£Y3. Universiteit Opleiding Informatica
W) Leiden b 8
The Netherlands

Comparing different encodings for the continuity rule of the logic puzzle
Context

Jente de Waart

Supervisors:
Hendrik Jan Hoogeboom, Rudy van Vliet & Mark van den Bergh

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 3/08/2025

www.liacs.leidenuniv.nl

Abstract

This thesis investigates the application of Boolean Satisfiability (SAT) solvers to a grid-
based logic puzzle called Context [AJ25]. Specifically, it focuses on the critical ‘continuity’
constraint, which means that a subset of tiles, in our case the white tiles, must form a single
connected region. We conduct a comparative analysis of two distinct SAT encodings for
this rule: and show that the Double Tree encoding is significantly more efficient than the
Topological Order encoding in terms of variables, clauses and solver cycles. We show that for
larger Context puzzles such as a 10x10 grid we find a geometric mean speed-up of 8.25 times
by using the Double Tree encoding over the Topological Order encoding.

Contents
1 Introduction
2 Definitions

2.1 The Context Puzzle: Rules and Objective
2.2 Boolean Satisfiability (SAT)
2.3 CaDiCaL SAT Solver e
2.4 Incremental Solving and Uniqueness Verification
2.5 Boolean Variables for Puzzle State 0oL

Related Work

3.1 Topological Order Encoding
3.2 Double Tree Encodingo
3.3 Encoding Size vs. Solver Performance 0oL

Continuity Constraint Encodings

4.1 Mapping the problem from Graph to Grid

4.2 Topological Order Encoding
4.2.1 How the Encoding Works
4.2.2 Root Selection Strategy
4.2.3 How Cycles Are Prevented
4.2.4 Complexity Challenge

4.3 Double Tree Encoding
4.3.1 Constructing the Encoding Step by Step
4.3.2 Final Result: Two Spanning Trees, One White Region
4.3.3 Complexity Advantage

4.4 Comparison SUMMATY vt v et et e e

CNF Encodings for Context

5.1 Encoding Local Puzzle Constraints
5.1.1 Encoding the Adjacency Constraint
5.1.2 Encoding a 0-Clue
5.1.3 Encoding a 1-Clue

5.1.4 Encoding a 2-Clue

5.1.5 Encoding a 3-Clue
5.1.6 Encoding a 4-Clue
5.2 Encoding the Continuity Constraints
5.2.1 Topological Order Encoding
5.2.2 Double Tree Encoding
5.2.3 Clause and Variable Comparison
Puzzle Generation
6.1 Motivation for Puzzle Generation 0L
6.2 Generation Methodology
6.2.1 Phase 1: Determining Optimal Black Tile Density
6.2.2 Phase 2: Initial Grid Generation.
6.2.3 Phase 3: White Tile Connectivity Verification
6.2.4 Phase 4: Clue Assignment L.
6.2.5 Phase 5: Clue Minimization
6.3 Characteristics of Generated Puzzles
6.4 Limitations and Considerations
Validating the Use of Generated Puzzle Data
7.1 Statistical Methodology
7.2 Results e
Experiments
8.1 Experimental Setup
8.1.1 Solver and Hardware Configuration
8.1.2 Statistical Analysis
8.2 Results e
8.2.1 Performance on Human-Designed Puzzles
8.2.2 Validation with Generated Puzzles
8.3 Statistical Significance of Results o
Conclusions and Further Research
9.1 Key Findings
9.2 Theoretical Contributions
9.3 Future Work e

References

18
18
18
18
18
19
19
19
19
20

20
20
21

22
22
22
23
23
23
24
25

26
26
27
27

28

1 Introduction

Boolean Satisfiability (SAT) solvers have become increasingly important tools for solving combi-
natorial problems, including grid-based logic puzzles. This thesis focuses on applying SAT-based
approaches to the Contexrt puzzle, with particular attention to how different encoding strategies
affect solver performance.

Logic puzzles on grids, such as the Contert puzzle studied in this thesis, can be modeled and
solved using SAT solvers. After encoding the puzzle’s rules as a Boolean formula in Conjunctive
Normal Form (CNF), a SAT solver can efficiently search for valid solutions or prove that none exist.
Central to a SAT-based approach is the encoding of the puzzle’s constraints, which transforms the
problem into a set of logical statements that can be processed by the solver. The encoding strategy
determines how much memory the encoding takes up and also affects the speed of the solver.

A common and often crucial constraint in many grid puzzles is the ‘continuity’ rule, ensuring that
a designated set of tiles (e.g., all white tiles) forms a single, unbroken region. As this rule is the
most complex, traditionally requiring more than just local data to determine the validity of a
solution, it is often the most computationally intensive part of solving such puzzles. Therefore the
efficiency of the SAT encoding for this continuity constraint can significantly impact the overall
performance of the SAT solver, especially as puzzle size increases.

This bachelor thesis, conducted at the Leiden Institute of Advanced Computer Science (LIACS)
under the supervision of Hendrik Jan Hoogeboom, Rudy van Vliet and Mark van den Bergh, makes
a comparative analysis of two distinct SAT encodings for the white tile continuity constraint within
the Context puzzle: a Topological Order based encoding and a Double Tree based encoding. The
core research question is: Does the novel Double Tree encoding outperform the Topological Order
encoding in terms of variables, clauses and CPU cycles to solve? To answer this, we will investigate
their performance characteristics, specifically examining differences in SAT solver runtimes in
CPU cycles, the number of Boolean variables generated, and the total number of clauses required
for typical puzzle instances. The ultimate goal is to determine which encoding, or under what
conditions an encoding, is preferable for this class of puzzles.

The remainder of this document is structured as follows: Section 2 formally defines the Context
puzzle, the basic variable representation, and relevant SAT terminology. Section 3 discusses exist-
ing literature. Section 4 details the specific SAT encodings for the continuity constraint, explaining
the Topological order encoding and Double Tree encoding in detail. Section 5 presents the com-
plete CNF encodings for all Context puzzle rules. Sections 6 and 7 describe our puzzle generation
methodology and validation. Section 8 describes the experimental setup and presents the results.
Finally, Section 9 summarizes the findings and suggests avenues for future research.

2 Definitions

This section formally defines the Context puzzle, the fundamental Boolean variables used for its
representation in a SAT context, and key concepts related to Boolean Satisfiability.

2.1 The Context Puzzle: Rules and Objective

The Context puzzle is presented on a grid consisting of individual tiles. The objective is to
determine a valid coloring of these tiles, where each tile is assigned either a black or white color
according to the following constraints:

1 1

Figure 1: An example of an unsolved Contert grid with numerical clues.

1. Tile Coloring: Each tile may be either colored black or left white. This applies to all tiles,
including those containing numerical clues.

2. No Black Tile Adjacency: No two black tiles may be orthogonally adjacent; that is, black
tiles cannot share a common edge.

3. White Tile Clues: A white tile containing a numerical value specifies the exact number of
orthogonally adjacent black tiles. Orthogonal adjacency refers to tiles located directly above,
below, to the left, or to the right, as illustrated in Figure 2.

Figure 2: Rule 3: A white tile with clue "2’ must have exactly two black orthogonal neighbours.

4. Black Tile Clues: A black tile containing a numerical value specifies the exact number of
diagonally adjacent black tiles. Diagonal adjacency refers to tiles located at the four corners
surrounding the tile, as illustrated in Figure 3.

B

Figure 3: Rule 4: A black tile with clue ‘1’ must have exactly one black diagonal neighbour.

5. White tile Continuity: All white tiles must form a single connected region under orthogo-
nal adjacency. In other words, it must be possible to traverse from any white tile to any other
white tile by moving only through white tiles that share an edge, as illustrated in Figure 4.

Lk

Figure 4: Examples of valid (left) and invalid (right) white tile connectivity in a Context puzzle.

B N 21
2 3 B
m:N]
1

]
i 'l

Figure 5: A valid solution to a Context puzzle, satisfying all rules.

2.2 Boolean Satisfiability (SAT)

The Boolean Satisfiability problem (SAT) is the problem of determining if there exists an assign-
ment of truth values (true or false) to variables that makes a given Boolean formula true. SAT is a
fundamental problem in computer science and is useful for various applications, including artificial
intelligence, hardware verification, and combinatorial optimization.

e A literal is a Boolean variable (e.g.,) or its negation (e.g., —x).

e A clause is a disjunction (OR) of one or more literals (e.g., xV -y V z). A clause is satisfied
if at least one of its literals is true.

e Conjunctive Normal Form (CNF): A Boolean formula is in CNF if it is a conjunction
(AND) of one or more clauses (e.g., (z V —y) A (mz V z)). A CNF formula is satisfied if all
of its clauses are satisfied.

CNF is particularly important because most modern SAT solvers are designed to work specifically
with formulas in CNF. The choice of CNF as the standard representation is motivated by several
factors: it provides a uniform structure that enables efficient algorithms, supports effective conflict
analysis in modern solvers, and allows for systematic unit propagation—a key inference technique
where clauses with only one unassigned literal immediately determine that literal’s value.

SAT solvers are algorithms designed to solve the SAT problem where the goal is to find if a
satisfying assignment exists for a boolean formula. The process of using a SAT solver for puzzles
involves modeling the puzzle’s rules and instance as a CNF formula, where a satisfying assignment
corresponds to a valid solution.

2.3 CaDiCalL SAT Solver

For this research, we employ CaDiCal [|, a powerful and modern SAT solver developed by
Armin Biere. CaDiCaL is based on the Conflict-Driven Clause Learning (CDCL) architecture,
which combines systematic search with powerful learning mechanisms to prune the search space
effectively. It is well documented and provides a native c++ interface allowing us to run everything
in the same program. This makes it well suited for our experiments.

Key features of CaDiCal relevant to our work include:

e Incremental Solving: Supports adding new clauses to an existing formula and re-solving,
which we utilize for uniqueness checking.

e Robust Performance: Consistently performs well across diverse problem instances in SAT
competitions.

2.4 Incremental Solving and Uniqueness Verification

An important aspect of puzzle solving is determining whether a solution is unique. We leverage
CaDiCal’s incremental solving capability for this purpose. After finding an initial solution, we
add clauses that forbid that specific solution and attempt to find another. If the solver reports
unsatisfiability, we can conclude the original solution is unique.

Formally, if ¢ is our puzzle formula and o is a satisfying assignment, we add the clause \/x co i
to exclude o and check if ¢ A inea —x; is satisfiable. This incremental approach is much more
efficient than solving the problem from scratch, as the solver retains learned clauses and other
internal state from the initial solve.

2.5 Boolean Variables for Puzzle State

To model the Context puzzle for a SAT solver, we associate a Boolean variable with the state of
each tile. For a tile at row ¢ and column j in an R x C grid, we define a variable wj ;.

e w; ; is true if the tile (7, 7) is white.
e w;; is false if the tile (4,) is black.

For non-square grids of size R x C, we use 0 <7 < R,0 < j < C' where N = R x C represents
the total number of tiles. We consider the grid to be indexed from the top-left corner, with the
first tile at (0,0). When encoding neighbours in clauses we require that the neighbours are within
the bounds of the grid, if the neighbour would fall outside the grid we encode it as a placeholder
tile that is always white. For the clues on the tiles, we only need tile variables w; ;. We require
additional variables for the continuity encodings, which will be discussed in Section 4.

3 Related Work

Connectivity (or continuity) constraints are fundamental in many grid-based logic puzzles, such
as Slitherlink, Masyu, Nurikabe, Hitori, and Hashi, where parts of the solution must form a
single connected component. A common strategy is to translate these connectivity requirements
into graph reachability constraints within a Boolean Satisfiability (SAT) or Satisfiability Modulo
Theories (SMT) framework, thereby allowing general-purpose solvers to tackle these puzzles.

3.1 Topological Order Encoding

The Topological Order encoding is an adaptation of the Directed Acyclic Graph (DAG) approach
described by Bofill et al. |], which has general applications for SAT based graph reacha-
bility problems including those on a grid. This encoding makes use of the properties of a spanning
tree to enforce connectivity. The paper proposes two ways to prevent cycles from forming, to en-
sure a valid spanning tree structure. The methods discussed in the paper make use of an ordering
using distance variables to prevent cycles or by ordering the tiles in the path using transitivity. We
chose to implement the distance based method for this thesis. As we will compare two encoding
strategies that make use of a Directed Acyclic Graph, we chose to name this encoding Topological
Order for the cycle prevention method used. Though we do not strictly enforce a topological order
in our implementation, as that would needlessly constrain the solution space.

3.2 Double Tree Encoding

This thesis builds on the work by Hannah Straathof |], who proposed a novel Double Tree
encoding for the continuity constraint in grid-based puzzles. Straathof’s work demonstrated that
this encoding is significantly more efficient in terms of both the number of clauses and variables
compared to traditional encodings, such as the Topological Order encoding we will be comparing
it against. The Double Tree encoding uses a clever construction that leverages the grid’s structure
to enforce connectivity without requiring distance propagation, which is used in the Topological
Order encoding.

3.3 Encoding Size vs. Solver Performance

While more compact SAT encodings can reduce memory demands, their effect on solver runtime
is not always straightforward. It is a well-observed phenomenon that smaller encodings do not
invariably lead to faster solution times; the interplay between the encodings structure and the
heuristics employed by modern SAT solvers (like conflict-driven clause learning, CDCL) is critical.
For example, Wynn | |, in a comparison of SAT encodings for cardinality constraints, found
that encodings generating more clauses, such as the sequential counter, could outperform more
compact encodings like some binary representations. This was attributed to more effective unit
propagation, which can guide the solver more efficiently. Wynn explicitly states that “clause
count and other measures of encoding size are not reliable indicators of the difficulty of a SAT
problem” | .

These findings underscore the motivation for comparing SAT encodings that may differ significantly
in size and in their underlying structural approaches, such as the Topological-Order and Double-
Tree strategies we investigate, as their impact on solver performance can be substantial and not
predicted by size alone.

4 Continuity Constraint Encodings

The continuity constraint—ensuring that all white tiles form a single connected region—is the
most complex rule in the Context puzzle and the primary focus of our comparison. It traditionally
requires an encoding that scales quadratically with the size of the grid. This section details two
distinct SAT encodings for this constraint: the Topological Order encoding and the Double Tree
encoding. We explain how each encoding works and how it successfully enforces connectivity by
forming a spanning tree.

4.1 Mapping the problem from Graph to Grid

Many existing SAT encodings for connectivity constraints are based on graph-theoretic principles,
where the grid is treated as a directed graph with white tiles as nodes and orthogonal adjacency
as possible edges. We then want to make use of the spanning tree, as it is a minimal connected
subgraph. If we can form a spanning tree over the white tiles, we can guarantee that all white
tiles are connected. We do this by firstly selecting a root tile which can be any tile as long as it
is part of the subgraph of white tiles. We then require that all white tiles have an outgoing arrow
pointing to one of their orthogonal white neighbours, this arrow must point to another white tile
that also has an outgoing arrow that does not point back to the original tile. We can do all this
using only local information, meaning each tile only needs to consider its immediate neighbours.
However, some white tiles may form a directed cycle that is not part of the spanning tree and is
hard to detect without some form of information propagation. We discuss two ways to prevent
cycles from forming in the following sections.

4.2 Topological Order Encoding

The Topological Order encoding, enforces continuity by assigning a distance value to each white
tile, representing the distance along some path to a designated root tile.

4.2.1 How the Encoding Works

Each white tile (7, j) is associated with a Boolean variable d; ; for every possible distance value
k € [0, maxDist]. The meaning of these variables is as follows:

e A white tile can only have distance k£ > 0 if at least one of its orthogonal neighbours has
distance k£ — 1.

e Multiple d; ;» may be true for a white tile (¢, j); none may be true for a black tile.
e The root tile has d; ;o true while all other tiles may not have distance 0 true.

This enforces a local propagation of distance from the root, ensuring that all white tiles are
reachable from the root through a valid path. This can be considered a directed graph where each
white tile is a node with one or multiple outgoing arrows pointing to one or multiple orthogonal
neighbours with a distance to the root. If all white tiles form a connected graph, this means that
all white tiles are reachable from the root tile.

4.2.2 Root Selection Strategy

We select the top-left tile (0, 0) as the root. If it is black (e.g., constrained to be so by other puzzle
rules), we choose (0,1) instead, which then must be white due to the puzzle’s no adjacent black
tiles rule. This guarantees a white root tile.

4.2.3 How Cycles Are Prevented

The encoding guarantees acyclicity by the following logic:
1. Distances increase strictly along any path from the root.
2. No tile can point 'backwards’ to a neighbour of equal or higher distance.

3. Cycles are structurally impossible: a closed path would require distance to both increase and
decrease (see Figure 6).

A
X T
(%ﬁ

Figure 6: A cycle in the Topological Order encoding, showing how the constraints are violated in
the case of a cycle.

%

1
I

A4 <

oo CL'?%—E\D

e

—~
I

Figure 7: A long snake-like path in a 3x3 grid, illustrating the maximum path length K., for a
3 x 3 grid of 8.

4.2.4 Complexity Challenge

This encoding introduces O(N - K pay) (see 5.2.1) variables and clauses, where N is the total number
of tiles and K., is the maximum possible distance of a path. For worst-case configurations in a
grid problem where paths between tiles may be restricted can approach N — 1 as shown in Figure
7, leading to a substantial encoding size of O(N?).

The value of K.« should be at least the length of the longest shortest path between any two tiles
in the grid. To establish a lower bound for K .., we make use of a scalable pattern that can be
applied to any square grid of size N. As we can not have straight walls of black tiles due to the
no adjacent black tiles rule, traditional long paths on grids are not possible. However one way to
create a long path is to place zigzagging walls every three tiles, as shown in Figure 8. On small
grids without walls, the longest shortest path is one that walks the distance once horizontally and
once vertically, which yields distance 2n — 2 for a grid of size n x n. Every added wall increases
the maximum distance by one horizontal walk. Because walls require an empty row on either side,
walls are added at intervals of three tiles starting from 4 x 4 grids (4,7,10,13...).

This can be expressed as:

3

where L(n) is the longest path length in a grid of size n x n using such zigzagging walls.
We can resolve formula (1) to find a lower bound for the longest path length:

L(n)an—Q—i—(n—l){n_lJ, (1)

L(n)=2n—2+(n—1) V‘lJ

3
>2n—2+(n—1) (n;l_%)
:2n_2+(n—1)3(n—3)
_n2+2n—3
S
_ (n—l)g(n—i—i%) 2)

From this, we can conclude that the lower bound for the maximum distance is in the order of

L(n) = O(n*) = O(N), where N =n x n is the total number of tiles in the grid.

Consequently, since each tile may require variables representing its position along the longest path,
the total number of variables in the Topological Order encoding scales as

3x3

(a) No walls, one horizontal
walk

3

O(N - L(n)) = O(N?).

4x4

"

(b) One wall, two horizontal
walks

3
3

5x5

“un

(¢) One wall, two horizontal
walks

3

L(3)=2-3—-2+2- H =4 L(4)=2-4-2+3- H =9 L(5):2-5—2+4-H =12

X7

6x6

"

(d) One wall, two horizontal walks

(e) Two walls, three horizontal walks

L(6):2-6—2+5-EJ:15 L(7):2-7—2+6-EJ:24

Figure 8: Zigzagging walls force the path to wind through the grid, increasing its length according

to L(n) =2n—2+ (n—1)- [2].

4.3 Double Tree Encoding

The Double Tree encoding enforces connectivity through a constructive layering of constraints,
progressively eliminating invalid configurations until only a single connected white region remains.

9

This approach, inspired by a technique from Klaus Reinhardt |], adapted for continuity in
SAT encodings in a 2D grid by Straathof | |, uses two non-intersecting spanning trees: one
on the grid tiles and one on the grid vertices. The final structure guarantees global connectivity
using only local constraints.

4.3.1 Constructing the Encoding Step by Step

Step 1: The Root Tile We start by selecting a root tile, this will serve as the root of the
spanning tree and may be placed on any white tile.

Step 2: Enforcing One Outgoing Arrow per Tile We then require that each tile (except for
the root tile) have exactly one outgoing arrow pointing to one of its orthogonal white neighbours.
By enforcing these rules the white tiles on the grid decompose into multiple disjoint directed
graphs, each of which is either a separate directed cycle, a tree rooted by a directed cycle or a tree
starting from the root such as is shown in Figure 9.

(__

|
S
f

(__

Figure 9: A 4x4 grid with a root tile at (2,1). Arrows assigned such that each (non-root) tile has
exactly one outgoing arrow to a white orthogonal neighbour.

Step 3: Avoiding Cycles with Local Constraints To prevent immediate local violations,
we disallow any pair of tiles from pointing into each other, eliminating 2-cycles. However, longer
cycles remain possible. These cycles isolate white regions without local indication that they are
not part of the spanning tree.

Step 4: Introducing the Vertex Tree We will now introduce a second tree, this tree has
nodes at the corners of the grid tiles, we will refer to this as the vertex tree. Each vertex must also
have one outgoing arrow to a neighbouring vertex, except the vertex root which we will further
discuss later, forming a second tree. Crucially, we impose a non-intersection constraint: tile-tree
arrows and vertex-tree arrows may not share the same grid edge as in Figure 10. For the vertex
tree we also introduce a rule that forbids 2-cycles as described in the previous step.

By enforcing these constraints any cycle in either tree would mean splitting the other tree into two
disconnected components. Each of these components must either form a cycle or a tree in order
to be valid. However forming a cycle inside the other cycle would increasingly restrict the space
inside the cycle until only a subset of nodes that can’t form a cycle is left in either tree. This

10

subset of nodes requires an outgoing arrow unless one of them is the root node. Thus, the only
remaining valid configurations according to the rules thus-far that do not require the white tiles
to be connected, is one with the root in the middle as shown in Figure 11.

— Tile arrow
A | — Vertex arrow

.

Figure 10: A 2x2 grid showing a tile arrow (red) and a vertex arrow (blue) intersecting at the same
edge, which is forbidden in the Double Tree encoding.

y) y) yl
< < =X
~)
A I~ I~
¥ ¥ N
[4 AN
Y \ \ \
? 7 ?

Figure 11: A white tile is enclosed by a cycle. It requires an outgoing edge, but every possible
direction intersects an edge in the other tree, violating the non-intersection constraint unless the
middle tile is the root.

Step 5: Root Cycle Loophole A remaining loophole allows a cycle to form around either of
the roots. To close this gap, we place the root tile at the boundary of the grid. A cycle enclosing
it would have to wrap around the edge of the grid, which is not possible. For the vertex root we
consider the entire outer boundary of the grid as root. This simplifies solutions and works because
a valid path between two vertices on the outer edge of the grid always exists. With this, both the
tile and vertex graphs form spanning trees rooted at the grid’s boundary. This enforces that a
valid configuration can only exist if all white tiles form a single continuous area.

4.3.2 Final Result: Two Spanning Trees, One White Region

By layering these constraints, the encoding can only be satisfied if all white tiles form a single con-
tinuous area, we visualize what a valid solution to the encoding looks like in Figure 12. This means
we have now encoded the continuity constraint entirely through local constraints and structural
properties of the grid.

4.3.3 Complexity Advantage

This encoding remains efficient. Each tile and vertex has only a constant number of directions
to choose from, and each constraint affects a small local neighbourhood. The total number of

11

=L
T«?ﬂ‘
<— 7 T
ey
A DA *TT

NN
=R
~ y,

Figure 12: Valid solution to our Double Tree encoding. White tiles form a single spanning tree;
black tiles are leaves. The blue arrows form a single spanning tree connecting all vertices, the outer
edge of arrows is redundant and for our implementation we treat the whole outer edge as root for
the vertex tree. (Figure obtained from |)

variables and clauses is O(N), as we will explain in 5.2.2, making the Double Tree encoding highly
scalable for large puzzles |].

4.4 Comparison Summary

Both encodings enforce global connectivity but rely on fundamentally different strategies: one on
distance propagation and hierarchical structure this requires a number of variables and clauses
quadratic in the number of tiles (See Table 1), the other on dual spanning trees using local
constraints scaling linearly with the number of tiles (See Table 1).

Property Topological Order Double Tree
Variables O(N - Kax) O(N)

Clauses O(N - Kiax) O(N)

Cycle Prevention Distance hierarchy Tree structure 4+ boundary roots
Key Mechanism | Explicit path distances Dual spanning trees

Root Strategy Single white tile Tile tree + boundary vertices

Table 1: Comparison of the two continuity encodings, where N is the total number of tiles and
Knax 1s the maximum distance of a path to the root.

5 CNF Encodings for Context

This section details the translation of the Context puzzle rules into Conjunctive Normal Form
(CNF). We first address the constraints that only apply to a local neighbourhood of tiles, such as
adjacency and clue constraints. In subsection 5.2 we provide the CNF for the continuity encodings
discussed in the previous section.

12

5.1 Encoding Local Puzzle Constraints

In the case where a tile is outside the grid, we consider it to be white by default, any clauses that
become arbitrarily true due to a tile outside the grid is removed.

5.1.1 Encoding the Adjacency Constraint

The rule that "no two black tiles may be orthogonally adjacent” is a constraint that goes for the
whole grid. For any tile (7, j) if it is black (—wj;), its neighbours may not be black. To encode
this we only have to consider tiles to the right and bottom of each tile (7, j) due to symmetry.
This can be expressed for a tile (i, 7) as:

—w; j = (Wi j11 A Wig1)

By resolving the implication and applying the distributive law, we obtain the CNF representation,
which consists of two clauses per tile (where applicable for boundary conditions):

(wij V wijp1) A(wij V wiy;)

5.1.2 Encoding a 0-Clue

A tile (i, 7) with a 0-clue imposes constraints based on its color.
o If the tile is white (w;), all four of its orthogonal neighbours must also be white.
o If the tile is black (—w; ;), all four of its diagonal neighbours must be white.

A key observation is that if tile (i, j) contains a O-clue, its orthogonal neighbours must be white
regardless of the color of (7, 7). This is because if (4, j) is white, the clue forces them to be white; if
(1,7) is black, the general adjacency constraint forces them to be white. Therefore, we can assert:

1—1, la+ 7‘+7 ,)—
w; 1j/\w'j 1/\’[1)‘ lj/\w'j 1

Additionally, for the case where the O-clue tile is black, we add constraints for the diagonal neigh-
bours:
Wi ;= (Wie1j1 A Wint g1 A Wit j—1 A Wit 1)

This translates to up to four clauses (considering boundary conditions) :
(wij Vwioyj-1) A(wi Vwioyjpn) A(WigV wirr-1) A(wig V wigga)

5.1.3 Encoding a 1-Clue

A 1-clue on tile (4,7) requires that if the tile is white, exactly one of its orthogonal neighbours
is black. This is an "exactly-one” constraint. A standard CNF encoding for this involves two
components: ”at-least-one” and ”at-most-one”.

e At-most-one black neighbour: For every pair of neighbours, at least one must be white.

e At-least-one black neighbour: Not all neighbours can be white.

13

This leads to the following implication for a white 1-clue tile, where again N,(i, j) is the set of four
orthogonal neighbours:

w;j — /\ (wy, V wy)
{u,v}C N, (%,5),u#v

AN \/ Wy,
wEN,(4,7)

When removing the implications, this results in 7 clauses for the white case:

For all 6 distinct pairs: u,v € N,(i,7) : (mw; j V wy, V wy,)

At least one black neighbor: (mw; j V Wy, V Wy, V Wy V Wy,

A similar set of clauses is generated for the case where the tile is black (—w; ;), constraining the
diagonal neighbours instead. This results in 7 clauses for the white case and 7 for the black case,
totaling 14 clauses per 1-clue.

5.1.4 Encoding a 2-Clue

A 2-clue on tile (4, j) requires that if the tile is white, exactly two of its orthogonal neighbours are
black. This is an ”exactly-two” constraint, which can be encoded by enforcing both:

e At-most-two black neighbours: Any three neighbours cannot all be black.
e At-least-two black neighbours: Any three neighbours cannot all be white.

This leads to the following implication for a white 2-clue tile, where N,(i,7) is the set of four
orthogonal neighbours:

w;j — /\ (wy V w, V w,)
{u’v’z}gNo(/l’h])

A /\ (mwy, V —w, V —w,)
{u,v,2} CNo(%,5)

When removing the implication, this results in 8 clauses for the white case:

For all 4 distinct triples u, v, z € N,(i,) : (mw; ; V wy, Vw, Vw,)
For all 4 distinct triples w, v,z € N,(4,7) : (—~w; ; V —wy, V —w, V —w,)

An analogous set of clauses is generated for the case where the tile is black (—w;;), constraining
the diagonal neighbours instead. This results in 8 clauses for the white case and 8 for the black
case, totaling 16 clauses per 2-clue.

14

5.1.5 Encoding a 3-Clue

A 3-clue on a white tile implies that exactly three of its four orthogonal neighbours are black,
which is equivalent to saying exactly one is white. This allows us to reuse the logic for the 1-clue
encoding, but with the values of the neighbour variables flipped. This results in 14 clauses per
3-clue, covering both the white and black cases for the clue tile.

5.1.6 Encoding a 4-Clue

A 4-clue on a tile (4, j) has only one possible interpretation: the tile itself must be black, and all
four of its diagonal neighbours must also be black. This is because if the tile were white, all four
orthogonal neighbours would have to be black, violating the continuity rule. Therefore, we can
directly assert the state of these five tiles as unit clauses:

Wi A Wi i1 N Wi 1 A Wi -1 A Wit

5.2 Encoding the Continuity Constraints
5.2.1 Topological Order Encoding

As described in Section 4.2, T; ;1 is a boolean variable that is true if tile (¢, j) is white and has a
neighbour with value 7} ; x—1, where £ is the distance along some path from the root tile.
The main constraints are:

1. Distance Propagation: FEach tile can only have distance k£ > 0 if at least one of its
orthogonal neighbours has distance k — 1.

Tiiw = (Tici k-1 vV Tij—1k—1 V Tiv1 k-1 V T ji1k—1)

Resolving the implication yields a clause for each tile (i, 7) and distance k € {1,..., Kpax},
where K. = N — 1 is the maximum possible distance a tile can be from the root:

(=TijeVTic1jr—1VTij—1k-1V Tig1 k-1 VT js16-1)

This results in NV x K.« clauses.

2. Black Tile Constraints: A black tile (¢, j) cannot have a distance value for any k.

Kmax
W5 5 —> /\ g4k O W4 V (" i,k for all k € {O, ce >Kmax})
k=0

This adds N X (Kyax + 1) clauses.

3. White Tile Requirements: All white tiles (¢, j) must have at least one distance value T} ; »

for some k.
Kmax Krnax
wig =\ Tige or —wi; Vv (\/ T
k=0 k=0

This adds one clause per tile or N clauses.

15

4. Root Assignment: We conditionally assign the root based on the color of (0,0).

—wo,o V Top0 and wooV Th1
We explicitly disallow any other tile to be the root by adding:
—T; 0 forall (,75) # (0,0) and (7, 7) # (0, 1)
Finally we need to enforce that one of the two possible root tiles is actually the root:

woo V —To00 and —weoV =To1,0

This adds 4 clauses for root assignment plus N — 2 unit clauses.

The total number of clauses for the Topological Order encoding scales quadratically with the
number of tiles. The total number of clauses is approximately: N X Kpax+ N X (Kpax+1)+N+N =
N X (2K pax + 3) = O(N X Kpay), where K. = N — 1, resulting in O(N?) complexity.

5.2.2 Double Tree Encoding

This encoding uses arrow variables for tiles and vertices. Let G;;p be true if tile (¢,j) has an
arrow in direction D € {N, E, S, W}, and Vi y p be true if vertex (i’,5') has an arrow. the tiles
and vertices are numbered as follows:

e Tiles are numbered from (0,0) to (R —1,C —1).

e Vertices are numbered from (0,0) to (R, C'), where the vertex at (', j') is the top left corner
of the tile (4, 7).

The main constraints are:

1. Exactly-One-Arrow: Every tile and every vertex must have exactly one outgoing arrow
(except the roots, see 5). This is encoded using the same ”at-least-one” and ”at-most-one”
logic as the 1-clue. For each tile (i,) (except the roots, see 5):

(\/ Gz‘,j,D) A (/\ (_‘Gi,j,Dl V _‘Gi,j,D2)>
D

D1#D;

An analogous set of 7 clauses is added for each vertex totalling approximately 14 clauses per
tile.

2. Arrow to White Tile: An arrow from a tile (4, j) pointing North must lead to a white tile

=GNV Wiy

An analogous set of clauses is added for each of the other directions that do not point outside
the grid, for those pointing outside of the grid we add the clause:

=G;;p for D € {N,E,S, W} where direction is outside grid
In total we add 4 clauses per tile.

16

3. Non-Intersection: A tile arrow and a vertex arrow cannot cross. For a tile arrow G, ; v,
the corresponding edge is between vertices (7, 5) and (¢, j + 1). This edge cannot be used by
vertex arrows crossing it.

=GijnV Vije and =GNV Vijaw

We add another analogous set of clauses for each of the other directions that do not point
outside the grid, for those pointing outside of the grid we skip adding the clause entirely.
This results in approximately 8 clauses per tile.

4. No 2-Cycles: Opposing arrows between adjacent tiles are forbidden.

2GijnV 2Gi1js

This is added for each pair of adjacent tiles and each pair of adjacent vertices, resulting in
2 clauses per tile and 2 per vertex as each has 4 neighbours and each clause is shared by 2
tiles or vertices. This yields approximately 4 clauses per tile.

5. Root Handling: We assign the root conditionally based on the color of wgg. If (0,0) is
white, it is the root tile and has no outgoing arrow. If (0,0) is black, the root tile shifts to
(0, 1), which must be white by adjacency. We encode this by prefixing the Exactly-One-Arrow
constraint for (0,0) in case (0,0) is black:

W0 V (\/ GO,O,D) A (/\ (=Goo.p, V ﬁGo,o,D2)>
D

D1#D2

Which can easily be transformed into CNF by distributing the wgo over the clauses. We
then also encode the case where (0,0) is white:

—wWo 0 V <\/ GO,I,D) A < /\ (=Goa.p, V _‘GO,I,DQ))
D

D1#Ds

This does not introduce any additional clauses, as these replace the clauses for (0,0) and
(0,1) described earlier. For the vertex root we can take the entire outer edge of the grid as
the root, as a valid path between two vertices on the outer edge of the grid always exists.
This allows us to remove all Exactly-One-Arrow constraints for the outer edge of the vertex
grid.

The total number of clauses for the Double Tree encoding scales linearly with the number of tiles,
as each tile contributes a constant number of clauses regardless of the grid size. The total number
of clauses is approximately: 14N + 4N + 8N + 4N = 30N = O(N)

5.2.3 Clause and Variable Comparison

Overall, the Double Tree encoding is significantly more compact than the Topological Order encod-
ing for larger grids, scaling linearly with the number of tiles, while the Topological Order encoding
scales quadratically.

17

6 Puzzle Generation

As Context puzzles are a niche puzzle type with limited availability, we developed a generation
process to create valid Context puzzle instances. This section outlines the motivation for generating
puzzles, the methodology used, and the characteristics of the generated instances.

6.1 Motivation for Puzzle Generation

The availability of human-designed Context puzzles is severely limited, with only 40 puzzles ac-
cessible from Janko.at |] and a few dozen across other sources we did not include in our test
set. This small dataset is insufficient for robust statistical analysis and comprehensive evaluation
of different SAT encodings. To address this limitation, we developed a generation process that
produces valid Context puzzle instances. While we attempted to incorporate some characteristics
observed in human-designed puzzles, these generated instances should primarily be understood
as random uniquely solvable puzzle configurations rather than close approximations of human-
designed puzzles.

6.2 Generation Methodology

Our puzzle generation process consists of five distinct phases, designed to produce valid Context
puzzles that satisfy the basic structural requirements while maintaining unique solvability.

6.2.1 Phase 1: Determining Optimal Black Tile Density

The first step involves determining the optimal number of black tiles for a given grid size. We
analyzed existing 6x6 Context puzzles and found that most puzzles have the same or similar black
tile count, we therefore decided to adopt the most common value of 10 as the amount of black tiles
for generated puzzles.

The number of black tiles is crucial for puzzle solvability and uniqueness. If there are too many
black tiles, the continuity constraint (all white tiles must form a single connected region) becomes
impossible to satisfy, as excessive black tiles can split the white area into disjoint regions. Con-
versely, if there are too few black tiles, the clues can often be satisfied in multiple ways, since each
clue may allow several possible arrangements of black neighbours. To ensure a unique solution, the
concentration of black tiles must be such that their positions restrict the possible arrangements
due to the no-adjacent-black or white connectivity rule. Mimicking the most common black tile
count in human-designed puzzles should provide a good balance to ensure unique solvability.

6.2.2 Phase 2: Initial Grid Generation

Using the predetermined optimal black tiles count, we generate random 6x6 grids by randomly
placing the appropriate number of black tiles. During this phase, we enforce only one constraint:
no two black tiles may be orthogonally adjacent, as required by the Context puzzle rules. This
ensures that all generated grids satisfy the fundamental adjacency constraint.

The random placement process continues until a configuration with 10 non-orthogonally-adjacent
black tiles is found. While this approach is straightforward, it effectively explores the space of pos-
sible grid layouts without introducing unintended biases towards particular patterns or structures.

18

6.2.3 Phase 3: White Tile Connectivity Verification

After generating a candidate grid layout, we verify that all white tiles form a single connected re-
gion. For a simple comparison and because we had already implemented it, we used a SAT solver
to determine if the grid satisfies the white tile connectivity constraint. In a very basic comparison
between the two encodings, we found that the Double Tree encoding performed significantly bet-
ter than the Topological Order encoding for these random and potentially non-connected grids.
We therefore decided on using Double Tree to determine white connectivity for generating large
amounts of puzzle instances.

6.2.4 Phase 4: Clue Assignment

We repeat Phase 2 and 3 until a grid with proper white tile connectivity is confirmed, we assign
numerical clues to each tile according to the Context puzzle rules:

e White tiles: Receive clues indicating the exact number of orthogonally adjacent black tiles

e Black tiles: Receive clues indicating the exact number of diagonally adjacent black tiles

At this stage, every tile contains it’s clue value, creating a fully filled grid that is uniquely solvable.

6.2.5 Phase 5: Clue Minimization

The final phase involves systematically removing clues while preserving the puzzle’s unique solv-
ability. This process employs a greedy reduction algorithm:

1. Randomly select a clue to remove

2. Verify that the resulting puzzle maintains a unique solution using the SAT solver (see Section
2.4)

3. If uniqueness is preserved, permanently remove the clue
4. If uniqueness is lost, restore the clue

5. Repeat until no more clues can be removed

As a result, the puzzle reaches a minimal state where removing any remaining clue would allow
for multiple solutions.

6.3 Characteristics of Generated Puzzles

The resulting puzzle instances exhibit the following characteristics:

e Unique Solvability: Each puzzle has exactly one valid solution, verified through exhaustive
SAT solving

e Minimality: No clue can be removed without introducing multiple solutions

19

e Structural Validity: All puzzles satisfy the fundamental Context rules

e Varied Difficulty: The random generation and clue reduction process naturally produces
puzzles of varying computational complexity, however the proportions of difficulties are un-
known

6.4 Limitations and Considerations

It is important to acknowledge the significant limitations of our generation approach:

e Limited Resemblance to Human Design: The generated puzzles are essentially random
configurations that happen to be uniquely solvable, rather than carefully crafted instances
with intentional design patterns

e Absence of Human Logic: These puzzles may not be solvable using traditional human
reasoning techniques and may require thinking many steps ahead

While these generated puzzles may not closely resemble human-designed Context puzzles in terms
of solving techniques required in human solving, design intent or computational complexity, they
serve the essential purpose of providing a substantially larger dataset for comparative analysis
of SAT encodings. Determining similarity between generated and authentic puzzles is evaluated
using a statistical comparison in Section 7.

7 Validating the Use of Generated Puzzle Data

As described in the previous section, a large number of puzzles were generated algorithmically to
support the experiments in this thesis. However, in order to use these generated puzzles as valid
data points, we must first determine whether they are comparable to human-designed puzzles
in terms of solver difficulty. If their characteristics deviate significantly, conclusions based on
generated data may not generalize to human-designed puzzle design.

To that end, we compare the generated puzzles to a set of 40 human-designed puzzles obtained from
Janko.at | |. Since puzzle size strongly influences solving time, we restrict our comparison to
only the 6x6 puzzles, of which 9 are included in the Janko set. We have a generated puzzle set
of 6,485 puzzles that are also of size 6x6. Additionally, to determine if the generated puzzles are
representative we make a comparison of the two encodings: DoubleTree and Topological Order.
For each encoding, we do statistical tests to determine if there is a significant difference in solver
cycles between the human-designed and generated puzzles. As our null hypothesis, we assume that
the generated puzzles are representative of the human-designed puzzles in terms of solver cycles.
We reject the null hypothesis if the p-value is below a significance level of 0.05. In that case, we
conclude that the generated puzzles showcase significantly different characteristics compared to
the human-designed puzzles.

7.1 Statistical Methodology

To assess similarity between the human-designed and generated puzzles, we used two statistical
approaches.

20

e Bootstrap Simulation: We repeatedly draw 9-puzzle samples from the generated dataset
and compute their mean solving time. By repeating this process 100,000 times, we obtain
a distribution of sample means, from which we calculate a 95% confidence interval and a
p-value indicating how often a sample as extreme as the human-designed puzzles occurs by
chance.

e One-Sample Z-Test: As a classical alternative, we compute a Z-score to quantify how
many standard errors away the human-designed mean is from the generated mean. This test
also provides a p-value under the assumption of normality.

For our small human-designed sample of 9 puzzles, many statistical tests are unreliable. For
Z-tests we have to assume that the generated puzzles are normally distributed, this is hard to
determine for a small sample. Bootstrap is more robust for small datasets as it does not make
strong assumptions about the underlying distribution. We therefore use the bootstrap method as
our primary analysis, while the Z-test may provide additional insights assuming normality. Both
tests are however limited by the small sample size of human-designed puzzles, which affects the
reliability of the results.

7.2 Results

Table 2: Comparison of Human-Designed and Generated 6x6 Puzzles (SolverCycles)

Encoding Test Human-Designed Mean P-value 95% CI (Generated)
DoubleTree Bootstrap 191,266.70 0.3762 [150,116.30, 690,475.10]
Z-Test 191,266.70 0.5767 -
Topological Bootstrap 2,018,524.90 0.0129 [688,422.73, 1,803,219.73]
Z-Test 2,018,524.90 0.0080 -

As shown in Table 2, the representativeness of the generated puzzles differs significantly by encod-
ing.

For the DoubleTree encoding, the results show no statistically significant difference between the
human-designed and generated puzzles. Although the generated puzzles are on average somewhat
harder to solve than the human-designed ones, both the bootstrap (p = 0.3762) and Z-test (p =
0.5767) fail to reject the null hypothesis. The human-designed mean lies comfortably within the
95% confidence interval of generated sample means, suggesting a meaningful similarity.

In contrast, for the Topological encoding, both the bootstrap test (p = 0.0129) and Z-test
(p = 0.0080) reject the null hypothesis at a significance level of 0.05. The average solving time
of the human-designed puzzles is substantially higher than that of the generated ones, and the
human-designed mean falls outside the 95% confidence interval. This suggests that the generated
6x6 puzzles are significantly easier to solve than their human-designed counterparts when using
the Topological encoding. As for the DoubleTree encoding, the human-designed puzzles fall on the
lower end of the confidence interval implying they are slightly easier to solve, though significance
is not reached at the 0.05 level.

21

These findings indicate that our generated puzzles are only representative for the DoubleTree
encoding. For the Topological encoding, they are significantly easier than their human-designed
counterparts. This discrepancy means that conclusions drawn from the generated set for the Topo-
logical encoding may not generalize perfectly to human-designed puzzles. Despite this limitation,
we will proceed with comparing both encodings on the full puzzle set. The primary aim is to
observe the performance differences across a large dataset, acknowledging that the results for the
Topological encoding are not indicative of the encodings’ ability to solve human-designed Context
puzzles. The results rather show more generally how well the encodings perform when solving valid
instances of the Context puzzle. The core comparison remains valuable for understanding the effi-
ciency of each approach for solving valid Context puzzles, and both samples show an improvement
in performance when using the DoubleTree encoding.

8 Experiments

8.1 Experimental Setup

We conducted experiments to compare the performance of the Topological Order and Double
Tree encodings for the Context puzzle. The goal was to evaluate how each encoding affects the
computational efficiency of solving the puzzle using a SAT solver. One obvious way the encodings
can impact the runtime is by reaching the memory limit or more likely causing cache misses on
lower levels of cache. This would be due to one encoding having a significantly higher number
of variables and clauses than the other. Our evaluation will not include puzzles large enough to
reach the memory limit and is almost exclusively influenced by cache behaviour and the interaction
between the solver and the encoding.

8.1.1 Solver and Hardware Configuration

We used CadiCal version 2.1.3 for our experiments | |. The tests were run on a Ryzen 3900X
chip with 32GB of RAM. The human-designed puzzle set is sourced from https://www. janko.at
[| and consist of 40 puzzles. We also generated a large set of 6,485 6x6 puzzles using the
generation process described in Section 6. For these puzzles we calculate how many CPU cycles
the solver took for each encoding to determine satisfiability by measuring CPU cycles using the
C++ rdtsc interface.

During work on this thesis we collected results using CadiCal and Kissat | |. We noted signif-
icant performance differences between the two solvers, which were not consistent as some puzzles
performed better with CadiCal while others performed better with Kissat. For our experiments
we ended up using CadiCal as it allowed us to make use of incremental solving which is not sup-
ported by Kissat. This was used to ensure a puzzle is uniquely solvable, which is a requirement for
Context puzzles. Future work could explore the performance differences between different solvers
and encodings in more detail.

22

https://www.janko.at

8.1.2 Statistical Analysis

To compare the performance of the two encodings, we made use of a paired t-test to determine
if the differences in solver cycles are statistically significant. The paired t-test is appropriate here
as we compare the same set of puzzles under two different encodings, allowing us to control for
individual puzzle characteristics. Our null hypothesis is that there is no significant difference in
the mean solver cycles between the two encodings. We calculate the mean and standard deviation
of the solver cycles for each encoding and then apply the t-test to assess whether the observed
differences are statistically significant at a 95% confidence level.

8.2 Results

To evaluate the performance of the Double Tree encoding relative to the Topological Order encod-
ing, we analyze three key metrics: solver cycle speed-up, variable reduction, and clause reduction.
We first present the results from the original dataset of 40 human-designed puzzles, grouped by
puzzle size. We then use a large set of 6,485 generated 6x6 puzzles to validate these findings and
provide a more robust statistical comparison.

8.2.1 Performance on Human-Designed Puzzles

The original dataset contains puzzles of varying dimensions. The performance improvements of the
Double Tree encoding become more pronounced as the puzzle size increases. Table 3 summarizes
the speed-up and reduction ratios for different puzzle size groups. The number of variables used
is identical for puzzles of the same size. The number of clauses show small variations due to
differences in clues in the puzzle, however they show very low standard deviations and ranges as
most of the clauses are determined by the grid size.

Table 3: Performance Ratios of Double Tree vs. Topological Order on Human-Designed Puzzles

Metric 6x6 Puzzles (9) 7x7 Puzzles (4) 8x8 Puzzles (8) 10x10 Puzzles (17)
Solver Cycle Speed-up
Geometric Mean 2.94x 3.11x 5.80x 8.25x
Median 2.97x 3.18x 5.58x 6.85x
Geometric Std Dev 1.68 1.19 1.88 2.21
Range 1.37x - 6.75x 2.38x - 3.86x 2.41x - 14.34x 1.55x - 33.95x
Variable Reduction
Geometric Mean 2.43x 3.36x 4.45x 7.07x
Geometric Std Dev 1.00 1.00 1.00 1.00
Clause Reduction
Geometric Mean 4.93x 6.62x 8.74x 13.57x
Geometric Std Dev 1.02 1.01 1.02 1.02

These findings are reinforced by the solver speed-up histograms for human-designed puzzles shown
in Figure 13. In particular, for the 6x6 human-designed puzzles in Figure 13 we see that only 2
out of 9 data points fall below a speed up of 2.4x which is towards the right end of the distribution
for the generated puzzles in Figure 14. This visual separation supports the earlier statistical

23

Distribution of Speedup Factors by Grid Size
(Continuity vs DoubleTree)

Main Speedup Factor Boundaries
1 2 4 8

[6x6 (n=9)
mm 7x7 (n=4)
[8x8 (n=8)
[10x10 (n=17)

50

40

30 4

Percentage of Puzzles (%)

o
|
=
|

Speedup Factor Boundaries

Figure 13: Solver speed-up distribution by grid size for human-designed puzzles, values to the
right of the 1.0 line indicate a speed-up when using the Double Tree encoding. Bar height shows
percentage of puzzles in the respective bin for that grid size.

observation that human-designed puzzles benefit more from the Double Tree encoding than the
generated ones. Notably, there are no instances among the 40 human-designed puzzles where the
Topological Order encoding outperformed the Double Tree encoding.

The solver speed-up consistently increases with puzzle size: 2.94x for 6x6, 3.11x for 7x7, 5.80x for
8x8, and 8.25x for 10x10 puzzles. This trend is clearly visible in the histogram plots in Figure 13,
where the distributions for larger grid sizes progressively shift to the right. The results confirm
that the performance advantage of the Double Tree encoding is not only consistent but becomes
increasingly pronounced on more complex puzzles, both in terms of solver cycles and encoding
compactness.

8.2.2 Validation with Generated Puzzles

To confirm the trends observed in the smaller dataset, we analyzed the performance on 6,485
generated 6x6 puzzles. While these puzzles are not representative of human design, as discussed
in Section 7, they provide a large sample for assessing the baseline performance difference between
the encodings when solving valid instances of Context puzzles. The results are summarized in
Table 4.

The results from the generated dataset strongly support our initial findings. The mean vari-
able reduction (2.43x) and clause reduction (4.79x) are nearly identical to those observed for the
human-designed 6x6 puzzles (2.43x and 4.93x, respectively), with extremely low standard devia-
tions, confirming the consistency of the encoding size reduction. The average solver speed-up of
1.80x, while lower than the 2.94x for human-designed puzzles, still demonstrates a significant and
consistent performance gain, as indicated by the relatively low coefficient of variation (34.75%). A

24

Table 4: Performance Ratios on 6,485 Generated 6x6 Puzzles

Metric 6x6 Performance

Solver Cycle Speed-up

Geometric Mean 1.80x

Median 1.78x

Geometric Std Dev 1.39

Range 0.21x - 6.46x
Variable Reduction

Geometric Mean 2.43x

Geometric Std Dev 1.00
Clause Reduction

Geometric Mean 4.79x

Geometric Std Dev 1.01

Distribution of Speedup Factors (bars: fine bins, ticks: bin edges)
Main Speedup Factors (bin edges)
0.25 0.5 1 2 4 8

1400

1200

1000

800

Count

600

0 0.25 03 035 0.42 0.5 12 14 17 2 24 28 3.4 X . 6.7 8 inf
Speedup Factor (bin edges)

Figure 14: Histogram of Solver Speed-up Ratios for 6,485 Generated 6x6 Puzzles

histogram of solver speed-up ratios (Figure 14) reveals that the generated puzzles exhibit a roughly
normal distribution centered around a mean speed-up of 1.80x. Notably, only 173 puzzles (2.71%)
were solved faster using the Topological Order encoding. This further highlights the robustness of
the Double Tree approach in the majority of cases.

Overall, both datasets confirm that the Double Tree encoding provides substantial and consistent
improvements in encoding size and solver efficiency, making it the preferable choice for solving
Context puzzles.

8.3 Statistical Significance of Results

To evaluate the performance difference between the Topological Order and DoubleTree encodings,
a paired t-test was conducted on solver cycle counts from 6,485 puzzles. Table 5 summarizes the
key statistics and test results.

As shown in Table 5, the mean difference in solver cycles between the two encodings is approxi-

25

Table 5: Summary statistics and paired t-test results for SolverCycles (Topological Order vs Dou-
bleTree).

Metric Value
Number of puzzles 6,485
Mean difference (Topological Order - DoubleTree) 5,598,832.93
Standard deviation of differences 4,520,563.05
Cohen’s d (effect size) 1.2385
t-statistic 99.7378
p-value < 0.0001

mately 5.6 million cycles, with Topological Order consistently requiring more cycles than Double-
Tree. The paired t-test yields a highly significant result (¢(6484) = 99.74, p < 0.0001), indicating
that this difference is unlikely to be due to chance. Moreover, the large effect size (Cohen’s
d = 1.24) confirms that the observed speedup with DoubleTree encoding is statistically significant
and represents a substantial improvement in solver efficiency.

9 Conclusions and Further Research

This thesis investigated two distinct SAT encodings for the continuity constraint in Context puz-
zles: the Topological Order encoding and the Double Tree encoding. Through our experimental
evaluation across both human-designed and generated puzzle instances, we found clear evidence
that the Double Tree encoding significantly outperforms the Topological Order encoding across all
measured metrics.

9.1 Key Findings

Our experimental results demonstrate that the Double Tree encoding offers substantial advantages:

e Computational Efficiency: The Double Tree encoding consistently required fewer CPU
cycles to solve puzzles. The speed-up factor for human-designed puzzles increases with puzzle
size, from an average of 2.94x for 6x6 puzzles to 8.25x for 10x10 puzzles, demonstrating
enhanced performance on larger instances. For the large set of generated 6x6 puzzles, we
observed a mean speed-up of 1.80x, with only 2.71% of puzzles being solved faster using the
Topological Order encoding. The paired t-test confirmed that this performance difference is
statistically significant (p < 0.0001) with a large effect size (Cohen’s d = 1.24).

e Encoding Size: As predicted by our theoretical analysis, the Double Tree encoding gener-
ated significantly fewer variables and clauses. As these values are directly related to the size
of the grid they have very low variability with clauses being slightly affected by the clues
of a puzzle. Theoretically, the Topological Order encoding scales as O(N - D) where D is
at least N/3 as established in subsection 4.2.4, the Double Tree encoding maintains O(N)
complexity.

26

9.2 Theoretical Contributions

Our work shows that CadiCal benefits from the Double Tree encoding as compared to the Topolog-
ical Order encoding, for larger puzzles, the Double Tree encodings performance advantage grows,
making it a more scalable solution for larger Context puzzles and likely other grid-based problems
with similar connectivity constraints.

9.3 Future Work

While our findings strongly favor the Double Tree encoding, further research would have to be
done to verify its performance on grids that are arranged differently, as the data we tested on is
fairly uniform in terms of how many black tiles are present and how they are arranged.
Additionally, our validation revealed that generated puzzles are not fully representative of human-
designed puzzles for the Topological encoding (p = 0.0129), which means the effectiveness on
human-designed puzzles is not completely understood. Future work should focus on developing
better puzzle generation methods that more closely mimic human designed puzzles, or alternatively
obtaining larger datasets of authentic puzzles for more robust statistical analysis.

Our work also showed that the choice of SAT solver can significantly impact performance. Future
research could explore how different solvers handle these encodings.

Finally, while our focus was on Context puzzles, the Double Tree encoding may have broader
applications in other types of grid-based puzzles or problems requiring connectivity constraints.
Future work could explore its applicability in these domains.

27

References

[AJ25]

[BBEV23]

[Bie21]

[Bie24]

[Hoo25]

[Rei9g]

[Str25]

[Wyn18]

Otto Janko Angela Janko. Website von Angela und Otto Janko. https://www. janko.
at, 2025. Accessed: 2025-05-24.

Miquel Bofill, Cristina Borralleras, Joan Espasa, and Mateu Villaret. On grid graph
reachability and puzzle games. arXiv preprint arXiw:2310.01378, 2023.

Armin Biere. Kissat SAT Solver. https://github.com/arminbiere/kissat, 2021.
Accessed: 2025-05-29.

Armin Biere. CaDiCaL SAT Solver (version 2.1.3). https://github.com/arminbiere/
cadical/releases/tag/rel-2.1.3, 2024. Accessed: 2025-05-29.

Hendrik Jan Hoogeboom. Sat encoding connectedness in a planar grid. Unpublished
manuscript, February 2025.

Klaus Reinhardt. On some recognizable picture-languages. In Lubos Brim, Jozef
Gruska, and Jiri Zlatuska, editors, Mathematical Foundations of Computer Science
1998, pages 760-770, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

Hanna Straathof. Solving and generating Kuroshuto puzzles. Bachelor thesis, LIACS,
Leiden University, January 2025.

Ed Wynn. A comparison of encodings for cardinality constraints in a SAT solver. arXiv
preprint arXiw:1810.12975, 2018.

28

https://www.janko.at
https://www.janko.at
https://github.com/arminbiere/kissat
https://github.com/arminbiere/cadical/releases/tag/rel-2.1.3
https://github.com/arminbiere/cadical/releases/tag/rel-2.1.3

	Introduction
	Definitions
	The Context Puzzle: Rules and Objective
	Boolean Satisfiability (SAT)
	CaDiCaL SAT Solver
	Incremental Solving and Uniqueness Verification
	Boolean Variables for Puzzle State

	Related Work
	Topological Order Encoding
	Double Tree Encoding
	Encoding Size vs. Solver Performance

	Continuity Constraint Encodings
	Mapping the problem from Graph to Grid
	Topological Order Encoding
	How the Encoding Works
	Root Selection Strategy
	How Cycles Are Prevented
	Complexity Challenge

	Double Tree Encoding
	Constructing the Encoding Step by Step
	Final Result: Two Spanning Trees, One White Region
	Complexity Advantage

	Comparison Summary

	CNF Encodings for Context
	Encoding Local Puzzle Constraints
	Encoding the Adjacency Constraint
	Encoding a 0-Clue
	Encoding a 1-Clue
	Encoding a 2-Clue
	Encoding a 3-Clue
	Encoding a 4-Clue

	Encoding the Continuity Constraints
	Topological Order Encoding
	Double Tree Encoding
	Clause and Variable Comparison

	Puzzle Generation
	Motivation for Puzzle Generation
	Generation Methodology
	Phase 1: Determining Optimal Black Tile Density
	Phase 2: Initial Grid Generation
	Phase 3: White Tile Connectivity Verification
	Phase 4: Clue Assignment
	Phase 5: Clue Minimization

	Characteristics of Generated Puzzles
	Limitations and Considerations

	Validating the Use of Generated Puzzle Data
	Statistical Methodology
	Results

	Experiments
	Experimental Setup
	Solver and Hardware Configuration
	Statistical Analysis

	Results
	Performance on Human-Designed Puzzles
	Validation with Generated Puzzles

	Statistical Significance of Results

	Conclusions and Further Research
	Key Findings
	Theoretical Contributions
	Future Work

	References

