
Opleiding Informatica

Designing an Auto-Scalable

Benchmark Suite for GPU Kernels

Jeppe Vonk

Supervisors:
Ben van Werkhoven & Skip Thijssen

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 22/08/2025

www.liacs.leidenuniv.nl

Abstract

Identifying the saturation point of GPU kernels, the input size beyond which performance no
longer scales proportionally, is essential for optimizing high-performance computing workloads.
Manual benchmarking is often required for this task, but it is time-consuming and error-prone.

This thesis introduces Autobench, a framework that automates benchmarking and sat-
uration point detection. It combines filtering techniques with knee detection algorithms,
specifically the Triangle method and the Kneedle algorithm. The framework was evaluated
on two representative workloads, a bandwidth-bound Vector Addition and a compute-bound
General Matrix Multiplication (GEMM), using NVIDIA Ada GPUs.

The results show that Autobench reliably detects saturation points across both kernels.
For GEMM, the detection is very stable and yields identical results across repeated runs and
devices. For Vector Addition, detection remains robust despite small run-to-run variations,
reflecting the sensitivity of memory-bound workloads to system fluctuations. These findings
demonstrate that saturation point detection can be automated in a practical and interpretable
way, reducing the need for manual analysis. Future work includes extending the framework to
various kernels and architectures, and integrating adaptive tuning and multi-method detection
to improve generality and robustness.

Contents

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Aim and Question . 1
1.3 Contributions . 2
1.4 Thesis Overview . 2

2 Background and Related Work 3
2.1 GPU Architecture and Kernel Execution . 3
2.2 Benchmarking for GPU Performance Evaluation . 3
2.3 Existing GPU Benchmark Suites . 4

2.3.1 Rodinia . 4
2.3.2 Parboil . 4
2.3.3 SHOC . 5

2.4 Limitations of Static Benchmark Suites . 5
2.5 Auto-Tuning with Kernel Tuner . 5
2.6 Motivation for Auto-Scalable Benchmarking . 6

3 Methodology 7
3.1 Phase I: Configuration . 7

3.1.1 Benchmark Configuration Interface . 7
3.1.2 Dynamic Loading of Benchmark Definitions 8
3.1.3 Kernel and Argument Handling . 8
3.1.4 Performance Metrics and Analysis . 9
3.1.5 Configuration Example: Vector Addition . 9

3.2 Phase II: Autoscaling . 10
3.2.1 Initialization and Maximum Size Estimation 10
3.2.2 The Scaling Loop . 10
3.2.3 Saturation Detection Algorithms . 11
3.2.4 Post-Saturation Continuation and Termination 13

3.3 Phase III: Exporting . 13
3.3.1 Data Visualization . 14
3.3.2 Data Export . 14

3.4 Summary . 14

4 Results 15
4.1 Experimental Setup . 15
4.2 Vector Addition . 16

4.2.1 NVIDIA RTX 4000 Ada . 16
4.2.2 NVIDIA RTX 5000 Ada . 18

4.3 General Matrix Multiplication . 20
4.3.1 NVIDIA RTX 4000 Ada . 21
4.3.2 NVIDIA RTX 5000 Ada . 23

5 Discussion 26
5.1 Limitations . 26
5.2 Future Research . 27

6 Conclusion 28

References 30

1 Introduction

In recent years, Graphics Processing Units (GPUs) have become essential components in high-
performance computing. Their massively parallel architecture makes them ideally suited for ac-
celerating data-parallel workloads in fields such as machine learning, scientific simulations, and
image processing. Compared to traditional Central Processing Units (CPUs), GPUs offer signif-
icantly higher computational throughput and energy efficiency for many types of compute- and
memory-intensive tasks.
At the heart of GPU-accelerated applications are GPU kernels, functions executed across thousands
of threads in parallel. Optimizing these kernels is crucial for achieving efficient, scalable perfor-
mance. To this end, benchmark suites play a central role. They provide standardized, controlled
methods for evaluating kernel behavior under various conditions [HP17]. Popular suites such as
Rodinia [CBM+09], SHOC [DMM+10], and Parboil [SRS+12] are widely used to compare hardware
platforms, detect bottlenecks, and guide optimization efforts.
However, most existing GPU benchmark suites are constrained by static configurations, often
requiring manual reconfiguration to target different devices. This rigidity limits their usefulness in
modern computing environments, where GPU architectures vary significantly in capabilities, memory
bandwidth, and processing power. As a result, fixed-size benchmarks may either underutilize or
oversaturate hardware, leading to misleading performance assessments and inefficient use of energy
and resources.

1.1 Motivation and Problem Statement

As GPUs become increasingly heterogeneous, the need for adaptive and intelligent benchmarking
tools grows. Traditional benchmarks fail to detect saturation points, the thresholds beyond which
increasing problem sizes yield diminishing performance returns. They also lack the ability to
dynamically tune workloads in response to system feedback, which hampers automated performance
studies and cross-platform comparison.
A benchmark suite that can automatically adapt its workload to the performance characteristics
of the GPU it runs on, scaling problem sizes up or down as needed, would address this challenge.
Such a system could provide more meaningful performance insights, reduce unnecessary energy
consumption, and support scalable evaluation across diverse GPU platforms.

1.2 Research Aim and Question

The central goal of this thesis is to design and implement an Auto-Scalable Benchmark Suite
for GPU Kernels, a flexible benchmarking framework that dynamically adjusts workload sizes
based on device characteristics and observed performance behavior.

“Can we design an Auto-Scalable Benchmark Suite for GPU Kernels?”

To explore this question, the thesis will pursue the following sub-goals:

• Develop a set of representative GPU benchmarks, categorized into bandwidth-bound and
compute-bound workloads.

1

• Implement auto-scaling mechanisms that incrementally adjust problem sizes during bench-
marking.

• Detect GPU throughput saturation points to avoid inefficient configurations.

• Record device specifications and associate them with benchmark results.

• Use the KernelTuner framework [van19] to execute and tune kernels.

• Evaluate the framework across multiple GPUs and analyze performance data.

1.3 Contributions

This thesis offers the following contributions:

• A prototype framework for building and running auto-scalable GPU benchmarks.

• A methodology for detecting and recording performance saturation points.

• A reusable dataset that maps GPU models to optimized benchmark configurations.

• An evaluation of scalability behavior across different GPU architectures.

1.4 Thesis Overview

This thesis is organized as follows. Section 2 presents the background theory on GPU architecture,
kernel execution, and benchmarking, and discusses related work including Rodinia, Parboil, and
SHOC. Next, Section 3 details the design and implementation of the auto-scalable benchmark
suite, including benchmark selection, scaling mechanisms, and the integration with KernelTuner.
Section 4 presents the outcomes of running the suite across different GPU architectures, analyzing
throughput and saturation points. Finally, Sections 5 and 6 reflect on the findings, discuss the
strengths and limitations of the approach, suggest directions for future work, and summarize the
main contributions and conclusions of the thesis.

This bachelor thesis is part of the Computer Science program at the Leiden Institute of Advanced
Computer Science (LIACS), supervised by Dr. Ben van Werkhoven and PhD candidate Skip
Thijssen.

2

2 Background and Related Work

Section 2 provides a detailed overview of GPU architecture, performance benchmarking method-
ologies, and representative benchmark suites. The section is structured as follows. Section 2.1
introduces core GPU architecture and kernel execution concepts. Section 2.2 and Section 2.3
discuss how benchmarks are used to evaluate GPU performance and highlight several established
benchmark suites. Section 2.4 outlines their key limitations, while Section 2.5 introduces Kernel
Tuner, a tool for automated tuning. Finally, Section 2.6 motivates the need for a dynamic, scalable
benchmarking approach.

2.1 GPU Architecture and Kernel Execution

Modern Graphics Processing Units (GPUs) are purpose-built for high-throughput, data-parallel
workloads. In contrast to Central Processing Units (CPUs), which are optimized for low-latency,
sequential execution, GPUs consist of thousands of lightweight cores organized into multiprocessor
units. The terminology for these units varies by vendor: for instance, NVIDIA refers to them as
Streaming Multiprocessors (SMs), while AMD uses the term Multithreaded SIMD Processor [HP17].
These cores operate under the Single Instruction, Multiple Threads (SIMT) model, where groups of
threads, often referred to as warps (NVIDIA) or wavefronts (AMD), execute the same instruction
concurrently on different data elements. This model enables massive parallelism while also handling
control flow divergence efficiently.
A central concept in GPU programming is the kernel, a parallel function written in languages
such as CUDA [NBGS08, Lue08] or OpenCL [Mun09] and launched across a grid of thread blocks.
Each thread executes the same code independently on a subset of data, mapped to the underlying
SMs. Kernels are typically compact yet performance-critical components of larger, real-world
applications [HP17].
To achieve high performance, developers must carefully optimize kernel characteristics, including
memory access patterns, thread block size, and instruction-level parallelism. These optimizations
also involve tuning occupancy, how efficiently hardware resources are utilized, often requiring
device-specific adjustments. As a result, performance tuning for GPU applications is both complex
and architecture-dependent.

2.2 Benchmarking for GPU Performance Evaluation

Benchmarking is a foundational technique for evaluating and optimizing GPU performance. By
executing kernels under controlled workloads, benchmarks help expose how architectural features,
such as memory hierarchy, thread scheduling, and compute density, influence throughput, latency,
and overall resource utilization.
However, individual benchmark results can be misleading due to design-specific biases or dependen-
cies on hardware and compiler configurations [HP17]. To address these limitations, benchmark suites
aggregate a diverse set of tests, enabling broader and more reliable performance characterization
across different workloads and architectures.
GPU benchmark suites generally fall into three categories:

• Synthetic benchmarks (or microbenchmarks) isolate specific architectural aspects, such as
memory bandwidth or instruction throughput.

3

• Application benchmarks mimic real-world workloads drawn from domains like scientific
computing, imaging, or machine learning.

• Benchmark suites combine both synthetic and application-style benchmarks to provide
comprehensive coverage of performance dimensions.

These benchmarks also target different kernel bottlenecks:

• Bandwidth-bound kernels are limited by memory access speed.

• Compute-bound kernels are constrained by arithmetic throughput.

• Latency-bound kernels are affected by instruction dispatch delays or memory access
latency.

• Contention-bound kernels suffer from synchronization overhead or frequent use of atomic
operations.

2.3 Existing GPU Benchmark Suites

Several GPU benchmark suites have been widely adopted for performance evaluation, architecture
research, and compiler optimization. Among the most prominent are Rodinia, Parboil, and SHOC.
These suites provide curated workloads that span different application domains and parallelism
styles, but each exhibits limitations in adaptability and automated tuning.

2.3.1 Rodinia

Rodinia [CBM+09] is designed to evaluate heterogeneous platforms, including multicore CPUs and
GPUs. Its workloads are selected based on the Berkeley Motifs taxonomy (originally referred to
as “Dwarfs”), covering diverse domains such as medical imaging, physics simulation, and machine
learning. The suite emphasizes a variety of parallelism patterns, including data, task, and pipeline
parallelism, and offers implementations in CUDA and OpenMP [DM98].
Rodinia is grounded in real-world applications, providing realistic performance behavior. However,
its workloads typically use fixed input sizes and require manual parameter tuning, which limits
scalability across architectures with different resource constraints.

2.3.2 Parboil

The Parboil benchmark suite [SRS+12] targets throughput-oriented computing and includes work-
loads such as MRI-Q, stencil computations, SGEMM, and sparse matrix-vector multiplication
(SpMV). It categorizes benchmarks by performance bottlenecks, such as being compute- or memory-
bound, and supports multiple backends, including CUDA, OpenCL, and OpenMP.
A distinguishing feature of Parboil is the inclusion of multiple versions per benchmark:

• A baseline version that ensures correctness but is not optimized.

• An architecture-optimized version that showcases performance tuning for specific hard-
ware.

4

• A pedagogical version with readable code for teaching and experimentation.

While Parboil provides standardized input datasets to support reproducibility, it does not in-
clude mechanisms for dynamic input scaling or automated performance tuning, requiring manual
adaptation for each new target architecture.

2.3.3 SHOC

SHOC (Scalable HeterOgeneous Computing) [DMM+10] includes both low-level microbenchmarks
and higher-level application-style kernels. It features tests such as FFT, GEMM, and reductions,
and supports CUDA and OpenCL backends. Notably, SHOC can be deployed on multi-node systems
using MPI, making it suitable for evaluating performance across heterogeneous clusters.
Despite its versatility and wide hardware compatibility, SHOC benchmarks are configured with
fixed problem sizes and do not incorporate dynamic workload scaling or saturation detection. As
with Rodinia and Parboil, this limits its out-of-the-box adaptability for performance studies across
modern, diverse GPU platforms.

2.4 Limitations of Static Benchmark Suites

Despite their widespread use, benchmark suites such as Rodinia, Parboil, and SHOC exhibit several
critical limitations that hinder their effectiveness on modern, heterogeneous GPU architectures:

• Static input sizes limit adaptability across GPUs with varying compute and memory
capabilities, making it difficult to evaluate scaling behavior or utilize available resources
effectively.

• Manual tuning requirements reduce reproducibility and increase development overhead,
particularly when targeting new hardware or comparing across architectures.

• Lack of saturation detection prevents identifying the point at which a larger problem
size no longer yields meaningful performance improvements, potentially leading to misleading
conclusions due to underutilization (not fully utilizing hardware capacity) or overutilization
(exceeding capacity and causing throttling).

These constraints reduce the representativeness and portability of benchmark results. As GPU
hardware becomes increasingly diverse and specialized, there is a growing need for dynamic, adaptive
benchmarking methodologies that automatically respond to architectural differences and runtime
behavior. Such approaches not only improve evaluation accuracy but also help make benchmarking
frameworks more future-proof, allowing them to remain effective across generations of evolving
hardware platforms.

2.5 Auto-Tuning with Kernel Tuner

Rather than manually determining suitable parameters for every new GPU, tools such as Kernel
Tuner [van19] were developed to automate this laborious process. Kernel Tuner is a Python-based
framework for automated tuning of GPU kernels, supporting CUDA, OpenCL, and C backends. It

5

allows developers to define parameterized kernels and empirically search for optimal configurations
based on metrics such as execution time, occupancy, memory usage, or energy efficiency.
Kernel Tuner facilitates:

• Exploration of tuning parameters such as thread block size, memory layout, loop unrolling,
and tiling factors.

• Execution of kernels across varying input sizes to profile performance under different workload
scenarios.

• Integration with scientific workflows for automated and reproducible performance tuning.

While Kernel Tuner is not a benchmarking suite, as it lacks standardized kernels or datasets,
it serves as a powerful tool for dynamic performance tuning. Its flexibility makes it well-suited
for embedding within larger benchmarking or optimization frameworks, enabling fine-grained,
architecture-aware performance exploration.

2.6 Motivation for Auto-Scalable Benchmarking

This thesis builds upon established GPU benchmark suites and tuning frameworks by proposing an
auto-scalable, device-aware benchmarking framework. The approach integrates three key elements:

• The workload diversity and domain realism of Rodinia, Parboil, and SHOC.

• The adaptive parameter tuning capabilities of Kernel Tuner.

• A novel mechanism for dynamic input scaling and saturation point detection.

By incrementally increasing problem sizes and monitoring key performance metrics such as through-
put, the framework identifies optimal workload configurations tailored to the capabilities of each
target GPU. This avoids both underutilization and oversaturation, enabling efficient and fair
performance evaluation across heterogeneous architectures.
In doing so, this work addresses a key gap in current GPU benchmarking practices by advancing
the goals of scalability, reproducibility, and hardware adaptivity, critical for evaluating modern and
future compute platforms.

6

3 Methodology

The methodology of this project is structured as a three-phase benchmarking pipeline, designed to
be reproducible, automated, and hardware-agnostic. The phases are as follows: (1) Configuration,
where the benchmarking scenario is defined and prepared; (2) Autoscaling, where benchmarks
are executed at increasing problem sizes until a saturation point is detected; and (3) Exporting,
where collected results are structured, stored, and visualized. This pipeline is implemented in the
Autobench framework, which was developed as part of this project. Each phase addresses a key
component of benchmarking GPU kernels in a scalable and automated way, while abstracting away
unnecessary boilerplate and infrastructure details. The remainder of this section elaborates on the
design decisions and mechanisms underpinning each of these phases, starting with the configuration
stage.

3.1 Phase I: Configuration

The configuration phase defines the benchmarking scenario and prepares all required inputs for
execution. This includes specifying which GPU kernel to benchmark, how to generate inputs for
varying problem sizes, and how performance should be measured and interpreted. The goal is to
decouple the benchmark definition from the execution logic, enabling users to easily swap in new
benchmarks with minimal effort.
In Autobench, benchmark configuration is centered around a user-defined subclass of a base class
called BenchmarkConfig. This configuration object encapsulates all the information necessary to
run a benchmark: kernel source, kernel arguments, tunable parameters, correctness checks, and
performance metrics. Configuration classes are loaded dynamically at runtime and must implement
a minimal interface to allow full automation in later phases.

3.1.1 Benchmark Configuration Interface

The configuration interface is designed as a single abstract base class, BenchmarkConfig, which
defines the contract that any user-defined benchmark must fulfill. This object acts as the bridge
between the user-provided kernel code and the benchmarking infrastructure provided by Autobench.
At a high level, the interface provides three key responsibilities:

• Build configuration: For a given problem size, prepare the arguments and internal state
needed to execute the benchmark. This is done through the abstract method
build(problem size).

• Result interpretation: After running a benchmark, the method analyze results(results)

is used to extract and compute key metrics, such as execution time or memory bandwidth.

• Kernel source resolution and tunable parameters: The configuration holds informa-
tion about the kernel source, tuning parameters (e.g., thread block sizes), device options,
optional verification functions, and many other options that are supported by Kernel Tuner’s
tune kernel(...) function.

By requiring only a few concrete implementations from the user, this interface allows the bench-
marking tool to remain generic and extensible. For instance, switching from benchmarking a matrix

7

multiplication kernel to a convolution kernel typically only involves creating a new configuration
class that implements build and analyze results accordingly.
Internally, the configuration is represented using Python @dataclass constructs, which provides a
declarative and type-safe way of organizing benchmark parameters. Optional fields such as shared
memory arguments, device/platform selection, and compiler flags are included with sensible defaults,
ensuring flexibility without overwhelming the user.

3.1.2 Dynamic Loading of Benchmark Definitions

To ensure modularity and ease of use, benchmark definitions are loaded dynamically from Python
files provided by the user. This allows benchmarks to be defined outside of the main benchmarking
tool and encourages reuse and separation of concerns.
The entry point for dynamic loading is the class method from file(...), which takes a path to
a user-defined Python module and a starting problem size. The expected convention is that this
file defines a function name get config(problem size), which returns an instance of a class that
implements the BenchmarkConfig interface.
The loading logic performs the following steps:

1. Uses Python’s importlib to load the specified module in isolation.

2. Ensures that the module contains the required get config function.

3. Calls get config(problem size) to retrieve a configuration instance.

4. Validates that the returned object conforms to the expected protocol.

This approach enables complete decoupling between the benchmarking engine and the user-defined
benchmark, making it easy to plug in new configurations without modifying core code. Additionally,
by reusing the same entry point for all benchmarks, automated tooling (e.g., testing harnesses or
visualization tools) can treat all configurations uniformly.

3.1.3 Kernel and Argument Handling

Once a benchmark configuration is loaded, the kernel source and arguments must be resolved in a
way that is compatible with the underlying benchmarking backend, in this case, Kernel Tuner. The
method get kernel source() is used to prepare kernel source files or callable source generators in
the format expected by Kernel Tuner. It handles flexible input types, including strings, file paths,
and dynamic code generators.
For each problem size in the autoscaling phase, the method build(problem size) is invoked. This
method regenerates all kernel arguments, such as input/output arrays, based on the new size. This
ensures correctness and consistency across benchmarks at different scales. For example, if the kernel
processes arrays of length N , the arguments will be reallocated and repopulated with fresh random
values or zeros accordingly.
Once all data is prepared, the to kwargs() method converts the configuration into a dictionary
of keyword arguments that can be directly passed to Kernel Tuner. This includes both required
fields (e.g., kernel source, arguments, tuning parameters) and optional fields (e.g., metric functions,
platform selection).

8

3.1.4 Performance Metrics and Analysis

Each benchmark is responsible for defining its own performance metrics by implementing the
analyze results(results) method. The results dictionary, returned by Kernel Tuner after
execution, typically includes raw timing measurements and any additional statistics captured during
benchmarking.
The user-defined analysis function extracts the relevant values from the result and computes two
return values:

• A primary metric, usually kernel execution time in milliseconds.

• A secondary metric, which could be domain-specific performance indicators such as throughput
(e.g., GB/s or GFLOP/s), or energy usage.

To facilitate this, BenchmarkConfig allows users to define a custom dictionary of named metrics via
the metrics field. Each entry in this dictionary maps a metric name to either a lambda function
(computed from the raw results) or a string indicating which result field to extract.
This design allows for flexible and expressive performance evaluations while preserving compatibility
with Kernel Tuner’s built-in metric recording.

3.1.5 Configuration Example: Vector Addition

To illustrate the configuration phase, consider the example of a simple vector addition kernel.
The kernel takes two input arrays A and B, and produces a third array C, where each element is
computed as C[i] = A[i] + B[i]. This is a memory-bound operation, and its performance is
often measured in effective memory bandwidth (GB/s).
In the build method of the configuration, random input vectors of a given problem size are
generated using NumPy, and the output vector is initialized to zeros. The kernel arguments list is
then populated with these arrays and the scalar size parameter.
The analyze results method computes memory bandwidth by assuming two memory reads (for A
and B) and one write (for C) per element, each of which is a 4-byte float. The resulting throughput
in GB/s is calculated using the formula:

GB/s =
(2 reads + 1 write)× sizeof(float)× problem size

time s

Although the vector addition kernel is simple, it demonstrates the flexibility of the configuration
interface. By changing only the kernel string and adapting build and analyze results, a new
benchmark scenario can be created with minimal effort.

Summary and Transition In summary, the configuration phase establishes the foundation of
the benchmarking workflow. It defines what is to be benchmarked, how to generate inputs for it,
and how to measure performance meaningfully. With this infrastructure in place, the next phase
focuses on systematically exploring how the benchmark behaves across a range of problem sizes
and identifying performance trends.

9

3.2 Phase II: Autoscaling

The second phase of the benchmarking pipeline involves an automated, iterative scaling of the
benchmark problem size. The purpose of this phase is to systematically evaluate how the performance
of a kernel evolves as the input size increases, with the ultimate goal of identifying a saturation
point, a region in the input space where performance improvements begin to plateau or regress. This
information is crucial for understanding the limitations of the kernel and the underlying hardware.
Autoscaling begins with a small input size and incrementally increases it according to a scale factor.
After each run, performance metrics are collected and stored. A saturation detection algorithm
monitors the performance curve and signals when the scaling process can terminate. This process
is designed to be both hardware-aware and adaptive, stopping when further increases in problem
size are unlikely to yield meaningful insights.

3.2.1 Initialization and Maximum Size Estimation

Before the scaling loop begins, several key components must be initialized. First, the autoscaler
constructs the benchmark configuration using the dynamic configuration loader discussed in Phase
I. This ensures that all kernel-specific logic is encapsulated and ready for repeated execution.
Three main variables are initialized at this point:

• results history: a list used to store tuples of the form (problem size, (primary metric,

secondary metric)).

• current size: the problem size used for the first benchmark run, typically set to 1 or a small
constant.

• current scale factor: a float (e.g., 1.1) representing the multiplicative increment applied
to current size after each iteration. This value may also be estimated heuristically based
on the performance trend of previous iterations.

To prevent the device from scaling beyond its capacity, a hardware-aware upper bound is calculated
using the function estimate max problem size. This function first queries the available memory
on the target device and applies a safety factor to prevent over-allocation. Next, the function builds
two small benchmark configurations (e.g., problem sizes 128 and 256) and measures the memory
footprint of all kernel arguments. Assuming that memory usage scales linearly with problem size,
the function estimates the per-element memory consumption and divides the usable memory by
this estimate to determine the largest feasible problem size.
Although this method provides only an approximate bound, as its accuracy depends on the linear
scaling assumption, the small sample size, and and the current state of the device memory, it is
generally conservative. By predetermining this limit, the autoscaler prevents allocation errors and
can focus on input sizes that provide meaningful performance insights.

3.2.2 The Scaling Loop

The autoscaling loop is the core of this phase. At each iteration, the current problem size is
benchmarked, analyzed, stored, and evaluated for signs of performance saturation. This loop

10

continues until one of two termination conditions is met: either the saturation detection algorithm
indicates a reliable plateau, or the estimated maximum input size is reached.
Each iteration of the loop consists of the following steps:

Step 1: Build Benchmark Using the build(current size) method from the configuration, the
benchmark input is regenerated for the new problem size. This step prepares the kernel arguments,
reinitializes arrays, and sets the problem-specific parameters. It ensures correctness and consistency
across different input sizes.

Step 2: Run Benchmark Next, the kernel is benchmarked using Kernel Tuner’s tune kernel

function. The configuration object’s to kwargs() method transforms the benchmark configuration
into a dictionary of arguments compatible with Kernel Tuner’s tuning backend. This step may
result in either a successful benchmark run or a failure (e.g., due to memory limits or invalid kernel
parameters). Failures are caught using a try-except clause; if an exception occurs, the autoscaling
process terminates early, assuming that the maximum practical problem size has been reached.

Step 3: Analyze Results Once a benchmark run completes, the result is passed to the configura-
tion’s analyze results function. This function computes the primary and secondary performance
metrics (e.g., runtime, bandwidth, throughput), returning them as a tuple. These metrics are used
to monitor performance trends over time and to detect saturation.

Step 4: Record History The problem size and associated metrics are added to the
results history. This growing dataset forms the basis for performance curve analysis and visual-
ization in later phases.

Step 5: Check for Saturation To determine whether further scaling is necessary, a saturation
detection function is invoked. This function takes the full results history and the current scale
factor as input, and returns a tuple:

(knee index or scale, saturated)

If saturated is True, it indicates that the performance curve has reached a region of diminishing
returns. Otherwise, the autoscaler continues using the returned scale factor to update the problem
size. This factor may be determined heuristically to adapt to changing performance trends during
execution.

3.2.3 Saturation Detection Algorithms

Detecting saturation points in performance curves is a key component of Autobench’s autoscaling
mechanism, and therefore remains an active area of development, with several strategies being
evaluated. Two notable approaches are: the Triangle method, a simple geometric heuristic related
to the elbow method, and the Kneedle algorithm, a well-known curve analysis technique.

11

Triangle Method The Triangle method is a distance-based heuristic for knee detection. It
is closely related to the “elbow method” used in clustering analysis [Tho53], and a similar ap-
proach was previously used in the Kernel Tuner framework [Ker22a], as part of energy efficiency
detection [SVVWB22], before being replaced by a curve-fitting method [Ker22b]. The idea is to
approximate the location of the maximum deviation from linear growth in a concave curve.
The method works by constructing a line between the first and last points on the performance
curve (e.g., problem size vs. throughput, bandwidth, or runtime). For each intermediate point, the
perpendicular (unsigned) distance to this line is calculated. The point with the greatest distance
is selected as the candidate knee, marking the transition from rapid improvement to plateauing
performance. In some cases, this point may also correspond to an inflection point where performance
begins to decrease; In Autobench, the first strong knee is considered the saturation point.
In terms of implementation, the method requires only a linear pass through the data (O(n)),
making it computationally inexpensive. Autobench applies safeguards to prevent false detections:
at least five data points must be collected, the latest measurement must exceed a minimum runtime
(default: 1ms) to reduce noise, and the perpendicular distance must exceed a threshold before a
knee is accepted. These thresholds are chosen heuristically and were found to improve robustness
during experiments, though further evaluation could provide quantitative evidence.

Kneedle Algorithm The Kneedle algorithm, introduced by Satopää et al. [SAIR11] and available
in the Python package kneed [Arv23], is a well-known method for detecting knees in curves. It
identifies the knee as the point of maximum deviation between the normalized difference curve and
a straight-line baseline, making it suitable for concave, monotonically increasing functions where
the elbow may not always be sharply defined.
In Autobench, Kneedle is applied after at least five measurements are available, with the same
runtime threshold as in the Triangle method to mitigate noise. This ensures that only stable data is
considered. The sensitivity parameter S is adjusted relative to the number of data points, balancing
responsiveness to subtle changes with robustness to measurement variability, ensuring the method
remains flexible across different experimental setups.

Comparison and Usage Both methods focus on identifying the point at which performance
improvements begin to decline. The Triangle method is fast, requires only a few data points, and
is well-suited for early detection, though it may be sensitive to noise and ambiguous when both
knees and inflections are present. The Kneedle algorithm, on the other hand, can handle smoother
transitions and produces consistent results when curves do not exhibit a sharp elbow. The choice of
which method to apply is left to the user, who selects the preferred detection algorithm during
Autobench execution.
It should be noted that Autobench currently always applies knee detection to the secondary metric
(the domain-specific performance indicator, such as throughput or bandwidth), as this most directly
reflects diminishing returns with scaling. The primary metric (often execution time) is retained to
enforce the minimum runtime safeguard and for inclusion in the exported results, but it does not
directly affect the knee computation.

12

3.2.4 Post-Saturation Continuation and Termination

To reduce the risk of misidentifying a local maximum as the global saturation point, the autoscaler
continues for a fixed number of scale loop iterations (currently set to three) after detecting a
knee point. These additional iterations allow the system to observe whether performance starts to
improve again, which would indicate that the initially detected knee was premature. The choice of
three iterations has empirically proven to provide a good balance between confirming saturation
and avoiding excessive measurement overhead.
In addition, several strategies can be considered to further refine the knee location:

• Local sampling: Taking additional measurements in the immediate neighborhood of the
detected knee (e.g., one step before and after) could help confirm whether the knee is stable
or simply an artifact of noise.

• Binary or adaptive search: Instead of linearly increasing problem sizes, a targeted search
could more efficiently refine the precise saturation point more efficiently by repeatedly halving
the search space or adjusting step sizes based on observed gradients.

• Optimization-based scoring: Defining a score function that quantifies how well a point
matches the knee hypothesis (e.g., maximizing curvature or minimizing relative slope) would
enable the use of numerical optimization methods, such as those available in scipy.optimize,
to refine the estimate more systematically.

While these techniques are not part of the current prototype, they represent promising directions
for future work to improve the accuracy and robustness of the autoscaler.

If no saturation is detected before the maximum problem size is reached, the autoscaler terminates
and returns the full performance history. In this case, the maximum problem size is selected as the
optimal workload configuration, as it represents the largest input that can be executed within the
available hardware and mainly memory constraints.

In either case, the output of this phase is a detailed performance curve that maps input sizes to
measured metrics, ready for export and visualization.

Summary and Transition The autoscaling phase enables fully automated performance profiling
across a range of problem sizes. By adapting to memory constraints and incorporating saturation
detection, it produces informative, reproducible benchmarks. In the next and final phase, the
collected data will be structured, saved, and visualized to facilitate interpretation and comparison.

3.3 Phase III: Exporting

The third and final phase of the methodology focuses on exporting the results from the autoscaling
benchmark process. This stage supports both immediate interpretability, through the visualization
of performance trends and saturation points, and long-term utility via the structured export of
collected data for reproducibility, documentation, or further analysis. Although less computationally
intensive than previous phases, this step is crucial for making results accessible, interpretable, and
ready for external review or future processing.

13

3.3.1 Data Visualization

Once the autoscaling loop has completed, the collected performance data, including execution
times and a custom performance metric, can be visualized using a built-in plotting function. This
visualization helps to clearly illustrate how performance evolves as the problem size increases, and
it is especially useful for identifying saturation points where further scaling yields limited benefit.
The system generates a two-axis plot: one axis shows the execution time, and the other shows the
custom metric (for example, throughput or efficiency). Both curves are plotted against the problem
size. If a saturation point (or “knee”) has been detected, it is highlighted on the graph with a visual
marker and an optional label.
Several options are available to tailor the plot, such as linear or logarithmic scaling for either axis,
and the ability to either display the plot interactively or save it as an image. These customizations
help users adapt the visualization to the scale and nature of their workloads.

3.3.2 Data Export

In addition to visual output, the benchmarking results are also written to a CSV file. Each row in the
file contains the tested problem size, the corresponding execution time, the measured performance
metric, and an indicator specifying whether that row represents the detected saturation point.
To ensure reproducibility and prevent accidental overwrites, all exports are saved in timestamped
directories. This allows users to keep a historical record of benchmark runs, which is especially
useful when comparing performance across devices or configurations.
This final phase thus ensures that all benchmarking output is both human-readable and machine-
processable, closing the loop on a fully automated and informative tuning pipeline.

3.4 Summary

This section presented a complete three-phase methodology for adaptive GPU benchmarking using
a novel autoscaling approach:

• Phase I: Configuration established a flexible and modular system for defining benchmarking
tasks, enabling dynamic setup of kernels, devices, and tunable parameters.

• Phase II: Autoscaling implemented a dynamic scaling loop that incrementally increased
problem size, used runtime performance feedback, and applied saturation detection methods,
such as the Triangle and Kneedle algorithms, to identify optimal computation limits.

• Phase III: Exporting focused on making results accessible through visualizations and
structured exports (e.g., CSV files), ensuring reproducibility and interpretability.

Together, these phases form an integrated and automated benchmarking pipeline that minimizes
manual tuning, intelligently adapts to hardware limits, and provides structured performance data
that can serve as the basis for further insights into GPU behavior. The next section presents
experimental results generated using this methodology across diverse workloads and configurations.

14

4 Results

This section presents the outcomes of benchmarking two representative GPU kernels, a memory-
bound Vector Addition and a compute-bound General Matrix Multiplication (GEMM),
using the Autobench framework. Both were tested on NVIDIA RTX 4000 Ada and RTX 5000 Ada
GPUs, with performance saturation points detected by the Triangle and Kneedle algorithms. The
following subsections first outline the experimental setup and then detail the results for each kernel,
GPU, and detection configuration.

4.1 Experimental Setup

All experiments were performed using the Autobench benchmarking framework on the DAS-6
cluster [BEdL+16] at the Leiden University (LU) site. Two GPU models were evaluated: an NVIDIA
RTX 4000 Ada and an NVIDIA RTX 5000 Ada, both hosted in LU cluster nodes equipped with
dual-socket AMD EPYC 7282 CPUs. Each job was submitted via SLURM [JW23] and executed
on a single GPU; with Autobench handling the configuration, execution, saturation detection, and
result export.

Benchmarking Procedure For every {kernel, GPU, detection method} combination, Autobench
performed five independent autoscaling runs. Each run produced a single plot that represents three
key metrics: execution time in milliseconds (left y-axis, linear scale), throughput in either GB/s
for Vector Addition or GFLOP/s for GEMM (right y-axis, logarithmic scale), and the detected
saturation (knee) point. The x-axis represents problem size on a logarithmic scale. Two saturation
detection algorithms were compared: the Triangle method, which relies on threshold-based distance
analysis, and the Kneedle method, which detects knees based on curvature analysis. Both methods
are described in detail in Section 3.2.3.

Benchmark Configurations The benchmarks themselves were defined through standalone
configuration files that Autobench can interpret because they follow the configuration interface
described in Section 3.1. These files specify all the necessary information for each benchmark,
such as the kernel source, arguments, performance metrics, and execution parameters. For this
evaluation, configurations were prepared specifically for the two chosen kernels.

Vector Addition Benchmark For the Vector Addition benchmark, two randomly generated
float32 input vectors were added element-wise into an output vector initialized to zero. This
configuration is based on the example in Section 3.1.5, with minor modifications for this evaluation.
Each problem size was tested with 33 iterations, so that after removing the first iteration, 32
iterations remained for averaging, ensuring consistency with the GEMM benchmark.
The first iteration was removed to prevent cold-start effects, i.e., the temporary performance drop
that can occur before the GPU warms up caches, allocates resources, or reaches optimal clock speeds.
Between iterations, the GPU’s memory state was explicitly reset to simulate fully independent,
cold-start conditions. This differs from typical warm-up benchmarking, where data remains in
the cache and subsequent runs benefit from previous executions. By resetting the memory at
each iteration, we ensure that each run measures performance on a fresh allocation, providing

15

reproducible and isolated performance data. The average of the remaining 32 iterations was reported
as the final performance value.

General Matrix Multiplication (GEMM) Benchmark For the General Matrix Multi-
plication (GEMM) benchmark, the kernel was originally an OpenCL implementation from the
CLBlast [Nug18] and CLTune [NC15] frameworks. It was translated into CUDA by including a
specialized header file in front of the OpenCL source, also taken from the CLBlast/CLTune frame-
works, enabling direct CUDA compilation. These source and header files, with slight modifications,
are available as examples for the Kernel Tuner framework in [LHSvW24], and a merged variant of
that example was used here. The benchmark’s configuration file specified all relevant information
about the kernel, including kernel arguments and tunable parameters. In this setup, matrices of
increasing size were multiplied with a fixed inner dimension k = 256. Performance was measured in
GFLOP/s. Unlike Vector Addition, GEMM showed no noticable cold-start effects, and therefore
each problem size was tested with 32 iterations directly, with the average performance reported.

Consistency and Variation This setup ensured that every configuration was tested under a
consistent methodology, while allowing for natural run-to-run variation. Such variation is not an
error, but rather an important aspect of the evaluation, as it provides insight into how reliably each
saturation detection algorithm can identify performance limits across multiple independent runs.

4.2 Vector Addition

As described in Section 4.1, the Vector Addition kernel is a memory-bound operation tested on
both GPUs with both detection algorithms.

4.2.1 NVIDIA RTX 4000 Ada

Triangle Algorithm Five autoscaling runs were executed using the Triangle detection algorithm
(Figures 1a–1e).

16

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 1: Vector Addition on RTX 4000 Ada using Triangle method (five runs)

Kneedle Algorithm The Kneedle algorithm results are shown in Figures 2a–2e. The bench-
marking procedure and visualization follow the same structure as for the Triangle method.

17

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 2: Vector Addition on RTX 4000 Ada using Kneedle method (five runs)

4.2.2 NVIDIA RTX 5000 Ada

Triangle Algorithm Five Triangle-based runs were executed (Figures 3a–3e).

18

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 3: Vector Addition on RTX 5000 Ada using Triangle method (five runs)

Kneedle Algorithm Kneedle algorithm results are given in Figures 4a–4e.

19

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 4: Vector Addition on RTX 5000 Ada using Kneedle method (five runs)

4.3 General Matrix Multiplication

The GEMM kernel is a compute-bound benchmark, configured as described in Section 4.1.

20

4.3.1 NVIDIA RTX 4000 Ada

Triangle Algorithm Five Triangle-based autoscaling runs were executed (Figures 5a–5e).

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 5: GEMM on RTX 4000 Ada using Triangle method (five runs)

21

Kneedle Algorithm Results for Kneedle are shown in Figures 6a–6e.

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 6: GEMM on RTX 4000 Ada using Kneedle method (five runs)

22

4.3.2 NVIDIA RTX 5000 Ada

Triangle Algorithm Figures 7a–7e show the Triangle method results.

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 7: GEMM on RTX 5000 Ada using Triangle method (five runs)

23

Kneedle Algorithm Figures 8a–8e show the Kneedle method results.

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run 4

(e) Run 5

Figure 8: GEMM on RTX 5000 Ada using Kneedle method (five runs)

In summary, the Autobench framework successfully executed and visualized five independent

24

autoscaling runs for each kernel, device, and detection configuration. For both memory-bound (Vector
Addition) and compute-bound (GEMM) kernels, the pipeline consistently produced interpretable
results and saturation point detections. The next section discusses these outcomes, highlights trends,
and interprets the observed patterns in performance scaling and saturation detection behavior.

25

5 Discussion

This section discusses the results of the Autobench benchmarking framework in the context of
the research question. It reflects on the practical implications of the findings, identifies remaining
limitations, and outlines promising directions for future work.
The aim of this thesis is to design a framework capable of automatically detecting the saturation
point of GPU kernels, a point beyond which increasing input size no longer yields proportional
performance gains. The results show that Autobench reliably produces interpretable, automated
insights into kernel scaling behavior across both memory-bound and compute-bound workloads.
Across all experiments, both detection methods successfully identify a clear saturation point once
the framework’s filtering steps, such as the minimum execution time threshold, have been applied.
For the compute-bound GEMM kernel, the detected saturation point is very stable: each run on
both GPUs converges to the same problem size index, demonstrating that the methods are robust to
noise in this setting. The memory-bound Vector Addition kernel, on the other hand, exhibits slightly
more variability over repeated runs, with detected indices occasionally shifting a few steps earlier or
later than the average. This variability is consistent with the greater sensitivity of memory-bound
workloads to temporal bandwidth fluctuations, but the detected points nevertheless remain close to
the practical saturation region and thus still provide reliable guidance.
A related observation is that, especially in the Vector Addition benchmark, the figures sometimes
continue for more than three data points after a saturation point is detected. At first glance, this
might seem like the framework is executing unnecessary continuation runs. However, this behavior
is primarily caused by a small delay in the detection itself. In particular, a conservative setting of
the Triangle method’s distance threshold or Kneedle’s sensitivity parameter S can delay knee
detection. Because the framework always executes three additional iterations after the first detected
point to avoid premature termination, a delayed trigger results in what appears to be an extended
continuation phase. In practice, this does not indicate a false detection, but rather that the knee (in
this case) is less sharply defined in the memory-bound kernel compared to compute-bound kernel.
Taken together, these results suggest that both the Triangle method and the Kneedle algorithm
are effective for automated knee point detection under the tested conditions. The slightly higher
stability observed for GEMM reflects the smoother scaling curves of compute-bound kernels, while
memory-bound kernels benefit more from the framework’s filtering. Overall, the consistency between
runs indicates that the filtering approach is a generalizable improvement and that the framework
can reliably guide performance exploration without manual intervention.

5.1 Limitations

While the framework delivers stable results for the tested kernels and devices, several limitations
remain.
First, the detection algorithms still rely on parameters such as the Triangle method’s
distance threshold and Kneedle’s sensitivity parameter S. These parameters are currently chosen
manually and may need to be adjusted for kernels with unusual scaling patterns. As discussed
above for the Vector Addition case, this sensitivity can sometimes delay detection of the saturation
point, subsequently resulting in more continuation runs being executed than intended. Furthermore,
the current execution time threshold is also fixed. While it effectively suppresses early noise in the
tested scenarios, the optimal value can vary depending on the hardware, kernel characteristics, or

26

execution environment. Therefore, a static threshold may not be applicable in all cases.
Second, the experimental scope is limited. Only two kernels, Vector Addition and GEMM, were
evaluated, and the experiments were conducted on two GPUs of the same vendor and architecture
family (NVIDIA Ada). While these choices capture both memory-bound and compute-bound
behavior, they do not cover the full spectrum of GPU workloads or hardware diversity. The
framework’s behavior for irregular, multi-phase, or application-level kernels remains untested.
Last, some planned features, such as local optimization refinements after initial detection, remain
unimplemented. These could further refine saturation point accuracy and stability, and adapt to
subtle performance curve variations.

5.2 Future Research

Several promising directions emerge for future work.
First, adaptive parameter tuning would help generalize the framework to a wider range of kernels
and devices. For example, the execution time threshold could be scaled dynamically based on
observed timing variance, or detection parameters could be auto-optimized using calibration runs.
Second, hybrid strategies that combine the strengths of both detection methods could be explored.
For instance, Kneedle could provide an initial estimate, while Triangle validates and adjusts the
point to guard against false positives.
Third, the planned local optimization pass should be implemented to allow refinement of initially
detected saturation points. This could help recover from early misclassifications or detect multiple
saturation stages in multi-phase kernels.
Fourth, more advanced search procedures such as binary or adaptive search could be used to refine
knee detection more efficiently. These approaches would allow the autoscaler to narrow in on the
precise saturation point faster than incremental scaling, reducing total benchmarking time.
Fifth, the recently published open-source library Kneeliverse [AEB+25], which includes a wide
range of classical and state-of-the-art knee detection algorithms (e.g., Kneedle, L-method, Menger,
Z-method, DFDT), offers a promising avenue for extending the current framework. Its recursive
multi-knee detection capabilities and built-in pre/post-processing routines could help address several
of the limitations encountered with parameter sensitivity and noise robustness in this work.
Last, broadening the scope of benchmarks is essential. Testing the framework on a diverse set of
kernels, including those with irregular memory access patterns, synchronization barriers, or varying
control flow, as well as on GPUs from different vendors and architectures, would provide a more
comprehensive assessment of its strengths and weaknesses.

27

6 Conclusion

This thesis introduced Autobench, a flexible and extensible framework for autoscaling GPU kernel
benchmarks. By combining automated saturation detection with detailed performance visualization,
the system enables developers to better understand kernel scaling behavior across diverse GPU
architectures.
After incorporating a minimum execution time threshold, the framework produced stable and
accurate saturation detections for both memory-bound and compute-bound kernels, across all
tested devices and algorithms. The Triangle and Kneedle methods, previously prone to early
misclassification in certain cases, now also consistently deliver correct and reproducible results.
While opportunities remain for adaptive tuning, expanded kernel coverage, and refinement of
detection strategies, Autobench in its current form already provides a reliable, modular, and
interpretable tool for GPU performance analysis.
Overall, this project contributes a modular and interpretable approach to GPU benchmarking,
offering both practical tooling and deeper insight into performance scaling behavior.

28

References

[AEB+25] Mário Antunes, Tyler Estro, Pranav Bhandari, Anshul Gandhi, Geoff Kuenning, Yifei
Liu, Carl Waldspurger, Avani Wildani, and Erez Zadok. Kneeliverse: A universal
knee-detection library for performance curves. SoftwareX, 30:102161, 2025.

[Arv23] Kevin Arvai. kneed (version v0.8.5), jul 2023. Software archived on Zenodo, accessed
2025-08-11.

[BEdL+16] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank
Seinstra, Cees Snoek, and Harry Wijshoff. A medium-scale distributed system for
computer science research: Infrastructure for the long term. Computer, 49(5):54–63,
2016.

[CBM+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In
2009 IEEE International Symposium on Workload Characterization (IISWC), pages
44–54, Oct 2009.

[DM98] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory
programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[DMM+10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth,
Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable heterogeneous
computing (shoc) benchmark suite. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, GPGPU-3, pages 63–74, New
York, NY, USA, 2010. Association for Computing Machinery.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
6th edition, 2017.

[JW23] Morris A. Jette and Tim Wickberg. Architecture of the slurm workload manager. In
Dalibor Klusáček, Julita Corbalán, and Gonzalo P. Rodrigo, editors, Job Schedul-
ing Strategies for Parallel Processing, pages 3–23, Cham, 2023. Springer Nature
Switzerland.

[Ker22a] KernelTuner. First implementation of helper methods for energy
tuning. https://github.com/KernelTuner/kernel_tuner/commit/

84ce4900729c83e40c2d8528be9d7b1bead5f944, oct 2022. Accessed: 2025-08-
22.

[Ker22b] KernelTuner. Initial version of model-steered clock frequency sug-
gestions. https://github.com/KernelTuner/kernel_tuner/commit/

083455a4e9aec032c7e9e0ef572e6ac535549064, oct 2022. Accessed: 2025-08-
22.

29

https://github.com/KernelTuner/kernel_tuner/commit/84ce4900729c83e40c2d8528be9d7b1bead5f944
https://github.com/KernelTuner/kernel_tuner/commit/84ce4900729c83e40c2d8528be9d7b1bead5f944
https://github.com/KernelTuner/kernel_tuner/commit/083455a4e9aec032c7e9e0ef572e6ac535549064
https://github.com/KernelTuner/kernel_tuner/commit/083455a4e9aec032c7e9e0ef572e6ac535549064

[LHSvW24] Milo Lurati, Stijn Heldens, Alessio Sclocco, and Ben van Werkhoven. Bringing auto-
tuning to hip: Analysis of tuning impact and difficulty on amd and nvidia gpus. In
Jesus Carretero, Sameer Shende, Javier Garcia-Blas, Ivona Brandic, Katzalin Olcoz,
and Martin Schreiber, editors, Euro-Par 2024: Parallel Processing, pages 91–106,
Cham, 2024. Springer, Springer Nature Switzerland.

[Lue08] David Luebke. Cuda: Scalable parallel programming for high-performance scientific
computing. In 2008 5th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, pages 836–838, 2008.

[Mun09] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium
(HCS), pages 1–314, 2009.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda: Is cuda the parallel programming model that application
developers have been waiting for? Queue, 6(2):40–53, March 2008.

[NC15] Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl
kernels. In 2015 IEEE 9th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip, pages 195–202, 2015.

[Nug18] Cedric Nugteren. Clblast: A tuned opencl blas library. In Proceedings of the Interna-
tional Workshop on OpenCL, IWOCL ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[SAIR11] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a
”kneedle” in a haystack: Detecting knee points in system behavior. In 2011 31st
International Conference on Distributed Computing Systems Workshops, pages 166–
171, 2011.

[SRS+12] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised benchmark
suite for scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127(7.2), 2012.

[SVVWB22] Richard Schoonhoven, Bram Veenboer, Ben Van Werkhoven, and K. Joost Batenburg.
Going green: optimizing gpus for energy efficiency through model-steered auto-tuning.
In 2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), pages 48–59, 2022.

[Tho53] Robert L. Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276,
1953.

[van19] Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. Future
Generation Computer Systems, 90:347–358, 2019.

30

	Introduction
	Motivation and Problem Statement
	Research Aim and Question
	Contributions
	Thesis Overview

	Background and Related Work
	GPU Architecture and Kernel Execution
	Benchmarking for GPU Performance Evaluation
	Existing GPU Benchmark Suites
	Rodinia
	Parboil
	SHOC

	Limitations of Static Benchmark Suites
	Auto-Tuning with Kernel Tuner
	Motivation for Auto-Scalable Benchmarking

	Methodology
	Phase I: Configuration
	Benchmark Configuration Interface
	Dynamic Loading of Benchmark Definitions
	Kernel and Argument Handling
	Performance Metrics and Analysis
	Configuration Example: Vector Addition

	Phase II: Autoscaling
	Initialization and Maximum Size Estimation
	The Scaling Loop
	Saturation Detection Algorithms
	Post-Saturation Continuation and Termination

	Phase III: Exporting
	Data Visualization
	Data Export

	Summary

	Results
	Experimental Setup
	Vector Addition
	NVIDIA RTX 4000 Ada
	NVIDIA RTX 5000 Ada

	General Matrix Multiplication
	NVIDIA RTX 4000 Ada
	NVIDIA RTX 5000 Ada

	Discussion
	Limitations
	Future Research

	Conclusion
	References

