
Master Computer Science

LLMs for Biomedical NER: Comparing Zero-Shot,

Few-Shot, and Instruction Tuning

Name: Xue Jun Wang

Student ID: s2367378

Date: [20/8/2025]

Specialisation: Master Computer Science: Data

Science

1st supervisor: Prof. Dr. Suzan Verberne

2nd supervisor: Dr. Lifeng Han

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands2

Abstract

In recent years, large language models (LLMs) have made major developments
in natural language processing (NLP). Their ability to understand and generate
human-like text has led to strong performance across a wide range of tasks. One
of these tasks is Named Entity Recognition (NER), which involves identifying and
classifying entities such as diseases, chemicals, or genes in text.

This study investigates the ability of LLMs to extract long and complex biomedical
entities, including rare or emerging terms, using three approaches: zero-shot, few-
shot and instruction tuning. The zero-shot setting provides the LLMs with only an
instruction, while the few-shot setting includes two examples to guide the model,
we provide the LLMs with two example, because of the limit availability of exam-
ples. Results show that few-shot learning outperforms zero-shot learning on the
NCBI-disease dataset, while the reverse is observed on the BC5CDR-chemical and
BC2GM-gene datasets. However, across all three datasets, the instruction tuned
LLaMA3-8B and PMC-Llama-13B achieve the highest performance, often nearly
doubling the scores of zero-shot and few-shot learning, indicating the advantage
of domain-specific adaptation.

Given these findings, we use instruction tuning to assess LLM performance in ex-
tracting long and complex biomedical entities. We evaluate two instruction-tuned
models on an in-domain biomedical dataset and an out-of-domain dataset. The
models are instruction tuned on the in-domain training set and evaluated on both
the in-domain test set and the out-of-domain test set, where the out-of-domain
dataset consists of long and complex entities. Results show substantially better
performance on the in-of-domain test set, with performance dropping on the out-
of-domain test set, this highlights the models’ di!culty in generalizing to unfamiliar
or complex biomedical terms.

To further test generalization, we conducted an additional experiment in which
we removed all entities with the sentence from the out-of-domain test set that
also appeared in the LLMs’ training data. This ensured that the remaining entities
were completely unseen. Performance dropped even further on this filtered test set,
highlighting the di!culty LLMs face when encountering entirely novel biomedical
entities. These findings highlight both the strenghts and limitations of LLMs for
biomedical NER, especially when dealing with rare, complex and unseen entities.

3

Contents

1 Introduction 5

2 Related Work 7
2.1 Named Entity Reginition . 7

2.2 Large Language Models and In-context Learning 7

2.3 Named Entity Recognition with LLMs 8

2.4 Biomedical Named Entity Reginition 9

3 Methods 11
3.1 Datasets for instruction tuning 11

3.2 Models . 12

3.3 Prompt Development . 12

3.3.1 Zero-shot setting . 12

3.3.2 Few-shot setting . 18

3.3.3 Parameter-E!cient Fine-Tuning 21

3.4 Evaluation metrics . 26

3.5 Extraction of long, complex and emerging entities with LLM 26

4 Results 28
4.1 Evaluation of di”erent kind of LLM Adaptation Techniques 28

4.2 Replication of PMC-LLaMA-13B model 30

4.3 Qualitative analysis . 32

4.4 Evaluation of long and complex entity extraction 34

4.4.1 E”ect of removing known entities on Model Performance . 36

5 Discussion 39
5.1 Performance discrepancies with prior work 39

5.2 Self-verifiction/hallucinations . 40

5.3 Limitations . 40

6 Conclusion 42

References 44

4

1 Introduction

Automatic extraction of medical entities is a crucial task in the field of biomedi-
cal informatics, where the goal is to identify and categorize key information from
vast amounts of medical texts. This process, known as medical entity recognition or
NER, involves pinpointing various types of entities within the text, such as diseases,
symptoms, medications, and anatomical terms. These entities vary in complexity,
ranging from relatively common terms such as diabetes, thrombosis, Parkinson, or
inflammation, to more complex ones that are longer and consist of multiple words,
also known as nested or multi-word entities, for example ovarian or fallopian tube
cancers or hand foot syndrome. This also includes novel or emerging entities, mean-
ing previously unseen or entities that are new to the model. To achieve this, models
are trained on large-scale biomedical texts, such as PubMed [4] articles and clinical
notes, to develop a comprehensive understanding of the specialized language used
in the biomedical field [25]. Following this training, these models are fine-tuned for
specific tasks, such as NER, to extract entities like genes, diseases, and chemicals
from biomedical texts. This fine-tuning process ensures that the models can accu-
rately and reliably perform entity recognition in various biomedical applications.

LLMs have achieved promising results across various natural language process-
ing (NLP) tasks, including machine translation [47], question answering [37], and
named entity extraction [13, 22, 48]. In recent years, LLMs have shown great po-
tential in performing NER [48, 22]. By using just a few task-specific examples
as demonstrations, these models can generate accurate predictions for new test
inputs. Their ability to generalize from limited examples makes them particularly
useful for tasks where labeled data is scarce, highlighting their potential for real-
world applications in domains such as biomedical text mining and legal document
analysis.

This thesis investigates that potential of LLMs for NER, specifically assessing their
ability to extract complex and long biomedical entities from text. Medical texts of-
ten contain highly specialized terminology, making entity extraction a challenging
task. Fine-tuning LLMs for NER typically relies on large amounts of labeled data
for training, recent studies have shown that LLMs can achieve competitive perfor-
mance with just a few task-specific examples through few-shot learning. This raises
several important questions: Is few-shot learning with LLMs su!cient to match or
even outperform fine-tuned LLMs in domain-specific NER? And to what extent
can LLMs accurately identify long, complex, and emerging entities?

To explore this, this study aims to evaluate the e”ectiveness of LLMs in handling
the challenges of medical entity extraction, particularly in scenarios where entities
are long, ambiguous, or highly specialized. The following research questions guide
this investigation:

1. How does the performance of zero-shot learning compare to few-shot learn-
ing, and how do both approaches compare to fine-tuned LLMs for medical
NER?

5

2. Can the results reported by Keloth et al.[22] on using LLMs for NER be
reproduced by following their proposed methodology and using the same
LLMs?

3. To what extent are LLMs capable of accurately extracting long and complex
biomedical entities, including rare or emerging terms?

By addressing these questions, this study seeks to provide insights into the strengths
and limitations of LLMs for medical NER, particularly in scenarios where labeled
data is scarce or expensive to obtain.

The remainder of the paper is organized as follows: In Section 2, we discuss related
methodological work. In Sections 3, we discuss the data sets we use, followed by
a detailed description of our methodology. In Section 4, we present our results,
which are discussed further in Section 5. Finally, we address our research questions
and outline potential improvements for future work in Section 6.

6

2 Related Work

2.1 Named Entity Reginition

NER is a natural language processing task that identifies and classifies named en-
tities in unstructured text data. Named entities refer to real-world entities present
in the text [8, 25]. The NER process can typically be divided in the following steps
[32]: The process begins with tokenization, where the text is segmented into in-
dividual tokens or words. After tokenization, the next step is feature extraction.
In this step, the features are extracted for each token, where each token or the
token is represented as a dense vector embedding that can help in identifying the
entities [44, 14]. The standard approach in sequence labelling to label each token
is using the Inside-Outside-Beginning (IOB) tagging scheme. In this scheme, ’B-’
indicates the beginning of an entity, ’I-’ denotes that the token is inside an entity,
and ’O’ signifies that the token is outside any entity [17]. This structured approach
allows NER systems to accurately extract and classify entities from unstructured
text [17]. After this, the named entities identified in the text are categorized into
predefined groups such as persons, organizations, locations, dates, and other rele-
vant categories. This classification enables the structured extraction of meaningful
information from the text.

Besides the standard NER, there is an advanced form known as fine-grained NER
[21], which goes deeper into categories by identifying specific subtypes within
broader groups, such as actors, athletes, or musicians within the ”PERSON” cat-
egory. Additionally, there are domain-specific NER applications [16], such as in
biomedicine, where it detects entities like proteins and genes. NER faces several
challenges [30]. Ambiguity arises when words or phrases can refer to di”erent
types of entities depending on the context. Variability presents another challenge,
as there are often di”erent ways to refer to the same entity. Additionally, domain-
specific vocabulary can complicate NER, since specialized terms in fields such as
medicine or law require domain-specific training data for accurate recognition and
classification.

2.2 Large Language Models and In-context Learning

LLMs have achieved substantial performance improvements across a wide range of
natural language processing tasks [11, 43]. Methods for applying LLMs to down-
stream tasks can be divided into two main categories: fine-tuning and in-context
learning. The fine-tuning strategy involves taking a pre-trained LLM and adapting
it to a specific downstream task by training it further on labeled task-specific data.
This process typically runs additional training epochs on the supervised dataset,
allowing the model to refine its parameters and improve performance on the target
task [35, 36].

Di”erent from the fine-tuning strategy, in-context learning (ICL) uses the inher-
ent capabilities of LLMs by providing them with a few task-specific examples, or
demonstrations, as part of the input prompt. Instead of updating the model’s pa-

7

rameters, ICL guides the LLM to generate relevant outputs based on these demon-
strations. This approach was introduced by Radford et al. [34], who introduced the
concept of reformulating downstream tasks using prompts that include examples,
enabling the model to recognize patterns and generate accurate predictions with-
out additional training. Brown et al [11] conducted a study on the capabilities of
in-context learning, analyzing its e”ectiveness across a variety of tasks using their
GPT-3 model. Through a series of experiments, they demonstrated how GPT-3
could perform tasks with minimal task-specific examples, showcasing the model’s
ability to generalize and adapt to new challenges without requiring fine-tuning. In
the papers of Perez et al. [33], Lu et al. [27], and Rubin et al. [39] have demon-
strated that the quality of prompts and demonstrations plays a critical role in the
performance of in-context learning. Their research shows that carefully designed
prompts and well-chosen examples can substantially enhance the performance of
the LLMs, enabling models to better understand and execute tasks without the
need for extensive fine-tuning. These findings highlight the importance of prompt
engineering in maximizing the potential of in-context learning.

2.3 Named Entity Recognition with LLMs

One of the tasks that LLMs can learn to perform with ICL is NER, from instruc-
tions and a few examples provided directly in the prompt, without needing explicit
fine-tuning on the task. This capability allows large generative LLMs to be versa-
tile and adaptable for a wide range of natural language processing tasks, including
NER, by understanding the context and semantics of the text based on their pre-
training [11].

Before the introduction of LLMs for NER, NER was performed using BERT or
other transformer-based models that were finetuned on labelled data, which set
a high standard for domain-specific biomedical NER tasks. To fine-tune a BERT
model, it requires a substantial amount of labeled data for training. In contrast,
instruction-tuned large language models can perform various tasks e”ectively with
only a few examples and clear instructions, without the need for extensive labeled
datasets.

Task-specific prompts have been shown to improve the performance of LLMs in
both zero-shot and few-shot learning scenarios [23]. Keloth et al. [22] explore
this by experimenting with instruction-tuned LLaMA models for biomedical entity
recognition in their paper. The results indicate no significant improvement with
enhanced prompts. Also with additional information added to the prompt, that
describes the entity to be extracted, there was no noticeable e”ect on the perfor-
mance of the instruction tuned model. This suggests that, for instruction-tuned
models, the inclusion of detailed task-specific information in prompts may not
substantially a”ect performance. In contrast, research by Shuhe Wang et al. [48]
found that adding additional information to prompts positively impacts the perfor-
mance of large language models, particularly in low-resource settings with only 8
or 100 training sentences. In these cases, supervised models, including BERT vari-
ants, perform substantially worse than GPT-3. For example, with just 8 training

8

examples, GPT-NER achieves an F1 score of around 60, while supervised mod-
els perform at nearly 0, demonstrating GPT-NER’s generalization in low-resource
scenarios. The study further shows that as the training set grows to 10% of the
total dataset, supervised models improve substantially, while GPT-3 shows only
marginal improvement. This indicates that for in-context learning, increasing the
quantity of training data has limited benefits compared to enhancing the quality
of prompt examples. Improvements such as switching from random to kNN-based
demonstration retrieval and refining prompt structure. For instance, by incorporat-
ing self-verification are more e”ective strategies for boosting performance.

As mentioned before, LLMs are increasingly improving in performing specific tasks
by adjusting the number of parameters of a pre-trained model through supervised
training on a dataset specific to the desired task. However, in more general settings,
domain-specific supervised models such as BERT variants still tend to outperform
LLMs. In contrast, in low-resource scenarios, as shown by GPT-NER, LLMs can
generalize surprisingly well even with very few examples. This performance can be
further improved when prompts are carefully designed with specific instructions,
entity definitions, or task-specific annotation guidelines, this demonstrates that
prompt engineering plays a critical role in optimizing LLM output [19].

2.4 Biomedical Named Entity Reginition

The approach to Biomedical NER has advanced significantly over the years, moving
from rule-based methods to feature-driven statistical models, and now to end-to-
end neural networks. These neural networks have greatly reduced the need for
human involvement in tasks like creating rules or selecting features by using self-
supervised pretraining to automatically learn from data. Early systems depended
on rule-based methods that used dictionaries and regular expressions to identify en-
tity mentions, with one of the main challenges being the extensive requirement for
domain-specific knowledge engineering [52, 46]. The statistical machine learning
systems introduced at that time were Hidden Markov Model [31] and Conditional
Random Field (CRF) [45]. An example of a system that used CRF is ABNER (A
Biomedical Named Entity Recognizer) [40], where CRFs are used to enhance the
performance of the rule-based systems. The development of deep neural networks
led to new methods like BiLSTM-CRF [20], which integrate LSTM networks with
CRF layers, thereby eliminating the need for extensive feature engineering.

From BERT models [14], domain-specific pretraining emerged, using massive biomed-
ical corpora like BioBERT [24] and SciBERT [9]. These models continue to improve
through pretraining on larger, more relevant datasets, advancements in neural net-
work architectures, and fine-tuning on specific downstream tasks. As a result, their
performance reaches state-of-the-art levels across various tasks and datasets. On-
going research is further refining these models by using massive pretraining and
multi-task learning (MTL), allowing them to use diverse biomedical sources and
tasks simultaneously [49, 53]. MTL allows the model to train on multiple related
tasks simultaneously. This joint training allows the model to learn features or repre-
sentations that are useful across all the tasks. These shared features help the model

9

generalize better and perform well on each individual task because the knowledge
learned from one task can inform and improve the learning process of other tasks
[38]. In a recent study by Luo et al. [28], a model was trained to recognize mul-
tiple entity types. This all-in-one NER approach combines various heterogeneous
biomedical entity datasets into a single format.

New approaches are being explored for biomedical NER, such as using large lan-
guage models to identify biomedical entities in text or entire corpora. In a recent
research of Keloth et al. [22] the performance of LLMs and BERT models have been
observed to identify biomedical entities, where LLMs depend on prompt engineer-
ing. They found that GPT models underperformed compared to PubMedBERT and
BioNER-LLaMA when evaluated on three NER datasets using a uniform prompt.
This is because of the use of pretrained baselines, namely PubMedBERT and
BioNER-LLaMA. PubMedBERT is pretrained from scratch using abstracts and full-
text articles from PubMed and PubMed Central (PMC). PMC-LLaMA [51] is an
open-source language model designed specifically for medical applications, trained
with a data-centric approach that incorporates 4.8 million biomedical papers and
30,000 medical textbooks. The use of pretrained baselines allowing PubMedBERT
and BioNER-LLaMA to better understand domain-specific medical language and
terminology than the GPT models, making them more e”ective for the named
entity recognition task. This was also observed in the experiment, BioNER-LLaMA
outperformed PubMedBERT on two out of three datasets, although these results
were not statistically significant, because the BioNER-LLaMA achieved a 2% im-
provement in the F1 score compared to PubMedBERT. However, for the chemical
entity extraction task, PubMedBERT achieved a better performance, with an F1
score that was 0.04 higher than BioNER-LLaMA.

10

3 Methods

Instruction tuning, also referred to as instruction finetuning, is a process in nat-
ural language processing where a pre-trained model is further trained on a set of
task-specific instructions together with labeled data to improve its performance on
particular tasks. The concept of instruction tuning is introduced by Wei et al.[50]
as a method to improve zero-shot performance on unseen tasks by fine-tuning lan-
guage models on a collection of tasks described using natural language instruction
templates. This concept of improving zero-shot performance through instruction
tuning has been further substantiated by implementations such as Stanford Alpaca
[6] and Flan-UL2 [7].

3.1 Datasets for instruction tuning

For zero-shot, few-shot and instruction tuning with LLMs, we use three di”erent
datasets, these datasets are also used in the paper of Keloth et al.[22].

The NCBI disease corpus [15] consists of 793 PubMed abstracts manually an-
notated with disease mentions and their corresponding MeSH or OMIM concept
identifiers. The dataset is divided into training, development, and test sets. It
contains a total of 6,892 mentions of diseases, which are linked to 790 unique
identifiers.

The BC5CDR-Chemical [26] corpus consists of 1,500 PubMed abstracts split
into subsets of 500 each for training, development and test. The corpus is anno-
tated for disease mentions, chemical mentions, and chemical-disease interactions.
For zero-shot, few-shot and instruction tuning we only use the chemicals dataset.
Each entity annotation contains both the mention text spans and normalized con-
cept identifiers, using MeSH as the controlled vocabulary.

The BC2GM (BioCreative II Gene Mention) [42] corpus focuses on extract-
ing gene and gene product mentions from MEDLINE sentences. The corpus is
divided into 12500 train sentences, 2500 development sentences, and 5000 test
splits sentences.

The following two datasets are used in the experiment to analyze the performance
of the LLM on complex and long medical entities.

The BC5CDR-Disease corpus [1] consists of 1,500 articles annotated with 5818
diseases mentions. The BC5CDR dataset consist of 4797 sentences, where each
sentence has zero or more biomedical entities.

The NLMChem corpus [3] consists of 150 full-text articles from the PubMed
Central Open Access dataset, with around 5000 unique chemical name annota-
tions, mapped to around 2000 MeSH identifiers. comprising 67 di”erent chemical
journals, aiming to cover a general distribution of usage of chemical names in the
biomedical literature.

11

3.2 Models

LLaMA3-8B: The LLaMA3-8B model is an 8 billion parameter large language
model developed by Meta AI [2], designed to understand and generate human-like
text across various natural language processing tasks, with capabilities enhanced
through instruction tuning and trained on diverse internet text.

PMC-Llama-13B: The PMC-LLaMA [51] is an open-source language model de-
veloped specifically for medical applications, with 13 billion parameters. It was
trained using a large dataset of 4.8 million biomedical research papers and 30,000
medical textbooks. Additionally, it underwent instruction tuning with samples
focused on various medical tasks, such as medical conversations, reasoning in
question-answering scenarios, and question-answer pairs generated from knowl-
edge graphs.

3.3 Prompt Development

3.3.1 Zero-shot setting

The three NER datasets mentioned in subsection 3.1 were used to evaluate the
performance of LLMs for entity recognition. Specifically, this section focuses on
the zero-shot setting with the LLaMA3-8B model. However, the datasets were
not immediately suitable for the zero-shot experiment and required further orga-
nization before they could be used, so each dataset were first split into individual
sentences, ensuring that each line contained a single sentence. Since the entities
in the datasets were already marked, those markings were removed to create an
unlabeled version of the data. After the preparation of the datasets, the next step
was defining the prompt construction, an example of a prompt is illustrated in
Figure 1. The prompt construction is decomposed into two components:

1. Instruction: This describes the task that the model should perform, in this
case, extracting the biomedical entity from a sentence.

2. Input sentence: This is a sentence from the dataset that can come from any
of the three datasets and may contain zero, one, or more entity mentions.

12

Figure 1: An prompt example that consist of an instruction that describes

a task, paired with an input that provides further context. The output is a

response that appropriately completes the request.

In the instruction section, the task for the LLM is described. A similar instruction,
replacing the word ”disease” with ”chemical” or ”gene”, was used when transform-
ing the dataset from NCBI-disease to BC5CDR-Chemical or BC2GM-gene. Along
with the instruction, an input sentence is also provided for the Llama3-8b model
to process. From the instruction and input, an output is generated that completes
the request. The output consists of the sentence, with entities highlighted using
<mark> and </mark> tags if entities are present. If no entities are identified, the
output will be the exact input sentence without any modifications. In addition to
the input sentence with the <mark> and </mark> tags, the LLM also generates
additional information related to the input sentence, this is illustrated in Figure 1.

Due to the excessive information generated by the Llama3-8B model, it becomes
di!cult to filter out the input sentence with the<mark> and</mark> tags, which
is needed for calculating Precision, Recall, and F1-score later. Online discussions,
on platforms as Stack Overflow [41, 5], reveal that the issue of excessive output
in LLaMA3 is a common problem encountered by many users on the platform.
The only solution is to experiment with di”erent approaches to find an e”ective
workaround.

13

Figure 2: An prompt example that consist of an instruction and an input

sentence that has a error in the output

14

Figure 3: An prompt example that consist of an instruction and an input

sentence that has a error in the output.

Figure 2 and 3 illustrate two di”erent instructions along with their corresponding
outputs. As illustrated in Figure 1, we can see that an instruction that is too short
or not specific enough leads to output with excessive information. The excessive
information describes the steps Llama3-8b model takes to arrive at its final answer.
On the other hand, an instruction that is too long or specific sometimes results in
output where LLaMA3-8B forgets to perform part of the instruction, as illustrated
in Figure 2 and 3. In conclusion, we can see that there is no specific method
to control the output of Llama3-8B model. The only way to achieve the desired
output is through trial and error.

15

Figure 4: The prompt example with the instruction that generated the least

amount of excessive information.

After several trials, the final instruction that proved e”ective is illustrated in Fig-
ure 4. This instruction minimized the generation of excessive information. In the
instruction, we added extra markup patterns to simplify the post-processing. The
<s> and </s> tags are used to easily locate specific sentences within the output
during post-processing. The [output] tag serves as a backup in case the <s> and
</s> markers are not generated by the LLaMA3-8B model. These added markup
patterns help us to filter out the input sentence from the output modified by the
LLaMA3-8B model, which can then be used for the evaluation phase.

16

Figure 5: The prompt example with the output, where the tags are placed

incorrectly

In the post-processing step, we prepare the output generated by the LLaMA3-8B
model for the evaluation phase. First, we automatically filter the input sentence
from the output using the markup mentioned in the section above. After filtering
out the sentences containing entities from the output, a manual check is performed
to ensure each sentence has been correctly filtered. This is necessary because of
formatting errors, the LLaMA3-8B model fails to include the required markups or
places them incorrectly as illustrated in Figure 5, making it impossible to filter the
sentences using markup alone. Next, we extract the entities from each sentence au-
tomatically by matching the <mark> and </mark> tags, if the sentence contains
any entities. As a result, each line will contain the entities from the corresponding
sentence, and if the sentence contains no entities, the line will remain empty. In
this step, a manual check is also performed to ensure that each entity has been
correctly extracted.

17

3.3.2 Few-shot setting

Figure 6: An few-shot prompt example that consist of two example, where the

biomedic entities are already marked, allowing the LLaMA3 model to learn

from them. An instruction that describes a task, paired with an input that

provides further context. The output is a response that appropriately completes

the request.

For the few-shot approach, we still use the LLaMA3-8B model as the LLM, and the
same datasets as in the zero-shot approach. For this setting the prompt structure
was adjusted as shown in Figure 6. Before giving the instruction to the LLaMA3-8b
model, two examples from the training set are first provided. Prior to using the
training set, all sentences that do not contain biomedical entities are removed,
as those sentences are not useful examples for the LLaMA3-8B model to learn
from. Using these examples also regulates the format of the LLM outputs for
each test input, as LLM will likely generate outputs that mimic the format of the
demonstrations. The two examples provide the LLM with examples for reference.
The two examples are selected as follows: for the first input sentence, we take the
first two examples from the training dataset. For the second input sentence, we
take the next two examples, and so on until one of the datasets is empty. This
ensures that the LLM is always provided with two new examples. We choose this
method because the training dataset and test dataset are approximately the same
size. After the two examples, the instruction follows, which the purpose remains
the same as in the zero-shot setting.

18

Figure 7: A few-shot where after the [output] tag an introductory sentence is

included first, followed by the input sentence.

19

Figure 8: An few-shot prompt error example the LLaMA-3 model has forgotten

to use the <mark> and </mark> tags and has used a di!erent marker instead.

For the post-processing of the few-shot approach, we also use markup patterns to
automatically filter out sentences containing biomedical entities from the output.
After filtering out sentences containing biomedical entities from the output, each
line is manually checked to ensure it contains the correct corresponding sentence.
Once verified, the biomedical entities are extracted from the sentences, so that
each line contains only the entities associated with that sentence. Following this
step, a final manual check is performed to ensure that all entities tagged between
<mark> and </mark> have been correctly extracted, preparing the data for the
evaluation step. During the manual check, several corrections were made due to
certain inconsistencies in the output. These issues arose because the LLaMA3-
8B model sometimes generates unique formatting errors that cannot be resolved
by a post-processing script. Two of those errors are illustrated in Figure 7 and 8
illustrate some example of those outputs containing these errors. In Figure 7, we
see that the input sentence with the <mark> and </mark> tags does not appear
immediately after the [output] tag, but instead, there is an introductory sentence
followed by the input sentence. In Figure 8, we observe that the LLaMA3-8B model
forgot to place the <mark> and </mark> tags and used a di”erent marking tag
instead.

20

3.3.3 Parameter-E!cient Fine-Tuning

Instruction tuning is the process of fine-tuning a LLM using a dataset of natural
language instructions and corresponding outputs, enabling the model to better un-
derstand and follow task-specific prompts.

For instruction tuning, we first need to train the LLM on a dataset to perform a
specific task. The same dataset is used, that were also used as example for the
few-shot settings. The training data for instruction tuning is formatted as a JSON
file containing a list of dictionaries. Each dictionary includes three fields: instruc-
tion, input, and output. The instruction field describes the task the model should
perform. The input field is a sentence from the training set of one of the three
datasets, which may contain zero, one, or multiple entity mentions. The output
field contains the biomedical entities if they are present in the input sentence.
If no entities are found, the output is set to ”No disease/chemical/gene entities
found.”, depending on the dataset being used at that moment. A small example
of the training data structure is illustrated in Listing 1.

Listing 1: A small example of the training data structure.

[

{

"instruction ": "Extract only the disease

entities from the input. List them as a

comma -separated response. If no disease

entities are present , output ’No disease

entities found.",

"input ": "Identification of APC2 , a

homologue of the adenomatous polyposis coli

tumour suppressor .",

"output ": "adenomatous polyposis coli tumour"

},

{

"instruction ": "Extract only the disease

entities from the input. List them as a

comma -separated response. If no disease

entities are present , output ’No disease

entities found.",

"input ": "Here , we report the identification

and genomic structure of APC homologues

.",

"output ": "No disease entities found ."

},

21

Figure 9: An example of a prompt of the LLaMA3-8B model after instruction

tuning with Unsloth.

After preparing the training data, the first step is loading and initializing a LLM.
Next, LoRa (Low-Rank Adaptation) is configured and applied as a PEFT (Parameter-
E!cient Fine-Tuning) method. This approach modifies the model architecture by
introducing low-rank matrices into specific layers, such as the attention layers.
These matrices represent a small fraction of the original parameters and approx-
imate the weight updates required during instruction tuning. Importantly, only
the parameters of these low-rank matrices are updated during training, while the
original model weights remain frozen. This substantially reduces memory usage
and computational cost, making the instruction tuning process faster and more
resource-e!cient. Before training, we added LoRA adapters to the model, restrict-
ing updates to a small subset of parameters (approximately 1–10%). The LoRA
configuration used a rank of 16 (r=16), a scaling factor of 16 (lora alpha=16),
no dropout (lora dropout=0), and targeted the attention and feedforward projec-
tion layers (q proj, k proj, v proj, o proj, gate proj, up proj, down proj).
Gradient checkpointing was enabled in the optimized “unsloth” mode to reduce
VRAM usage and allow larger batch sizes, and a fixed random seed of 3407 was
used to ensure reproducibility. After preparing the model with LoRA, the train-
ing process began with explicitly defined parameters: a per-device batch size of
2, gradient accumulation across 4 steps, a learning rate of 2 → 10

→4, 5 warmup
steps, weight decay of 0.01, and the AdamW 8-bit optimizer combined with a lin-
ear learning rate scheduler. Early stopping was applied with a patience of 3 steps
and a minimum loss improvement threshold of 0.001 to avoid overfitting.. These
parameters control how the fine-tuning updates are applied to the trainable compo-
nents introduced by LoRA. This approach requires less memory and computation,
making instruction tuning faster and more resource-e!cient. Next, the training
process begins. Before training starts, the entries in the JSON file are reformatted
into a specific template called alpaca prompt, which structures each data example
as a text prompt. Additionally, the EOS TOKEN (<|end of text|>) is appended to
each prompt to mark the end of a sequence. This reformatting process transforms
each original dataset entry into a new format, stored under the key ”text”, con-
taining the complete formatted prompt. Once instruction tuning with Unsloth is
complete, either by reaching the maximum training steps or by early stopping when
the loss no longer improves, the model is ready to generate predictions from the
given instruction and input. Figure 9 illustrates an prompt example with the output.

22

To perform instruction tuning on the LLaMA3-8B and PMC-LLaMA-13B model,
we use the Python library Unsloth because there are no computers or machines
available that meet the hardware requirements for instruction tuning. Unsloth is a
Python package designed to accelerate instruction tuning of LLMs by optimizing
the training process. It achieves faster instruction tuning by using techniques such
as LoRA, which reduces the number of trainable parameters, and e!cient data
loading pipelines. These optimizations minimize computational overhead, allowing
instruction tuning to be performed with reduced hardware requirements and shorter
training times.

23

Figure 10: A generated output of the instruction tuned LLaMA3-8B model

with unsloth. The output includes fabricated entities (’breast cancer’), which

is not present in the input text.

Figure 11: A prompt example where the LLM repeats the extracted entities

multiple times.

24

Figure 12: A prompt example where the LLM appends extra words to the

output, even if it is not requested in the instruction.

Figure 13: A prompt example where the model produces output that is entirely

unrelated to the given input.

The post-processing step is performed to evaluate its performance on a test dataset.
Since the output consists solely of either the biomedical entity or ”No disease/-
chemical/gene entity,” it is not necessary to filter the output as in the zero-shot
and few-shot settings. However, given that we are still working with a LLM, there
are exceptional cases where manual corrections are required. On average, these
cases occur approximately once every 30 outputs generated by the LLM. LLMs
can su”er from hallucinations, where the model generates fabricated information
that does not exist in the input, Figure 10 illustrates an example of this case. Fur-
thermore, there are cases where the LLM repeats the extracted entities multiple
times, as shown in Figure 11 or adds extra words to the output. This occurs even
when this is not requested in the instruction, an example is presented in Figure
12. In some instances, the model produces output that is entirely unrelated to the
given input, an example of this case is illustrated in Figure 13.

25

3.4 Evaluation metrics

For each entity type, Precision, Recall, and F1 score were calculated to evaluate the
model’s performance in extracting medical entities using NER, by comparing the
predicted entities with a “gold standard” of correct entities for the three datasets
introduced in section 3.1. We use two matching methods: strict matching and
partial matching to calculate Precision, Recall, and F1 score. In strict matching,
an entity is only considered correct if it exactly matches an entity in the ground
truth. In partial matching, an entity is correctly extracted if there is an word overlap
between a predicted entity and a gold standard entity.

3.5 Extraction of long, complex and emerging entities
with LLM

In this section, we describe the methodology for extracting long and complex en-
tities from biomedical texts. In the study by Keloth et al.[22], LLMs demonstrated
strong performance on NER tasks involving disease, chemical, and gene entities.
However, their performance remains uncertain when applied to entities that are
longer and more complex, or to previously unseen and newly emerging entities,
that are for example absent from the training data. This raises important questions
about the models’ ability to generalize beyond commonly encountered biomedical
terms and adapt to the dynamic nature of scientific language. To address this
challenge, we propose the following methodology.

For this research question, we found two datasets: the BC5CDR-Disease dataset
and the NLM-Chem dataset. Both datasets contain long and complex biomedical
entities, including multi-word and emerging entities. This make them suitable for
evaluating how well LLMs handle more challenging entity structures. The BC5CDR-
disease dataset is a dataset that contains disease entities, including many rare
diseases. Rare diseases often have long, descriptive names, frequently composed
of multiple words and including complex terminology or references to genetic or
pathological features, making them particularly challenging for NER tasks. In com-
paring to the NCBI-Disease dataset, the BC5CDR-Disease dataset is more recent,
meaning it includes new kind of diseases as well as emerging abbreviations that
may not have been seen during model training.

The NLM-Chem dataset contains chemical entities. We use this dataset in our
experiment on extracting long and complex entities because it is a relatively new
dataset that has been published. In contrast to the BC2GM dataset, which was
published in 2008, there is a 13-year gap between the two. Over these years, many
new chemical compounds have been discovered, and naming conventions have
become more complex and specialized. As a result, the entities found in the NLM-
Chem dataset are often longer, more technical, and include emerging terminology
that are not present in the BC2GM dataset. Furthermore, the NLM-Chem dataset
was developed using a large and diverse set of reasonably recent PubMed articles,
ensuring coverage across a wide range of biomedical subdomains. This diversity
introduces varied linguistic contexts and entity structures, including systematic

26

chemical names and domain-specific abbreviations.

The two datasets were not immediately suitable for the experiment and required
pre-processing. For the experiment, the datasets needed to contain complex en-
tities, which refers to entities that are longer and consist of multiple words, also
known as multi-word or nested entities. In addition, the entities needed to be novel
or emerging, meaning they were previously unseen by the LLM. To ensure that
the test set contained emerging/novel entities, we found a more recent dataset,
as described in paragraph above. After this, we identify and eliminate overlapping
entities between the training and test sets. Overlapping entities were defined as
those that match exactly, while partial overlaps were excluded. A script was devel-
oped to automate this process: it searched for exact matches between entities in
the training and test data and removed any duplicates from the test set.
Once the entities were finalized, further preprocessing was applied to the datasets
themselves. Both datasets consist of separate text segments in which entities are
annotated using markup tags. First, the text fragments were split into individual
sentences, ensuring that each line contained exactly one sentence. Following this,
the annotated entities were de-tagged to create an unlabeled version of the data,
which will later be used as input for the entity extraction task.

As a result, these two dataset o”er an opportunity to evaluate whether LLMs are
capable of extracting long, complex, and emerging biomedical entities. This pro-
vides insight into their ability to generalize beyond familiar terms and adapt to
evolving scientific language.

After preprocessing, the datasets were prepared for use as input in the entity
extraction task. Both BC5CDR-Disease and NLM-Chem are used as test sets in
this experiment. For the LLM we use the same LLM that are described in section
3.2. The LLM adaptation technique applied in this experiment is instruction-tuning,
as it has proven to be the most e”ective approach for improving model performance
in extracting biomedical entities through NER, according to the results presented
in the Results section 4. The instruction tuning setup for the two LLMs follows the
same setup as described in Section 3.3.3, with the only di”erence being that the
two new datasets are now used as test sets. Once the predictions from the LLMs
are obtained, the extracted entities are compared to the gold standard annotations
in order to calculate the Precision, Recall, and F1-score.

27

4 Results

4.1 Evaluation of di”erent kind of LLMAdaptation Tech-
niques

In this section, we evaluate the performance of LLMs for entity recognition by
comparing di”erent LLM adaptation techniques. We do this by calculating the
Precision, Recall, and the F1-score to measure their e”ectiveness. Tables 1, 2,
and 3 present results obtained using the LLaMA3-8B model on three di”erent
datasets with three adaptation techniques: zero-shot, few-shot, and instruction
tuning. These metrics are computed using the test set of the dataset described in
Section 3.1.

In table 1, we use the NCBI-disease dataset to evaluate the performance of the
LLaMA3-8B model. The table shows that for strict matching, both precision and
recall are highest with instruction tuning. For partial matching, precision and recall
scores highest with instruction tuning. The F1-score is highest with instruction
tuning for both strict and partial matching.

Dataset = NCBI(disease)

Model Strict/partial match Precision Recall F1-score

LLaMA3-8B (zero-shot)
Strict 0.2529 0.4035 0.3109

Partial 0.3814 0.6106 0.4696

LLaMA3-8B (few-shot)
Strict 0.4113 0.4250 0.4180

Partial 0.5437 0.5723 0.5576

LLaMA3-8B (Unsloth)
Strict 0.7152 0.6102 0.6585

Partial 0.7870 0.6597 0.7177

Table 1: Performance of LLaMA3-8B Models on NCBI(disease) dataset with

Strict and Partial match metrics.

28

In Table 2, the same LLM is used, but with a di”erent dataset, namely BC5CDR-
chemical. For this dataset, the strict match results show that precision is highest
with instruction tuning, while recall is highest in the zero-shot setting. For partial
match, precision and recall is highest with instruction tuning. The F1-score is the
highest for both strict and partial match with instruction tuning.

Dataset = BC5CDR(chemical)

Model Strict/partial match Precision Recall F1-score

LLaMA3-8B (zero-shot)
Strict 0.3714 0.6247 0.4659

Partial 0.4406 0.7385 0.5519

LLaMA3-8B (few-shot)
Strict 0.4184 0.4373 0.4277

Partial 0.5617 0.5934 0.5771

LLaMA3-8B (Unsloth)
Strict 0.6714 0.6850 0.6781

Partial 0.7262 0.7215 0.7239

Table 2: Performance of LLaMA3-8B Models on BC5CDR(chemical) dataset

with Strict and Partial Match Metrics.

Table 3 evaluates the performance of the LLaMA3-8B model on a third dataset,
namely BC2GM-gene. Precision is highest for both strict and partial matching
with instruction tuning. In strict matching setup, recall is highest with instruction
tuning, while for partial matching, recall reaches its highest value in the zero-shot
setting. The F1-score, similar to the other datasets, is highest with instruction
tuning.

Dataset = BC2GM(gene)

Model Strict/partial match Precision Recall F1-score

LLaMA3-8B (zero-shot)
Strict 0.1945 0.3337 0.2458

Partial 0.3612 0.6336 0.4601

LLaMA3-8B (few-shot)
Strict 0.2208 0.2612 0.2393

Partial 0.3650 0.4385 0.3984

LLaMA3-8B (Unsloth)
Strict 0.3586 0.3824 0.3701

Partial 0.5292 0.5762 0.5517

Table 3: Performance of LLaMA3-8B Models on BC2GM Dataset(Gene) with

Strict and Partial Match Metrics.

29

4.2 Replication of PMC-LLaMA-13B model

This section replicates the experiment with the PMC-LLaMA-13B model described
in the paper by Keloth et al.[22]. First, an initial experiment was conducted to test
how well the standard PMC-LLaMA-13B model in the paper of Keloth et al.[22]
could extract biomedical entities. We used 25 examples from the test dataset to as-
sess whether the PMC-LLaMA-13B model could successfully identify these entities.
The result of the experiment showed that the PMC-LLaMA-13B model correctly
identified 0 out of 25 examples. Therefore, we proceed with the instruction tuning.
However, since the authors of the paper did not share their fine-tuning code, we
use the python package Unsloth for the instruction tuning process. To perform
instruction tuning, we used the training dataset from each corpus, namely NCBI-
Disease, BC5CDR-Chemical, and BC2GM-Gene to instruction tune the LLM. First,
we had to convert the training dataset as in the paper of Keloth et al.[22] into
a JSON file. The JSON file contains a list of dictionaries, each dictionary having
three fields: instruction, input, and output. The ”instruction” describes a task that
the model needs to perform. The ”input” is a sentence from the training set of
one of the three datasets and may contain zero, one, or more mentions of entities.
The ”output” is the sentence with entities marked using <mark> and </mark>
tags if present, or the exact input sentence if no entities are found. After the PMC-
LLaMA model is fine-tuned, we use the test set to evaluate its performance. For
the evaluation, the structure of the test dataset remains the same.

Table 4 presents the results of the performance of the PMC-LLaMA model. The
result shows that the PMC-LLaMA model does not perform well in extracting
biomedical entities compared to the results of the PMC-LLaMA model presented
in the paper by Keloth et al.[22]. The performance of the PMC-LLaMA model from
their paper is also shown in Table 4. There is a significant di”erence in Precision,
Recall, and F1-score for both strict and partial matching between the two sets of
results.

Table 4 highlights the substantial di”erence in performance for the NCBI dataset.
The PMC-LLaMA model with PEFT achieves a precision of 0.1958, a recall of
0.1460, and an F1-score of 0.1672 for strict matching, while the results reported
in the paper by Keloth et al.[22] demonstrate substantially better performance on
the same dataset. Their strict matching results show a precision of 0.877, a recall
of 0.851, and an F1-score of 0.864. This indicates a poor performance for the
PMC-LLaMA model with PEFT compared with the PMC-LLaMa from the paper
of Keloth et al.[22] in identifying biomedical entities. For partial matching the
PMC-LLaMA model with PEFT achieves a precision of 0.2684, a recall of 0.1949,
and an F1-score of 0.2258. In contrast, the partial matching from the paper Keloth
et al.[22] achieves a precision of 0.938, a recall of 0.914, and an F1-score of 0.926.
In conclusion, the results from the PMC-LLaMa model in the paper show much
higher Precision, Recall, and F1-scores compared to the PMC-LLaMa model with
PEFT.

30

Dataset Strict/partial match Precision Recall F1-score

NCBI-Disease
Strict

0.1958 0.1460 0.1672

0.4328** 0.4266** 0.4297**

0.877* 0.851* 0.864*

BC5CDR-Chemical Strict
0.0994 0.0769 0.0867

0.5042** 0.5431** 0.5229**

0.935* 0.870* 0.902*

BC2GM-Gene
Strict

0.1604 0.1059 0.1276

0.4798** 0.3402** 0.3981**

0.834* 0.823* 0.828*

NCBI-Disease
Partial

0.2684 0.1949 0.2258

0.5426** 0.5315** 0.5370**

0.938* 0.914* 0.926*

BC5CDR-Chemical Partial
0.2111 0.1556 0.1791

0.5537** 0.5862** 0.5695**

0.957* 0.892* 0.924*

BC2GM-Gene
Partial

0.1604 0.1059 0.1276

0.6077** 0.4329** 0.5056**

0.959* 0.943* 0.951*

Notes: **Values with early-stopping.
*Values from the paper Keloth et al.

Table 4: Performance metrics of PMC-LLaMA model (Precision, Recall, and

F1-score) for strict and partial matches across three datasets: NCBI-Disease,

BC5CDR-Chemical, and BC2GM-Gene.

The first value represents instruction tuning without early stopping, the second

value represents instruction tuning with early stopping, and the third value

corresponds to the results from the Keloth et al.[22] paper.

Figure 14: Training Loss Curve for PMC-LLaMA-13B during Instruction Tun-

ing
31

To further investigate the performance gap, we analyzed the training dynamics of
the PMC-LLaMA-13B model. Figure 14 presents the training loss over the course
of instruction tuning, showing a consistent decrease in loss as the epochs progress.
In Figure 14 we observe a high loss value at the beginning of the training process.
This reflects the model’s initial lack of understanding and poor performance before
it has learned from the data. As the model undergoes more training epochs, the loss
value drops quickly. This reduction in loss indicates that the model is e”ectively
learning from the data and adjusting its weights to better predict the outcomes
based on the training data. This indicates that the model has reached a point
where additional training provides minimal improvement. At this point, the model
has e”ectively captured the underlying patterns in the training data, and further
training is unlikely to enhance its performance. The steady decline and followed
by a stabilization of the loss indicates that the model is learning e”ectively from
the training data and that the model is adjusting its weights and improving its
predictions based on the provided training data.

In Figure 14, we observe that the point at which the loss stabilizes is reached early in
the training process. Training beyond this point results in minimal improvements
and can sometimes lead to overfitting, where the model performs well on the
training data but poorly on unseen data. To address this, we implement an ”early
stopping” mechanism. Early stopping stops the training process once the model’s
performance on a validation set stops improving, thereby preventing unnecessary
training and reducing the risk of overfitting. This approach ensures that the model
generalizes well to new data while optimizing the training e!ciency. In Table 4,
the results are presented for the training of PMC-LLaMA with early stopping.
We observe that the Precision, Recall, and F1-score have improved compared to
PMC-LLaMA without early stopping. PMC-LLaMA with early stopping achieves
a precision of 0.4328, a recall of 0.4266, and an F1-score of 0.4297 for strict
matching on the NCBI-Disease dataset. In comparison, PMC-LLaMA without early
stopping has a precision of 0.1958, a recall of 0.1460, and an F1-score of 0.1672
for strict matching. With early stopping, the model achieves a precision of 0.5426,
a recall of 0.5315, and an F1-score of 0.5370. In contrast, without early stopping,
its performance drops substantially to a precision of 0.2684, a recall of 0.1949,
and an F1-score of 0.2258. Thus, we observe that early stopping has a positive
impact on PMC-LLaMA’s performance. However, the results still fall short of those
reported in the paper of Keloth et al.[22].

4.3 Qualitative analysis

In this section, we conduct a qualitative analysis to identify the cases where
LLaMA3-8B and PMC-LLama-13B struggle. By analyzing the errors and limita-
tions of these models, we aim to uncover specific failure patterns in both models.
LLaMA3-8B outperforms PMC-LLaMA-13B without instruction tuning or a few-
shot setting, this is because LLaMA3-8B model has a greater generalization capac-
ity. The LLaMA3-8B consists of a collection of pretrained and instruction-tuned
generative text models. These models are designed to generate text and code in
response to prompts, making them suitable for a wide range of natural language

32

processing tasks. In contrast, PMC-LLama -13B is an open-source language model
designed specifically for medical applications. The model underwent an instruction-
tuning step using training samples that focus on medical conversations, medical
rationale question-answering, and QA pairs derived from knowledge graphs.

For this reason PMC had some common struggles, the following points highlight
specific struggles the model faced:

• PMC-LLaMA-13B has a di!culty in recognizing a wide variety of diseases,
genes, and chemicals. For example, in the disease dataset, PMC-LLaMA-13B
was able to correctly identify well-known diseases among the general pub-
lic, such as various types of cancer (e.g., leukemia, tumors, breast cancer,
melanoma) and other common diseases like diabetes. However, one of its
shortcomings in disease recognition was its di!culty in identifying abbrevia-
tions for diseases. For instance, it struggled with abbreviations such as AGU,
which stands for Aspartylglucosaminuria (AGU) a severe autosomal reces-
sive lysosomal storage disorder or AS, which refers to Ankylosing Spondylitis
(also known as axial spondyloarthritis), an inflammatory disease that can
lead to the fusion of spinal vertebrae over time. This struggle in disease
recognition is caused to the fact that PMC-LLaMA-13B was not explicitly
trained for biomedical entity extraction but rather for providing medical ad-
vice, similar to how a general practitioner advises patients. This suggests
that PMC-LLaMA-13B is better in more general medical language than in
specialized biomedical terminology.

• Mistakes in the word ”disease” recognition: A common mistake that PMC-
LLaMA-13B also made was marking the word ’disease’ itself as an entity,
even though ’disease’ is not a specific illness on its own.

• Challenges in gene recognition: While PMC-LLaMA-13B successfully identi-
fied well-known genes such as hemoglobin, prolactin, and glucagon, it strug-
gled with recognizing gene abbreviations and less commonly known genes.

• Limitations in chemical entity recognition: Because PMC-LLaMA-13B was
not explicitly trained for biomedical entity extraction but instead designed
to deliver patient-centered medical advice, it struggled with identifying and
marking chemical entities, reflecting its limitations in handling specialized
biomedical terminology. This limitation is also evident in the results shown
in Table 4, where the model’s performance in recognizing chemical entities
was notably lower compared to other datasets. This suggests that PMC-
LLaMA-13B is better suited for generating general medical advice, rather
than for technical tasks such as biomedical entity recognition that require
domain-specific expertise.

The LLaMA3-8B model faces challenges in accurately extracting biomedical enti-
ties in text. The following points highlight challanges the model encounters:

• Incorrect entity boundaries: One of the challenges for the LLaMA3-8B model
is that it does not always mark entities in the correct location. For exam-
ple, in the disease dataset, the entity that should be marked according to

33

the gold standard is ”hex A deficiency”, but LLaMA3-8B incorrectly marks
”incomplete hex A deficiency” instead. Another example is ’inherited breast
cancer’, where the correct entity, according to the gold standatd, is to mark
’breast cancer’, but the model incorrectly includes the word ’inherited’ as
part of the entity.

• Failure to capture multiple instances of the same entity type: Another com-
mon error in the LLaMA3-8B model is that it only returns one entity of a
specific type, even when there are multiple instances of the same entity type
in a sentence. For example, in the sentence: ”A hot spot for PTEN mutation
in <mark>CD</mark> was identified in exon 5 that contains the PTPase
core motif, with 13 of 30 (43%) <mark>CD</mark> mutations identified
in this exon.” As you can see there are two disease entities (CD), but the
LLaMA3-8B model only returns one of them.

4.4 Evaluation of long and complex entity extraction

For this experiment on extracting long and complex biomedical entities, we use two
unseen external datasets: the BC5CDR-Disease dataset, which contains disease-
related entities, and the NLM-Chem dataset, which includes chemical entities.
These datasets serve as the out-of-distribution test sets, and we evaluate the
performance of the LLMs using Precision, Recall, and F1-score as the evaluation
metrics. The results are presented in Table 5 and Table 6.

Model = LLaMA3-8B
Test data Match Type Precision Recall F1-score

Disease Entities
NCBI (Internal) Strict 0.7152** 0.6102** 0.6585**

BC5CDR-disease (External) Strict 0.5648 0.5468 0.5557

NCBI (Internal) Partial 0.7870** 0.6597** 0.7177**

BC5CDR-disease (External) Partial 0.6180 0.5341 0.5730

Chemical Entities
BC5CDR (Internal) Strict 0.6714** 0.6850** 0.6781**

NLM-Chem (External) Strict 0.6473 0.6482 0.6478

BC5CDR (Internal) Partial 0.7262** 0.7215** 0.7239

NLM-Chem (External) Partial 0.6995 0.6859 0.6926

Notes: ** Values from Tables 1 and 2.

Table 5: Performance of the LLaMA3-8B model on external (BC5CDR-disease

and NLM-Chem) and internal (NCBI and BC5CDR) test data using strict and

partial match metrics.

34

Table 5 presents the performance of the LLaMA3-8B model on the two un-
seen external biomedical named entity recognition datasets (BC5CDR-disease and
NLMChem-chemical) under both strict and partial match criteria. The values
marked with ** in Table 5 represent the instruction tuning results obtained on
the test set corresponding to the train set, these results can be found in Tables 1
and 2.

Under the strict match criterion, which requires an exact match between predicted
and gold-standard entities, the LLaMA3-8B model achieved a precision of 0.5648,
recall of 0.5468, and an F1-score of 0.5557 on the unseen external dataset. In
comparison, on the in-domain dataset, the model obtained a higher precision of
0.7152, a recall of 0.6102, and a F1-score of 0.6585. A similar trend was observed on
the NLMChem dataset, under strict match criterion the LLM achieved a Precision
of 0.6473, recall of 0.6482 and a F1-score of 0.6478, while on the in-domain dataset
it achieved a higher precision of 0.6714, but also a higher recall and F1-score of
0.6850 and 0.6781. We observe that the performance of LLaMA3-8B model is
higher on the in-domain dataset instead on the unseen external dataset.

Model = PMC-LLaMA-13B
Dataset Match Type Precision Recall F1-score

Disease Entities
NCBI Strict 0.4328** 0.4266** 0.4297**

BC5CDR-disease (External) Strict 0.1913 0.1865 0.1889

NCBI Partial 0.5426** 0.5315** 0.5370**

BC5CDR-disease (External) Partial 0.3324 0.3197 0.3259

Chemical Entities
BC5CDR Strict 0.5042** 0.5431** 0.5229**

NLM-Chem (External) Strict 0.4762 0.5271 0.5004

BC5CDR Partial 0.5537** 0.5862** 0.5695

NLM-Chem (External) Partial 0.4736 0.5531 0.5102

Notes: ** Values from Tables 4.

Table 6: Performance of the PMC-LLaMA-13B model on external (BC5CDR-

disease and NLM-Chem) and internal (NCBI and BC5CDR) test data with

strict and partial match metrics.

Table 6 presents the outcomes obtained by applying PMC-LLaMA-13B model to
the same two biomedical datasets. Under the strict match setting for the BC5CDR-
disease dataset, PMC-LLaMA-13B showed a lower performance on the unseen ex-
ternal dataset than on the in-domain testset, it achieved a precision of 0.1913,
recall of 0.1865, and F1-score of 0.1889. In contrast, on the in-domain testset, the
model performed substantially better, with a precision of 0.4328, recall of 0.4266,
and F1-score of 0.4297. This di”erence in performance suggests that the model
struggles to accurately identify the disease entities on the unseen dataset. On the
NLMChem-chemical dataset, the model’s strict match performance was more sta-
ble. It achieved a precision of 0.4762, recall of 0.5271, and F1-score of 0.5004 on
the external testset, compared to 0.5042 precision, 0.5431 recall, and 0.5229 F1-
score, on the in-domain testset. Although performance still declines slightly with

35

the entities on the external testset, the drop is less significant than with the test
set corresponding to the train set.

In terms of partial match evaluation, where overlaps is allowed. The model still
showed a lower performance on the unseen external testsets. For BC5CDR-disease
dataset, the F1-score for this dataset is 0.3259 and for the in-domain testset is
the F1-score 0.5370. A similar trend can be observed for the NLMChem dataset,
where the F1-score for the in-domain testset (F1 = 0.5695) is higher than the
F1-score for the unseen external testset (F1 = 0.5102). We observe that PMC-
LLaMA-13B struggles more with extracting long and complex entities compared
to the LLaMA3-8B model.

4.4.1 E”ect of removing known entities on Model Performance

Table 7 presents the performance of the LLaMA3-8B model on two biomedical NER
datasets: BC5CDR (for disease entities) and NLM-Chem (for chemical entities).
For each dataset, results are reported using both strict and partial matching criteria,
and are further divided into two evaluation conditions: the Original test set, which
contains all entities, and the Filtered test set, from which overlapping entities with
the Original test set have been removed.

Model = LLaMA3-8B

Dataset Match Type Precision Recall F1-score
BC5CDR (Disease)

Original Strict 0.5648 0.5468 0.5557

Filtered Strict 0.5288 0.4627 0.4935

Original Partial 0.6826 0.6541 0.6681

Filtered Partial 0.6180 0.5341 0.5730

NLM-Chem (Chemical)
Original Strict 0.6473 0.6482 0.6478

Filtered Strict 0.5918 0.6039 0.5978

Original Partial 0.6995 0.6859 0.6926

Filtered Partial 0.6383 0.6410 0.6396

Table 7: Performance of LLaMA3-8B on in-domain vs. out-domain test data.

Original represent the dataset, which contains all entities. Filtered represent

the dataset, which overlapping entities with the Original dataset have been

removed.

These results were obtained by creating two versions of each dataset, an Original
version that includes all entities and a Filtered version where any entity overlapping
with the Original was removed. In other words, any entity found in the Original
dataset was removed from the Filtered version to ensure that the entities are un-
seen to the LLM. This setting allows us to better evaluate the model’s ability
to generalize beyond memorized entities. To achieve this, we developed a Python
script that identifies and removes overlapping entities between the versions van
BC5CDR en NLM-Chem dataset. The script first determines how frequently each

36

entity from the Original test set occurs in the Filtered test set. If an entity appears
more than once in the Filtered test set, the script removes the entity and the full
sentence in which it occurs. This filtering process ensures that the remaining ex-
amples in the Filtered test set contain only entities that are novel to the model.

The results in Table 7 reveal a consistent drop in performance across both datasets
under the filtered condition. For the BC5CDR dataset using strict matching, preci-
sion decreased from 0.5648 to 0.5288, recall from 0.5468 to 0.4627, and F1-score
from 0.5557 to 0.4935. Under partial matching, the performance also declined,
namely precision dropped from 0.6826 to 0.6180, recall from 0.6541 to 0.5341,
and F1-score from 0.6681 to 0.5730.

A similar trend is observed in the NLM-Chem dataset. In the strict setting, precision
decreases from 0.6473 to 0.5918, recall decrease from 0.6482 to 0.6039 and the
F1-score drops from 0.6478 to 0.5978. Under partial matching, precision drops
from 0.6995 to 0.6383, recall from 0.6859 to 0.6410, and the F1-score decreases
from 0.6926 to 0.6396. These findings demonstrate that the LLaMA3-8B model
performs substantially better when test set entities are known from the training
domain. The decline in performance on the filtered dataset shows the model’s
limited ability to generalize to entirely novel biomedical entities.

Model = PMC-LLaMA-13B

Dataset Match Type Precision Recall F1-score
BC5CDR (Disease)

Original Strict 0.1913 0.1865 0.1889

Filtered Strict 0.1324 0.1206 0.1262

Original Partial 0.3324 0.3197 0.3259

Filtered Partial 0.2476 0.2229 0.2346

NLM-Chem (Chemical)
Original Strict 0.4762 0.5271 0.5004

Filtered Strict 0.4264 0.4156 0.4209

Original Partial 0.4736 0.5531 0.5102

Filtered Partial 0.4157 0.4725 0.4423

Table 8: Performance of PMC-LLaMA-13B on in-domain vs. out-domain test

data. Original represent the dataset, which contains all entities. Filtered rep-

resent the dataset, which overlapping entities with the Original dataset have

been removed.

For the PMC-LLaMA-13B model we did the same experiment as the LLaMA3-8B
model. The results in Table 8 show a decrease in performance for the PMC-LLaMA-
13B model when comparing the original and filtered versions of the BC5CDR-
disease dataset. Under the strict matching criterion, precision drops from 0.1913
to 0.1324, recall from 0.1865 to 0.1206, and the F1-score from 0.1889 to 0.1262.
This indicates a substantial reduction in the model’s ability to correctly identify
disease entities when previously seen entities are removed. Under partial match-
ing, the performance follows the same downward trend. Precision decreases from

37

0.3324 to 0.2476, recall from 0.3197 to 0.2229, and the F1-score from 0.3259 to
0.2346.

The results for the PMC-LLaMA-13B model on the NLM-Chem (Chemical) dataset
also show a performance drop when comparing the original and filtered test sets.
Under the strict matching criterion, precision decreases from 0.4762 to 0.4264,
recall from 0.5271 to 0.4156, and the F1-score from 0.5004 to 0.4209. In the partial
matching setting, the trend is similar: precision from 0.4736 to 0.4157, recall drops
from 0.5531 to 0.4725, and the F1-score from 0.5102 to 0.4838. These findings
also show that PMC-LLaMA-13B performs better when entities from the training
domain are present in the test set, and struggles more when evaluating on entirely
novel entities.

38

5 Discussion

5.1 Performance discrepancies with prior work

The performance of the PMC-LLaMA-13B model reported in the paper by Keloth
et al.[22] achieves a F1-score of 0.864 on the NCBI-disease dataset, 0.902 on the
BC5CDR-Chemical dataset, and 0.828 on the BC2GM-gene dataset, it achieves a
better performance than the performance of the PMC-LLaMA-13B model in this
thesis, which obtains F1-scores of 0.4297, 0.5229, and 0.3981 on the respective
datasets. The lower performance of the PMC-LLaMA-13B model in this work com-
pared to that of Keloth et al.[22] can be caused by various factors. A factor can be
that the issue may lie in the structure of the prompt, as a prompt can be unclear or
ambiguous. To address this, we used several di”erent prompts. The current prompt
is: ”Given a sentence, extract disease entities from it by highlighting with <mark>
and </mark>. If no entities are present, output the same sentence.” We experi-
mented with various types of instructions to see if the issue of poor performance
could be linked to the prompt structure. Initially, we adjusted the prompt so that
the model would only extract biomedical entities, as the problem might stem from
the model not understanding how or when to use the <mark> and </mark> tags.
Since the PMC-LLaMA-13B model should generate only the biomedical entity as
output or ”no disease/chemical/gene entity found” if the input sentence contains
no entities. The training dataset was modified to fit this new structure. The model
was then retrained using the updated dataset. However, this new prompt struc-
ture did not lead to any improvement in the model’s performance. We also tried
shorter prompts, such as ”Extract the disease entities from the input sentence.
If no disease entities, output ’No disease entities found’,” as well as longer ones,
like ”Given an input sentence, extract only the disease entities and output only
those entities. If no entity is found, output ’No entities found”. It is possible that
the initial prompt was too vague due to its length, or perhaps it was too unclear,
and a more detailed prompt was needed. To test this, we conducted a small test
for each of the new prompts using 10 sentences from the test dataset, and the
results showed that the model produced the same output as with the initial prompt
structure. This indicates that the changes in the prompt design did not have any
noticeable impact on the model’s performance.

Another issue could be that the training dataset is of poor quality. However, this is
unlikely, as the same training data is also used for the Llama3-8B instruction tuning,
and it is the same dataset used in the experiments in the paper by Keloth et al.[22].

Another possible explanation for the poor performance that could explain the lower
performance of the PMC-LLaMA model is that the instruction tuning performed
with PEFT may not have been su!cient to fully optimize the model’s capabilities.
However, in the paper of Hu et al.[18] the authors conducted extensive experiments
to evaluate the e”ectiveness of PEFT against full fine-tuning across a variety of
downstream tasks and pre-trained model architectures, including RoBERTa, De-
BERTa, GPT-2, and GPT-3. Their results demonstrated that LoRA achieves a
comparable or better performance while substantially reducing the computational

39

and memory overhead. In fact, LoRA consistently performed on par with, and in
some cases exceeded, the results of full fine-tuning in tasks such as text classifica-
tion, sequence labeling, and language generation. To conclude, while the subop-
timal performance of the PMC-LLaMA model could be attributed to insu!cient
fine-tuning with PEFT, the findings of Hu et al. [18] suggest that LoRA is a robust
method for fine-tuning, capable of achieving results comparable to or exceeding
full fine-tuning in various tasks.

5.2 Self-verifiction/hallucinations

Although the performance of the LLMs in the results section shows good outcomes
for the NER task, the results could have been further improved by implementing
measures to address hallucination and overprediction issues commonly observed in
LLMs [10]. In the paper ’GPT-NER: Named Entity Recognition via Large Language
Models’ by Shuhe Wang et al.[48], the authors propose GPT-NER as a method
for identifying location entities in input text. During their experiments, they en-
countered issues with hallucination and overprediction, which occur when models,
even when provided with demonstrations, confidently mislabel irrelevant or NULL
inputs as valid entities. For example, in their experiments, GPT-3 incorrectly iden-
tifies “Hendrix” as a location entity in the sentence “Rare Hendrix song sells for
$17”, highlighting the model’s tendency to overpredict.

To mitigate the well-known issues of hallucination and overprediction in LLMs,
Wang et al.[48] introduce a self-verification strategy as part of their GPT-NER
approach. This strategy implies that after an entity is initially extracted by the
LLM, the model should be prompted again to verify the validity of that extraction.
This is done by asking the model a yes/no question about whether the extracted
word belongs to a specific entity type (e.g., location) in the context of the input
sentence. This setup ensures the model to reflect on its own predictions and correct
potential hallucinations.

The e”ect of the self-verification strategy was also shown in the results, namely
without self-verification, GPT-NER using sentence-level embeddings achieved an
F1-score of 92.68. With the self-verification strategy added to the GPT-NER, the
F1-score improved to 94.17. These results demonstrate that self-verification not
only reduces hallucination but also leads to performance gains.

5.3 Limitations

Our work has a number of limitations that need to be noted. The first limitation is
in the evaluation procedure used to obtain the performance metrics, namely Preci-
sion, Recall, and F1-score for each LLM adaptation technique. In our experiments,
due to the high computational cost, each model was evaluated on the test dataset
only once to generate these scores. Each individual run often took several hours to
complete, which made multiple runs impractical within our resource constraints.
However, running the evaluation multiple times and averaging the results would
have provided a more reliable estimate of model performance by accounting for

40

potential variability across runs. This approach could reduce the influence of ran-
dom fluctuations and improve the robustness of the reported metrics. Future work
should aim to incorporate multiple evaluation runs to strengthen the validity of
performance comparisons.

The second limitation is the work relates to the replication of the PMC-LLaMA-13B
model experiments. The original fine-tuning code used by Keloth et al.[22] for the
PMC-LLaMA-13B model was not publicly released, which made it challenging to
reproduce their reported results accurately. In their paper, Keloth et al.[22] showed
that the PMC-LLaMA-13B model performed well on the biomedical NER task,
achieving high Precision, Recall, and F1-scores in extracting biomedical entities.
Due to the absence of the original fine-tuning code, we used PEFT methods as an
alternative approach to instruction tune the PMC-LLaMA-13B model. However,
the results obtained using PEFT did not match the performance reported by Keloth
et al.[22]. In fact, our scores were lower compared to the result of his paper. As
a result, the weaker performance of our replicated PMC-LLaMA-13B model had
a cascading e”ect on subsequent experiments, which were all based on this initial
instruction tuned version. Future work would benefit from access to the original
fine-tuning implementation used by Keloth et al.[22], which would allow for more
accurate replication and fairer comparison, as well as a clearer understanding of the
specific training configurations that contributed to the original model’s reported
success.

The tird limitation lies in the restricted number of few-shot examples used for
few-shot learning, due to the limited availability of training data, which prevented
us from including more training examples per query. We experimented with only
two demonstrations per query, which may not fully capture the range of task
variability. While increasing the number of examples could potentially improve
performance, the findings of Chen et al.[12] show that such gains are not always
guaranteed. Furthermore, we did not explore strategies for optimizing example
selection. Recent research Margatina et al.[29] has shown that the quality and
relevance of examples are more important than quantity. The authors formulated
the problem of selecting few-shot demonstrations as an active learning task and
demonstrates that selecting semantically similar examples to the test query lead to
notable performance improvements. Incorporating more targeted selection methods
could therefore be a promising direction for future work.

41

6 Conclusion

In this section, we discuss the research questions according to the experiment re-
sults. In this thesis, we explored the potential of LLMs for NER, with the focus on
their ability to extract complex and long biomedical entities.

We approached this through three methods: zero-shot learning, few-shot learn-
ing and instruction tuning. The di”erence between the zero-shot and few-shot
learning lies in the use of examples. In a zero-shot setting, the LLM is given only
an instruction or task description, without any examples to guide it or learn from
it. In contrast, in the few-shot setting, we provided the LLMs with two examples.
The purpose of the examples in the few-shot setting is to serve as references that
the model can mimic, and to help the model learn patterns from the examples to
produce more accurate outputs.

The second approach is instruction tuning, where an LLM was trained on a dataset
consisting of natural language instructions paired with corresponding outputs. This
enables the model to better understand and follow task-specific prompts, improving
its ability to extract biomedical entities in text. Now we will look at the research
questions and draw the final conclusion of this thesis.

RQ1. How does the performance of zero-shot learning compare to few-shot learn-
ing, and how do both approaches compare to instruction tuned LLMs for medical
NER?

In the zero-shot setting, there are no task-specific examples provided. In contrast
to the few-shot setting, there are two task-specific examples provided to guide
the model. These examples serve as a references for the model, helping the model
better understand the task. The results show that few-shot learning performs bet-
ter than the zero-shot learning on the NCBI-dataset(disease). However, in the
BC5CDR-dataset (chemical) and BC2GM-dataset (gene), the zero-shot setting
performance better than the few-shot setting. But across the three datasets, the
instruction tuned LLM achieves the highest performance overall, with results nearly
twice as high as those obtained through zero-shot or few-shot learning. Overall,
the instruction tuned LLM performs better on biomedical NER tasks than zero-
shot and few-shot learning, highlighting the benefits of domain-specific adaptation.

RQ2. Can the results reported by Keloth et al.[22] on using large language models
for named entity recognition be reproduced by following their proposed methodol-
ogy and using the same LLMs?

The methodology proposed by Keloth et al.[22] was successfully implemented in
this study to a large extent. However, a limitation was encountered during the
fine-tuning stage. The original fine-tuning code used by Keloth et al.[22] for the
PMC-LLaMA-13B model was not publicly released, making it di!cult to replicate
their results with complete accuracy. In their work, Keloth et al.[22] demonstrated
strong performance of the PMC-LLaMA-13B model on biomedical NER tasks, re-

42

porting high Precision, Recall, and F1-score in extracting biomedical entities. Due
to the absence of the original fine-tuning code, we used PEFT as an alternative
to fine-tune the PMC-LLaMA-13B model. However, the results obtained through
PEFT did not match the performance reported by Keloth et al.[22]. In fact, our
scores were lower compared to the result of his paper. To conclude, the proposed
methodology was largely successfully implemented in this thesis. However, the
fine-tuning stage could not be fully replicated due to the absence of the original
fine-tuning code. To address this, we developed and applied an alternative fine-
tuning approach.

RQ3. To what extent are large language models (LLMs) capable of accurately
extracting long and complex biomedical entities, including rare or emerging terms?

To investigate the capability of LLMs in accurately extracting long and complex
biomedical entities, including rare or emerging terms. The experiment in this thesis
evaluates two instruction-tuned LLMs: LLaMA3-8B and PMC-LLaMA-13B. The
evaluation is conducted using two types of biomedical datasets: an in-domain
dataset, on which the models are trained and tested, and an out-of-domain dataset,
which contains data that is not used during training. So, the models are instruc-
tion tuned on the training split of the in-domain dataset and than evaluated on
both the in-domain test set and the out-of-domain test set. Results show that
both models perform substantially better on the in-domain test set, demonstrating
higher performance in biomedical entity extraction. In contrast, performance drops
on the out-of-domain test set, indicating that the models struggle to generalize to
unfamiliar or more complex biomedical terms.

To further assess the models’ generalization capabilities, we conducted a follow-up
experiment in which we filtered out all entities from the out-of-domain test set that
also appeared in the training data of the LLMs. This ensured that the remaining
entities were completely unseen by the models. The results showed an even more
substantial drop in performance on this filtered out-of-domain test set compared
to the original out-of-domain data. While instruction-tuned LLMs show strong per-
formance in extracting biomedical entities within familiar contexts, their ability to
accurately identify long, rare, or emerging biomedical terms that are entirely novel
remains limited and requires further improvement.

Future research should incorporate multiple evaluation runs to enhance the reliabil-
ity and validity of performance comparisons across LLM adaptation techniques. Ac-
cess to the original fine-tuning implementation used by Keloth et al.[22] would also
be beneficial, as it would enable more accurate replication, fairer comparison, and a
clearer understanding of the training setup that contributed to the model’s reported
performance. Furthermore, incorporating more targeted examples for the few-shot
learning, especially those based on semantic similarity between test queries and
demonstrations, presents a promising direction for improving model performance
in future studies.

43

References

[1] URL https://ftp.ncbi.nlm.nih.gov/pub/lu/BC5CDR/.

[2] URL https://ai.meta.com/blog/meta-llama-3/.

[3] URL https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMChem/.

[4] URL https://pubmed.ncbi.nlm.nih.gov/.

[5] . URL https://www.reddit.com/r/LocalLLaMA/comments/1dli093/

llama3_8b_output_control/.

[6] . URL https://crfm.stanford.edu/2023/03/13/alpaca.html.

[7] URL https://huggingface.co/google/flan-ul2.

[8] Amrita Anandika and Smita Mishra. A study on machine learning ap-
proaches for named entity recognition. pages 153–159, 05 2019. doi:
10.1109/ICAML48257.2019.00037.

[9] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model
for scientific text, 2019. URL https://arxiv.org/abs/1903.10676.

[10] Mark Braverman, Xinyi Chen, Sham M. Kakade, Karthik Narasimhan, Cyril
Zhang, and Yi Zhang. Calibration, entropy rates, and memory in language
models, 2019. URL https://arxiv.org/abs/1906.05664.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je”rey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

[12] Qingyu Chen, Yan Hu, Xueqing Peng, Qianqian Xie, Qiao Jin, Aidan Gilson,
Maxwell B. Singer, Xuguang Ai, Po-Ting Lai, Zhizheng Wang, Vipina K.
Keloth, Kalpana Raja, Jimin Huang, Huan He, Fongci Lin, Jingcheng Du,
Rui Zhang, W. Jim Zheng, Ron A. Adelman, Zhiyong Lu, and Hua Xu.
Benchmarking large language models for biomedical natural language pro-
cessing applications and recommendations. Nature Communications, 16(1),
April 2025. ISSN 2041-1723. doi: 10.1038/s41467-025-56989-2. URL
http://dx.doi.org/10.1038/s41467-025-56989-2.

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-
rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,

44

https://ftp.ncbi.nlm.nih.gov/pub/lu/BC5CDR/
https://ai.meta.com/blog/meta-llama-3/
https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMChem/
https://pubmed.ncbi.nlm.nih.gov/
https://www.reddit.com/r/LocalLLaMA/comments/1dli093/llama3_8b_output_control/
https://www.reddit.com/r/LocalLLaMA/comments/1dli093/llama3_8b_output_control/
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://huggingface.co/google/flan-ul2
https://arxiv.org/abs/1903.10676
https://arxiv.org/abs/1906.05664
https://arxiv.org/abs/2005.14165
http://dx.doi.org/10.1038/s41467-025-56989-2

James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus,
Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Je” Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language mod-
eling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding,
2019. URL https://arxiv.org/abs/1810.04805.

[15] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus:
A resource for disease name recognition and concept normalization. Journal of
Biomedical Informatics, 47:1–10, Feb 2014. doi: 10.1016/j.jbi.2013.12.006.

[16] Roman Dušek, Aleksander Wawer, Christopher Galias, and Lidia Woj-
ciechowska. Improving domain-specific retrieval by nli fine-tuning, 2023.

[17] Wahed Hemati and Alexander Mehler. Lstmvoter: Chemical named en-
tity recognition using a conglomerate of sequence labeling tools - journal
of cheminformatics, Jan 2019. URL https://jcheminf.biomedcentral.

com/articles/10.1186/s13321-018-0327-2#citeas.

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of
large language models, 2021. URL https://arxiv.org/abs/2106.09685.

[19] Yan Hu, Qingyu Chen, Jingcheng Du, Xueqing Peng, Vipina Kuttichi Keloth,
Xu Zuo, Yujia Zhou, Zehan Li, Xiaoqian Jiang, Zhiyong Lu, Kirk Roberts, and
Hua Xu. Improving large language models for clinical named entity recognition
via prompt engineering, 2024.

[20] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for se-
quence tagging. 08 2015.

[21] Antonia Höfer and Mina Mottahedin. Minanto at semeval-2023 task 2: Fine-
tuning xlm-roberta for named entity recognition on english data. pages 1127–
1130, 01 2023. doi: 10.18653/v1/2023.semeval-1.156.

[22] Vipina Keloth, Yan Hu, Qianqian Xie, Xueqing Peng, Yan Wang, Andrew
Zheng, Melih Selek, Kalpana Raja, Chih Wei, Qiao Jin, Zhiyong lu, Qingyu
Chen, and Wang Qi. Advancing entity recognition in biomedicine via instruc-
tion tuning of large language models. Bioinformatics (Oxford, England), 40,
03 2024. doi: 10.1093/bioinformatics/btae163.

45

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1810.04805
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0327-2#citeas
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0327-2#citeas
https://arxiv.org/abs/2106.09685

[23] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. Large language models are zero-shot reasoners, 2023.

[24] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. Biobert: a pre-trained biomedical lan-
guage representation model for biomedical text mining. Bioinformatics, 36(4):
1234–1240, September 2019. ISSN 1367-4811. doi: 10.1093/bioinformatics/

btz682. URL http://dx.doi.org/10.1093/bioinformatics/btz682.

[25] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. Biobert: a pre-trained biomedical lan-
guage representation model for biomedical text mining. Bioinformatics, 36(4):
1234–1240, September 2019. ISSN 1367-4811. doi: 10.1093/bioinformatics/

btz682. URL http://dx.doi.org/10.1093/bioinformatics/btz682.

[26] Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sciaky, Chih-Hsuan Wei,
Robert Leaman, Allan Peter Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. Biocreative v cdr task corpus: A resource for chemical disease
relation extraction. Database, 2016, 2016. doi: 10.1093/database/baw068.

[27] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
Fantastically ordered prompts and where to find them: Overcoming few-shot
prompt order sensitivity, 2022. URL https://arxiv.org/abs/2104.08786.

[28] Ling Luo, Chih-Hsuan Wei, Po-Ting Lai, Robert Leaman, Qingyu Chen, and
Zhiyong lu. Aioner: All-in-one scheme-based biomedical named entity recog-
nition using deep learning. 11 2022.

[29] Katerina Margatina, Timo Schick, Nikolaos Aletras, and Jane Dwivedi-Yu.
Active learning principles for in-context learning with large language models,
2023. URL https://arxiv.org/abs/2305.14264.

[30] Mónica Marrero, Julián Urbano, Sonia Sánchez-Cuadrado, Jorge Morato,
and Juan Miguel Gómez-Berb́ıs. Named entity recognition: Fallacies, chal-
lenges and opportunities. Computer Standards & Interfaces, 35(5):482–
489, 2013. ISSN 0920-5489. doi: https://doi.org/10.1016/j.csi.2012.09.
004. URL https://www.sciencedirect.com/science/article/pii/

S0920548912001080.

[31] Sudha Morwal, Nusrat Jahan, and Deepti Chopra. Named entity recogni-
tion using hidden markov model (hmm). International Journal on Natural
Language Computing, 1:15–23, 12 2012. doi: 10.5121/ijnlc.2012.1402.

[32] Kalyani Pakhale. Comprehensive overview of named entity recognition: Mod-
els, domain-specific applications and challenges, 2023.

[33] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with
language models, 2021. URL https://arxiv.org/abs/2105.11447.

[34] Alec Radford, Je”rey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. Ope-
nAI blog, 1(8):9, 2019.

46

http://dx.doi.org/10.1093/bioinformatics/btz682
http://dx.doi.org/10.1093/bioinformatics/btz682
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2305.14264
https://www.sciencedirect.com/science/article/pii/S0920548912001080
https://www.sciencedirect.com/science/article/pii/S0920548912001080
https://arxiv.org/abs/2105.11447

[35] Colin Ra”el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21(1), January 2020. ISSN 1532-4435.

[36] Adam Roberts, Colin Ra”el, and Noam Shazeer. How much knowledge can
you pack into the parameters of a language model?, 2020. URL https:

//arxiv.org/abs/2002.08910.

[37] Joshua Robinson, Christopher Michael Rytting, and David Wingate. Leverag-
ing large language models for multiple choice question answering, 2023. URL
https://arxiv.org/abs/2210.12353.

[38] Nicholas Rodriguez, Mai Nguyen, and Bridget McInnes. E”ects of data and
entity ablation on multitask learning models for biomedical entity recognition.
Journal of Biomedical Informatics, 130:104062, 04 2022. doi: 10.1016/j.jbi.
2022.104062.

[39] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve
prompts for in-context learning, 2022. URL https://arxiv.org/abs/

2112.08633.

[40] Burr Settles. Abner: An open source tool for automatically tagging genes,
proteins and other entity names in text. Bioinformatics (Oxford, England),
21:3191–2, 08 2005. doi: 10.1093/bioinformatics/bti475.

[41] Zhang Shaodong. Llama3 generates too much content, how to solve this?,
Dec 2024. URL https://stackoverflow.com/questions/79030605/

llama3-generates-too-much-content-how-to-solve-this.

[42] Larry Smith, Lorraine K Tanabe, Rie Johnson Ando, Cheng-Ju Kuo, I-Fang
Chung, Chun-Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph M Friedrich,
Kuzman Ganchev, and et al. Overview of biocreative ii gene mention recog-
nition. Genome Biology, 9(S2), Sep 2008. doi: 10.1186/gb-2008-9-s2-s2.

[43] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas,
Vijay Korthikanti, Elton Zheng, Rewon Child, Reza Yazdani Aminabadi, Julie
Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston,
Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron to
train megatron-turing NLG 530b, A large-scale generative language model.
CoRR, abs/2201.11990, 2022. URL https://arxiv.org/abs/2201.11990.

[44] Zhen Sun and Xinfu Li. Named entity recognition model based on feature fu-
sion. Information, 14(2), 2023. ISSN 2078-2489. doi: 10.3390/info14020133.
URL https://www.mdpi.com/2078-2489/14/2/133.

[45] Charles Sutton and Andrew McCallum. An introduction to conditional random
fields, 2010. URL https://arxiv.org/abs/1011.4088.

47

https://arxiv.org/abs/2002.08910
https://arxiv.org/abs/2002.08910
https://arxiv.org/abs/2210.12353
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2112.08633
https://stackoverflow.com/questions/79030605/llama3-generates-too-much-content-how-to-solve-this
https://stackoverflow.com/questions/79030605/llama3-generates-too-much-content-how-to-solve-this
https://arxiv.org/abs/2201.11990
https://www.mdpi.com/2078-2489/14/2/133
https://arxiv.org/abs/1011.4088

[46] Yoshimasa Tsuruoka and Jun’ichi Tsujii. Boosting precision and recall of
dictionary-based protein name recognition. Proceedings of the ACL 2003
Workshop on Natural Language Processing in Biomedicine, 01 2003. doi:
10.3115/1118958.1118964.

[47] David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo, Viresh Ratnakar,
and George Foster. Prompting palm for translation: Assessing strategies and
performance, 2023. URL https://arxiv.org/abs/2211.09102.

[48] Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei
Zhang, Jiwei Li, and Guoyin Wang. Gpt-ner: Named entity recognition via
large language models, 2023. URL https://arxiv.org/abs/2304.10428.

[49] Leon Weber, Jannes Münchmeyer, Tim Rocktäschel, Maryam Habibi, and
Ulf Leser. Huner: improving biomedical ner with pretraining. Bioinformatics
(Oxford, England), 36, 06 2019. doi: 10.1093/bioinformatics/btz528.

[50] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language
models are zero-shot learners. CoRR, abs/2109.01652, 2021. URL https:

//arxiv.org/abs/2109.01652.

[51] Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Pmc-
llama: Further finetuning llama on medical papers, 04 2023.

[52] Zhihao Yang, Hongfei Lin, and Yanpeng Li. Exploiting the performance of
dictionary-based bio-entity name recognition in biomedical literature. Com-
putational biology and chemistry, 32:287–91, 09 2008. doi: 10.1016/j.

compbiolchem.2008.03.008.

[53] Baohang Zhou, Xiangrui Cai, Ying Zhang, and Xiaojie Yuan. An end-to-end
progressive multi-task learning framework for medical named entity recogni-
tion and normalization. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli, editors, Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pages 6214–
6224, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.485. URL https://aclanthology.org/2021.

acl-long.485.

48

https://arxiv.org/abs/2211.09102
https://arxiv.org/abs/2304.10428
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://aclanthology.org/2021.acl-long.485
https://aclanthology.org/2021.acl-long.485

	Introduction
	Related Work
	Named Entity Reginition
	Large Language Models and In-context Learning
	Named Entity Recognition with LLMs
	Biomedical Named Entity Reginition

	Methods
	Datasets for instruction tuning
	Models
	Prompt Development
	Zero-shot setting
	Few-shot setting
	Parameter-Efficient Fine-Tuning

	Evaluation metrics
	Extraction of long, complex and emerging entities with LLM

	Results
	Evaluation of different kind of LLM Adaptation Techniques
	Replication of PMC-LLaMA-13B model
	Qualitative analysis
	Evaluation of long and complex entity extraction
	Effect of removing known entities on Model Performance

	Discussion
	Performance discrepancies with prior work
	Self-verifiction/hallucinations
	Limitations

	Conclusion
	References

