• This holds if either a ≥ 2 or c = d.

• The only exception is the combination 1133. we ensure that ntiles ̸= 8.

4. The remaining cases:

• Five specific combinations remain for which the group value is less than the number of
tiles.

• The algorithm identifies which of these applies and returns the corresponding group
value.

4.3 Clearable Groups

A group/row is considered clearable if all the tiles in that group can be formed into valid groups.
Equivalently, a group is clearable if its group value equals the total number of tiles in the row.
To determine whether a given combination is clearable, we use a similar algorithm as for the group
value, which is as follows:

1. Check if the total number of tiles is zero or greater than 8:

• In this case, all the combinations are clearable, as can be seen in Table 2.

2. Otherwise check if b = d.

• In this case, all the combinations are clearable except 1122.
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3. The combination 1122 is also clearable, as we can form two valid groups of size three.

4. All other combinations are not clearable.

Algorithm 1 Algorithm to compute the group value for a combination with k = 4 and m = 3.

Require: Sorted vector (a, b, c, d), with 0 ≤ a ≤ b ≤ c ≤ d ≤ 3
if a = 0 then

return b× 3
end if
ntiles ← a+ b+ c+ d
if a ≥ 2 or (c = d and ntiles ̸= 8) then

return ntiles

end if
if c = 1 then ▷ combinations: 1112 and 1113

return 4
end if
if b = 1 then ▷ combinations: 1123 and 1133

return 6
end if
return 7 ▷ combinations: 1223

Combinations Number of tiles Group value Clearable?
0000 0 0 True
0001 1 0 False
0002 2 0 False
0011 2 0 False
0012 3 0 False
0022 4 0 False
0111 3 3 True
0112 4 3 False
0122 5 3 False
0222 6 6 True
1111 4 4 True
1112 5 4 False
1122 6 6 True
1222 7 7 True
2222 8 8 True

Table 1: Group values and clearability for all the non-decreasing combinations of tile counts with
k = 4 and m = 2.
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Permutation Number of tiles Group value Clearable ?
0000 0 0 True
0001 1 0 False
0002 2 0 False
0003 3 0 False
0011 2 0 False
0012 3 0 False
0013 4 0 False
0022 4 0 False
0023 5 0 False
0033 6 0 False
0111 3 3 True
0112 4 3 False
0113 5 3 False
0122 5 3 False
0123 6 3 False
0133 7 3 False
0222 6 6 True
0223 7 6 False
0233 8 6 False
0333 9 9 True
1111 4 4 True
1112 5 4 False
1113 6 4 False
1122 6 6 True
1123 7 6 False
1133 8 6 False
1222 7 7 True
1223 8 7 False
1233 9 9 True
1333 10 10 True
2222 8 8 True
2223 9 9 True
2233 10 10 True
2333 11 11 True
3333 12 12 True

Table 2: Group value and clearability for all the different group permutations with k = 4 and
m = 3.
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4.4 Group Value for Variable Colors and Copies

Algorithm 1 applies to our Rummikub configurations, specifically G(4, 2, 100) and G(4, 3, 100),
where k = 4 and m = 2. However, this algorithm is designed for fixed values of k and m and cannot
be generalized directly. To extend the group value computation to arbitrary values of k and m, we
introduce a closed formula.
Let c = (c1, c2, . . . , ck) be the sorted vector representing the number of tiles of each of the k colors
for a given value. Then, ci denotes the number of tiles of color i, such that the following holds:

0 ≤ c1 ≤ c2 ≤ . . . ≤ ck−1 ≤ ck ≤ m. (2)

If we fix the minimal set size s = 3, we obtain the following closed formula:

Group value =


0 if k < 3,

3×
∑k−2

i=1 ci if
∑k−2

i=1 ci ≤ ck−1,∑k−1
i=1 ci +min

(
ck,

⌊∑k−1
i=1 ci
2

⌋)
otherwise.

(3)

The three cases are explained as follows:

1. Case k < s:
If the number of colors k is smaller than the minimum group size s = 3, it is impossible to
form a valid group. Therefore, the group value is zero.

2. Case
∑k−2

i=1 ci ≤ ck−1:
In this case, the total number of copies from the first k − 2 colors is less than or equal to the
number of copies of color k − 1. The optimal way to form groups is to pair each tile from
colors 1 through k − 2 with one tile of color k − 1 and one tile of color k. This maximizes
the number of valid groups by using all available tiles from the limiting colors (1 through
k − 2), and since each of these tiles appears in exactly one group, no tile of these limiting
colors remains unused. Therefore, this yields the maximum possible group value, equal to 3
times the number of tiles from the first k − 2 colors.

3. Case
∑k−2

i=1 ci > ck−1:
In this case, the total number of tiles in the first k − 2 colors exceeds the number of tiles of
color k − 1. As a result, we can no longer form all groups of size three by pairing colors k − 1
and k with a tile from one of the limiting colors, as we did in the previous case. Instead, we
must determine how many complete groups we can form by pairing tiles from the first k − 1
colors with tiles from color k.

Let T =
∑k−1

i=1 ci be the total number of tiles available from the first k − 1 colors. Since each
group must consist of at least three tiles, and each groups requires exactly one tile of color k,
the total number of groups we can form is bounded by both the number of color k tiles and
the number of possible pairs within T . This yields:

ngroups = min

(
ck,

⌊
T

2

⌋)
.
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Note that ck can be reduced to
⌊
T
2

⌋
without changing the outcome of the group value formula,

because any tile beyond this upper bound cannot be used in a valid group. Each group must
include exactly one tile from color k and at least two tiles from the set of T tiles. If there are
more than

⌊
T
2

⌋
tiles of color k, the excess tiles cannot form valid groups because there would

not be enough tiles left from T to satisfy the group size requirement. Therefore, any excess
tiles of color k can be discarded. are redundant and can be discarded. The group value is
thus given by:

T +min

(
ck,

⌊
T

2

⌋)
After reducing ck to

⌊
T
2

⌋
, valid groups can be formed without any leftover tiles, effectively

making the group combination clearable. The process of group formation is as follows:

• Each group contains one tile from color k, which results in there being exactly ngroups

groups.

• The minimal group size is
⌊

T
ngroups

⌋
+ 1, with the additional tile coming form color k.

• Since T is not always divisible by ngroups, the remainder T mod ngroups is the number of
groups with one additional tile.

• The groups are formed iteratively by taking the first color with the smallest number of

tiles remaining and with the last
⌊

T
ngroups

⌋
number of colors with the largest number

of tiles remaining. For the first T mod ngroups we add the color previous to these last
added colors too.

Figure 4 illustrates three examples corresponding to the last case, demonstrating how these groups
are formed.

With the closed-form formula for the group value (Equation 3), the clearability check can be further
simplified. To determine whether a row or the set of tiles with the same value is clearable, it suffices to
verify whether the computed group value equals the total number of tiles in the row or same value set.

1 1 2 3 3 4 1 1 2 2 4 5 2 2 3 4 5 9

Figure 4: Three examples demonstrating how groups are formed when the sum of the first k − 2
colors exceeds the number of tiles of color k − 1. The horizontal bars indicate which tiles are used
to form a group. In the third example, one tile of color k remains unused.
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4.5 Group Value for Arbitrary Set Size

In order to extend the previous closed formula for fixed s, we generalize the logic used for fixed
group sizes by introducing flexibility for arbitrary s. This formula builds upon the same principles
of forming valid groups based on the number of available tiles, with additional consideration for
excess tiles when s is no longer fixed to three. To compute the group value for arbitrary s, we adapt
the previous formula by iteratively handling the excess tiles in the third case, ensuring that each
group formed is valid according to the constraint of having at least s tiles while efficiently utilizing
the available tiles from each color. This leads to the following formula:

Groupvalue =


0 if k < s,

s×
∑k−(s−1)

i=1 ci if
∑k−(s−1)

i=1 ci ≤ ck−(s−2),∑k−(s−2)
i=1 ci +

∑s−1
j=2 min

(
ck−(s−j−1),

⌊
Rj

j

⌋)
otherwise.

(4)

where R1 =
∑k−(s−2)

i=1 ci and Rj = Rj−1 +min
(
ck−(s−j−1)),

⌊
Rj−1

j

⌋)
for j ≥ 2.

The three cases are explained as follows:

1. Case k < s:
In this case, it is impossible to form any valid group, since we need at least s distinct colors
to construct a group. Therefore, the group value is zero.

2. Case
∑k−(s−1)

i=1 ci ≤ ck−(s−2):
In this case, the total number of tiles from the first k − (s− 1) colors is less than or equal to
the number of tiles of color k− (s− 2). The optimal way to form groups is to match each tile
from colors 1 through k − (s− 1) with tiles from the remaining s− 1 colors that follow. This
guarantees that all the tiles from the limiting colors are used exactly once, maximizing the
number of tiles used in valid groups. The resulting group value is s times the number of tiles
from the first k − (s− 1) colors.

3. Case
∑k−(s−1)

i=1 ci > ck−(s−2):
In this case, the total number of tiles in the first k − (s− 1) colors exceeds the number of
tiles of color k − (s− 2). As in the third case of the group value for fixed s, not all available
tiles may be used to form valid groups. Since s is arbitrary and not fixed to three, we must
iteratively handle the excess tiles across the last s− 1 colors. We begin by forming groups
of size three using the first k − (s− 2) colors. If not all tiles can be used, we remove excess
tiles of color k − (s − 2), then increment the group size by one and include the next color
(k − (s− 3). This process is repeated, each time increasing the group size and including the
next color, until we reach group size s and use all the k colors. This approach ensures that the
computed group value is the number of tiles used in valid groups by progressively removing
excess ties that cannot be used.

Note that a formal proof that the group value formula for arbitrary s is optimal remains an open
problem. However, for various values of s, k and m, we validated the formula using an automated
script that exhaustively generates all valid group combinations for these parameters and compares
their group value against the result produced by the formula. In all tested cases, the computed
group value matched the formula’s result.
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5 Memory

In order to save previously known results and prevent the algorithm from calculating the same
configurations, a state-encoding mechanism to optimize computations is introduced. This is achieved
by two arrays called streets and values. The streets array keeps track of where formed runs end,
the position of the last tile added to each run. By tracking these tiles, the algorithm can identify
whether a given configuration has already been evaluated. Since the minimal set size is s = 3, we
only consider the last four rows since it is the window in which runs from previous rows can end.
More generally, for arbitrary minimal set size s we need to store the last 2s− 2 rows to account for
all the possible states a Rummikub puzzle can have.
The encoding function takes all these values of ending runs in the current last four rows to represent
a state of the current row. This encoded value is then used as an index in the value array. This array
stores the maximum value computed for each unique state. Each entry is indexed by the current
row number and the encoded state of the last four rows. If a state has already been computed the
stored value is reused. Otherwise, the algorithm proceeds to compute the current state recursively
and store the found value afterwards in the array. This ensures that each state is only computed once.

To compute the number of possible states in the last n rows, we exploit the similarity between
groups and runs in the Rummikub puzzle. Consider a column of length n filled with m copies of
each tile. Runs can be formed from the bottom upward. When viewed from the top, the tiles in
these formed runs are non-decreasing, which corresponds to the same group combinations discussed
in Subsection 4.2. Figure 5 visually illustrate this similarity.

2
2
2
2

2
2
1
1

1 1 2 2

Figure 5: Visual representation of the similarity between group and run combinations. On the left,
a column filled with 2 copies of each tile is shown. The formed runs are represented by the vertical
bars to its right. In the middle, the tiles that are part of a run are shown. Viewed from the top this
corresponds to the same non-decreasing group combinations to the right.

Due to this similarity, we can represent the configuration of the last n rows as a column-wise group
combination. This allows us to alter Equation 1 to compute the number of unique states for these
last n rows. Given parameters k and m, the total number of possible encoded states for the last n
rows is: (

m+ n

n

)k

. (5)

Since we encode the last 4 rows, we set n = 4. For m = 2, we get
(
2+4
4

)
= 15 unique possible states

per column. Using k = 4 colors, this results in 154 = 50,625 unique possible states for the last four
rows. If we increase maximum the number of copies to m = 3, then there are

(
3+4
4

)
= 35 unique

states per column, and with k = 4 we get 354 = 1,500,625 unique possible states for the last four
rows with four colors.
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5.1 Possible Encoding Size

The number of unique states for the four last rows is now statically defined. However, not all these
unique states can always be reached, as this depends on the initial configuration of the Rummikub
puzzle. For instance, if the last four rows in the initial configuration contain only zeros, there is only
one unique state that can be reached: the last four zero rows. This leads to the following question:

How many unique ways can runs be formed from the last four rows in one of the
columns? In other words, how much memory does the algorithm require to encode the
last four rows, given the initial configuration of the Rummikub puzzle?

For m = 2, consider a column of length 4. We define two parameters to describe the structure of
this column:

• Let w be the length of the longest contiguous sequence of non-zero elements starting from
the bottom of the column.

• Let ℓ be the length of the longest continuous sequence of elements that are neither zero nor
one (thus 2) starting from the bottom.

By definition ℓ ≤ w, since every 2 is also non-zero.
Note that:

• If the bottom value is 0, then both w = 0 and ℓ = 0.

• If the bottom value is 1, then ℓ = 0 and w > 0.

We define P (w, ℓ) as the number of possible unique encoded states in a column. The recurrence
relation for P (w, ℓ) is given by:

P (w, ℓ) =

{(
w
2

)
+ w + w + 1 = (w

2
+ 1)(w + 1) w = ℓ,

P (w − 1, ℓ) + ℓ+ 1 if ℓ < w.

• Base case w = ℓ: There are
(
w
2

)
ways to choose two different run sizes. Since w = 2, we can

also make two individual runs of length w. Finally, we include one additional case to account
for the empty run.

• Induction step ℓ < w: The sequence of 2s is shorter than the sequence of non-zero values.
We can build upon all valid configurations from P (w− 1, ℓ) by adding a new non-zero (not 2)
on top. This added tile introduces ℓ+ 1 additional configurations, because we can extend the
sequence with 0 up to ℓ 2s at the bottom. Hence the added +1 indicating no 2s.

To derive a closed formula we solve the recurrence:

P (w, ℓ) = P (w − 1, ℓ) + ℓ+ 1

P (w − 1, ℓ) = P (w − 2, ℓ) + 2(ℓ+ 1)

P (w − 2, ℓ) = P (w − 3, ℓ) + 3(ℓ+ 1).
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Eventually we get:
P (w, ℓ) = P (ℓ, ℓ) + (w − ℓ)(ℓ+ 1).

If we apply the base case:

P (w, ℓ) =

(
ℓ

2
+ 1

)
(ℓ+ 1) + (w − ℓ)(ℓ+ 1)

=

(
ℓ

2
+ 1 + w − ℓ

)
(ℓ+ 1)

=

(
w − ℓ

2
+ 1

)
(ℓ+ 1).

So, the closed-from formula for the number of states given a column is:

(w − 1

2
ℓ+ 1)(ℓ+ 1)

Figure 6 shows an example initial configuration of a Rummikub puzzle. Using the closed-form
formula derived above, we calculate the number of unique encoding for the last four rows per
column:

• column b: w = 0 and ℓ = 0 results in one unique state.

• column g: w = 4 and ℓ = 1 results in 5 unique states.

• column r: w = 4 and ℓ = 2 results in 12 unique states.

• column y, w = 4 and ℓ = 4 results 15 unique states.

Multiplying these number of unique states per column gives the total number of possible states for
the last four rows:

1× 5× 12× 15 = 900

This is significantly fewer than the previously stated number for m = 2, which was 154 = 50,625.
This example shows that a dynamic memory allocation approach can significantly reduce the total
memory usages required to solve a Rummikub puzzle. Instead of storing values for all possible
states of the last four rows, the algorithm only needs to track all the reachable states from a given
initial configuration.

Row b g r y
5 0 1 1 2
6 2 1 1 2
7 1 1 2 2
8 0 1 2 2

Figure 6: Example last four rows in the initial configuration of a Rummikub puzzle.
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6 Puzzle Bounds and Reduction

Before assessing the difficulty of Rummikub puzzles, we define the puzzle bounds and apply
reductions to simplify the problem.

6.1 Puzzle Bounds

In order to categorize the difficulty of different Rummikub puzzles, we calculate both a lower and
upper bound for maxvalue, the maximal value that can be reached. A straightforward lower bound
can be obtained by forming only runs or only groups. The value obtained by forming only runs is
called the run value Os and the value found by only forming groups group value Og. Since the
number of points of a Rummikub puzzle cannot be less than either of these values, the lower bound
is therefore: max(Os,Og).

For the upper bound, an intuitive approach is to sum all the values on the tiles, which we refer to
as totalpoints. This represents the maximum score achievable, assuming all tiles could be used in a
valid group or run. However, some tiles may not be usable in any groups or runs, so this upper
bound might not always be tight. To sharpen the upper bound, we take the sum of the points
from only runs and from only groups, and we define the upper bound as: min(Os+Og, totalpoints).

Thus, the following holds: max(Os,Og) ≤ maxvalue ≤ min(Os+Og, totalpoints).

If the lower bound of a Rummikub puzzle equals the upper bound, then the puzzle is already
solved. all tiles can be played by forming either only groups or only runs, thereby achieving the
maximum points possible. In this case, we can stop the algorithm early, as the solution is already
known.

6.2 Run Value

In order to find the run value of a series of tiles of the same color, given m = 2, we proceed as follows.
We iterate over all the same colored tiles, zero copies are excluded, as they cannot contribute to a
run. We only consider runs with length ≥ 3, since minimal run length s = 3. The run value is the
sum of all 1s and 2s, adjusted with their tile values, with the following exceptions:

• A singleton 2 must be preceded and succeeded by at least two non-zero elements. If not, one
of the two tiles is excluded from the sum.

• Two consecutive 2’s must be preceded and succeeded by at least one non-zero element. If not,
again one of the two consecutive tiles is excluded from the sum.

To generalize these rules for m = 3, we extend the previous exceptions as follows:

• A singleton 3 must be preceded and succeeded by at least two elements. There are two distinct
cases:

– The singleton 3 is at least preceded by two 2’s and succeeded by two 1’s or vice versa.
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– the preceding and succeeding elements are 2’s and the elements on both ends are non-zero.

• Two consecutive 3’s must be preceded and succeeded by at least one non-zero element. One
of the neighboring tiles must be at least a 2, while the other may be a 1.

The rules described above seem to have a pattern that even holds for m > 3. We define t with
0 < t < m as a variable number of copies found in a Rummikub puzzle.

For a singleton t two non-zero elements should precede and succeed this singleton number of copies.
The total value of these four elements that precede and succeed our singleton element should add up
to at least two times the singleton number of copies, with the constraint that the closest preceding
and succeeding elements are greater than or equal to the corresponding furthest proceeding and
succeeding elements.
For the two consecutive number of copies t, the following rule applies. The two consecutive number
of copies should be preceded and succeeded by at least one non-zero element and the sum of these
two elements should be at least t.

For both the singleton and consecutive t cases, if the rule does not apply to the current configuration,
one of the t number of copies tiles should be excluded from the run value and the rules should
be reapplied continuously until the right number of copies that are included in the run value is found.

Figure 7 shows the minimum configurations for singleton and consecutive t’s, for t = 3 and t = 4.
The t number of copy tiles in the middle are all included in the run value in these cases. The
non-t-values can be raised without affecting the validity of the run. However, when lowered, the
rules no longer apply, resulting in a tile in t being excluded. Additionally, these configurations can
be flipped (top to bottom), and the rules will still hold.

1
1
3
2
2

1
2
3
2
1

1
3
3
2

1
1
4
3
3

2
2
4
2
2
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3
4
3
1

1
4
4
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4
4
2

Figure 7: All the minimal configurations for t = 3 (on the left) and t = 3 (on the right), for all the
t number of tiles to be included in the run value. The vertical bars on the side indicate the valid
formed runs for these configurations.

6.3 Pre-processing

The upper bounds described in Section 6.1 can be even sharper. The value totalpoints calculated
by taking the sum of all the tiles present in the Rummikub puzzle. However, some tiles can be
filtered out. In particular, certain isolated tiles can be eliminated during pre-processing. These tiles
cannot be part of a valid run or group. When a tile cannot appear in a possible group or run, this
tile cannot be part of the solution to the Rummikub puzzle. Removing these isolated tiles will
sharpen the upper bound, since there are now fewer tiles in the total number of points and it will
reduce the problem size of the Rummikub puzzle.
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In Figure 8, an example Rummikub puzzle configuration with isolated tiles is shown. In row 3 and
column y there are two copies of this tile. However, since there is no possibility to form a group or
a run, these tiles are isolated and therefore cannot be part of a valid solution to this Rummikub
puzzle.

Row b g r y
1 1 0 2 1
2 1 2 2 0
3 0 1 0 2
4 2 2 2 0
5 2 1 2 1
6 1 2 2 2

Figure 8: An example Rummikub puzzle configuration with isolated tiles. In row 3 and column y,
two copies of this tile are shown, but these tiles cannot be part of a group or run, which makes
them isolated. In the first and second row we see 2 copies in column r. In both rows only one group
and no runs can be formed. Therefore one of these two copies is isolated and cannot be part of a
group or run.

Algorithm 2 Algorithm that detects and removes isolated tiles in a Rummikub configuration
with k = 4 and m = 2.

Require: Rummikub configuration G(k,m, n) represented as a 2D array puzzle with n rows and
k columns (colors).

Ensure: Returns the number of isolated tiles removed and updates the configuration in-place.
Initialize counter isolated tiles to 0
for each row from the last row until the first do

if row is not clearable then
for each column in the row do

if (groupvalue > 0 and copies > 1) or copies ̸= 0 then ▷ Potential isolated tiles
runs = possible runs with [2 tiles below, 1 above & below, 2 tiles above]
potential isolated = copies − runs
if groupvalue > 0 then ▷ 1 of the copies can be used in the group

potential isolated − = 1
end if
if potential isolated > 0 then ▷ isolated tiles

isolated tiles + = potential isolated
remove the isolated tiles in this row and column.

end if
end if

end for
end if

end for
return isolated tiles
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6.4 Splitting Rummikub Puzzles

In order to reduce the problem size of the Rummikub puzzle, some initial configurations were
found that could reduce the Rummikub puzzle into smaller Rummikub puzzles. A straightforward
example is a row of zeros, as shown in Figure 9. The zeros row act as an barrier between the rows
above and below, preventing the possibility of forming runs between these rows. This separation
allows the puzzle to be split into smaller independent puzzles. By splitting the Rummikub puzzle,
we reduce the number of permutations that need to be calculated, thereby decreasing the overall
problem size. Therefore, identifying configurations where the puzzle can be split into smaller puzzles
is beneficial for solving the puzzle efficiently.
Another configuration that allows splitting is when two rows each contain at least one zero in ever
column. As illustrated in Figure 10, these rows cannot form runs with each other, so they can be
split and treated like separate puzzles.
However, for three rows where each column contains at least one zero, the puzzle cannot be split in
the same way, as the split eliminates possible runs between the columns.

Row b g r y
1 1 0 1 1
2 1 2 0 2
3 0 1 1 2
4 0 0 0 0
5 0 2 1 2
6 1 2 2 2
7 2 2 2 2

(a) Initial configuration.

Row b g r y
1 1 0 1 1
2 1 2 0 2
3 0 1 1 2

5 0 2 1 2
6 1 2 2 2
7 2 2 2 2

(b) Zeros row cut in two smaller Rummikub puzzles.

Figure 9: Example Rummikub configuration, which can be split into smaller Rummikub puzzles
by cutting the zero row.

Row b g r y
1 1 2 1 1
2 1 2 2 0
3 0 1 0 1
4 2 0 1 0
5 1 2 1 2
6 1 1 1 1
7 0 0 0 1

(a) Initial configuration.

Row b g r y
1 1 2 1 1
2 1 2 2 0
3 0 1 0 1

4 2 0 1 0
5 1 2 1 2
6 1 1 1 1
7 0 0 0 1

(b) Zeros rows cut in two smaller Rummikub puzzles.

Figure 10: Example Rummikub configuration, which can be split into smaller Rummikub puzzles,
by splitting between the two rows in which there is at least one zero in each column.
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7 Difficulty Classification Rummikub Puzzles

In this section, we attempt to classify the difficulty of Rummikub puzzles using only precomputed
puzzle features derived from the initial puzzle configuration. The goal is to predict the difficulty
of a puzzle without executing the solving algorithm. In this context, the difficulty of a puzzle is
defined by the execution time required by the solving algorithm. While execution time is not a
theoretical measure of difficulty, it serves as a practical approximation of the computational effort
needed to solve the puzzle. Puzzles with longer execution times typically involve more complex
interactions between forming groups and runs.

7.1 Exploration

To better understand which types of Rummikub puzzles are computationally challenging, we
conducted an exploratory experiment across a range of puzzle configurations. We generated 100
random Rummikub puzzles with m = 2 and n = 100, each based on a fixed distribution of tiles
with zero, one or two copies. The experiment systematically varied the percentages of tiles with zero
and one copies, with the percentage of two copies tiles determined as the remaining proportion. For
each such combination, 100 puzzles were generated and their average execution time was recorded.
The results are shown in Figure 11. A small region stands out where the average execution time is
significantly higher than in other areas. Intuitively, puzzles with a high percentage of zero-copy
tiles are computationally inexpensive to solve, as few or no valid runs or groups can be formed with
only zero or one copy per tile. In contrast, puzzles with low percentages of zero and one copy tiles
or alternatively high proportion of two copy tiles are more computationally demanding. Having
two copies of many tiles significantly increases the number of possible group and run combinations,
which leads to longer execution times.

In Figure 12, we zoom in on the most computationally expensive region of the experiment,
specifically the 0–10% range. We observe that the average execution time is significantly lower
when the percentage of two copy tiles approaches 100%. In other words, when almost every tile
is available, the puzzle becomes easier to solve. This is because when each tile appears twice,
the puzzle can be easily solved by forming only groups, as most rows become clearable with a
high proportion of two copy tiles. Thus, the most computationally expensive puzzles have a high
proportion of two copy tiles, but not a full set of two copies, as a complete set would make the
puzzle solvable through groups alone.

7.2 Feature Selection

The complexity of a Rummikub puzzle is intuitively related to the number of ways in which valid
groups and runs can be formed. To capture this notion of difficulty, we selected features that are
expected to correlate with the number of possible combinations of groups and runs the algorithm
must explore during execution.
The selected features are:

• Upper–lower bound difference: An upper and a lower bound can be easily computed, and
their difference may indicate the puzzles complexity. A zero difference implies that the puzzle
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Figure 11: Average execution time over 100 random Rummikub puzzles, plotted for varying
percentages of zero and one copy tiles (0–100%).
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Figure 12: Zoomed-in view of Figure 11, zooming in on the percentage range of 0–10% of zero and
one copy tiles to highlight the computationally expensive region.
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can be solved by forming only groups or only runs, while a larger difference may imply more
complex interactions between groups and runs, which may indicate a more difficult puzzle.

• Tile count difference (upper-lower bound) The difference between upper and lower
bound includes the tile values, which can introduce a bias. A high-valued tile that is excluded
contributes more to the difference than a low-valued excluded tile. To correct for this, we
normalize the difference by considering only the number of used tiles in each bound.

• Percentage of tiles with 0, 1 and 2 copies: A higher proportion of tiles with two copies
increases the number of possible runs and groups. In contrast, a higher ratio of zero-copy
tiles reduces the number of valid combinations. Note that puzzles that have two copies for
every tile are easy to solve by only forming groups. This suggests a trade-off between the
percentages of the number of copies of tiles.

• Tiles usable in both runs and groups: Tiles that can be used in both a group and a run
introduce additional branching, increasing the number of permutations the algorithm must
evaluate. A puzzle with a high proportion of such tiles may indicate an increased difficulty.

7.3 Training Data

The model is trained on a dataset consisting of 400,000 unique Rummikub puzzles generated from
the configuration G(4, 2, 100). Each puzzle in this dataset has precomputed features derived from
its initial configuration to determine the difficulty of the puzzle.

7.4 Difficulty Labeling

While the execution time is not directly used as a feature during the training of the model, it is
used to define the difficulty classes for supervised learning. Since it is currently the only indication
of a Rummikub puzzle complexity. Based on the observed execution time, we define the following
difficulty levels:

• 1 (Easy): Execution time < 0.0001 seconds.

• 2 (Moderate): 0.0001 ≤ Execution time < 0.1 seconds.

• 3 (Medium): 0.1 ≤ Execution time < 1 seconds.

• 4 (Hard): Execution time ≥ 1 seconds.

The distribution of puzzles across these difficulty classes is shown in Table 3.

7.5 Model Selection

For the task of classifying Rummikub puzzle difficulty, we selected the Random Forest Classifier
as our model, originally introduced by Breiman [Bre01]. Random forest is an ensemble learning
method that constructs multiple decision trees during training and aggregates their outputs through
majority voting. This model was chosen for its robustness to overfitting, suitability for imbalanced
data and feature importance analysis. The feature importance is the most interesting, as we aim to
identify which features are the most predictive of a puzzle’s difficulty.
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Difficulty class Number of puzzles Percentage of total
Easy 103,636 25.9%
Moderate 69,425 17.4%
Medium 112,179 28.0%
Hard 114,760 28.7%

Table 3: Distribution of Rummikub puzzles across the four difficulty classes.

7.6 Model Training and Evaluation

The model training process involves the following steps:

• Hyperparameter Tuning: We performed hyperparameter tuning using grid search with
cross-validation to optimize the performance of the Random Forest classifier. The best-
performing parameters were:

n estimators=150, min samples split=10 and min samples leaf=4.

• Cross-validation: We used 10-fold cross-validation to evaluate the model’s performance.
This approach ensures that each puzzle appears in both the training and validation sets across
different folds.

• Evaluation Metrics: We used classification accuracy, confusion matrix and the classification
report (precision, recall and F1-score) to asses the model’s performance across all four difficulty
classes.

• Feature Importance: To gain insight into which features of a puzzle are most predictive
of its difficulty, we extracted the feature importance from the final Random Forest model
trained on the entire dataset.

7.7 Results

Table 4 shows the classification report for the model. We can observe that the model performs well
in predicting puzzles in the easy and moderate difficulty classes, with high precision and recall
scores. However, its performance is significantly lower for the medium and hard classes. This is
interesting, as the moderate class is underrepresented compared to the medium and hard classes in
the dataset. In the confusion matrix shown in Figure 14 we observe that medium and hard puzzles
are often confused with each other. This suggest that distinguishing between puzzles becomes more
challenging as the difficulty increases. In Figure 13, the ranking of feature importance is shown.
The number of tiles that can be part of both a group and a run is shown to be the most predictive
indicator of puzzle difficulty. Notably, the difference in bounds ranks higher than its normalized
counterpart, the difference in the number of tiles in the upper and lower bounds.

8 Conclusion and Future Work

Throughout this thesis, we focused on efficiently solving Rummikub puzzles by addressing both
the optimization of the algorithm’s computational performance and the categorization of puzzle
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Class Precision Recall F1-Score Support
Easy 0.97 0.94 0.95 103,636
Moderate 0.92 0.93 0.92 69,425
Medium 0.72 0.74 0.73 112,179
Hard 0.74 0.74 0.74 114,760
Accuracy 0.82 (400,000 total)
Macro avg 0.84 0.84 0.84 400,000
Weighted avg 0.83 0.82 0.82 400,000

Table 4: Classification report for Rummikub puzzle difficulty classification.

Figure 13: Feature importance plot for Rummikub puzzle difficulty classification.
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Figure 14: Confusion matrix for Rummikub puzzle difficulty classification with 10-fold cross-
validation.
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difficulty. To optimize the computational performance, we introduced a state-encoding mechanism
that prevents redundant computations. We further extended this approach with dynamic memory
allocation, ensuring that memory is only allocated for states that are reachable from the initial
configuration. Additionally, we reduced the problem size by analyzing puzzle configurations that
could be broken down into smaller puzzles.

To categorization puzzle difficulty, we used execution time as an indirect indicator to define difficulty
levels. While it does not perfectly capture the underlying complexity, it offers a practical way to
distinguish between easier and more complex puzzles. As the puzzle difficulty increases, classification
becomes more challenging. Among the feature analyzed, the number of tiles that can be part of
both groups and runs proved to be the most predictive of a puzzle’s difficulty.

In this thesis, we primarily focused on solving Rummikub puzzles with varying parameters such as
the number of tile copies, the number of colors/suits and the number of tile values. An interesting
extension would be to add joker tiles, which can be substituted for any other tile. This introduces
additional complexity to forming valid groups and runs, and raises the question on the value of
jokers in the Rummikub puzzle.

Another promising direction for future research is to translate the findings of this thesis to the
multiplayer Rummikub game. Little research has been conducted on this multiplayer variant,
which introduces several new concepts like: turn based-dynamics, table constraint, initial meld,
manipulations of existing sets and strategy. Exploring these aspects will move the problem closer
to the original game, and open research for strategy with Artificial Intelligence.

It would be interesting to further explore the difficulty categorization of Rummikub puzzles, as there
may be features not examined in this thesis that could provide better insight into the differences
between more difficult puzzles. Additionally, we could use the memory usage of Rummikub puzzles
instead of execution time. This metric could be more closely related to puzzle difficulty, as it reflects
the number of possible combinations of groups and runs that need to be explored to solve the puzzle.

Proving the group value for arbitrary minimal group sizes remains an open problem. If the group
value for arbitrary s can be settled, it would allow us to compute Rummikub puzzles in a more
generalized manner, since runs are easily adaptable to arbitrary minimal set sizes.
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