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Abstract

Hyper-minimisation of deterministic finite automata (DFAs) and weighted deterministic
finite automata (WDFA) is a lossy compression technique that allows for finite error in the
recognised language. The algorithm for hyper-minimisation of DFAs and WDFAs is first
described. Transferring the almost-equivalence characterisations for the weighted setting
of WDFAs to the probabilistic setting of PDFAs shows that the structure of the known
hyper-minimisation algorithm for WDFAs can largely be applied to PDFAs. Analysis on the
application of hyper-minimisation on PDFAs shows that the stochastic constraint on states
is a delimiting factor and forms illegal state merges. These illegal merges are then partially
alleviated and characterised through a probability redistribution. Lastly, a merging algorithm
in O(n?) is described with the inclusion of the necessary probability redistributions.
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1 Introduction

The state-space explosion problem | ] of finite automata (FA) | , p. 1] is a critical
obstacle in their practical application and verification, calling for effective compression algorithms to
reduce this state-space. State-reduction through minimisation is a well-known lossless compression
technique for various types of automata | , ], and is proven to produce the smallest,
equivalent finite automaton | ]. Greater potential reduction in state-space comes in lossy
compression, like hyper-minimisation | , , |, which permits a finite number of
errors in the recognised language between the original and compressed automaton.

An FA is used to describe a generalised idea of languages | , P. 45] using states and
transitions. It sequentially reads an input string symbol by symbol until it has no more symbols to
read or until the automaton ’crashes’. Once it is finished with reading the input string it will give an
output. For a simple FA it will return whether the input string is or is not in the language that the
automaton describes. Other types of automata may exhibit different behaviour for its output and/or
for reading a string. These automata are considered to be generalisations of the deterministic finite
automata (DFA). Examples of generalisations are non-deterministic finite automata, weighted finite
automata, tree automata | ] and probabilistic finite automata | , |. This paper will
build onto research into deterministic finite automata and weighted deterministic finite automata
(WDFA) by appending prior research to probabilistic deterministic finite automata (PDFA).
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(a) DFA M; for the language where ’bee’ (b) DFA M; for the language where all
can end with any extra e’s. strings start with ’a’.

Figure 1: Examples of deterministic finite automata for Section Preliminaries.

The interest in PDFAs comes in their many practical purposes such as speech recognition |

’

|, image compression | , | and natural language processing | |. Furthermore,

the probabilistic finite automaton is another notation for Markov chains | |, which sees use

in fields including statistics | , p- 5] and machine learning within bioinformatics (hidden
Markov models) | ].

In practical use, automata (including PDFAs) can have millions of states | |. In order to

make these computational models more efficient it is of interest to have an automaton describe its
language with the least amount of states possible. A reduction in the amount of states leads to

less storage being required to store the automaton | |. It may also improve the run-time of
its computations due by requiring less computing memory. Algorithms that are performed on the
automaton itself, such as verification algorithms | | may also see a reduced run-time.



Early research into FAs produced minimisation algorithms that can effectively reduce the
amount of states the automaton uses, with the language they describe being equivalent. These
algorithms take a given automaton and return a new automaton with the minimal amount of states.
Such state-reduction algorithms exist for DFAs and non-deterministic FAs [ : . A
study for the minimisation of (non-deterministic) probabilistic finite automata adopts Brzozowski’s
algorithm | |. It has been proven that such algorithms obtain the minimal automaton. Meaning,
it is the smallest the automaton can get that describes exactly the original language | |. The
minimal automaton is unique | |. Because the minimal automaton cannot be compressed
further, researchers had to look further to reduce an automaton’s size. A development with greater
state-reduction than minimisation with equivalence is that of hyper-minimisation | |. Another
development specific to probabilistic finite automata is that of minimisation with an accepted
error | ]. We can compare standard minimisation and these two developments in minimisation
as the difference of lossless compression and lossy compression, respectively.

The lossless compression of an automaton requires the language it recognises to be equivalent to
the initial language, as seen in classic minimisation. In contrast, lossy state-reduction techniques
consider a certain deviation in its recognised language permissible, so long the practical impact on
its recognised language is considered negligible. The benefit of not being held by strict equivalence
is that the automaton can be further reduced in size, thus optimising the computational and storage
efficiency. In particular, hyper-minimisation permits a deviation for a finite amount of accepted
strings | ]. For this the almost-equivalence relation was introduced. Two automata are almost-
equivalent if the language they recognise differ for finite strings | |. Hyper-minimisation uses
this relation as its state-reduction constraint such that the resulting automaton largely preserves the
language it recognises, with a finite deviation in the strings it accepts. In the probabilistic setting
of PDFAs, hyper-minimisation would largely preserve the accuracy of prediction and correctness of
acceptance, whereas this can not be guaranteed for a finite amount of strings. This deviation can be
acceptable in the probabilistic setting, where predictions do not necessitate exact precision. Then,
hyper-minimisation may be an effective technique to further compress PDFAs without significantly
degrading their predictive accuracy. This is particularly interesting when working with noisy data
models, where a finite set of noisy data may be removed through hyper-minimisation.

The concept of hyper-minimisation originates from a paper which gave a state-reduction algorithm
for DFAs. Further research by A. Malleti and D. Quernheim expanded hyper-minimisation to
WDFAs | |. This algorithm was shown to work for WDFAs, but not for the unique weighted
setting of PDFAs. This bachelor thesis for LIACS, supervised by M. Bonsangue and T. Kappé,
builds onto the algorithm for the weighted setting of WDFAs by translating it to the probabilistic
setting of PDFAs. We have the following research question:

What is a hyper-minimisation algorithm for probabilistic deterministic finite automata, such that
the language described by the automata it almost-equivalent to the original?

For this study we limit ourselves to deterministic variant of probabilistic finite automata as it
has easy to work with algorithmic properties that previous research into hyper-minimisation took
advantage of.



1.1 Thesis overview

The research question is approached by first giving the reader the necessary background infor-
mation. This is followed by an explanation of the necessary components from prior work in
hyper-minimisation, and an analyse in how that is applicable to PDFAs. From this we find that the
properties of PDFAs cause issues that restrict their hyper-minimisation. The paper will make an
attempt at alleviating these issues with an updated algorithm.

The thesis is divided into the following sections: Section Preliminaries explains important concepts,
gives formal definitions and fixes notation; Section Hyper-minimisation discusses related research
into hyper-minimisation algorithms and applies this to PDFAs; Section Examples gives examples
of hyper-minimisation for PDFAs and gives a counter-example where hyper-minimisation fails;
Section Merging algorithm makes an attempt at a merging algorithm that works for PDFAs;
Section Conclusions and further research concludes the paper and discusses further research.

2 Preliminaries

Before we speak on the new theory related to hyper-minimisation we first look to explain and
define background theory related to languages, automata and equivalence relations, and we fix the
notation for this theory. We start with simple definitions for sets.

A set S is a finite or infinite collection of elements. The set of natural numbersisN = {0,1,2,...}.
The set of real numbers between 0 and 1 (inclusive) is [0,1] € {k € R | 0 < k < 1}. The set
of positive real numbers is R-. |S| is the notation for the cardinality of S. The difference in
elements between two sets S, Sy is the operator A with notation S; A Ss.

A language L is a set of strings over an alphabet. An alphabet X is a finite set of symbols.
A string s of length [ is a concatenation of symbols over the alphabet: oq...0; where [ € N and
o; € X for 0 < ¢ < [. The string of length zero is the empty string: . The empty language
contains zero strings. The set of all strings over the alphabet is noted as s € ¥*. This notation uses
a Kleene star x. This is an operator on a set such that we obtain an infinite set comprising all
strings obtained by concatenating elements of the set onto the empty string zero or more times, in
any order | , p- 19].

An example of a language is the following: L = {x € {a,b}" | x starts with a} (see DFA
in Figure 1b). Examples of strings in this language are: a, aa, ab, aab, aba, etc. We notate some
element x being in a set S as x € S. The notation for our language L reads as follows: L is the
set of all strings over the alphabet consisting of only a’s and b’s, where all strings  must start with a.

Regular languages (a subset of all languages) can be described by DFAs | ]. A DFA
consists of 5 key components: the states, alphabet, transitions between states, initial state and
accepting states.

Formally, a deterministic finite automaton M is a tuple M = (Q, X, d, qo, F)) where @ is
non-empty finite set of states, ¥ a finite alphabet of input symbols, § a transition map @ x ¥ — Q,
qo € @ is the initial state and F' C () the set of accepting states.

The initial state is where the DFA starts its execution. All states, including the initial state,
can be accepting states. All other states are said to be not accepting. If the DFA’s current state
is an accepting state after being finished with reading an input string, then we accept the input



string as part of the language. If the current state is not accepting, then we do not accept the input
string. The garbage state is a special non-accepting state in () which can never be exited, no
matter which input symbol we read.

A transition map is a function that receives the current state and current input symbol, and
returns the next state. E.g., 6(¢,0) = p where o € ¥ and ¢,p € Q.

The transition mapping § can be extended to work for strings: Q) x ¥* — Q. Define 6(q,¢) = ¢
and 0(q,08) = 6(d(q,0),s) for all ¢ € Q, 0 € ¥ and s € ¥*. In other words, for an empty
input the DFA will stay in the same state, and for a string of symbols the DFA repeatedly reads
the first symbol of the string and follows its corresponding transition to the next state. The
route of states that an input string takes is called the path. A DFA M recognises the language
L(M) ={se€>*|d(s,q) € F}. We say a string s is accepted by M if s € L(M).

An FA is called deterministic if for each distinct pair () x ¥ the mapping 6 has a transition to
precisely one state. A DFA has exactly one initial state. The result of this is that for each input
string we know exactly which state we end up, because there is only one path the string may follow.

In Figure 1 we see two DFAs M; and M. The initial state and garbage state for both are gy and
&, respectively. The accepting states for M is g3 and for Ms it is g;. For better readability of state
diagrams, some DFAs in this paper do not have their garbage state (if it exists) and its incoming
transitions drawn, but these are implied.

For DFAs we can define equivalence relations that are used for the definitions of minimality and
hyper-minimality. For that we need some definitions for states.

A state p is called reachable from some state ¢ if there exists a path from q to p. That is, there
exists a string s € X* such that 0(q,s) = p. A state is called accessible if it is reachable from an
initial state.

The left language of a state ¢ € @) is the set ? of all strings that reach ¢ from the initial

state: ‘7 = {s € 2*|8(qo, ) = q} | , P 4] where qq is the initial state. The right language
of a state ¢ € @) is the set 7 of all strings that reach an accepting state starting from state ¢:
¢ ={sex[6(g,5) € F} , p- 4],

For the notion of minimality we need certain definitions equivalence relations. Two languages
L1, Ly € ¥* are equal if their elements coincide: L; = Lo. Two DFAs M; and M, are equivalent
if the languages they recognise are equal: My = M, if and only if L(M;) = L(M;) | ]. Two
states ¢, p € ) are equivalent if their right languages are equal: p = ¢ if and only if ? = ? A DFA
is minimal if no other DFA with fewer states exists that is equivalent. Furthermore, we state that
a DFA is minimal if it has no equivalent states | , p- 4]. All states of a minimal automaton
must be accessible.

For an example for minimisation of DFAs, see Figure 2. Here was can see that states g3 and g¢g
are equivalent because their right-languages are equal. These are q_3> = {a,aa,ab, aaa,aabd, ...} = q_g.
We can derive a minimal automaton by merging these two states into one state.

Before we get to the definition of PDFAs we need some definitions for vectors and probabilities.
For n € N a vector a € R" is of n entries over the set of real numbers. For some set S we write
a € RS a vector for elements of S over the set of real numbers. We denote vector entries by afi]
where afz] for 1 <i <mn and x € S, respectively. A probability p is real number between 0 and 1:
p € [0, 1], though in practical applications we may also define it for rational numbers: p € (QN|[0, 1]).
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Figure 2: Example of a DFA that can be minimised.

A probabilistic language is a generalisation of weighted languages. A weighted language
¢ is a mapping that assigns to each word a weight in some set K: ¢ : 3* — K. A probabilistic
language sets this weight to the probabilistic setting, such that ¢ : 3* — [0, 1] and such that ¢ is a
(discrete) probability distribution ) . ¢(s) =1 | , p- 14]. A probabilistic language allows
for the representation of uncertainty or to describe stochastic processes | , p- 14].

Probabilistic languages can be described by probabilistic finite automata. This is accomplished
by calculating the probability of an input string over its path. The generalisation to deterministic
probabilistic finite automata is less powerful in that it can recognises a subset of languages recognised
by probabilistic finite automata | , p- 19].

Formally, a probabilistic deterministic finite automaton M is a tuple M = (Q, %, 0, P, qo, F) |
where @, %, and ¢q follow the definition for DFAs. P is a distribution @ x ¥ — (Q N [0, 1]) that
coincides with § such that each transition for a pair (¢ € @, 0 € X) is attributed a probability and
a next state. F'is a vector (Q M [0,1])% of final probabilities for each state. For all states ¢ € @ the
reduced stochastic property must hold: > - P(q,0) + Flq] < 1.

The transition mapping ¢ and probability distribution P can be extended to strings. For ¢
this follows the definition as for DFAs. For P we define: P(q,e) = 1 and P(os) = P(q,0)-P(6(q,0), s)
forall g € Q,0 € ¥ and s € X"

The probabilistic language accepted by a PDFA M is a distribution ¢y : 3* — [0, 1] where
om(s) = P(qo, s) - F[6(qo, s)] for some s € 3*. A string s is said to be accepted by M if pp(s) > 0.

A state g € @ is called accepting if F[q] > 0. Else, ¢ is not accepting. A garbage state @ € @
is a state with F'[@] =0 and §(@,0) = @ for all 0 € ¥ such that no strings can ever be accepted
once entering &.

Just like for a DFA, the deterministic property of the PDFA means that for each pair of Q) x X
there is at most one transition in ¢ (with coinciding weight), and that there is at most one initial state.



This paper considers the reduced stochastic property for states, as opposed to the stochastic
property: > o P(q,0) + Flq] = 1. The choice for the reduced property is that it will be easier
to work with for the merging algorithm of Section 4. Unlike for the classic stochastic property, a
language recognised by a PDFA with the reduced stochastic property is not necessarily a probability
distribution, even if all states are accessible and can reach an accepting state. However, with a
simple construction a PDFA can be made to adhere to the stochastic property, without it changing
the language it recognises. A construction for turning a PDFA M = (Q, %, 6, P, qo, F') into a PDFA
M = (Q,%, ¢, P, F') that adheres to the stochastic property is as follows:

1. Copy the states, alphabet and initial state. We make sure )’ has a garbage state and we add
a new symbol x to the alphabet: Let Q' = Q U {@} where @ is a garbage state; X' = X U {z}
for some = ¢ ¥; and ¢ = qo.

2. Copy the transitions, probability distribution and final probabilities: For all ¢ € Q) and o € ¥
let 6'(¢q,0) = 6(q,0); P'(q,0) = P(q,0); and F'[q] = Flq].

3. Define the transitions and probability distribution for the new symbol x. The probability for
transitions with x is the probability needed for the sum of probabilities from state q to be
equal to 1: §'(q,2) = @ and P'(¢,z) =1 — (3,5, P(q,0) + Flq));

4. Lastly, define the garbage state: Let F[@] =0; > . P(@,0) =0 and P(@,z) = 1. For all
o e¥ let §(@,0') = 0.

Step three ensures that M’ adheres to the stochastic property. We note that a string over ¥* that
contains x is never accepted by M’ because it never exits the garbage state. The added garbage
state is accessible, and reaching an accepting state from it is never possible, which is why the
language accepted by M’ is not a probability distribution. The path for all strings over ¥’ not
containing = is unchanged. Then, L(M') = L(M).

For better readability of state diagrams for PDFAs we choose to leave out some information with
associated implications. The garbage state and its incoming transitions are not drawn. Whenever a
transition or a final probability is not drawn, it is assumed to have a probability of zero.

An example of a PDFA is seen in Figure 3. We see ¢q as initial state and ¢, ¢4 and ¢5 as accepting
states with final probabilities 0.4, 0.2 and 0.5, respectively. The garbage state and its incoming
transitions are implied.

For PDFAs we can also define equivalence relations that are used for the definitions of minimality
and hyper-minimality. These will look similar to that of DFAs.

A state p € (@ is reachable from state ¢ € (@ if there exists a string s € ¥ such that
d(q, s) = p where P(q,s) > 0. The definitions for left and right languages of states in PDFAs are
changed to work with distributions. The left language of a state g € @) is ? = {P(qo,s) | s €
Y*AN6(qo,8) = gNP(qo, s) > 0} where qq is the initial state. The right language of a state g € @ is
¢ ={P(q,s) - F[6(q,s)] | s € ©*AP(q,s)-F[0(q,s)] > 0}. We denote for some s € £* the mapping
7 (s) = P(q,s) - F[6(q, s)]. We define left support of the left language and right support of
right languages. The supports is the set of all the strings from which their respective languages
are obtained: supp(?) = {s € X" | d(qo,s) = g A P(q,s) > 0} where qq is the initial state; and

supp(q) = {s € £* | P(q,s) - F[6(g, )] > 0}.



()——(=)

b0.5 b|0.1

start H al0.25, b|0.25

al0.5 b|0.8

b|0.5

al0.1

Figure 3: An example of a PDFA M; with the reduced stochastic property.

The definitions of equivalence relations for PDFAs and their languages, automata and states are
the same as for DFAs. Likewise, the definition of a minimal automaton is unchanged. Note that for
the equivalence of states we use the definition of right language for states in PDFAs.

Lastly, we quickly go over the definitions for WDFAs. Due to the similarities to PDFAs We only
broach that what is necessary for Section 3.1. A weighted deterministic finite automaton
recognises a weighted language, and is defined as M = (Q, X, 6, wt, qo, ko, F') | | where @, %, 6, qo
and F' follow the definitions for DFAs. wt is a weight mapping wt : @) x ¥ — K that coincides with
d such that each transition for a pair (¢ € Q, 0 € X)) is attributed a weight and a next state. kg € K
is the initial weight. § and wt can be extended the same as for § and P of PDFAs, respectively.

A state p € @ is reachable from state ¢ € @ if there exists a s € 3 such that 6(q,s) = 0 where
wt(q,s) # 0. The left language of state ¢ € Q is ¢ = {wt(qo,s) | s € Z* Ad(qo, s) = ¢)}. The
right language of state ¢ € Q is ¢ = {wt(q, s) | s € ¥* Ad(q, s) € F}. We denote for some s € ¥*
the mapping 7(3) = wt(q, s) if 0(q, s) € F, otherwise 7(8) = 0. The left support is defined the
same as for PDFAs, and the right support is supp(¢) = {s € £* | d(¢, s) € F}. The weighted
language accepted by M is o = kg - a;.

3 Hyper-minimisation

Hyper-minimality works on the idea that automata can describe languages with an infinite amount
of words. Then, if we remove a finite amount of words from the language we are still left with an
infinite amount of words. This follows from the ideal of lossy compression where certain information
loss is seen as acceptable in order the compress something even more. In this case, the acceptable
loss is that of a finite amount of words. For this the term almost-equivalent is introduced.

For hyper-minimality we need definitions for almost-equivalence relations, which slightly differ
from the equivalence relations for minimality.



Definition 1. (Almost-equivalence) | , def. 1] for regular languages and DFAs:

e Two languages are almost-equal if there are finite amount of strings that make the difference
between the two sets: Ly ~ Lo if and only if L; A Lo is finite.

e Two DFAs M; and M, are almost-equivalent if the languages they recognise are almost-
equivalent: M; ~ M, if and only if L(M;)AL(Ms) is finite.

e Two states are almost-equivalent if their right languages are almost-equal: p ~ ¢ if and only

if ¢ A 7 is finite.

It should be noted that a language with a finite amount of strings is almost-equivalent to the
empty language, because L A {} = L. This is not particularly interesting for hyper-minimisation,
which is why hyper-minimisation is focussed on infinite languages.

Known algorithms for hyper-minimisation make use of state comparisons, and choosing the right
states to merge together | , D. 40]. For this the algorithms use the notion of preamble and
kernel states.

Definition 2. (Preamble and kernel states) | , p. 37] for DFAs:

The set of preamble states P contain all states reached from the initial state by a finite amount
of words. In other words, the left language of these states is finite. The set of kernel states K
contain the states of which the left language is infinite. It holds that Q \ P = K.

A DFA is hyper-minimal if no other almost-equivalent DFA exists with fewer states. From | ,
Theorem 3.4] follows the characterisation of hyper-minimality in | ], including the proof.
Another characterisation of hyper-minimality is that the hyper-minimal DFA is not unique | ,
p. 70].

Theorem 1. (Hyper-minimal) | , theorem. 5] A DFA is hyper-minimal if and only if:
1. The DFA is minimal.
2. The DFA has no preamble state that is almost-equivalent to another state.

In Figure 4 we can see a hyper-minimal automaton of our earlier example from Figure 2b. We
note that g3 is a preamble state, because its left language is finite: % = {aa, ab}. The pream-
ble states of My are P = {qo,q1,q3}. All other states are kernel states. Looking at the right
language of g3 and g4 we find that these are almost-equivalent. @ = {a, aa, ab, aaa, aab, ...} and
7 = {e,a, aa,ab, aaa,aab, ...} where G A G = {e}. This is a finite difference, thus these two
states are almost-equivalent and can be merged into one state.

3.1 Hyper-minimisation for WDFAs and PDFAs

The prior paper by A. Malleti and D. Quernheim into the hyper-minimisation of WDFAs | ]
can largely be adopted to the PDFAs of this study. For that we will first describe their hyper-
minimisation algorithm for WDFAs. After that we show the similarities between the properties
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Figure 4: DFA Mj is the hyper-minimal automaton of M, from Figure 2.

of WDFAs and PDFAs that allow us to apply this hyper-minimisation algorithm to PDFAs. In
Section Examples we will find that there are limitations as to when a PDFA can be hyper-minimised.

A common technique used in hyper-minimisation algorithms is that of state merges [ ,
p. 8]. For the hyper-minimisation of DFAs it was sufficient to work with preamble and kernel
states | ]. The proposed algorithm for WDFAs in | | additionally uses the notion of
co-preamble and co-kernel states.

Definition 3. (Preamble and co-preamble states) | , Def. 3, 8] for the states in a
WDFA:

e A state ¢ € ) is preamble if supp(?) is finite. Otherwise it is a kernel state.
e A state ¢ € ) is co-preamble if supp(?) is finite. Otherwise it is a co-kernel state.

e The set of preamble states and co-preamble states of ) are P and P, respectively. The set of
kernel states and co-kernel states of () are K = () — P and K = () — P, respectively.

Kernel states can be characterised by Lemma 2.

Lemma 2. (kernel states) | , ] A state ¢ € @ of a minimal WDFA is kernel if it
is reachable by a strongly connected component or if it contains a self loop with a weight not zero.

Proof: Two states p,q € @ are called strongly connected if p is reachable from p and gq
is reachable from ¢. Then, there exists a string s; and sy where §(q,s1) = p, wt(q,s1) # 0,
d(p, s2) and wt(p,s2) # 0. For s € {s152}* it holds that d(q,s) = ¢. {si1s2}* is an infinite
set and {z(s152)* | z € Z* A d(qo,2) = q A wit(qo,z) > 0} C supp(’qg) where o is the initial
state. Thus, supp(?) is infinite. Any state r € (@ reachable from ¢ has for its left support
{(supp(‘Q)x | © € ©* Né(q, ) = r Awt(q,z) > 0} C supp(‘F). Then the left support of 7 is infinite
and r is kernel. If some state t € ) contains a self loop for symbol o € ¥ where wt(t,0) # 0 then
for all s € {o}* it holds that (¢, s) = t. By the logic as with strongly connected states it follows
that t is kernel.



In the example WDFA of Figure 5a we find P = {qo, q1,93}, P={4,9}, K=1{q,d q, 0,9}
and K = {qo, 1, q2, 43, 45, G4, @5 }-

For WDFAs and their weighted languages we need altered definitions for the almost-equivalence
relation. These definitions consider that languages / states are almost-equivalent as long as there
is a scalar that exists such that the two weighted languages / right languages, respectively, differ
finitely.

Definition 4. (almost-equivalence) [ , def. 1] for WDFAs:

e Two weighted languages ¢1, g2 are almost-equivalent if for almost all s € ¥* holds ¢;(s) =
k - @o(s) for some factor k € K\ {0}.

e Two WDFAs M; and M, are almost-equivalent if ¢y, is almost-equivalent to ¢, with factor
k=1.

e Two states p,q € Q are almost-equivalent if for a finite amount of strings s € ¥* holds that

G (s) # k- (s) for some k € K\ {0}.

A WDFA is called hyper-minimal if there is no almost-equivalent WDFA with fewer states | ,
p. 5]. The characterisation of hyper-minimality in Theorem 1 also applies to WDFAs | ,
Theorem 7].

Algorithm 1 (1) shows the general structure and time complexities of hyper-minimisation
algorithms as noted in | | with the additions of line 5, as necessary for the algorithm for
WDFA in [ |. The algorithm is given a WDFA M, and returns the hyper-minimal WDFA.
First, M is minimised using a minimisation algorithm by Eisner | | or if the WDFA is also a
DFA by Hopceroft | |, such that we do not have any inaccessible states for the remainder of the
algorithm. Lines 2 and 3 are for the computation of kernel and co-kernel states, which by Lemma
2 can be accomplished with an algorithm for strongly connected components such as Tarjan’s
algorithm | ]. The partition with blocks for almost-equivalent states is computed in Algorithm
2 (2) with the WDFA and the set of co-kernel states as inputs. The results of line 4 are given as
input to state merge algorithm, as seen in Algorithm 3 (3).

Algorithm 1 Structure of hyper-minimization algorithm

Require: a WDFA M with n states
Return: an almost-equivalent hyper-minimal WDFA

M «+ Minimise(M) Hopcroft’s or Eisner’s algorithm; O(n log n)

2: K < ComputeKernel(M) Tarjan’s algorithm; O(n)

K < ComputeCoKernel(M) Tarjan’s algorithm; O(n)

4: (=, t) + Compute Almost Equivalence(M, K) Algorithm 2; O(n log n)

return MergeStates(M, K, =, t) Algorithm 3; O(n)
Table 1: The general structure of hyper-minimization algorithms, as in | | for WDFAs.

The almost-equivalence computation in Algorithm 2 from | | makes use of the almost-

equivalence of states by comparing the right supports. The observation in | , | is that
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the almost-equivalence of states can be obtained with a signature map. The algorithm for WDFAs
needs to account for the weights of transitions. It standardises these weights by calculating the
ratio between weights if and only if those transitions go to a co-kernel state. Note that the right
support of co-preamble states contains a finite amount of strings, therefore the size of the weight
going to such states only impacts the calculated weight for finite amount of accepted strings. For
that reason the signature map only accounts for weights of transitions going to co-kernel states.

Definition 5. (Standard signature) | , def. 10] The standard signature of a state ¢ € @
is the mapping sig, : ¥ — @ x K where for all o € X:

e If §(q,0) € P then sig,(c) = (L,1)

e Else, let 0y € ¥ be the smallest symbol such that §(q, og) € K. Then sig,(c) = (3(q, o) M)

? wt(g,00

The almost-equivalence of states p,q € ) can be characterised by their standard signature. The
proof is shown in | , p- 9-11].

Lemma 3. (Almost-equivalence by signature) | , Lemma 11] Let p,q € Q. If
sig, = sig, then p ~ q.

The weighted merge of two states ¢ into ¢’ using a scaling factor k is shown in Definition 6.
This first defines, if ¢ was the initial state, that the values for ¢} and k{ are updated. Secondly, all
transitions, and corresponding weights, that go to ¢ need to updated to go to ¢ instead. Note that
the merging of kernel states into another state does not produce an almost-equivalent automaton
in hyper-minimisation. Implicitly, this input is rejected.

Definition 6. (State merge) | , def. 5] Let q,¢ € Q and k € K with ¢ # ¢. The
k-weighted merge of ¢’ into ¢ for WDFA M is mergep, (¢’ LA q) = (Q\{d}, %, ¢, ki, 6", wt', F\{¢'})
such that for all r € @ and o € 3:

a1 1 if go = ¢ ) keky =
‘ qo otherwise 0 ko otherwise
o=l e =d gy ) kewtlne) (o) =4
d(r,o) otherwise wt(r, o) otherwise

Consider the example of hyper-minimisation of WDFA M; in Figure 5. We calculate the signature
of ¢,. Note, ¢g is co-preamble and q3 is co-kernel. The signature map first reads a, then b, where b
is the smallest symbol o because wt(gi,b) = 2 and g3 is co-kernel. Then, sig,, = ((L, 1), (g3, 3)).
Now for g3. We see ¢4 and g5 are both co-kernel, where wt (g3, a) = 3 is smaller then wt(qsz,b) = 6.
Then, sigg, = ((¢s,3),(q,2)). Idem., ¢4 where o9 = a we have sig,, = ((gs5,1), (@, 3)). We
see that sig,, = sigy. By Lemma 3 we conclude that g3 ~ ¢3 and that these states can be

merged. For the merge by Definition 6. mergey, (g3 LA q) we take k = 2 = 3. We also find that
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(a) A minimal WDFA M; of which ¢3 and ¢4 (b) The hyper-minimal WDFA M of M; where
are almost-equivalent and gg and g are almost- g3 merged into ¢4 with scaling factor 3 and ¢
equivalent. merged into g with scaling factor 1.

Figure 5: An example of hyper-minimisation on a WDFA.

Sig% = <<—L> 1)7 (L7 1)> = Sigg‘

By Lemma 3 the almost-equivalence is computed in Algorithm 2 as also described in | , P-
11]. This algorithm takes the automaton M and the set of co-kernel states K as input, and returns
a partition of () with the almost-equivalence for states, as well as the scaling map that defines the
scaling factor for the states that need to be merged.

Line by line, Algorithm 2 does the following execution: Lines 1-2 initialises the variables for
the almost-equivalence partition 7w to be ”the trivial partition, in which each state forms its own
block” | , p- 8] and the scaling map f for each state. Line 3 initialises the empty hash map h
for the signature map, and the set of remaining states I to loop over. Line 5-16 is the loop body for
states ¢ € I, where ¢ is implicitly removed from [ at the end of a loop iteration. Line 5 calculates
the signature map by Definition 5. If the hash map already contains this exact signature, then ¢ is
almost-equivalent to some other state by Lemma 3. Line 7 retrieves the block of states with the
same signature as ¢. Line 8-9 is an efficiency optimisation where the state representing the larger
block (g) is merged into | , p. 41]. Line 10 adds the predecessors of the state that gets merged
back to I, in the case that merging ¢’ changes the almost-equivalence status of its predecessors.
Line 11 calculates the scaling factor for the merging state ¢’. Line 12 performs the merge as defined
by Definition 6 (where ¢’ is rejected if ¢ € K). Line 13 adds ¢’ to the block of ¢. Lines 14-15
recompute the scaling factors for all almost-equivalent states that were in the block of ¢, so that
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these can be merged later by Algorithm 3. Line 16 adds the signature map for state q, with which
we started the for-loop, to the hash map.

The merging that happens in Algorithm 3 simply goes over each block in the almost-equivalence
partition that it is given as input. Then, it merges all preamble states into some selected state in
the block with the appropriate scaling factor.

Algorithm 2 Algorithm computing the almost-equivalence ~

Require: a minimal WDFA M anbd its co-kernel states K

Return: almost-equivalence ~ as a partition and scaling map f: @ — K
for all ¢ € @ do

2: w(q) < {q}: f(q) + 1 // trivial initial blocks
h<+ 0,1+ Q // hash map of type h: Q* — Q
4. for all ¢ € I do
sUCC 4 Sigy // compute standardised signature us-
ing 6 and K
6: if HasValue(h, succ) then
q « Get(h, succ) // retrieve state in bucket ’succ’ of h
8: if [7(¢')| = [m(q)| then
Swap(q,q') //exchange roles of ¢ and ¢
10: I—Tu{re@Q\{d}|FoecX:6(r0)=q} // add predecessor of ¢
f(d) + %/’%) / // add precessors of ¢’
12: M < mergen (¢ EACRN q) // merge ¢’ into q
7(q) « 7(q) Un(q) // q and ¢’ are almost-equivalent
14: for all r € n(¢') do
f(r) < f(r)- f(d) // recompute scaling factors
16: h < Put(h, suce, q) // store ¢ in h under key 'succ’

return (h, f)

Table 2: Algorithm for calculating almost-equivalence and the corresponding scaling map, as
in | | for WDFAs.

The principles that are used for the computation of almost-equivalent states for the weighted
setting of WDFAs states are transferable to the probabilistic setting of PDFAs.
For the almost-equivalence relation we let the almost-equivalence for languages, PDFAs and states
be the same as for WDFAs (Definition 5) with adjustment to the possible set of scalars R and
the appropriate definition of right support.

Definition 7. (Almost-equivalence) for PDFAs:

e Two probabilistic languages 1, gy are almost-equivalent if for almost all s € >* holds
©1(8) = k - ¢a(s) for some factor k € R.y.

e Two PDFAs M; and M, are almost-equivalent if ¢, is almost-equivalent to ¢y, with factor
k=1.
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Algorithm 3 Merging almost-equivalent states
Require: a minimal WDFA M, its kernal states K, its almost-equivalence ~ and a scaling map
f:Q—-K
Return: hyper-minimal WDFA M that is almost-equivalent to the input WDFA
for all B € (Q/ =) do
2: select ¢ € B such that ¢ € K if possible

for all ¢ € B\ K do
fd)
4: M + mergey(qd =2 q)

return M

Table 3: The algorithm for merging almost-equivalent states, as in | | for WDFAs.

e Two states p,q € @ are almost-equivalent if for a finite amount of strings s € ¥* holds that
T(s) # k- P (s) for some k € Ry,

The reason why the principles for almost-equivalence can be transferred is because both weighted
settings share a monoid in their semiring.

The weighted setting for WDFAs has its weights taken over a commutative semifield (K, +,-,0,1) |
where K is a set of weights. This semifield includes the commutative monoid (K, -, 1). The proba-
bilistic semifield is ([0, 1], max,-,0,1) [ |. Evidently, if we take K = [0, 1] then these semifields
share the commutative monoid ([0, 1], -, 1). Because WDFAs and PDFAs, as well as the algorithm
for hyper-minimisation of WDFAs, exclusively use the monoid for - we transfer the knowledge
gained from hyper-minimisation for WDFAs to that of PDFAs.

Precisely, the definition of the signature map in Definition 5 and the corresponding Lemma 3
for almost-equivalence of states is identical for PDFAs. Both WDFAs and PDFAs have a ratio of
weights by which the signature map is able to recognise the almost-equivalence between states. This
follows from the practically identical definitions for almost-equivalent states between Definition 4
and 5.

Arguably, the construction for a WDFA for K = [0, 1] is equivalent to that of PDFAs with
exception for the initial weight, final probabilities and reduced stochastic property. We will show
that the first two exceptions are trivial differences. The reduced stochastic property is a major
differentiating property, that, as shown through a counter-example in Section Examples, can not
be preserved for all state merges.

Lemma 4. (Initial weight) The initial weight in a WDFA and non-existent initial weight in a
PDFA are not differentiating properties for hyper-minimisation.

Proof: The initial weight of the WDFA can be set to equal one, such that it is the identity of the
monoid and no longer has an impact on the language accepted by the WDFA. Then, it matches
the description for the non-existent initial weight of a PDFA.

Lemma 5. (Accepting states) The accepting states in a WDFA and accepting states with
finalisation probabilities in a PDFA are not differentiating properties for hyper-minimisation.
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Proof: All accepting states f € F' of a WDFA can be seen as states for which the final probabilities
in a PDFA would be greater than zero: F/[f] > 0. Then, all appropriate definitions such as right lan-
guage and right support for PDFAs would recognise f as an accepting state. It should be mentioned
that the definitions for valid paths to reach a state in both PDFAs and WDFAs have the constraint
that the weight of the path can not be equal to zero. This equal constraint follows for left languages
and right languages, as well as their supports. For the almost-equivalence of states by Definition 4
and 7 we note that the right support remains equal, since the exact same set of strings are accepted
by the exact same transition map and set of accepting states. It follows that the value of the final
probability need not be considered for the signature map by Definition 5 for its translation to PDFAs.

3.2 Examples

The hyper-minimisation algorithm for WDFAs, as stated, can largely be transferred over to PDFAs.
However, there are instances of merging states with a scaling factor where the resulting PDFA no
longer upholds the reduced stochastic property. In this section we will first go over an example for
which the algorithm for WDFAs can be applied with no issue. Then we give an example where the
reduced stochastic property causes an issue, that can be alleviated by redistributing its probabilities.
Finally, we give a counter-example for a PDFA for which a preamble state is almost-equivalent to
another state, but cannot be merged. For this last example, we define illegal merges. The oppositive
of an illegal merge is a legal merge.

Definition 8. (Illegal merge) An illegal merge is a merge of two states, at least one of which
being preamble, for which no probability distribution P of PDFA M and no scaling factor exists,
such that the merge obtains an almost-equivalent automaton.

In Figure 6 we see the example where the algorithm for a WDFA obtains the hyper-minimal
PDFA M, of M;. In Table 4 we see see the signature map for M;. We note that sig(g) = sig(qo) and
sig(qs) = sigs. By the algorithm we end up with the non-singleton blocks of m = {{¢s, 9}, {¢5-93}}

We merge the states by their respective blocks. The scaling factor k for the merge of g4 LA g is

k= Plae) 025

Ploa) oE % The scaling factor k for the merge g3 LN g is k= ;11.

Signature map

<Q574>7 <Q57 1> qs
(qa, 1), (a5, 1) | g
(¢5,3), (@, 1) | ¢
(g5,3),(qs,1) | g3
<Q27 1>7 <qg> 9> q2
<J-7 1>> <QS>4> q1
(L1, (L1) | g
<J—> 1>’ <J—’ 1> de
(g2,1),{q1, 1) | qo0

Table 4: The signature map for M; in Figure 6a.
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(a) A minimal PDFA M; of which g3 and ¢4 (b) A hyper-minimal PDFA My where g3 merged
are almost-equivalent and gg and g are almost- into ¢4 with scaling factor % and ¢g merged into
equivalent. g with scaling factor %

Figure 6: An example of hyper-minimisation on a PDFA.

Next we consider the example M; in Figure 7. In this PDFA the states g3 and ¢} are almost-
equivalent because for almost all s € X% : ¢ (s) = 6.25 - g3 (s). Precisely, only for one string s = ¢ it

is true that q?(s) #+6.25 - Ef(s) However, when attempting to merge the preamble state g3 into
g3 for k = 6.25 we find that the probability for §'(¢i,b) = ¢5 becomes P'(q1,b) = 6.25 - P(q1,b) =
6.25 - 0.2 = 1.25. By the definition of probabilities and by the definition of the reduced stochastic
property it can not be that a probability of a state exceeds one.

We conclude that the merging algorithm can not be applied to M3 as is. Yet, it is possible
to obtain the hyper-minimal automaton by making some adjustments. In Figure 8 we see an
almost-equivalent PDFA M, to Ms with a different probability distribution over its transitions and
accepting states. Intuitively, distributing the probabilities of M3 in such a way that the scaling
factor is exactly one, assures that two states can always be merged.

The probability redistribution in M, makes use of the definition of almost-equivalence to maximise
the probabilities on the path towards ¢3. Observe that we increase the outgoing probability as much
as possible for the transition from ¢q in the path that reaches ¢3, and for the path the path does
not reach g3 we reduce the probability as much as possible. This is allowed by almost-equivalence
as long as the probability of the right language from the initial state towards an accepting kernel
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Figure 7: A PDFA M; where g3 and ¢4 are almost-equivalent, but can not be merged for the scaling
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Figure 8: An almost-equivalent PDFA M, to Mj after a probability redistribution.

state is equivalent for almost all strings, and as long as all states adhere to the reduced stochastic
property.

By Lemma 6 we can remove the final probability of preamble state ¢;, which allows us to shift
the finalisation probability onto the probability from ¢; to gs. Then, by shifting the probability
P(qo, a) onto the probability from P(gs,b) we lower the sum of probabilities in state gg, allowing the
probability from o to q1 to be raised such that the sum of probabilities in gy equals one. Evidently,
for all s 6supp(q3)1tstandsthatg0Md( ) =0.3-0.472.0.5.0.9 = 0.25-0.41-2.0.6- 09—g0M5( ), for
all s = {bbbz | z € {a,b}*} we have py, (s) = 0.6-0.2:0.625-0.251°173 = 0.75-1-0.1-0.2515173 = . (s),
idem., for all s € supp(§s) : ear,(s) = oar, (s). Thus, Mz and M; are almost-equivalent by Definition
7.

Lemma 6. (Accepting preamble states) A PDFA M with preamble state ¢ € @ and F[q] > 0
is almost-equivalent to the PDFA M’ with M’ = M where F'[q] = 0.
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Proof: : Let ¢ € Q be preamble. Then supp(?) is a finite set. It follows that for all s € Supp(?) :
o (s) # onr(s) is true for finite s. Conclusion: M ~ M’ by Definition 7.

jors K20
b

1
start H< b0.25, a|0.25
a|0.25 b[0.1

al0.4

Figure 9: The hyper-minimal PDFA M;y for Ms;.

The PDFA M, can have state g3 merged into ¢; with a scaling factor equalling one, without
the reduced stochastic property being violated (see Figure 9). Thus, there exist PDFAs that can
not be hyper-minimised by the classic WDFA hyper-minimisation algorithm, yet can be made
hyper-minimal by performing probability redistributions to another (almost-equivalent) PDFA.

Whereas the previous example shows that it is sometimes possible to find a probability distribution
for which a merge is legal, such distribution is not always possible to find. For this we show the
PDFA in Figure 10. By a proof we show that the two almost-equivalent states, one of which
preamble, can never be legally merged for any probability distribution. With this counter-example
we show, by the characterisation of hyper-minimality in Theorem 1, that the hyper-minimal PDFA
cannot be obtained by any state-reduction technique.

The PDFA Mj is an example where g3 and ¢} are almost-equivalent states. In Table 5 we see the
probabilities if we calculate g and ¢5. Then for £ = 10 it holds for almost all strings s € ¥X* that
B(s) = 10+ (s).

However, g3 cannot be merged into ¢4 for its necessary scaling factor. This is because the new
transition b from ¢; to ¢35 would need to exceed the maximum probability of one. We can attempt
to perform a probability redistribution in a new PDFA M’ = Mj as in Figure 8. This does not
make it possible to execute the merge, however, as seen in the proof.

Proof: The merge of g3 into ¢4 for PDFA Mg is an illegal merge.

1. oamr = g if and only if for all s € supp(q}) it is true that par(s) = @ag(s). This stands
because ¢; is kernel and accepting.

2. There does not exists a distribution P’ # P with P’(qo, a) < P(qo, a) where, for all s € supp(q})
it is true that @pr(s) = pag(s). This is because probability on the loop can not be changed,
and because the sum of probabilities on ¢o equals one.
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3. Let P'(¢5,b) > P(q4,b). Then by 1. and 2. this probability needs to be pushed forward
to q4. This is an accepting kernel state, so we find that P'(¢3,0) - F'[qs] = P(¢4,b) - Flqu).

Then for the almost-equivalence of PDFAs we require F'[q4] = Fqa] - 1]33,((2’?)- Consequently,
for P'(q3,b)F'[qs) = P(q3,b)F[q4] to hold we require P'(g3,b) = %. Then for the

scaling factor k = P'(gs,b) - P'(¢},0)~! = P(q?f)[)ég[q‘d ' (P(q%f)[)q'j[qd)_l = P(g3,b) - P(¢},b)"'. In

conclusion, the scaling factor remains the same after pushing the probability P(q},b) forward.

4. By 1. and 3. we conclude that the scaling factor must be k£ = 10. In order for Mg to be

almost-equivalent after a merge g3 RN ¢4 there must exist two probabilities 4, j € [0, 1] for
which i - j - P(¢},b0) = P(qo,b) - P(q1,b) - P(g3,b). Then i - j = 5 which is impossible for
probabilities. In fact, P(qo,b) - P(q1,b) is already maximal.

5. By 4. we conclude that it not possible to merge g5 into ¢4 for the scaling factor of 10 for any

’

start H @ b|0.25, a|0.25
al0.5 @ b|0.1
b|0.5

al0.5

Figure 10: A PDFA Mg where g5 and ¢} are almost-equivalent, but can not be merged.

string q3 a4
€ 0 0.9
a 0 0
b 0.5 0.05
ba 0.125 0.0125
baa | 0.03125 | 0.003125
baa... etc ete
bb == ==

Table 5: The final probabilities of strings starting in states ¢z and ¢}’

By this proof we conclude that there exist PDFAs which contain preamble states that are
almost-equivalent to another state, for which there is no state-reduction technique that obtains a
PDFA without such preamble states. By counter-example we find that the hyper-minimal PDFA,
by the classic notion of hyper-minimal for DFAs / WDFAs, cannot always be obtained.
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[llegal merges are a problem unique to the (reduced) stochastic property of PDFAs for merges of
almost-equivalent states. To illustrate this we look at an example for a classic merge for equivalence.
In figure 11 we see two equivalent states gs and ¢3. Once more, we find that the merge g3 S, a4
cannot occur. However, for equivalence states we can merge kernel states into preamble states

1

without it changing the language. So ¢} 25 g5 is a legal merge to obtain a minimised PDFA. By
swapping the direction of the merge we can find always find a scaling factor £ < 1 such that the
reduced stochastic property holds after the merge.

b]0.5 b|0.6

start H b|0.25, a|0.25
al0.5 @ b|0.1
b|0.

al0.5

Figure 11: A PDFA Mg where g3 and ¢} are equivalent.

4 Merging algorithm

We have shown that the algorithm for computing almost-equivalent states in Algorithm 2 can be
used to compute the almost-equivalent states for PDFAs. But, in the previous section we have
also shown that the merging of states sometimes requires a probability redistribution over the
transitions and accepting states of the current PDFA. For that, we make an alteration to the
merging algorithm. As shown in our counter-example, this altered merging algorithm cannot assure
that merges can occur.

The principle behind the merging algorithm is that we perform a probability redistribution over
the PDFA before each merge, such that the scaling factor for the merge is less or equal to one.
By Algorithm 2 (line 10) we calculate that the scaling factor for a merge ¢’ LA qisk = q :00)
Intuitively, we reduce this scaling factor by redistributing the probabilities of the PDFA suc
that P(q’,00) is as small as possible (minimal) and P(q,0¢) as large as possible (maximal). We
accompany this by Theorem 2.

Theorem 2. (Legal merge) A merge ¢ LN g in PDFA M is legal if and only if there exists an
almost-equivalent probability distribution of M such that & < 1.

Proof:  Assume ¢ LA q is legal for some k. Then there exists a probability distribution such that
all states in the PDFA M obtained after the merge adhere to the reduced stochastic property. Let
M’ be the PDFA with probability distribution P’ that is almost-equivalent to M, where P’(gs, 0q) is
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Algorithm 4 Merging almost equivalent states of PDFA
Require: A minimal PDFA, its kernel states K, its almost-equivalence &~ and a scaling map
F . Q — R>0
Return: A hyper-minimised PDFA with no preamble states that are almost-equivalent to
another state, for which a legal merge exists.

for all B € (Q/ =) do

2. select ¢ € B such that ¢ € K if possible
for all ¢ € B\ K do
4. (M', k) < RedistributeProbabilities(M,q',q) // compute probability redistri-
bution and new scaling factor k
if t<1do
6. M < mergen (¢ LA q)
return M

Table 6: The merging algorithm 3 ( 3) adjusted for PDFAs.

minimal and P’(q}, 0¢) is maximal. Then at least one predecessor p of g3 must be maximal. Then for
some ¢ € ¥ and d(p,0) = ¢4 it the case that p no longer holds by the reduced stochastic property
if P'(p, o) - k' for some scaling factor &’ > 1. By assumption, the merge is legal, so there must be
a scaling factor k' such that p adheres to the reduced stochastic property. Because p is maximal,
this is only possible if this &' < 1. Conclusion: if ¢’ LA q is legal, then there exists a probability
distribution of P such that k£ < 1.

As show in for Figure 10 it is not always possible to find a distribution of probabilities that
allows for a legal merge. If a distribution exists for a legal merge, then the proof for merging in the
hyper-minimisation of WDFAs suffices | ]

Because the almost-equivalence relation is transitive | , Lemma 2.8, p. 73] we may redis-
tribute the probabilities of a PDFA M such that the obtained M’ is almost-equivalent to M. By
transitivity it follows that the hyper-minimised PDFA of M’ is also almost-equivalent to M. Since
it does not need to be equivalent we can formulate an algorithm that is greedier than for weight
redistributions for weighted automata that need to be equivalent (e.g. | , p29]).

Lemma 7. (P, P Almost-equivalence) States that are co-preamble and preamble are almost-
equivalent to the garbage state and can merged / removed freely.

Proof:  The proof follows from the definition of the standard signature (Definition 5).

4.1 Probability redistribution algorithm

The probability redistribution computation occurs in the next three steps. The algorithm receives a
minimal PDFA M and the states ¢/, ¢ where ¢’ merges into ¢. It returns the PDFA such that the
outgoing transitions of ¢’ are minimal and the outgoing transitions of ¢ are maximal.
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Step 1. Prune the automaton by Lemma 6. and Lemma 7. such that there no final probabilities
on preamble states, and no states that are both preamble and co-preamble. Remove all inaccessible
states.

Step 2. Do a forward walk where the probabilities are pushed. Perform each step only after the
previous step is finished.

1. Start in the initial state gq

2. For all outgoing transitions d(current, o) (with a strictly positive probability) of the current
state that go to a state p from which ¢’ is not reachable do: Push probabilities forward such that
the outgoing transition P(current, o) becomes minimal, P(q, o) is maximal and M remains
almost-equivalent. For pushing probabilities forward on branching paths, track how much
the probability has increased on each path such that for all py, ps € {d(current,o) | o € X}
holds Zrew®rs) _ Prew@a) g1 411 5 € $3* and such that at least one path P(p, s) is maximal.

Pora(p1.s) Pora(p2;s)
Repeat for each branch.

3. For all outgoing transitions d(current, o) (with a strictly positive probability) of the current
that go to a state p from which ¢’ is reachable: Maximise each of these branching paths to
¢ by repeating step 2 and 3. Track how much the probability has increased on each path

Prew S Prew »S *
such that for all p,ps € {d(current,o) | o € ¥} holds Pold((ppll,S)) = Pold((pp;,s)) for all s € ¥

and such that at least one path P(p, s) is maximal.

Step 3. Return the probability redistributed automaton and k = %.

For the time complexity of the probability redistribution algorithm, where n is the amount of
states of M, we find that Step 1. can be accomplished in O(n) by simply checking all ¢ € @ of
M. Step 2. and 3., under the assumption that maximising the probabilities over branches can be
accomplished by a depth-first search, can be accomplished with a forward walk in O(n). Lastly,
Step 3. simply returns in one line, with time complexity O(1).

The total time complexity of the probability redistribution algorithm is O(n), which is nested in
the merge loop of Algorithm 4 combining for a total time complexity of O(n?).

5 Conclusions and further research

In this thesis we have shown that the hyper-minimisation algorithm using state merges for WDFAs
can be transferred to the probabilistic setting of PDFAs to find an almost-equivalent, hyper-
minimised automaton. This transferral follows from the shared algebraic structures between the two
types of automata, such that the algorithmic components of hyper-minimisation can be transferred
to PDFAs. That such an algorithm exists means that hyper-minimisation is a lossy compression
technique that can be applied in practice to a PDFAs to obtain an automaton that is smaller, thus
improving the efficiency of that model. However, there are circumstances where the hyper-minimal
PDFA can not be obtained, due to the existence of illegal merges formed by the stochastic constraint.
By analysis and by the proposed probability redistribution algorithm we provide a calculation and
characterisation for when a state-reduction can be successfully applied. This work thus provides a
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foundation for understanding the trade-offs between state-reduction and distributional fidelity in
probabilistic deterministic finite automata.

The existence of illegal merges lowers the effectiveness of the hyper-minimisation technique in its
capacity to reduce the size of the automaton. For this reason hyper-minimisation may always not be
the best option for the lossy compression of PDFAs. Instead, an algorithm that works on minimising
a PFA where equivalences of probabilities are permitted a certain error, such as | ], may give
better results. That said, these different compression techniques do not necessarily invalidate each
other, and sometimes can be applied sequentially to obtain an even smaller PDFA. Furthermore,
there may be probabilistic data models which prefer its compression to be onto finite strings, which
hyper-minimisation is purposed for.

A consideration for hyper-minimisation on PDFAs as a compression technique is that it does
not regard high probability words as important. In Figure 12 we can see that the string b’ has
a corresponding probability of 0.9. After hyper-minimisation we no longer accept any string ’b’
because hyper-minimisation does not retain such finite strings. However, practical applications
of PDFA may have a preference for retaining words with high probability. For these applications
hyper-minimisation can end up producing an automaton with too much information loss.

Prior research into hyper-minimisation elaborated on canonical languages. These are a subset of
languages that can be described by hyper-minimal automata. While this is open for further research,
it remains an issue that the hyper-minimal PDFA can not always be obtained. Instead, further
research could be to find and characterise the class of PDFAs that can always be hyper-minimised,
and to find their corresponding set of languages.

This thesis can be expanded upon by translating its findings to Markov chains, where applicable
by determinism. Before that, expanding hyper-minimisation to the non-deterministic setting, which
does not yet see any advancements for classic finite automata or weighted finite automata, would be
the place to start. There, the possibility that there exists a possibly more efficient hyper-minimisation
algorithm without state merges for deterministic or non-deterministic FAs would also be of interest.

The algorithm for the hyper-minimisation of PDFAs can see more development by finding an
optimal hyper-minimisation where the number of errors is as few as possible for a hyper-minimal
automaton. The proposed probability redistribution algorithm makes use of a greedy pruning step,
where all finalisation probabilities are removed before redistribution. The redistribution algorithm
can be improved by only removing these finalisation probabilities when demanded for a legal merge.

The stochastic property is evident to be violated by state-reduction in certain scenarios. Then,
further research could look to relax this constraint where allowed. For instance, it may be possible
to form an almost-equivalent PDFA with probabilities that exceed one on some transitions, for as
long as probabilistic distribution of the language remains less or equal to one.
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(a) A minimal PDFA. (b) The hyper-minimal counterpart.

Figure 12: Example of information loss of high probability after hyper-minimisation.
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