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Abstract

Community detection (CD) offers a deep insight into network structure and nodes’ behavior. In
social networks, communities represent densely connected social groups that vary in size, density,
and level of connectivity. CD methods identify communities by optimizing community quality
measures, utilizing spectral properties, or employing alternative approaches. Real-world networks
have structural inequalities which influence how well a CD method is able to identify communities.
CD methods that overlook structural inequalities produce biased outcomes; however, the types
of communities that are disadvantaged and the extent of this disadvantage have not yet been
researched. This thesis introduces a novel group fairness metric to measure bias with respect to
community properties size, density, and conductance. We define fairness as equity and propose
community-based performance metrics that measure how well each ground-truth community is de-
tected by the CD method. Trends in community-wise performance are quantified by our fairness
metric, giving valuable insights that can help design fair CD methods, improve current CD meth-
ods, and set the parameters of CD methods. Experiments on real-world and synthetic networks
show that CD methods have a bias towards large, dense, and low-conductance communities. This
is not the case for certain modularity optimization methods, which perform better at identifying
sparse communities.
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Chapter 1

Introduction

Networks are a way in which complex systems can be studied, describing the relationships be-
tween network components in biological [31, 73], technological [1, 16], information [78], and social
networks [21, 47, 79, 94]. In networks, nodes are connected by edges to form groups, also called
communities [86]. Although there is no clear definition of what a community is, the literature
agrees that communities are groups of connected nodes that are more likely to connect to each
other than to other nodes in the network [4, 19].

Social networks have structural inequalities. Network evolution is strongly driven by people’s
ethnicity, gender, race, age, or wealth because people form connections based on similarity [48].
The homophilic principle, where nodes are more likely to connect to similar nodes, influences
community structure. Structural inequalities in networks arise because communities in the real
world also have different properties. In a population, there may be ethnic minority communities
that are smaller in size, villages where everyone knows each other and are densely connected, and
migrant communities that are less integrated into other parts of the network. If these structural
inequalities are not taken into account, biased outcomes can develop for minorities or other groups.
Algorithms that do not take biases into account are called fairness-oblivious algorithms. For
example, in influence maximization, where bias is shown to exist [84, 90], communities that are
smaller or less connected throughout the network are at risk of not being reached. Similarly, in
community detection (CD), minority communities could not be properly detected, or assimilated
into larger communities by some CD method. There are measures that compare the predicted
partition to the ground-truth partition, some of which are based on node overlap. A CD method
that is able to detect majority communities well will score highly for such measures, as the majority
communities have a larger share of nodes than the minority communities. It is important to develop
fairness-aware CD methods that perform well for all types of communities.

Fairness can be described from different perspectives in social network analysis (SNA) [77]. In
the context of community detection, we define group fairness based on equity. We declare a CD
method to be fair if all communities are found equally well. Because networks contain communities
that vary in size, density, and connectivity within the network, we can look at group fairness with
respect to these community attributes. Fair community detection is especially important because
it is used in many other fair SNA problems. These include fairness-aware methods proposed
for influence maximization [5, 17, 90], influence minimization [74], link prediction [75, 76], and
centrality ranking [85, 91, 92]. These fairness-aware methods make use of community membership
to arrive at their final fair outcome. Fair community detection aims to mitigate bias against
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individuals and groups, regardless of community properties.
How can bias in community detection be measured? Biases related to community properties

have not yet been studied. In order to measure these biases and quantify their extent, this thesis
introduces a group fairness metric for communities. For this, we use metrics that measure how
well a ground-truth community is detected. We name these community-wise performance metrics
(CPM). We introduce several community-wise performance measures, looking at both nodes and
edges. The CPMs are divided into two categories: mapped and global metrics. Mapped metrics
work by mapping ground-truth communities to predicted communities. This is done iteratively;
we map the communities based on Jaccard similarity. The mapped metrics measure how well the
mapped-to predicted community describes the ground-truth community. Our proposed mapped
metrics include: (i) the Fraction of Correctly Classified Nodes (FCCN), (ii) the F1 score, (iii)
the Fraction of Correctly Classified Edges (FCCE), and (iv) FCCE+. Global metrics compare a
single ground-truth community to the entire predicted partition. We propose these methods be-
cause a difference between the number of ground-truth communities and the number of predicted
communities leads to loss of information or noise. The proposed global metrics include: (i) the
Average F1-score (AF1), (ii) the Sum of Weighted F1 (SWF1), (iii) the Sum of Weighted FCCE
(SWFCCE), and (iv) the Sum of Weighted FCCE+ (SWFCCE+). These community-wise perfor-
mance metrics and ground-truth community property values require ground-truth knowledge of
the community structure.

Using the scores of the community-wise performance metrics, we create a group fairness metric
ΦCPM

p . The metric ΦCPM
p measures the bias in relation to the community properties (p) size, density,

and conductance, using one of the CPMs that we propose. A regression line is drawn through CPM
scores. These scores are plotted against the min-max normalized values of community property p.
The angle of a regression line is then calculated; this is scaled to create results of Φ that fall in the
range (-1, 1). The sign of Φ signifies the type of communities that are favored by a CD method.
E.g., when analyzing bias regarding community size, a negative value of Φ would mean the CD
method favors minority communities. A positive value would mean the CD method favors majority
communities. A Φ value of 0 would mean the regression line is horizontal; no bias trend is found
and the method is fair. All communities, irrespective of type, are detected with equal accuracy,
whether that accuracy is high or low.

Together with metrics that measure the quality of the predicted community partition, such
as normalized mutual information (NMI) [20] and variation of information (VI) [51], the fairness
metric Φ can be used to do the performance-fairness trade-off. We use the group fairness metric Φ
to compare 24 CD methods in terms of fairness. We divide the CD methods into six categories: (i)
Optimization, (ii) Spectral, (iii) Propagation, (iv) Dynamics, (v) Representation Learning, and (vi)
Miscellaneous. Experiments are performed on real-world networks and synthetic networks, these
are generated using the LFR benchmark [40], ABCD [32], and the HICH-BA model [74]. These
models generate undirected, unweighted, connected networks with non-overlapping communities
and the CD methods we analyze are suitable for such networks.

1.1 Contributions

Our contributions are summarized as follows:

• We compare eight community-wise performance metrics, separated into mapped and global
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metrics. These metrics quantify how well a ground-truth community is identified by the
mapped predicted community (mapped metrics) or by the entire predicted community par-
tition (global metrics).

• We introduce the group fairness metric ΦCPM
p , which measures the bias regarding ground-

truth community property p using community-wise performance metric CPM.

• We provide insights into community detection methods and on how they perform with re-
spect to both performance and fairness, showcasing the performance-fairness trade-off. Our
experiments and results are used to get a better understanding of existing community detec-
tion methods, which will facilitate the improvement and design of fair community detection
methods.

• We provide guidance on what specific variant of the fairness metric ΦCPM
p to prioritize,

depending on the specific social network problem being addressed.

Using the group fairness metric ΦCPM
p we find CD methods that are both fair and have high

performance. We find that with LFR networks, most CD methods favor large, dense, and lowly-
connected communities; this bias is increased as the community structure is less defined throughout
the network. A group of modularity-based CD methods favor less-dense communities. This group
includes Combo, Leiden, Louvain, RB-C, and RB-ER. We find that the trend between high per-
formance and a larger bias toward dense, low-conductance communities is smaller for the ABCD
networks. This may be because the overall performance on these networks is higher.

1.2 Thesis Overview

The rest of this work follows the following structure: Chapter 3 gives preliminary information and
Chapter 2 present the relevant works; these chapters required background knowledge on networks,
communities, and algorithmic fairness in SNA. Chapter 4 introduces the proposed fairness metric Φ
and multiple community-wise performance metrics. The experimental setup in Chapter 5 describes
the 24 analyzed community detection methods and network datasets including both real-world and
synthetic networks. Chapter 6 displays and explains our results, and Chapter 7 offers a discussion
of our results and proposes future directions of similar research in this area.
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Chapter 2

Related Work

Algorithmic bias based on “sensitive” or “protected” attributes such as gender, ethnicity, race, and
sexual orientation has been found in many systems. Examples include gender [35], language [44],
and political bias [98] in language models, gender bias in ad delivery systems [37]. Fairness can be
defined in different ways, some of which even contradict each other [22]. Fairness definitions have
been described in [93] and in surveys on fairness in machine learning [9, 50, 63].

This chapter will primarily survey related work on fairness in SNA. Saxena et al. [77] review
state-of-the-art for multiple research topics in SNA, going over the specific fairness constraint for
each topic and highlighting areas where fairness has not been addressed. Community detection is
one of these areas highlighted, and we hope that this work helps develop more research on fairness
in community detection.

2.1 Fairness in Social Network Analysis

Fairness in SNA can be addressed in different ways, depending on the task at hand and the
approach. The following sections will explain the fairness constraints and fair approaches of works
in the respective SNA topics. These works use groups or communities in their fair approaches,
highlighting the importance of fair community detection as well.

2.1.1 Fair Community Detection

Mehrabi et al. [49] state that low-degree nodes are excluded by CD algorithms, particularly those
that optimize modularity. The authors propose a method Communities with Lowly-connected
Attributed Nodes (CLAN) that works on networks with attributed nodes. This method uses a
supervised learning step to place attributed nodes from smaller predicted communities into larger
communities. While the authors remove these smaller predicted communities with the assumption
that they will be used in downstream tasks, actual minority communities will be dissolved using
this method instead of being correctly classified. Although this paper does not provide a definition
for fairness, it proposed a method against an observed bias.

Manolis et al. [46] introduce two metrics that measure fairness for communities: balance fairness
and modularity fairness. The analyzed networks have two disjunct groups of nodes, depicted by
blue (B) and red (R), where red nodes are the protected group. Balance fairness measures how
much the fraction of red nodes in a community ci differs from the fraction of red nodes in the
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entire network, which is given by ϕ = |R|
|V | . The set of red nodes in community ci is given by R(ci)

so balance fairness is given by:

fbalance(ci) =
|R(ci)|
|Ci|

− ϕ (2.1)

The second fairness metric compares how well red and blue are connected within a community.
The connectedness of a group is given by the modularity of the group: QB

ci
for blue and QR

ci
for

red [46]. Modularity fairness is given by:

fmodularity(ci) =
QR

ci
−QB

ci

abs(Qci)
(2.2)

These methods measure whether nodes from the protected group are sufficiently represented and
connected within each community. Using synthetic networks, they find that group size imbalance
is the largest influence on both balance fairness and modularity fairness.

Detectability of communities could be a concern for fairness in community detection. Cer-
tain detectability thresholds [15, 19, 52] have been proposed to define communities that are un-
detectable under some conditions. Radicchi [65] finds that heterogeneity in degree distribution
allows CD algorithms optimizing modularity to correctly recover the community structure of the
network. In complex networks, like those generated using the LFR benchmark and ABCD, it is
not clear whether there exists a non-trivial threshold for detectability [19]. Undetectability due to
community properties could lead to a biased outcome in community detection.

Oostenbach [58] wrote his thesis on the fairness analysis of CD methods. We improve on
his work by introducing a fairness metric that does not require splitting the set of ground-truth
communities into “smaller” and “larger” groups by setting a threshold. We also propose a different
way of mapping ground-truth communities to predicted communities, using an iterative approach
instead of the greedy algorithm employed by Oostenbach. We expand upon Oostenbach’s list
of mapped community-wise performance metrics and introduce global metrics which look at the
entire predicted community partition. This global approach removes noise introduced by fully
misclassified ground-truth communities and the omitting of predicted communities that are not
mapped to. Lastly, our approach not only measures the extent of bias, but also shows what
property values the community detection method favor, like minority/majority when analyzing
community size.

2.1.2 Fair Influence Maximization

A node embedding algorithm that is based on random walks like Node2Vec [24] and DeepWalk [62]
can be enhanced by the CrossWalk method introduced by Khajehnejad et al. [34]. These node
representations can not only be used for influence maximization, but also for link prediction, and
community detection. This method works by adding additional weights to edges that are close to
the community’s periphery or are intercommunity edges. This paper aims to lower the performance
disparity between communities. This can be formulated as:

disparity = Var({Qi} : i ∈ C) (2.3)

Here, Qi the performance of community ci ∈ C, the set of communities. For influence maxi-
mization, this Q is the fraction of nodes that are infected at the end of the simulation. With
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experiments on real-world and synthetic networks, the authors find that at a small cost of per-
formance, the CrossWalk method enhances fairness for multiple social network tasks including
influence maximization.

Stoica et al. [83] describe two fairness constraints for influence maximization: fairness in seeding
and fairness in outreach; both are instances of statistical parity. They employ a greedy approach
and a degree-based approach to select seed nodes. They find that when the top-k nodes in each
community are selected as seed nodes, by having differentiated thresholds per community, this
results in higher outreach with more diversity.

2.1.3 Fair Influence Minimization

Influence minimization, or influence blocking maximization, can be approached in two ways: (i)
by identifying users that, when blocked or immunized, will minimize the spread of misinformation,
and (ii) by “truth-campaigning”. Truth-campaigning is the spread of counter-truth information
to help people find the correct information. This is the route taken by Saxena et al. [74], who
created a method called FWRRS (Fairness-aware Weighted Reversible Reachable System), which
approximates the blocking power of each node to select those that achieve the best and fairest
outcome. Fairness is considered as the maximin fairness constraint, which aims to maximize the
number of saved nodes in the community with the lowest fraction of saved nodes. Saved nodes are
those that believe in the true information while they would have believed the false information if
they had not been saved.

2.1.4 Fair Link Prediction

Communities play a large role in link prediction. Saxena et al. [75] explain the intuition that the
probability of two nodes being connected, is dependent on the nodes’ community membership.
They find that intercommunity links have lower structural similarities than intracommunity links
and their link prediction framework, called HM-EIICT (Heuristic Method-Extended using Intra
and Inter Community Thresholds), takes this into account by setting different threshold values for
inter and intracommunity edges based on the structural properties of the network. The method
outperforms baseline methods for intercommunity edge prediction and accuracy.

The authors of NodeSim [76] have developed a network embedding method that captures simi-
larities between nodes and the community structure. It does so by performing random walks where
moving to another node is not only decided based on node similarity, but also by community mem-
bership. The authors proposed a link prediction method that predicts inter and intracommunity
links with high accuracy by training a logistic regression model using node pair embedding and
community membership information. While this method outperforms baseline methods for both
inter and intracommunity edges, further prioritizing intercommunity edges when creating random
walks improves the prediction of intercommunity edges even further.

2.1.5 Fair Centrality Ranking

PageRank [8] is a link analysis algorithm that determines the relative importance of nodes. It
produces weights based on random walks, which can be used to rank nodes to perform tasks like
search result ranking. PageRank has been modified by Tsioutsiouliklis et al. [92] to create two fair
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approaches: fairness-sensitive PageRank, and locally fair PageRank. The authors define a fairness
constraint ϕ-fairness that is satisfied when the fraction of the total weight of the protected group
is ϕ. By setting ϕ as the fraction of protected nodes in the graph, it requires that protected nodes
have a proportional share of the total weights. Fairness-sensitive PageRank tries to adjusts the
jump vector of the random walker, specifically to achieve ϕ fairness. The locally fair PageRank
works by using the fairness-ratio ϕ on a node level. The nodes distribute their own pagerank score
to protected and unprotected nodes according to ϕ.
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Chapter 3

Preliminaries

We have a network G(V,E), with V as the set of nodes and E the set of edges. These terms are often
referred to by other names, depending on the context. Nodes can be referred to by vertices and
points, edges can be called links, connections, and ties, and a network can be referred to by a graph.
In this work, we look at undirected, unweighted, and connected networks with nonoverlapping, fully
covering communities. An undirected network has edges that have no direction and unweighted
means that edges have no associated weight or value. In a connected network, there exists a path
between every pair of nodes. Nonoverlapping, fully covering communities mean that each node
belongs to exactly one community, and together, all communities create a complete partition of
the network.

3.1 Community Attributes

For this research, we analyze network data with ground-truth information on the community
structure where each node is labeled with its community membership. We evaluate the bias of CD
methods with respect to communities’ properties, including community size, (internal) density,
and conductance. These are defined as follows for a community ci [10]:

• Size: number of nodes in the community, |ci|.

• Internal density: the fraction of actual intracommunity edges out of the number of possible
intracommunity edges.

density(ci) =
Ein

ci
1
2
|ci|(|ci| − 1)

(3.1)

• Conductance: the fraction of intercommunity edges out of the community’s total edge vol-
ume.

conductance(ci) =
Eout

ci

2Ein
ci

+ Eout
ci

(3.2)

Density gives a measure of how strongly connected members of a community are. If a commu-
nity has a density of 1 it means that it is fully connected, and lower values indicate that it is more
sparsely connected. Conductance gives insight into how connected the community is to other parts
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Figure 3.1: Example network with three communities. Blue nodes are in c1, orange nodes in c2,
and green nodes in c3.

of the network. Lower conductance indicates that the community is more separated from the rest
of the network, and higher conductance means a higher level of connectivity.

Looking at the example in Figure 3.1, we can gather the size, density, and conductance values
for the three communities, c1 (blue), c2 (orange), and c3 (green). These values are shown in
Table 3.1. We see that c3 is fully connected and has the highest density, it also has the highest
conductance by having the highest share of intercommunity edges out of its edge volume. The
least connected community is c2 with a conductance value of 0.11.

3.2 Notation

Table 3.2 gives a summary of the notations used throughout this work.

Community Ein
ci

Eout
ci

Size Density Conductance
c1 11 8 8 0.37 0.27
c2 8 2 5 0.8 0.11
c3 6 8 4 1 0.4

Table 3.1: Attribute values for the three communities in the example network from Figure 3.1.
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Notation Definition
G(V,E) Network G with nodes V and edges E
V Set of nodes
E Set of edges, (u, v) ∈ E
u, v Nodes in V
(u, v) An edge in E, between nodes u and v
N Number of nodes, N = |V |
C Set of ground-truth communities
P Set of predicted communities
ci A set of nodes that represent the ground-truth community i, ci ∈ C
pj A set of nodes that represent the predicted community j, pj ∈ P
|ci| Number of nodes in community ci
m Number of ground-truth communities: m = |C|
k Number of predicted communities: k = |P |
p Community property. Size, density, or conductance

Table 3.2: Notation for graphs and communities used in this work.
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Chapter 4

The Proposed Metrics

In this chapter, we introduce metrics to compare group fairness of different CD methods. Several
methods exist to assess the quality of predicted partitions, such as NMI [20] and VI [51]. However,
no metric has yet been proposed to measure bias in the detection of ground-truth communities. To
analyze group fairness, we first aim to measure how well a community is detected by the predicted
partition, and we name these metrics community-wise performance metrics (CPM). These metric
scores are used to create a group fairness method ΦCPM

p , which is able to analyze the bias of CD
methods toward communities based on properties (p) such as size, density, and conductance. These
metrics help us understand to what extent the algorithm favors certain types of communities over
others, providing a comprehensive assessment of its fairness.

To start, we will describe the proposed CPMs that measure CD performance on a per-community
basis. These are categorized in mapped and global metrics. Then we describe how these metrics
are used to compute the fairness metric Φ.

4.1 Community-wise Performance Metrics

Using ground-truth community data, we can measure how well a CD method has found the entire
community structure with metrics such as NMI [20], ARI [29], VI [51], and others [10]. Here, we
want to measure how well each individual ground-truth community is detected by the CD method,
looking at both the community nodes and edges.

We have the given network G(V,E) that has m ground-truth communities, defined as C =
{c1, c2, ..., cm}. We apply a CD method to G that gives a set of predicted communities P of
size k defined as P = {p1, p2, ..., pk}. One way of gathering per-community metrics is by mapping
ground-truth communities to predicted communities, which is most effective when the number
of ground-truth communities matches the number of predicted communities. The ground-truth
community ci is compared to its mapped-to predicted community pj. The second method, which
we call the global approach, evaluates how well each ground-truth community is represented by
the entire set of predicted communities. In this case, each community ci is compared to P .

All metrics should be normalized to fall within the range from 0 to 1. Receiving a score of
1 means that for a ground-truth community ci there exists a predicted community pj for which
ci = pj holds.
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4.1.1 Community Mapping

Mapping ground-truth communities to predicted communities takes place in the following iterative
process:

1. Similarity is calculated for each pair of ground-truth and predicted communities (C × P ).

2. The highest similarity score is chosen and the corresponding pair of ground-truth and pre-
dicted community is mapped. To break ties of equal similarity scores, a pair is randomly
chosen.

3. As this mapping is one-to-one, all of the similarity scores of the mapped ground-truth and
predicted communities are no longer considered.

4. If there are still both unmapped ground-truth and unmapped-to predicted communities,
return to step 2.

After all ground-truth communities have a mapping or if there are no more predicted communities
to map to, the mapping process is stopped. Ground-truth communities that have no mapping
are marked as completely misclassified. The Jaccard Similarity Coefficient [67] is chosen as the
similarity scoring function and is defined in Equation 4.1.

J(ci, pj) =
|ci ∩ pj|
|ci ∪ pj|

(4.1)

4.1.2 Problems with Mapping

Mapping ground-truth communities to predicted communities allows for simple comparisons and
metrics but leads to several issues when the number of predicted communities does not perfectly
align with the number of ground-truth communities. Let us look at the three scenario’s relating
to the (in)equality of m = |C| and k = |P |:

• m = k: All ground-truth communities have a mapped-to community in the set of predicted
communities. All predicted communities are mapped to. There is a potential for perfect
community detection.

• m < k: If the number of predicted communities is greater, that means that one or more pre-
dicted communities are not mapped to, causing all information contained in those predicted
communities to be disregarded.

• m > k: If the number of predicted communities is smaller, one or more ground-truth com-
munities have no mapping and are fully misclassified. The scores of these ground-truth
communities would all be 0, which drastically changes the CDMs bias analysis.

To remedy these issues, we can set the correct number of ground-truth communities for several
CDMs for which the number of communities is a parameter. Modifications could be made to
other CDMs for which this information is not yet given as a parameter. However, providing this
information significantly impacts the performance of the CDMs, but typically this information is
not known beforehand. A way to solve this issue is to stop mapping ground-truth communities to
predicted communities and instead consider all predicted communities while analyzing how well
each ground-truth community is discovered. For this, we propose global metrics.
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4.1.3 Mapped Metrics

We propose four mapped CPMs: FCCN, F1, FCCE, and FCCE+.

1. Fraction of Correctly Classified Nodes (FCCN): A simple metric to see how well a
predicted community represents the ground-truth community is the fraction of ground-truth
nodes present in the predicted community. This metric shares the definition of recall [81]
and is defined as follows:

FCCN(ci, pj) = recall(ci, pj) =
|ci ∩ pj|
|ci|

(4.2)

Note that FCCN can equal 1 while ci ̸= pj, this is the case when ci is a proper subset of pj.

2. F1 Score: The FCCN focuses solely on the common nodes in the ground-truth and predicted
communities. Additionally, we are interested in the nodes present in the predicted community
but absent in the ground-truth community, which are considered false positive predictions.
The performance metric precision [81], which accounts for these false positives, is defined as
follows:

precision(ci, pj) =
|ci ∩ pj|
|pj|

(4.3)

The Fβ score combines precision and recall, with the factor β allowing more weight to be
given to either precision or recall. The F1 score [11] evenly balances the two, representing
the harmonic mean of precision and recall. It is defined as follows:

F1(ci, pj) =
2(precision · recall)
precision + recall

=
2|ci ∩ pj|
|ci| + |pj|

(4.4)

3. Fraction of Correctly Classified Edges (FCCE): Community structure is primarily
driven by edges and a comprehensive examination of a CD method’s performance includes
analysis of community edges. To provide this the following metric is proposed: the Fraction
of Correctly Classified Edges (FCCE). It measures how many of the edges in the ground-
truth community are found by the mapped-to predicted community. The set of edges of a
subset of nodes, here community ci ∈ C, is defined in Equation 4.5. These edges are also
known as the intra-community edges for ci.

Ein
ci

= {(u, v) ∈ E | u ∈ ci and v ∈ ci} (4.5)

We use this definition to define FCCE in the following manner:

FCCE(ci, pj) =
|Ein

ci
∩ Ein

pj
|

|Ein
ci
|

(4.6)

4. Fraction of Correctly Classified Edges+ (FCCE+): FCCE identifies edges as correctly
classified if for edge (u, v) both nodes u and v are present in the predicted community. To
expand FCCE, we also consider the edges where only one of its nodes is present in the
predicted community. We refer to these edges as “false bridges” (FBs) because they act as a
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bridge between predicted communities when they should be intracommunity edges. The set
of these FBs is defined as follows:

FB(ci, pj) = {(u, v) ∈ Ein
ci

| (u ∈ pj and v ̸∈ pj) or (u ̸∈ pj and v ∈ pj)} (4.7)

FBs are used in the alternative metric to FCCE, termed FCCE+. Note that FCCE+ is
always greater than or equal to FCCE.

FCCE+(ci, pj) =
|FB(ci, pj)| + 2|Ein

ci
∩ Ein

pj
|

2|Ein
ci
|

(4.8)

4.1.4 Global Metrics

The global approach implements analysis between individual ground-truth community and the
entire community prediction instead of solely the mapped-to predicted community. For a ground-
truth community, we look how well every predicted community describes the ground-truth com-
munity using some metric. These metrics are combined to obtain a measure of how well the set of
predicted communities depicts the ground-truth community.

A good global metric should take into account that a prediction is worse if elements of the same
ground-truth community are spread out over multiple predicted communities. It should penalize
such a distribution in some manner.

1. Average of F1: Scores can be combined by averaging non-zero scores of a metric. The
calculation of the average F1 score is shown in Equation 4.9 which uses the definition of F1
from Equation 4.4.

Avg F1(ci, P ) =

∑
pj∈P F1(ci, pj)∑

pj∈P 1{F1(ci,pj) ̸=0}
(4.9)

Consider the following example: ground-truth community c1 has been compared to the set of
predicted communities {p1, p2, p3, p4}, resulting in the list of F1 scores [0.7, 0.3, 0, 0.2] indexed
accordingly. We combine the F1 scores by averaging the non-zero values, resulting in the
following: Avg F1 = 0.7+0.3+0.2

3
= 0.4.

Though this seems a promising global metric, there is an intuitive bias against large commu-
nities. Because larger sized communities have more nodes, CDMs are more likely to spread
these nodes across multiple predicted communities. This increases the denominator in the
formula above, decreasing the average F1 score. This is the case for all global metrics that
would utilize averaging some score over the number of non-zero predicted communities scores.

2. Sum of Weighted F1: Besides averaging non-zero scores, scores from comparisons between
a single ground-truth community and the set of predicted communities can be aggregated
by computing a sum of the weighted scores. the weight is set as the fraction of ground-truth
nodes that are in the compared-to predicted community. The weight will be:

weight(ci, pj) =
|ci ∩ pj|
|ci|

(4.10)

The Sum of Weighted F1 (SWF1) can then be formulated, using the definition of F1 in
Equation 4.4.

SWF1(ci, P ) =
∑
pj∈P

weight(ci, pj) · F1(ci, pj) (4.11)
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3. Sum of Weighted FCCE: Similarly, the Sum of Weighted FCCE (SWFCCE) can be
defined using the same weight definition and the formula for FCCE found in Equation 4.6.

SWFCCE(ci, P ) =
∑
pj∈P

weight(ci, pj) · FCCE(ci, pj) (4.12)

4. Sum of Weighted FCCE+: Lastly, we define the Sum of Weighted FCCE+ (SWFCCE+)
in the same manner. The definition of FCCE+ can be found in Equation 4.8.

SWFCCE+(ci, P ) =
∑
pj∈P

weight(ci, pj) · FCCE+(ci, pj) (4.13)

The following example illustrates the application of the global CPMs. Figure 4.1a shows the
ground-truth communities for this example and Figure 4.1b shows the predicted communities by
some CDM. Table 4.1 shows the intermediate results of several metrics and Equations 4.14 - 4.17
show the resulting global metric scores for community c1 from Figure 4.1a.

0 1

2 3

4 5

6

(a) Two ground-truth communities shown in ex-
ample graph. The blue community is c1, the
orange community c2.

0 1

2 3

4 5

6

(b) Three predicted communities shown in ex-
ample graph. The blue community is p1, the
orange community p2, and the green commu-
nity p3.

Figure 4.1: Example graph with ground-truth and predicted communities shown by colored group-
ings.

Predicted Community c1 ∩ pj weight F1 FCCE FCCE+

p1 3 3
4

2·3
2·3+0+1

= 6
7

3
5

2·3+2
2·5 = 4

5

p2 1 1
4

2·1
2·1+1+3

= 1
3

0 2·0+2
2·5 = 1

5

p3 0 0 0 0 0

Table 4.1: Intermediate calculations for the global CPMs, calculated for c1 and the corresponding
predicted community pj found in each row.
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Avg F1(c1, P ) =
6/7 + 1/3

2
≈ 0.60 (4.14)

SWF1(c1, P ) =
3

4
· 6

7
+

1

4
· 1

3
≈ 0.73 (4.15)

SWFCCE(c1, P ) =
3

4
· 3

5
= 0.45 (4.16)

SWFCCE+(c1, P ) =
3

4
· 4

5
+

1

4
· 1

5
= 0.65 (4.17)

4.2 Group Fairness Metric Φ

Our aim is to investigate whether a given CD method performs better for communities of specific
properties such as size, density, or conductance. By highlighting disparities in detection accuracy
across different communities, the group fairness metric offers a understanding of biases, ensuring
that CD methods are evaluated not just on their overall performance, but also on their fairness
toward community attributes like size, density, and conductance.

In the previous section, we introduced several community-wise metrics that evaluate a CD
method’s performance on a per-community basis. These performance scores are plotted against
the corresponding community attribute values, as illustrated in Figure 4.2. Here, FCCN scores
are plotted against the community size for a dummy network. Because we fairness in respect to
multiple community attributes that have values that differ in orders of magnitude, the values of
the community attributes are min-max normalized. In Figure 4.2, the dotted line shows a linear
least squares approximation [26] of the FCCN scores, to depict the potential disparity in CPM
scores. If the approximation is a horizontal line, the algorithm is defined as fair, as it performs
consistently across all attribute values. However, when the line is skewed, it suggests that the
algorithm favors certain attributes. In Figure 4.2, the positive slope of the regression line indicates
that the algorithm performs better for larger communities.

We use the angle of the linear regression to quantify the bias. There are three possible scenarios
for the slope: (i) the line is straight, (ii) the slope of the line is positive, and (iii) the slope of the
line is negative. We can use the arctangent to calculate the angle of the slope using ∆x and ∆y,
and because we have normalized the property values of all communities in the network, we know
that ∆x = 1.

θ = arctan

(
∆y

∆x

)
= arctan(∆y) (4.18)

The angle θ, given in radians, is within (−π
2
, π
2
). We multiply θ by 2

π
to get a result in the

range (−1, 1). This leaves us with the equation for the group fairness metric ΦCPM
p shown in

Equation 4.19.

ΦCPM
p =

2

π
· arctan(∆y) (4.19)

Using the example in Figure 4.2 once again, we calculate Φ given the ∆y ≈ 0.69. We get
Φ = 2

π
· arctan(0.69) ≈ 0.38. The sign of Φ is equal to the sign of the slope, meaning that if

ΦCPM
p > 0 the slope is positive and the CD method favors higher values of community property p

for CPM CPM. If ΦCPM
p < 0, the CD method is biased for lower values of p, and if ΦCPM

p = 0 it
means the CD methods are considered fair and find all communities equally well or equally poor.
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Figure 4.2: An example showing the score for each community by its size. The line is plotted to
show the trend of the CDM’s performance. In this example, it performs better on communities
with a larger size.

This method is undefined when ∆x = 0, e.g., when all communities are the same size. Min-max
normalization for ∆x is not applicable as this would require division by zero. The denominator of
min-max normalization is xmax − xmin which would equal 0.

4.3 Metric Behavior

To illustrate how the proposed metrics behave we draw up several toy examples. For the mapped
and global CPMs we have generated a graph consisting of one community and we will see what
values the metrics take as the prediction partiton changes in the examples.

For the mapped metrics a community of 1024 nodes is taken and the prediction is perfect at the
start, there is one predicted community that is equal to the ground-truth community. Then, we
change the prediction by removing an increasing number of nodes. The resulting metric scores can
be found in Figure 4.3. As not all nodes have an equal degree, the scores for FCCE and FCCE+
are different based on the nodes that are removed. The figure shows the area between the highest
and lowest recorded values in 20 repetitions, and the average is marked.

It can be seen that the average FCCE+ value is very close to the FCCN value. This is because,
over many repetitions, the degree of the removed nodes averages out. In fact, given a complete
graph, FCCN will equal FCCE+ for any number of removed nodes, see Appendix A.1 for the
proof. Increasing the number of repetitions will average out the degrees of removed nodes further
and the value of FCCE+ will approach FCCN even further.

For analysis on the global metrics we use the same 1024 node graph as before. Figure 4.4 shows
what happens when we go from a perfect prediction for the single ground-truth community to a
prediction that has information from the community, its nodes and edges, spread across multiple
predicted communities. Figure 4.4b splits the length of the predicted communities evenly in two at
each step. The average F1 score and the sum of weighted F1 are equal here, which is expected since
the weighting factor matches the number of communities over which the F1 values are averaged.

Figure 4.4a cuts off a group of 100 nodes from the largest predicted community and uses
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Figure 4.3: Mapped metric behavior with a decreasing number of correctly found nodes in the
predicted community. The average values of FCCE and FCCE+ are plotted after 20 repetitions
as well as their highest and lowest value at each point.

(a) Predicted communities are split evenly at each
step.

(b) From the largest predicted community, 100
nodes are separated at each step.

Figure 4.4: Global metric behavior in two situations. Both start with a perfect prediction that
has its nodes separated in different predicted communities. The average values of SWFCCE and
SWFCCE+ are plotted after 20 repetitions as well as their highest and lowest value at each step.

those nodes as a predicted community. Here, as well as in Figure 4.4b, we gather results from
20 repetitions. Figure 4.4a shows more fluctuations for SWFCCE and SWFCCE+ scores, as a
large part of its value comes from the number of edges correctly found in the largest predicted
community due to its weight. Fluctuations in SWFCCE and SWFCCE+ are much less noticeable
when the weights are the same as in Figure 4.4b.
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4.3.1 Fairness Metric Behavior

To highlight how the CPM values relate to the group fairness metric Φ we show an example of two
ground-truth communities c1 and c2 that differ in some community property, e.g. size, density, or
conductance. Note that c1 has a lower value in the community attribute than c2, as this has an
effect on whether Φ is negative or positive. Five scenario’s for individual scores are created and
the regression line is drawn up through these points. This is shown in Figure 4.5a with the values
of the fairness metric Φ shown in Figure 4.5b.

Let us look at a more concrete case with four communities of different sizes: 100, 200, 300,
and 400. Figure 4.6 shows this example where, at the start, each community has a mapped-to
predicted community that perfectly describes that community (ci = pj). Then, 50 and 100 nodes
are removed from the perfect prediction and each time the regression line is drawn in Figure 4.6a.
For communities of varying sizes, both the FCCN and F1 scores tend to favor larger communities
because a constant number of misclassified nodes has a smaller relative impact on them. This bias
is quantified by the fairness metric Φ, as shown in Figure 4.6b, which becomes more biased toward
larger communities as more nodes are not correctly classified.

4.3.2 Mapping Behavior

In order to show how the mapping step influences the CPMs and the resulting group fairness
metric Φ, we make changes to predictions on a network with two communities. The homophilic
network is generated using the HICH-BA model [74] with the homophilic factor set to 0.9. The
network consists of a majority community (70 nodes) and a minority community (40 nodes) with
∼ 900 edges. Initially, cmaj and cmin are perfectly detected by some CD method and are mapped to

(a) Individual community performance metric ex-
ample with two communities. The regression line
is drawn through the points in five scenarios given
by: (performance in c1) - (performance in c2).

(b) Fairness Metric scores gathered from the five
scenarios in Figure 4.5a.

Figure 4.5: Figures showing the relationship between individual community performance metrics,
the regression line drawn from those points, and the FM.
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(a) Four communities with varying size. F1
and FCCN are plotted with different number of
wrongly predicted nodes.

(b) Fairness Metric scores derived from values in
Figure 4.6a.

Figure 4.6: Example of individual community performance metrics turning into FM scores. The
bias is shown by the FM when an equal number of nodes are wrong for each community.

p1 and p2, respectively. We change the prediction by swapping nodes between the initial perfectly
predicted communities p1 and p2. We change 0 to 40 nodes and map the ground-truth nodes based
on the method described in Section 4.1.3. In Figure 4.7a, you can see the CPM scores against the
number of swapped nodes. The resulting group fairness metric score are shown in Figure 4.7b.

The FCCE score varies based on which nodes are swapped, and therefore, we show the av-
erage and standard deviation over 20 iterations. FCCE is lower than FCCN and F1 because of
the homophilic characteristic of the network; nodes are mostly connected to nodes in their own
community. CPM scores are higher for the majority community, that is, until around 75% of the
nodes have been swapped. At that point, cmaj no longer maps to p1 and cmin no longer maps
to p2, and the mapping changes because a higher Jaccard similarity score is achieved. At that
point, the bias, which was in favor of the majority community, swings the other way to favor the
minority community for FCCN and FCCE based fairness, see Figure 4.7b. F1 is fair because the
F1 scores for the majority and minority communities are equal, this is because F1 also considers
false positives in the predicted community.
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(a) Community-wise performance behavior (b) Group fairness metric behavior

Figure 4.7: Analyzing behavior of community-wise fairness metric and group fairness on a network
having minority and majority community.
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Chapter 5

Experimental Setup

This chapter will give an overview of the experimental setup. This includes a description of the
collection of CD methods used in our analysis, along with a categorization of these methods.
Furthermore, we will describe the datasets used in our study, including both synthetic and real-
world datasets. Lastly, this chapter describes the different metrics we use to determine the quality
of the identified communities. We use them to study the performance-fairness trade-off.

5.1 Community Detection Methods

There is no agreed definition of community; yet, finding groups in network structures is valuable
in several domains. Therefore, many methods have been proposed to address the problem of
community detection; Li et al. [43] offer a comprehensive review of a large number of CD methods.
We have assembled a set of 24 CD methods which we will analyze in terms of performance and
fairness using our proposed group fairness metric Φ. Table 5.1 shows six categories of CD methods
in which the 24 analyzed CD methods are placed. These categories classify CD methods based on
their approach to creating community partitions.

Optimization methods aim to optimize a quality function that describes the quality of the
partition or community. The modularity function Q [54, 56] is widely used as a standard measure
of community quality and is used by all methods in this category, but significance [87]. Since
optimizing modularity is NP-hard, these are heuristic methods.

Spectral methods create predictions based on spectral properties of matrices that describe the
network, such as the adjacency matrix or the Laplacian matrix [19]. These methods analyze the
eigenvalues and eigenvectors of these matrices, which provide insights into the network’s struc-
ture. For example, Spectral Clustering [27] makes use of the Fiedler vector, the second smallest
eigenvalue, to construct communities.

Representational methods work by transforming a network into vector space, often called a
network embedding. Network embedding refers to the approach of learning latent low-dimensional
feature representations for the nodes or links in a network” [3]. Most of the methods in this
category create the network embedding by modeling random walks and use k-means in the network
embedding space to create a partition of the network.

Dynamics methods aim to learn the community structure by looking at the traversal of the
network, often by random walks. Network traversal could reveal communities by the intuition that
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Optimization Spectral Properties Representational
• Clauset-Newman-Moore

Algorithm (CNM) [12]
• Combo [80]
• Leiden [88]
• Louvain [6]
• Paris [7]
• Reichardt-Bornholdt -

configuration null model
(RB-C) [68]

• Reichardt-Bornholdt -
Erdős-Rényi null model
(RB-ER) [68]

• Significance [87]

• Eigenvector [53]
• Regularized Spectral

Clustering with k-means
(RSC-K) [97]

• RSC sklearn Spectral
Embedding (RCS-SSE) [97]

• RSC - Vanilla (RSC-V) [97]
• Spectral Clustering [27]

• Deepwalk [62]
• Fairwalk [66]
• Node2Vec [24]

Dynamics Propagation Miscellaneous
• Infomap [72]
• Spinglass [68]
• Walktrap [64]

• Fluid [59]
• Label Propagation [13]

• Expectation-Maximization
(EM) [57]

• Stochastic Block Model
(SBM) [60]

• SBM - Nested [61]

Table 5.1: Overview of CDMs used in experimentation, categorized into 6 groups.

random walks often stay within communities as these are more densely connected than the rest of
the graph.

Propagation methods work by assigning community labels to nodes. Community labels are
iteratively updated based on the labels neighboring nodes have. The goal is to reach a stable
configuration that reflects the underlying community structure. The first of these methods was
the Label Propagation algorithm (LPA) [13] that updates a node’s community membership based
on the label that the majority of its neighbors have. In the case of a tie, a label is picked at
random. LPA is fast and scalable, making the method suitable for large networks. LPA has been
the foundation for multiple propagation methods, such as FLPA [89], LLPA [28], LPA-MNI [42],
WSSLPA [45], DCC [14] and more.

The Miscellaneous category includes methods that could not be added to any of the categories
mentioned above. This is because their underlying method differs too much from any of the
categories, and therefore they are placed in the miscellaneous group.

5.2 Data

To perform our experiments, we used real-world networks and synthetic networks generated using
the LFR benchmark [40], ABCD [32], and the HICH-BA model [74]. All analyzed networks have
ground-truth information on the community structure, allowing us to calculate the CPMs. All
networks are undirected, unweighted, connected networks with nonoverlapping communities that
fully cover the network.
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5.2.1 Real-World Networks

Table 5.2 shows a summary of the gathered real-world networks. Because the CPMs require a
known community structure, there are not many networks available, especially of larger sizes.
Below is a short description of the networks:

Polbooks [36]: This is a network of books on US politics. Data was collected around the
time of the 2004 presidential election, and edges were recorded by frequent co-purchasing of a pair
of books. The set of books are placed in three communities based on their political affiliation:
conservative, liberal, and non-partisan.

Football [23]: US college (American) football is divided into 12 conferences. A network
has been created to represent the regular-season games of the 2000 NCAA Division I-A football
season. Nodes represent the football teams, connections represent the matches, and communities
are derived from the conferences the teams are a part of.

Eu-core [41, 96]: This communication network was built using e-mails sent between employees
of a European research center. The departments the employees work in form the community
structure. We transform this originally directed network into an undirected network and use only
its largest connected component (largest weakly connected component in the original network).
The largest connected component makes up 98% of the nodes in the original network.

5.2.2 The LFR Benchmark

A popular method for generating synthetic networks with built-in community structure is the
Lancichinetti–Fortunato–Radicchi (LFR) benchmark [40]. The LFR benchmark improved on the
Girvan-Newman benchmark [23] by making the degree distribution and community size distri-
bution following power laws, thereby creating networks that more closely resemble real-world
networks [2, 82]. The LFR benchmark model enables the control of a mixing parameter µ, which
gives the fraction of intercommunity connections. If this value is set to 0, all edges are placed
within communities, and if the value is set to 1, no edges are within communities. Differences in
the values of µ have a large impact on the generated networks. Figures 5.1a and 5.1b illustrate this
difference; when µ is lower, communities are a lot more cohesive. The value of µ also influences
the ability of CD methods to perform well, as shown in Figure 5.1c, where performance, measured
in NMI, decreases with an increase in µ. Other LFR settings include the number of nodes, the
average degree of nodes, the maximum degree of nodes, and the minimum community size.

The values we set for our experiments mostly follow the values used by Lancichinetti et al. [39]:
The number of nodes n = 10, 000, the power-law exponent of the degree distribution τ1 = 2, the
power-law exponent of the community size distribution τ2 = 2.5 (average of values used in [39]),

Dataset name |V | |E| Avg deg degmax |C| |cmax| |cmin|
Polbooks [36] 105 441 8.40 25 3 49 13
Football [23] 115 613 10.66 12 12 13 5
Eu-core [41, 96] 986 16,687 33.85 347 42 107 1

Table 5.2: Real-world dataset summary. |V |: number of nodes, |E|: number of nodes, Avg deg :
average degree, degmax: maximum degree, |C|: number of communities, |cmax|: size of largest
community, |cmin|: size of smallest community.
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(a) LFR graph with 1000 nodes,
µ = 0.2.

(b) LFR graph with 1000 nodes,
µ = 0.6.

(c) NMI of predicted partitions
with LFR graphs with differing
mixing parameter µ values.

Figure 5.1: Two LFR networks with µ ∈ {0.2, 0.6} and a graph showing how µ affects the quality
of the CD methods’ prediction. The networks are visualized using ForceAtlas2 [30], node colors
are given by ground-truth community, and node size is determined by degree.

the mixing parameter µ ∈ [0.2, 0.4, 0.6], the average degree Avg deg = 20, the maximum degree
degmax = 100, the minimum community size |cmin| = 20. Because the value of µ influences the
performance of the CD methods, as can be seen in Figure 5.1, we generate 5 networks using the
LFR model for every value of µ. For our results, we used the scores of our 5 LFR networks to
compute the average and standard deviation. The values of the power-law exponents fall in the
range that is found in real-world networks: 2 ≥ τ1 ≥ 3 and 1 ≥ τ2 ≥ 3 [18].

5.2.3 ABCD

The Artificial Benchmark for Community Detection (ABCD) model [32] is similar to the LFR but
improves on it by addressing scalability issues and the interpretability of the mixing parameter. It
generates networks with degree and community size distributions that follow power laws like LFR,
but ABCD runs in the order of 100 times faster. ABCD uses ξ as its mixing parameter, which is
a more intuitive measure of community strength. When ξ = 0, all edges lie within a community,
as is also the case when µ = 0. When ξ = 1, edges are randomly placed throughout the network,
edges are no longer more likely to fall within a community than between communities. With
LFR networks with µ = 1, the number of intracommunity edges is 0. With ABCD, the number
of intracommunity edges is dependent on the size of the community. The ABCD parameters we
use were set to mimic the graphs generated by the LFR benchmark. The values of ξ are slightly
different from the µ values [0.2, 0.4, 0.6]. We calculated the appropriate ξ values using the global
method described in [32]. We get ξ ∈ [0.201, 0.402, 0.603].

5.2.4 HICH-BA

HIgh Clustering Homophily Barabási-Albert (HICH-BA) [74] is an extension to the homophily
BA model [33]. The LFR benchmark and the ABCD algorithm work by creating the degree and
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communities as a first step. HICH-BA iteratively adds nodes and edges to the network based on
probabilities provided by the user. HICH-BA takes the following parameters:

• n: the number of nodes in the network.

• r: This is a list of probabilities. The likelihood of assigning a node to community ci is given
by the i-th element in r.

• h: The homophily factor gives the probability of an edge being within the community.

• pN : The probability of adding a node to the graph. The probability of adding a edge in an
iteration is 1 − pN .

• pt: This gives the probability to form a close triad connection.

• pPA: This gives the probability for a new edge to be placed using preferential attachment
(PA) weights.

HICH-BA allows for a custom community size distribution by setting r. We set r to create
two network cases: (i) Multiple minority communities with one majority community (MMin), and
(ii) multiple majority communities (MMaj). The parameter r was set as [0.005, 0.005, 0.005, 0.01,
0.01, 0.01, 0.02, 0.02, 0.02, 0.9] in the MMin scenario, and r is set as [0.003, 0.003, 0.003, 0.03,
0.03, 0.03, 0.3, 0.3, 0.3] in the MMaj case. Note that r does not necessarily need to add up to
1. The other parameters are the same for both cases: n = 10, 000, h = 0.9, pN = 0.1, pT = 0.3,
and pPA = 0.8. For our results, we average the results gathered over 5 HICH-BA networks, per
community structure.

5.2.5 Synthetic Data Analysis

Because synthetic data is generated programmatically, it is important to look at some aspects of
the networks because bias can also be found in data. For example, it might be possible that in
synthetic networks, large communities are always dense. In such a case, we would like to know
whether we can separate Φsize and Φdensity. We created correlation matrices between the community
properties size, density, and conductance. These were created using all communities from the
multiple generated networks, per generation model. Because they provide different results, the
correlation matrices for LFR and ABCD are separated by their mixing parameters. Specifically,
by correlation, we refer to the Pearson correlation coefficient.

The correlation matrices comparing community properties from LFR networks are shown in
Figures 5.2. Here we can see that the correlation between size and conductance is quite high
when µ = 0.2. With a negative value, this means that when community size gets bigger, the
conductance is smaller. This correlation diminishes as µ gets larger, but in its place a correlation
between density and conductance appears.

Figure 5.3 shows the correlation matrices for ABCD networks. Here, we can see a correlation
between density and size. This correlation is constant for all values of ξ. For HICH-BA, we also
find considerable correlation, see Figure 5.4. In MMaj (Figure 5.4a), we find correlation between
density and size. In MMin (Figure 5.4b, correlation is particularly found between conductance and
size, and between conductance and density. Table 5.3 gives a summary for the generated synthetic
networks. Network entries are not separated by mixing parameter for LFR and ABCD because
their values are almost the same.
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(a) µ = 0.2 (b) µ = 0.4 (c) µ = 0.6

Figure 5.2: Correlation matrices for community properties size, density, and conductance. Com-
munity information is gathered from LFR networks.

(a) ξ = 0.2 (b) ξ = 0.4 (c) ξ = 0.6

Figure 5.3: Correlation matrices for community properties size, density, and conductance. Com-
munity information is gathered from ABCD networks.

(a) MMaj (b) MMin

Figure 5.4: Correlation matrices for community properties size, density, and conductance. Com-
munity information is gathered from HICH-BA networks.

Dataset name |V | |E| Avg deg degmax degmin |C| |cmax| |cmin|
LFR 10,000 136,334.4 27.3 111.8 8 282.0 98.4 20
ABCD 10,000 105,063.1 21.0 100.3 8 264.9 116.2 20
HICH-BA MMaj 10,000 98,054.4 19.6 1021.4 1.0 9 3038.8 27.4
HICH-BA MMin 10,000 92,597.4 18.5 1283.6 1.0 10 8964.6 42.0

Table 5.3: Synthetic dataset summary. |V |: number of nodes, |E|: number of nodes, Avg deg :
average degree, degmax: maximum degree, degmin: minimum degree, |C|: number of communities,
|cmax|: size of largest community, |cmin|: size of smallest community.
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5.3 Measuring Quality of the Prediction Partition

There exist multiple metrics that can quantify the similarity of the predicted partition to the
ground-truth community structure. Normalized mutual information (NMI) [20] is a metric that
has been often used in papers comparing CD methods [38, 40, 95]. Our experiments include
measuring NMI, as well as other metrics, defined below. All these metrics range from 0 to 1, where
1 means that the predicted partition is identical to the ground-truth community structure. This
is not the case for variation of information (VI), which can give scores larger than 1. For variation
of information, 0 indicates that the community structure is perfectly predicted.

5.3.1 Normalized Mutual Information

NMI [20] is, as the name suggests, a normalized variant of mutual information (MI). MI is a
information theoretic measure, defined as:

MI(C,P ) =
m∑
i=1

k∑
j=1

P (ci ∩ pj) log
P (ci ∩ pj)

P (ci)P (pj)
(5.1)

The notation for the predicted partition P is not to be confused with the function representing
probability. In Equation 5.1, P (ci) gives the probability that a randomly chosen node belongs to
ci, and P (ci ∩ pj) gives the probability that a randomly chosen node belongs to both ci and pj.
NMI is defined as:

NMI(C,P ) =
MI(C,P )√
H(C)H(P )

(5.2)

Here, H(C) and H(P ) are the entropies of the ground-truth and predicted partitions, respectively.

H(C) = −
m∑
i=1

P (ci) logP (ci) (5.3)

H(P ) = −
k∑

j=1

P (pj) logP (pj) (5.4)

5.3.2 Reduced Mutual Information

The Reduced Mutual Information (RMI) [55] was proposed to correct a flaw with MI. Namely,
that the measure should return a value of 0 in the case where the predicted partitions has n
communities as this predicted partition communicates nothing about the community structure.
However, instead of 0, MI returns H(C) [55]. To combat this, Newman et al. added a correction
term to define RMI as:

RMI(C,P ) = MI(C,P ) − 1

n
log Ω(a, b) (5.5)

Here, Ω(a, b) is the number of C × R non-negative integer matrices with row sums a = {|ci|} and
column sums b = {|pj|}. For our experiments, we make use of the CDlib [70] implementation that
normalizes the RMI score.
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5.3.3 Variation of Information

Variation of Information (VI) [51], also known as shared information distance, is another informa-
tion theoretic metric. For VI, a score of 0 represents the case where the predicted partition and
ground-truth partition are equal. This makes sense given the name, the prediction is perfect given
zero variation. The VI is calculated using the definition of MI (see Equation 5.1) and definitions
of entropy of a partition (see Equations 5.3 and 5.4):

V I(C,P ) = H(C) + H(P ) − 2MI(C,P ) (5.6)

The maximum value of VI is equal to H(C) + H(P ). When the predicted partition and the
ground-truth partition are completely independent, MI is zero. VI is then maximized.

5.3.4 Adjusted Rand Index

The Adjusted Rand Index (ARI) [29] is a chance-adjusted version of the Rand Index (RI). RI is
given by:

RI(C,P ) =
TP + TN

TP + FP + FN + TN
(5.7)

Here, TP is the number of true positives, TN is the number of true negatives, FP is the number
of false positives, and FN is the number of false negatives. These terms come from the confusion
matrix; they measure instances in prediction tasks. In this context, the terms are defined as
follows:

• TP: the number of pairs of nodes that are in the same community in C and in the same
community in P.

• TN: the number of pairs of nodes that are in a different community in C and in a different
community in P.

• FP: the number of pairs of nodes that are in a different community in C and in the same
community in P.

• FN: the number of pairs of nodes that are in the same community in C and in a different
community in P.

Hubert et al. formulated a way to adjust for chance in any measure M as follows:

adjusted M =
M − E(M)

Mmax − E(M)
(5.8)

E(M) is the expected value for some null model. Hubert formulated that if partitions are generated
randomly, the expected number of pairs in a community intersection ci ∩ pj is given by:

E

(
|ci ∩ pj|

2

)
=

(
|ci|
2

)(
|pj|
2

)/(
N

2

)
(5.9)
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With these definitions, we can get the ARI:

ARI(C,P ) =

∑
ij

(
|ci ∩ pj|

2

)
−
∑

i

(
|ci|
2

)∑
j

(
|pj|
2

)/(
N

2

)
1
2

(∑
i

(
|ci|
2

)
+
∑

j

(
|pj|
2

))
−
∑

i

(
|ci|
2

)∑
j

(
|pj|
2

)/(N
2

) (5.10)

ARI is upper bounded by 1, this is given when the predicted partition exactly matches the ground-
truth partition. It is lower bounded by -1. Negative ARI values indicate that the similarity between
the two partitions is less than the expected value from two random partitions.

5.3.5 Average F1 Score: PF1

Rossetti et al. [71] introduced an approach to measure the quality of predicted communities. It
works by mapping predicted communities to ground-truth communities. Ground-truth community
membership is labeled. Using this, a predicted community pj is mapped to the ground-truth
community ci with the highest number of labels in pj. Many predicted communities can map to
one ground-truth community.

When mapping is complete, we can compare the mapped communities just as we did with
our proposed CPM F1. F1 is the harmonic mean of recall and precision, these are defined in
Equations 4.2 and 4.3, respectively. F1 combines these measures, as described in Equation 4.4.
These F1 scores measure similarity between pairs of mapped communities. These scores can be
averaged and this value, along with its standard deviation, can be used to compare predicted
partitions. To distinguish this measure from our proposed CPM, we refer to this partition-based
approach as PF1

5.3.6 Normalized F1 Score

Rossetti later built upon PF1 by introducing a normalized version [69]. This variant takes into
account two newly introduced measures. These measures come from the many-to-one mapping
from predicted communities to ground-truth communities. It is possible that ground-truth com-
munities are not mapped to. This is the case when a ground-truth community’s label is not most
frequent in any predicted community. We call Cid the set of ground-truth communities that are
mapped to. The first introduced measure is “coverage”, this gives the percentage of ground-truth
communities that are mapped to.

coverage =
|Cid|
|C|

∈ [0, 1] (5.11)

The second measure is “redundancy”. This quantifies how many times larger the set of predicted
communities P is compared to Cid. This given by:

redundancy =
|P |
|Cid|

∈ [1,+∞) (5.12)

These measures are combined using the definition of PF1 to create the normalized version of PF1:
NF1.

NF1 =
PF1 · coverage
redundancy

∈ (0, 1] (5.13)
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5.4 Experimental Details

We perform our experiments using Python libraries NetworkX [25] and CDlib [70]. To create the
LFR networks we use NetworkX’s implementation. We use the CDlib implementation of most
of the CD methods we analyze and when a method requires certain parameters to be set, we
use the CDlib’s default parameters. Several methods require the number of communities to be
predicted, and we provide it if required. Note that the number of ground-truth communities is not
usually known and these methods will have an advantage over other methods that have to infer
the number of ground-truth communities themselves. The methods that require the number of
predicted communities to be given are RSC-K, RSC-SSE, RSC-V, Spectral Clustering, Deepwalk,
Fairwalk, Node2Vec, Fluid, and EM. All CD method parameters and their used values are reported
in Appendix B. Our code and data can be found in our GitHub repository.
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Chapter 6

Results

In this chapter, we present our results for the proposed fairness metric ΦCPM
p . Our fairness metric

examines bias with respect to three community properties: size, density, and conductance. CPM
stands for community-wise performance metrics; these measure how well ground-truth communities
are detected by CD methods. Our proposed CPMs are explained in further detail in Section 4.1
and are divided into two groups: mapped and global metrics. These results are gathered using
real-world networks and synthetic networks, generated using the LFR benchmark, ABCD, and
HICH-BA method. Refer to Section 5.2 for more details on the datasets.

This chapter is structured as follows: Section 6.1 contains the results of the mapped CPMs
and Section 6.2 contains the results of the global CPMs. These sections will include figures where
NMI is plotted against the group fairness measure ΦCPM

p . NMI is the most popular partition
quality measure, often used to compare CD methods [38, 40, 95]. Section 6.3 will give the results
of other partition quality measures; these include RMI, VI, ARI, F1, and NF1. When we speak of
“performance” in this chapter, we mean these partition quality metrics.

CD methods have to figure out the number of communities themselves. How successfully
they identify number of communities influences the community-wise performance heavily; this is
especially the case with mapped CPMs, as discussed in Section 4.1.2. For synthetic networks, we
measure the average difference between the number of predicted communities |P | and the number
of ground-truth communities |C|. Table 6.1 has these values. Note that several CD methods were
provided with the correct number of ground-truth communities. These are marked with a * in the
table.

We have a lot of results to present, where it may be challenging to distinguish individual points
in figures where marks overlap. Therefore, we present our synthetic results of ΦCPM

p with NMI in
tabular form in Appendix C: Appendices C.1 to C.24. Scores from the performance measures are
given in tables in Appendices C.25 to C.32.

6.1 Results for Mapped CPMs

Here we present the results of ΦCPM
p using the mapped CPMs. NMI is plotted against ΦCPM

p in
these figures to give insight into the performance-fairness trade-off.
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LFR ABCD HICH-BA
CD Method µ = 0.2 µ = 0.4 µ = 0.6 ξ = 0.2 ξ = 0.4 ξ = 0.6 MMaj MMin

CNM -261.6 -269.6 -261.6 -237.8 -253 -237.8 16.2 151.6
Combo -171.4 -208.4 -171.4 -166.8 -192 -166.8 0.2 6
Leiden -167.2 -198.6 -167.2 -163.2 -186.8 -163.2 15.2 31.4
Louvain -169.6 -197 -169.6 -162.4 -184.2 -162.4 14.8 19.6
Paris -56.6 -192.4 -56.6 -54.4 -2.8 -54.4 -2.6 -5
RB-C -167.2 -198 -167.2 -161.8 -184.8 -161.8 15.4 18.6
RB-ER -132 -191.6 -132 -139 -172 -139 3974.6 3974.2
Significance 8 193.8 8 8.6 23.2 8.6 3870.4 3724.8
Eigenvector -207.7 -258.2 -207.7 -198.8 -225.8 -198.8 27.7 -3
RSC-K* 0 0 0 0 0 0 0 0
RSC-SSE* 0 0 0 0 0 0 0 0
RSC-V* 0 -0.2 0 -2.2 -2 -2.2 0 0
Spectral* -280.4 -275.6 -280.4 -265.8 -264.8 -265.8 -6.6 -8
Deepwalk* 0 0 0 0 0 0 0 0
Fairwalk* 0 0 0 0 0 0 0 0
Node2Vec* 0 0 0 0 0 0 0 0
Infomap 0 -6.2 0 0 0 0 463 635.8
Spinglass -258.2 -254 -258.2 -242.8 -242.8 -242.8 15.6 14.4
Walktrap -10 -46.2 -10 0 0 0 344 3128.8
Fluid* 0 0 0 0 0 0 0 0
Label Propagation -37.2 -108 -37.2 -29.6 -86 -29.6 97 108
EM* -51.8 -66.6 -51.8 0 0 0 0 0
SBM -81 -86.6 -81 -97.6 -88.8 -97.6 15 4.8
SBM - Nested 45 70.6 45 13.4 1.8 13.4 12.4 7

Table 6.1: This table gives an overview of the difference between the number of predicted commu-
nities and the number of ground-truth communities. This difference is averaged over the number
of available networks. So, a negative value of x indicates that the CD method has predicted an
average of x communities too few. CD methods that are marked with * have been given the
number of ground-truth communities in order to work.

6.1.1 Results on LFR for Mapped CPMs

Fairness - Size

First, we analyze how well different CD methods identify communities of different sizes. In Fig-
ure 6.1 you can find the results on LFR networks with mixing parameters µ = 0.2 (Figure 6.1a),
µ = 0.4 (Figure 6.1b), and µ = 0.6 (Figure 6.1c). NMI is plotted against the mapped variants of
the group fairness metric Φ: ΦFCCN

size , ΦF1
size, ΦFCCE

size , and ΦFCCE+
size . Detailed results can be found in

tables in Appendices C.1, C.2, and C.3.
For µ = 0.2, larger communities are favored by all CD methods except EM, Paris, SBM-Nested,

and RSC-SSE. This is the case for almost all CPMs. The methods that have high performance
(NMI ≈ 1) and are fair include RSC-K, RSC-V, RSC-SSE, Infomap, Fluid, Walktrap, and Sig-
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(a) µ = 0.2

(b) µ = 0.4

(c) µ = 0.6

Figure 6.1: NMI and ΦCPM scores in regard to size with mapped CPMs for CDs methods applied
on LFR networks with n = 10, 000.

nificance. SBM-Nested is an outlier that favors minority communities. This is because this is a
hierarchical variant of the SBM model, which returns the lowest level as its prediction. This is no
longer the case when µ is set to 0.6. Then, no CD method favors minority communities regardless
of CPM. The only exception is EM with ΦF1

size. Communities that are found with µ = 0.6 are
larger, meaning all CD methods favor majority communities.

As illustrated by Figure 5.1, CD performance decreases with a higher mixing parameter. How-
ever, several CD methods already perform badly with a low mixing parameter. These are Paris,
Spinglass, CNM, Eigenvector, EM, and Spectral.

When µ = 0.4, there are still several methods that are both fair and have high performance:
Significance, RSC-V, RSC-K, Infomap. Spectral is among the most fair for FCCN, FFCE, and
FCCE+. However, we can see that its performance is really bad, meaning that all communities
have been evenly misclassified. Looking at Table 6.1, we can see that this is the case because
Spectral has predicted a lot fewer communities than ground truth had. Another CD method that
has predicted far too few communities and has bad performance is CNM. However, there are some
CD methods that have predicted a comparable amount of communities but still score well in terms
of performance. These include Leiden, Louvain, RB-C, and RB-ER. We do see that these favor
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larger communities heavily, across all the different mixing parameter values. These methods are
less biased when you look at ΦF1. This is because the large predicted communities have a lot of
false positives; these are taken into account by F1. This decreases the community-wise performance
score for F1, bringing it in line with smaller communities.

FCCE and FCCE+ have almost identical fairness scores. However, when there is a difference,
FCCE+ is almost always more biased toward larger communities than FCCE. This is consistently
the case for all mixing parameter values.

Fairness - Density

Figure 6.2 presents results from LFR networks illustrating fairness with respect to density. For
µ = 0.2 and µ = 0.4 the CD methods are more divided than was the case with Φsize. This is
still the case when µ = 0.6. There, we find a group slightly favoring low-density communities
while still performing well: Leiden, Louvain, RB-C, and RB-ER. Other CD methods that have
high performance have an opposite bias that is also much stronger. This cluster is made up of
Significance, RSC-K, RSC-V, Deepwalk, Fairwalk, Node2Vec, Infomap, Walktrap, Fluid, SBM,
and SBM-Nested. These methods are more effective at detecting denser communities compared to
less dense ones. This is also more pronounced when µ = 0.6 compared to when µ = 0.4.

As we saw with bias with respect to size, we can see that FCCE+ is very similar to FCCE.
However now, whenever there is a deviation, it shows that FCCE+ favors low-density communities
slightly more than FCCE.

Fairness - Conductance

Figure 6.3 shows the results of Φconductance for mapped CPMs. Communities with low conductance
are more separated from the network. Already when µ = 0.2, it is evident that most CD methods
favor low-conductance communities. This is most prevalent with the group of modularity-based
methods: Combo, Leiden, Louvain, RB-C, and RB-ER. SBM is another method that strongly
favors low-conductance communities.

When µ increases to 0.4, almost all CD methods are biased toward low-conductance communi-
ties. Infomap, RSC-V, Significance, and SBM-Nested are also relatively fair when community-wise
performance is measured in FCCN and F1. SBM-Nested moves to favor high-conductance com-
munities for FCCE and FCCE+.

When µ increases even further, all CD methods are biased toward low-conductance communi-
ties. Our results show that high-performing CD metrics are more biased than lower-performing
CD methods. This is the case for all CPMs.

6.1.2 ABCD Results Mapped CPMs

Fairness - Size

Now we look at the results we gathered when applying the CD methods to networks that were
generated using the ABCD algorithm. Figure 6.4 shows the fairness metric Φsize with respect
to community size. The results with ξ = 0.2 look very similar to the results we got for LFR
networks with µ = 0.2, see Figure 6.1a. There are several CD methods that have an unusually
low performance: Paris, Spinglass, CNM, Eigenvector, EM, and Spectral. Most CD methods have
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(a) µ = 0.2

(b) µ = 0.4

(c) µ = 0.6

Figure 6.2: NMI and ΦCPM scores in regard to density with mapped CPMs for CDs methods
applied on LFR networks with n = 10, 000.

created very successful predictions, scoring high performance values and low bias ratings. There
is also, once again, a group that is already very biased toward majority communities, composed of
Combo, Leiden, Louvain, RB-C, and SBM.

With ξ = 0.4, we get different fairness results. Five CD methods outperform the best perform-
ing CD method in the LFR network (µ = 0.4) in terms of NMI. These are: Significance, RSC-V,
Infomap, Walktrap, and SBM-Nested. Of these, Significance, RSC-V, Infomap, and Walktrap are
also among the most fair CD methods meaning all communities have been detected well. Other
CD methods have slight biases toward both majority and minority communities.

The group of Combo, Leiden, Louvain, RB-C, RB-ER, Spinglass and SBM favor larger com-
munities heavily, also when ξ = 0.6. With this mixing parameter, the largest bias not from this
group is found in Fairwalk with ΦF1. There is a large group of fair, well-performing CD methods.
This is quite remarkable for such a high mixing parameter value. Notable are Infomap, RSC-V,
SBM-Nested, and Significance. These CD methods all score at or above 0.987. With µ = 0.6,
most CD methods favor larger communities, although most do only slightly. There is not a clear
trend between Φsize and performance as was evident from the LFR results.
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(a) µ = 0.2

(b) µ = 0.4

(c) µ = 0.6

Figure 6.3: NMI and ΦCPM scores in regard to conductance with mapped CPMs for CDs methods
applied on LFR networks with n = 10, 000.

Fairness - Density

Figure 6.5 shows the fairness metric Φdensity for CD methods performed on ABCD networks.
Combo, Leiden, Louvain, RB-C, RB-ER, and SBM favor lower density communities for all values
of ξ. They, along with most CD methods score well, even with high mixing. Contrary to what was
found for LFR networks, we see that fairness does not increase as the mixing parameter increases.
Also, more CD methods favor lower density communities instead of high density, especially for
ΦF1

density.

Fairness - Conductance

Figure 6.6 shows Φconductance for results gathered from ABCD networks. Once again, we see high
NMI scores for most CD methods and the group of Combo, Leiden, Louvain, RB-C, and SBM
are deviating from other CD methods in terms of fairness. With ξ = 0.2, these methods favor
communities with higher conductance. When ξ = 0.4, these methods appear fair but when ξ = 0.6
they favor low-conductance communities. Most CD methods perform well and are very fair.
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(a) ξ = 0.2

(b) ξ = 0.4

(c) ξ = 0.6

Figure 6.4: NMI and ΦCPM scores in regard to size with mapped CPMs for CDs methods applied
on ABCD networks with n = 10, 000.

6.1.3 HICH-BA Results Mapped CPMs

Multiple Majority HICH-BA

Results for CD methods performed on the MMaj variant of the HICH-BA networks can be seen in
Figure 6.7. Figure 6.7a shows Φsize, Figure 6.7b shows Φdensity, and Figure 6.7c shows Φconductance.
Table 6.1 shows that some CD methods predicted far too many communities. RB-ER and Signif-
icance predict more than 3000 communities too many. CD methods that score high in terms of
NMI are Combo, Leiden, Louvain, RB-C, Spinglass, SBM, and SBM-Nested. Notably, all these
methods have generated more than 21 predicted communities when 9 was the correct number.
They were still able to score well in terms of performance.

For Φsize, most CD methods favor larger communities, across all CPMs. This includes the high-
performing methods that were previously mentioned. SBM and SBM-Nested are notably biased
toward smaller communities for ΦFCCE

size and ΦFCCE+
size .

For Φdensity, methods are spread with different fairness scores. The five best-performing CD
methods favor sparse communities. SBM and SBM-Nested are also seen to be more biased for
ΦFCCE

size and ΦFCCE+
size , again showing this unusual shift. The standard deviation for Φdensity is
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(a) ξ = 0.2

(b) ξ = 0.4

(c) ξ = 0.6

Figure 6.5: NMI and ΦCPM scores in regard to density with mapped CPMs for CDs methods
applied on ABCD networks with n = 10, 000.

higher than we find for LFR and ABCD networks.
For Φconductance, the standard deviation increases even further for all mapped CPMs. This

indicates a very volatile prediction and mapping process, as the standard deviation for NMI is not
as high. Almost all CD methods have a slight bias toward low-conductance communities. The
best performing CD methods are all reasonably fair.

Multiple Minority HICH-BA

The results gathered from applying CD methods to HICH-BA networks of the MMin variant can
be seen in Figure 6.8. Here, we can see that most CD methods were not able to score a high NMI
value. This probably depended on whether the method was able to detect the largest ground-
truth community. Methods that score high in terms of performance are Paris, RSC-V, Label
Propagation, SBM and SBM-Nested. Three methods achieve scores within 0.4 and 0.6, but all
others score lower than 0.29. These are spread in terms of Φ, regardless of the property of the
analyzed community.

Fairness in regard to size, Φsize, does not reflect the idea that well-performing CD methods

39



(a) ξ = 0.2

(b) ξ = 0.4

(c) ξ = 0.6

Figure 6.6: NMI and ΦCPM scores in regard to conductance with mapped CPMs for CDs methods
applied on ABCD networks with n = 10, 000.

must have detected the largest community. If this had been the case, these methods would have
large values of Φsize, which is not the case.

6.1.4 Real-World Results Mapped CPMs

We have performed experiments on three real-world networks: Polbooks, Football, and Eu-core.
Results for ϕsize can be seen in Figure 6.9. For Polbooks (Figure 6.9a), all CD methods score similar
NMI scores, around 0.5. Most methods favor the larger communities, except RSC-K, RSC-SSE,
and Significance. These exceptions with fair Φsize are not present when the CPM is F1.

The bias toward larger communities is also evident in the results gathered from the Football
network, as seen in Figure 6.9b. Performance is much higher for most CD methods. All CD
methods, except EM and Spectral, score higher for all NMI scores found by the results on Polbooks.

Figure 6.9c shows the results from Eu-core. Again, most CD methods favor larger communities.
This is not the cases for Deepwalk, Node2Vec, RSC-SSe, and RSC-K when the CPM is FCCE.
Notable is Significance, which is very fair and scores high in terms of NMI.
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(a) Size

(b) Density

(c) Conductance

Figure 6.7: NMI and ΦCPM
p scores with mapped CPMs for CDs methods applied on HICH-BA

networks with n = 10, 000, containing multiple majority communities (MMaj).

6.2 Results Global CPMs

Figures 6.1 to 6.8 show values of ΦCPM
p and NMI for global CPMs. NMI is plotted against ΦCPM

p

in these figures to give insight into the performance-fairness trade-off.

6.2.1 LFR Results Global CPMs

Fairness - Size

Figure 6.10 shows NMI and ΦCPM
size results for global CPMs. When the CPM is SWFCCE and

SWFCCE+, we find that the CD methods appear more fair than when fairness was analyzed for
their mapped counterparts. This is most evident for µ = 0.2 and µ = 0.4. Fairness with AvgF1 and
SWF1 mimics the mapped F1 fairness measure closely, favoring larger communities. For µ = 0.6,
we see that almost all CD methods appear fair when the CPM is AvgF1.
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(a) Size

(b) Density

(c) Conductance

Figure 6.8: NMI and ΦCPM
p scores with mapped CPMs for CDs methods applied on HICH-BA

networks with n = 10, 000, containing multiple minority communities with one majority community
(MMin).

Fairness - Density

Figure 6.11 shows the fairness in regards to density for global CPMs. When µ = 0.2, most CD
methods perform well in terms of NMI and are all mostly fair. When µ = 0.4, the bias toward
dense communities is evident. As was the case with mapped CPMs, several CD methods stand
out here. Combo, Leiden, Louvain, RB-C, and RB-ER are less biased toward dense communities
and, with SWF1 as the CPM, this group is biased toward low-density communities.

When µ = 0.6, CD methods are really unfair when the CPM is SWFCCE and SWFCCE+.
SBM and SBM-Nested are much more fair than other well-performing CD methods. With higher
values µ, AvgF1 and SWF1 show a clear correlation between high NMI scores and bias toward
dense communities. The group of modularity-based CD methods that have often been found to
be biased toward sparse networks fall in between this line, striking a balance between performance
and fairness.
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(a) Polbooks

(b) Football

(c) Eu-core

Figure 6.9: NMI and ΦCPM scores in regard to size with mapped CPMs for CDs methods applied
on the real-world networks Polbooks, Football, and Eu-core.

Fairness - Conductance

Figure 6.12 shows results for ΦCPM
conductance with global CPMs. Similarly to the results we found with

mapped CPMs (see Figure 6.3) we find that all CD methods favor low-conductance communities
when µ = 0.6. There is a connection between performance and bias toward low-conductance
communities, though this is not straightforward with SWFCCE and SWFCCE+ as CPMs. Here
SBM and SBM-nested are more fair than other methods while performing well in terms of NMI.
For lower values of µ we see similar results to the mapped CPM variants.

6.2.2 ABCD Results Global CPMs

Fairness - Size

Figure 6.13 shows ΦCPM
size results gathered from ABCD networks with global CPMs. As mentioned

before, most CD methods perform well on ABCD networks, even with ξ set to 0.6. We see
that ΦSWFCCE

size and ΦSWFCCE
size favor smaller communities more than their mapped counterparts.

The LFR results suggested they became more fair, by moving toward Φ
SWFCCE(+)
size = 0, here
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(a) µ = 0.2

(b) µ = 0.4

(c) µ = 0.6

Figure 6.10: NMI and ΦCPM scores in regard to size with global CPMs for CDs methods applied
on LFR networks with n = 10, 000.

Φ
SWFCCE(+)
size becomes negative for many CD methods. For ΦAvgF1

size and ΦSWF1
size , we find that most

of the CD methods are fair or in favor of small communities. However, the modularity-based group
of Combo, Leiden, Louvain, RB-C, and RB-ER favors large communities.

Fairness - Density

Figure 6.14 shows ΦCPM
density. What we saw with Φ

SWFCCE(+)
size on ABCD networks, where bias moved

toward favoring small communities, we now see with Φ
SWFCCE(+)
density shifting to more bias toward

high density communities. Aside from this, these results of ΦCPM
density are very similar to the mapped

variants of the CPMs.
When the CPM is AvgF1 or SWF1, for ξ = 0.2 and ξ = 0.4, CD methods range from favoring

sparse networks, to being fair, to favoring dense networks. The modularity-based group favors
sparse networks for all values of ξ, while RSC-V, Significance, Fluid, and Walktrap favor dense
communities heavily only when ξ = 0.6.
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(a) µ = 0.2

(b) µ = 0.4

(c) µ = 0.6

Figure 6.11: NMI and ΦCPM scores in regard to density with global CPMs for CDs methods
applied on LFR networks with n = 10, 000.

Fairness - Conductance

Figure 6.15 shows fairness in regard to conductance for global CPMs. Here, all CD methods are
fair in terms of ΦSWFCCE

size for all values of ξ. Most CD methods are fair for ΦAvgF1
size and ΦSWF1

size as
well, but when ξ = 0.6 the modularity-based group of Combo, Leiden, Louvain, RB-C, and RB-
ER is joined by Walktrap and Spinglass in a group that is more biased toward low-conductance
communities.

6.2.3 Real-World Results Global CPMs

Overal, the results gathered using global CPMs to analyze Φsize is very similar to the results that
were gathered using mapped CPMs. This can be seen by comparing the global results (Figure 6.16)
with the mapped results (Figure 6.9). For Polbooks, a difference is that CD methods get more
similar values for ΦSWFCCE

size and ΦSWFCCE+
size . They all have shifted toward a more fair scores. This

is also the case for the Football network. For Eu-core, values of ΦSWFCCE
size and ΦSWFCCE+

size have
also decreased in value and for multiple CD methods, this meant that they now have negative
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(a) µ = 0.2

(b) µ = 0.4

(c) µ = 0.6

Figure 6.12: NMI and ΦCPM scores in regard to conductance with global CPMs for CDs methods
applied on LFR networks with n = 10, 000.

values and show biased results toward smaller communities.
Results from AvgF1 and SWF1 resemble the mapped F1 results across the real-world net-

works. The ΦAvgF1
size results includes many fair methods and some that appear to favor minority

communities, such as Significance and RB-ER.

6.3 Results Partition Quality Measures

As described in Section 5.3, other measures than NMI exist that also quantify how well a predicted
partition describes the ground-truth community structure. These include RMI, VI, ARI, PF1, and
NF1. To show the differences between these metrics, we show the performance scores obtained
from applying the 24 CD methods on the set of LFR networks with µ = 0.4. Figure 6.17 shows the
performance scores plotted against ΦCPM

size with the mapped CPMs, and these performance scores
can be seen in tabular form in Appendix C.26. All partition quality measures can be seen for the
synthetic networks in Appendices C.25 to C.32.

As described in Section 5.3, better predictions get higher scores for these partition quality
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(a) ξ = 0.2

(b) ξ = 0.4

(c) ξ = 0.6

Figure 6.13: NMI and ΦCPM scores in regard to size with global CPMs for CDs methods applied
on ABCD networks with n = 10, 000.

metrics. This is not the case for VI, where an ideal prediction gets a VI score of 0. VI can also
exceed 1 and we have several CD methods that are not visible in the VI plots as they exceed the
set y-limit of 3. These are Eigenvector (9.1), EM (8.4), Spectral (8.2), CNM (6.7), Paris (6.4),
and Spinglass (3.7). All these also the lowest performing CD methods in terms of NMI, PF1, and
NF1. Although these methods agree on the worst CD methods, they do not agree on the best
performing methods.

Two CD methods place in the top-5 best methods across all partition quality metrics: Infomap
and RSC-V. Significance and SBM place in three of the six top-5’s. However, Significance is also
ranked the second-worst in terms of RMI. Table 6.1 shows why this is the case. Significance
has predicted ∼193 too many communities for this network, and RMI penalizes predictions that
overestimate the true number of communities.

Unsurprisingly, just as NMI and RMI, PF1 and NF1 are often in agreement about the quality
of a predicted partition. This is because both pairs of partition similarity measures share baselines:
mutual information for RMI and NMI, and many-to-one F1-scores for PF1 and NF1.

We do have to note that the implementation for RMI might not be correct. We used CDlib’s
implementation [70] which offers a normalized variant of RMI such that this measure does not

47



(a) ξ = 0.2

(b) ξ = 0.4

(c) ξ = 0.6

Figure 6.14: NMI and ΦCPM scores in regard to density with global CPMs for CDs methods
applied on ABCD networks with n = 10, 000.

exceed 1. However, we find that on several occasions RMI is incorrectly calculated or not properly
normalized. For example, in Appendix C.27 read the RMI score for Walktrap as 190. In total, we
find results that exceed 1 three times.
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(a) ξ = 0.2

(b) ξ = 0.4

(c) ξ = 0.6

Figure 6.15: NMI and ΦCPM scores in regard to conductance with global CPMs for CDs methods
applied on ABCD networks with n = 10, 000.
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(a) Polbooks

(b) Football

(c) Eu-core

Figure 6.16: NMI and ΦCPM scores in regard to size with global CPMs for CDs methods applied
on the real-world networks Polbooks, Football, and Eu-core.
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Figure 6.17: Partition quality metrics and ΦCPM
size scores with mapped CPMs for CDs methods

applied on LFR networks with n = 10, 000, µ = 0.4.
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Chapter 7

Conclusions

Community detection (CD) offers help in understanding network structure and node behavior.
Communities have different sizes, densities, and levels of connectivity throughout the network.
Most CD algorithms do not take structural inequalities of communities into account which leads
to biased outcomes for community detection and downstream SNA tasks. Certain types of com-
munities cannot be properly identified by CD methods. In this thesis, we have introduced the
group-fairness metric ΦCPM

p that measure bias with respect to a community property p. This
measure Φ is based on the fairness definition that all communities should be detected equally
well. This works by comparing different scores of community-wise performance metrics (CPMs),
which we introduce in this work. We propose mapped and global CPMs to quantify how well a
community is identified. The proposed measure gives valuable insights that can be used to design
fair community detection methods, or in what aspects current CD methods should be improved,
or CD parameters should be set. We have performed experiments with 24 CD methods, which we
have applied to real-world networks and synthetic networks. Synthetic networks were generated
using the LFR benchmark, the ABCD algorithm, and the HICH-BA model. For LFR and ABCD,
we have analyzed networks with varying degrees of community mixing. HICH-BA networks were
generated using one of two structures that decide the number of majority communities and the
overall community structure.

Next we discuss insights gained by analyzing 24 CD methods based on their fairness by ΦCPM
p

and their performance. NMI is the most prominently presented measure of prediction quality.
Other measures include RMI, VI, ARI, PF1, and NF1. We find that well-performing CD methods
include Significance, RSC-K, Infomap, and SBM(-Nested). These CD methods perform well for
LFR and ABCD networks; these networks mimic real networks to a high degree. These methods
were biased, as were other high-performing methods, toward large, dense, and low-conductance
communities. However, we find that in many instances high performance goes hand in hand with
fairness. This was especially evident for ABCD networks.

CD methods were able to perform very well for ABCD networks, even when ξ was set to 0.6.
Because many communities were well detected, these CD methods achieve high fairness scores.
For LFR networks, there is a clear correlation between ΦCPM

p and performance, especially when
the mixing parameter µ is higher. Methods that perform better are more biased toward large,
dense, low-conductance communities.

A group containing several modularity-based approaches containing Combo, Leiden, Louvain,
RB-C, and RB-ER received very similar scores in terms of performance and fairness. Although
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these methods achieved high performance, they were often found to be biased, but not in the way
other CD methods were. These methods favored less dense communities and were much more
biased in ABCD networks than other CD methods.

Performance and bias results from the HICH-BA networks differ from the LFR and ABCD
results. With the community structure with multiple majority communities, the CD methods
CNM, Combo, Leiden, Louvain, RB-C, and Spinglass stood out in terms of performance. Although
we found an overall bias toward low-conductance communities in both HICH-BA structures, as we
did for LFR and ABCD networks, the CD methods varied in their bias regarding community size
and density. In the HICH-BA structure with a single large majority community, performance was
found to be lower. Only seven CD methods achieved NMI scores higher than 0.4.

Based on our results, we advise people to use the CD methods Significance and Infomap. These
methods consistently achieved high performance, and unlike other high-performing methods, these
do not require the user to set the number of communities to predict. These methods detected
many communities well and often scored highly in fairness, with Significance outperforming other
methods in real-world networks. The selection of CD methods should not be based solely on
our fairness metrics, as a fair method could also detect all communities equally poorly. Other
CD methods could outperform these metrics given optimal parameter settings. We have used the
default settings of CDlib; better parameters could be found for synthetic networks but this requires
more experimentation. Significance and Infomap require no parameters to be given, making their
achieved results in terms of fairness and performance more impressive. Interestingly, Significance
does not join the similar scoring group of modularity-based methods. While Significance works by
optimizing a goodness score like other methods from this class does, it optimizes for Significance
instead of modularity.

Depending on what SNA task is undertaken after identifying communities, it can be advan-
tageous to look at fairness scores derived from certain CPMs. Analyzing the bias with regard to
conductance is important for influence maximization. If one aims to spread information to remote
parts of the network, the decision could be made to select a CD method that is heavily biased
toward finding low-conductance communities. When precision of communities needs to be taken
into account, select a fairness metric based on a CPM that uses the F1 measure.

Regarding the proposed global metrics, we find that these metrics do not offer substantial
additional information on the fairness of a CD method. Additionally, mapped CPMs reflect the
one-to-one nature of community detection better than the one-to-many structure of global CPMs.

As expected, the CPMs FCCE and FCCE+ offer similar fairness results. The difference that
can be found between them is that with Φsize, FCCE+ is consistently more biased toward larger
communities: ΦFCCE+

size ≥ ΦFCCE
size and ΦSWFCCE+

size ≥ ΦSWFCCE
size . This is the case across CD methods

and different networks. This happens because larger communities have more nodes, and thus there
is a larger number of nodes that can be identified as false bridges. This improves the FCCE+ score
relative to FCCE.

7.1 Future Work

This work has analyzed undirected, unweighted, connected networks with non-overlapping com-
munities. However, there are various other type of complex networks conveying more information,
such as overlapping communities, hyperedge networks and so on. CD methods have been pro-
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posed to apply to other types of networks and communities. The CPMs and fairness metric Φ
work by comparing ground-truth communities with predicted communities. This basic principle
can apply to other types of community, such as overlapping communities, hierarchical communi-
ties, or communities with outliers. Future work can also include further fairness analysis toward
other community attributes. Looking at the number of intracommunity edges (community volume)
could yield results that fall between the results we have gathered by looking at community size
and density.

Our method could be improved by changing the approach we use to map ground-truth com-
munities to predicted communities. This is an instance of the linear assignment problem. We
have used an iterative approach that chooses the pair of communities that has the highest Jaccard
similarity at each step, but one can explore other approaches. Furthermore, future work could
focus on a different definition of fairness. Many different definitions exist within SNA [77]. By
applying linear regression, we derive a metric to identify bias; however, this approach abstracts
away from the actual community-wise performance values. In-depth research into community-wise
performance could yield interesting results.

Lastly, we have found that there exists some level of correlation between community properties
in synthetic networks. Because not many large real-world networks have ground-truth community
information, we are reliant on these network generation models. More analysis needs to be done on
the communities that are produced by LFR, ABCD, and HICH-BA. Additionally, more real-world
networks need to be annotated with community information for CD methods to be compared on
results gathered from the real world. It will also be helpful if one could propose group fairness
metrics that do not require ground-truth information of the community structure.
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nity analysis in social networks. European Physical Journal B, 38, 12 2003.

[3] Nino Arsov and Georgina Mirceva. Network embedding: An overview, 2019.
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Appendix A

Proofs

A.1 FCCN equals FCCE+ in a complete graph

Claim: In a complete graph, FCCE+ equals FCCN.
Given a complete, undirected graph G(V,E) with n = |V | nodes and n(n−1)

2
edges, let m be

the number of misclassified nodes in a mapped predicted community pj. The number of false
bridges (FBs) is given by m(n − m) and the number of correctly classified edges is given by
1
2
(n−m)(n−m− 1).

FCCE+ (see Eq. 4.8) can be described as:

FCCE+ =
|FB | + 2|classified edges |

2|edges in ci|
(A.1)

=
m(n−m) + 2 · 1

2
(n−m)(n−m− 1)

2 · 1
2
n(n− 1)

(A.2)

=
nm−m2 + n2 − nm− n− nm + m2 + m

n(n− 1)
(A.3)

=
n2 − n− nm + m

n(n− 1)
(A.4)

=
(n− 1)(n−m)

n(n− 1)
(A.5)

=
n−m

n
(A.6)

Which is the definition of FCCN.
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Appendix B

Community Detection Method
Parameters

CDMs CDlib Alg. Parameters

CNM greedy modularity -

Combo pycombo

- weight: “weight”
- max coms: None
- modularity resolution: 1
- num split attempts: 0
- start separate: False
- treat as modularity: False
- random seed: 42

Leiden leiden
- initial membership: None
- weights: None

Louvain louvain
- weight: “weight”
- resolution: 1
- randomize: None

Paris paris -

RB-C rb pots
- initial membership: None
- weights: None
- resolution parameter: 1

RB-ER rber pots

- initial membership: None
- weights: None
- node sizes: None
- resolution parameter: 1

Significance significance coms
- initial membership: None
- node sizes: None

Table B.1: CDM settings used in experiments. Settings are in bold if they deviate from the CDlib
defaults or have to be set manually.
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CDMs CDlib Alg. Parameters

Eigenvector eigenvector -

RSC-K r spectral clustering
- n clusters: Number of ground-truth coms
- method: “regularized with kmeans”
- percentile: None

RSC-SSE r spectral clustering
- n clusters: Number of ground-truth coms
- method: “sklearn spectral embedding”
- percentile: None

RSC-V r spectral clustering
- n clusters: Number of ground-truth coms
- method: “vanilla”
- percentile: None

Spectral spectral
- kmax: Number of ground-truth coms
- projection on smaller class: True
- scaler: None

Deepwalk Own implementation

- n clusters: Number of ground-truth coms
- dimensions: 128
- walk length: 80
- num walks: 10

Fairwalk GitHub implementation

- n clusters: Number of ground-truth coms
- dimensions: 128
- walk length: 80
- num walks: 10

Node2Vec GitHub implementation

- n clusters: Number of ground-truth coms
- dimensions: 128
- walk length: 80
- num walks: 10

Infomap infomap - flags: “ ”

Spinglass spinglass - spins: 25
Walktrap walktrap -
Fluid async fluid - k: Number of ground-truth coms
Label Propagation label propagation -
EM em - k: Number of ground-truth coms
SBM sbm dl -
SBM - Nested sbm dl nested -

Table B.2: CDM settings used in experiments. Settings are in bold if they deviate from the CDlib
defaults or have to be set manually.
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Appendix C

Full Results

The results are presented in tabular form here. Appendices C.1 to C.24 give the NMI and fairness
metrics ΦCPM

p from the predictions produced by the 24 CD methods. Appendices C.25 to C.32
give their performance measures. Cells in the tables are colored according to how good the value
in the cell is. The greener the color, the better the value. For fairness metrics ΦCPM

p , the ideal
value is 0. A cell’s color becomes more white the further away it is from 0, regardless of sign. For
the partition quality measures NMI, RMI, ARI, PF1, and NF1, the value of 1 is ideal. The closer
to 1 a cell’s value is, the greener it is colored. VI is different, and in this case, a value of 0 is ideal.
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C.1 Results: LFR Size mu 0.2

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.586 0.376 0.168 0.373 0.377 0.089 0.200 0.012 0.008
Combo 0.912 0.657 0.634 0.657 0.657 0.489 0.489 0.001 0.001
Leiden 0.917 0.652 0.632 0.652 0.652 0.477 0.476 0.001 0.001
Louvain 0.915 0.653 0.630 0.653 0.653 0.475 0.475 0.000 0.000
Paris 0.713 -0.043 0.011 -0.043 -0.010 -0.209 -0.045 -0.107 -0.085
RB-C 0.918 0.653 0.629 0.653 0.653 0.467 0.466 0.001 0.001
RB-ER 0.943 0.590 0.559 0.590 0.590 0.312 0.310 0.001 0.001
Significance 1.000 0.002 0.001 0.001 0.001 0.017 0.003 0.003 0.003
Eigenvector 0.323 0.316 0.161 0.273 0.319 0.061 0.133 0.262 0.247
RSC-K 0.990 0.031 0.021 0.019 0.016 0.121 0.031 0.022 0.019
RSC-SSE 0.976 0.039 0.056 -0.110 -0.024 0.087 0.031 -0.195 -0.113
RSC-V 1.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
Spectral 0.120 0.097 0.035 0.096 0.097 0.045 0.049 0.138 0.097
Deepwalk 0.984 0.151 0.190 0.088 0.134 -0.003 0.087 -0.116 -0.074
Fairwalk 0.982 0.158 0.205 0.076 0.133 0.021 0.094 -0.129 -0.080
Node2Vec 0.982 0.149 0.182 0.089 0.133 -0.005 0.105 -0.103 -0.066
Infomap 1.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
Spinglass 0.727 0.501 0.214 0.501 0.501 0.220 0.210 0.030 0.023
Walktrap 0.995 0.083 0.091 0.083 0.083 0.071 0.065 0.001 0.001
Fluid 0.982 0.082 0.144 0.037 0.086 0.024 0.026 -0.153 -0.107
Label
Propaga-
tion

0.982 0.197 0.153 0.197 0.196 0.071 0.066 0.004 0.003

EM 0.292 -0.089 -0.139 0.010 -0.076 -0.042 -0.049 0.535 0.472
SBM 0.973 0.504 0.564 0.493 0.499 0.352 0.351 -0.029 -0.018
SBM -
Nested

0.983 -0.300 -0.198 -0.545 -0.416 -0.293 -0.267 -0.525 -0.391

Table C.1: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.2. The 5 best (unrounded) scores are in bold.
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C.2 Results: LFR Size mu 0.4

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.352 0.172 0.030 0.169 0.176 0.026 0.070 0.173 0.144
Combo 0.830 0.634 0.551 0.634 0.634 0.480 0.470 0.122 0.104
Leiden 0.862 0.642 0.561 0.642 0.642 0.457 0.433 0.087 0.075
Louvain 0.869 0.641 0.559 0.641 0.641 0.446 0.424 0.060 0.053
Paris 0.539 0.383 0.299 0.357 0.464 -0.017 0.094 -0.105 -0.082
RB-C 0.863 0.640 0.559 0.640 0.640 0.456 0.431 0.084 0.073
RB-ER 0.872 0.576 0.457 0.576 0.576 0.342 0.295 0.074 0.064
Significance 0.985 0.078 0.048 0.051 0.033 0.134 0.100 0.110 0.096
Eigenvector 0.197 0.181 0.037 0.144 0.187 0.016 0.049 0.171 0.179
RSC-K 0.933 0.146 0.134 0.108 0.097 0.030 0.169 0.086 0.072
RSC-SSE 0.791 0.185 0.197 0.144 0.159 0.121 0.241 -0.029 -0.036
RSC-V 0.990 0.021 0.032 0.007 0.005 -0.012 0.047 0.025 0.023
Spectral 0.096 0.091 0.024 0.091 0.092 0.038 0.046 0.186 0.133
Deepwalk 0.942 0.214 0.290 0.119 0.192 0.230 0.206 -0.063 -0.016
Fairwalk 0.936 0.257 0.314 0.176 0.231 0.271 0.250 0.024 0.050
Node2Vec 0.943 0.225 0.300 0.131 0.199 0.227 0.214 -0.059 -0.014
Infomap 0.989 0.071 0.076 0.056 0.053 0.198 0.075 0.045 0.041
Spinglass 0.703 0.473 0.195 0.473 0.473 0.233 0.217 0.144 0.122
Walktrap 0.943 0.324 0.324 0.319 0.314 0.311 0.312 0.063 0.052
Fluid 0.953 0.145 0.205 0.113 0.132 0.088 0.160 0.031 0.044
Label
Propaga-
tion

0.880 0.426 0.327 0.423 0.415 0.367 0.298 0.141 0.117

EM 0.191 0.014 -0.034 0.031 0.019 -0.015 -0.001 0.236 0.203
SBM 0.955 0.504 0.560 0.473 0.490 0.425 0.387 -0.005 0.016
SBM -
Nested

0.954 -0.221 -0.054 -0.574 -0.414 -0.109 -0.192 -0.578 -0.431

Table C.2: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.4. The 5 best (unrounded) scores are in bold.
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C.3 Results: LFR Size mu 0.6

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.138 0.084 -0.000 0.084 0.089 0.008 0.020 0.200 0.167
Combo 0.356 0.269 0.068 0.276 0.286 0.025 0.099 0.296 0.264
Leiden 0.611 0.513 0.307 0.525 0.531 0.120 0.271 0.310 0.286
Louvain 0.623 0.509 0.304 0.521 0.526 0.110 0.266 0.292 0.268
Paris 0.366 0.087 0.095 0.058 0.156 -0.008 0.012 -0.059 -0.067
RB-C 0.620 0.526 0.322 0.539 0.544 0.115 0.281 0.312 0.289
RB-ER 0.624 0.514 0.304 0.527 0.533 0.090 0.256 0.304 0.282
Significance 0.858 0.169 0.176 0.175 0.157 -0.135 0.151 0.170 0.168
Eigenvector 0.096 0.083 0.011 0.063 0.091 0.010 0.018 0.046 0.036
RSC-K 0.739 0.213 0.289 0.155 0.241 -0.044 0.173 0.013 0.036
RSC-SSE 0.411 0.051 0.135 0.022 0.090 -0.002 0.033 -0.010 -0.028
RSC-V 0.838 0.196 0.316 0.214 0.206 -0.101 0.271 0.180 0.179
Spectral 0.047 0.062 0.012 0.061 0.064 0.016 0.022 0.023 0.019
Deepwalk 0.769 0.285 0.353 0.281 0.302 -0.009 0.284 0.214 0.233
Fairwalk 0.751 0.286 0.354 0.286 0.307 -0.023 0.284 0.221 0.236
Node2Vec 0.773 0.263 0.333 0.255 0.279 0.001 0.270 0.197 0.215
Infomap 0.850 0.274 0.281 0.276 0.258 -0.005 0.270 0.272 0.255
Spinglass 0.510 0.411 0.158 0.423 0.430 0.065 0.179 0.303 0.277
Walktrap 0.674 0.076 0.112 0.094 0.158 -0.073 0.041 0.012 0.032
Fluid 0.706 0.165 0.290 0.160 0.190 -0.068 0.180 0.078 0.090
Label
Propaga-
tion

0.000 0.038 0.001 0.038 0.038 0.010 0.010 -0.000 -0.000

EM 0.174 0.018 -0.025 0.031 0.026 -0.011 0.002 0.038 0.034
SBM 0.657 0.528 0.511 0.540 0.550 0.236 0.421 0.024 0.011
SBM -
Nested

0.677 0.480 0.481 0.493 0.504 0.201 0.393 0.022 0.012

Table C.3: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.6. The 5 best (unrounded) scores are in bold.
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C.4 Results: LFR Density mu 0.2

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.586 -0.036 -0.020 -0.036 -0.037 -0.007 -0.040 0.031 0.025
Combo 0.912 -0.398 -0.286 -0.398 -0.398 -0.150 -0.154 0.002 0.001
Leiden 0.917 -0.410 -0.295 -0.410 -0.410 -0.143 -0.148 0.002 0.002
Louvain 0.915 -0.423 -0.306 -0.423 -0.423 -0.155 -0.157 0.001 0.000
Paris 0.713 0.072 0.017 0.071 0.037 0.165 0.073 0.121 0.098
RB-C 0.918 -0.416 -0.301 -0.416 -0.416 -0.133 -0.139 0.003 0.003
RB-ER 0.943 -0.414 -0.378 -0.414 -0.414 -0.182 -0.189 0.002 0.002
Significance 1.000 0.004 0.002 0.002 0.001 0.043 0.006 0.006 0.005
Eigenvector 0.323 -0.008 -0.023 0.002 -0.009 -0.002 -0.016 0.039 0.043
RSC-K 0.990 0.053 0.044 0.047 0.036 0.242 0.062 0.055 0.042
RSC-SSE 0.976 0.159 0.169 0.151 0.151 0.250 0.163 0.008 0.008
RSC-V 1.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000
Spectral 0.120 -0.010 0.005 -0.010 -0.010 0.002 0.001 0.077 0.056
Deepwalk 0.984 -0.069 -0.069 -0.055 -0.065 -0.006 -0.028 0.032 0.022
Fairwalk 0.982 -0.069 -0.070 -0.039 -0.060 0.032 -0.019 0.057 0.037
Node2Vec 0.982 -0.060 -0.049 -0.040 -0.056 0.016 -0.007 0.048 0.032
Infomap 1.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000
Spinglass 0.727 -0.060 -0.018 -0.060 -0.060 -0.043 -0.060 0.035 0.028
Walktrap 0.995 0.042 0.063 0.041 0.041 0.060 0.052 0.001 0.001
Fluid 0.982 -0.093 -0.124 -0.076 -0.098 0.051 -0.025 0.082 0.060
Label
Propaga-
tion

0.982 -0.188 -0.167 -0.189 -0.190 -0.063 -0.078 0.006 0.005

EM 0.292 -0.041 -0.043 -0.011 -0.036 0.000 -0.025 0.203 0.202
SBM 0.973 -0.455 -0.431 -0.454 -0.454 -0.155 -0.161 0.005 0.003
SBM -
Nested

0.983 0.059 0.037 0.148 0.097 0.068 0.054 0.140 0.089

Table C.4: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.2. The 5 best (unrounded) scores are in bold.
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C.5 Results: LFR Density mu 0.4

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.352 -0.058 -0.007 -0.057 -0.060 0.000 -0.001 0.256 0.224
Combo 0.830 -0.228 -0.166 -0.229 -0.229 0.064 -0.024 0.230 0.200
Leiden 0.862 -0.223 -0.175 -0.224 -0.224 0.055 -0.059 0.173 0.150
Louvain 0.869 -0.226 -0.172 -0.226 -0.227 0.048 -0.054 0.130 0.114
Paris 0.539 0.059 0.013 0.059 0.029 0.042 0.105 0.358 0.340
RB-C 0.863 -0.221 -0.172 -0.221 -0.221 0.069 -0.049 0.168 0.147
RB-ER 0.872 -0.273 -0.216 -0.276 -0.276 0.050 -0.096 0.146 0.127
Significance 0.985 0.163 0.103 0.107 0.071 0.531 0.208 0.224 0.197
Eigenvector 0.197 -0.035 -0.009 -0.026 -0.037 -0.001 -0.004 0.071 0.094
RSC-K 0.933 0.308 0.282 0.283 0.237 0.416 0.358 0.254 0.200
RSC-SSE 0.791 0.343 0.362 0.318 0.328 0.203 0.338 0.026 0.031
RSC-V 0.990 0.068 0.056 0.028 0.018 0.450 0.109 0.088 0.078
Spectral 0.096 -0.021 0.003 -0.021 -0.021 0.004 0.005 0.183 0.135
Deepwalk 0.942 0.370 0.370 0.378 0.351 0.506 0.382 0.365 0.308
Fairwalk 0.936 0.370 0.367 0.373 0.353 0.490 0.380 0.366 0.312
Node2Vec 0.943 0.357 0.361 0.364 0.340 0.508 0.372 0.345 0.293
Infomap 0.989 0.135 0.139 0.108 0.101 0.376 0.143 0.099 0.089
Spinglass 0.703 -0.195 -0.072 -0.195 -0.195 0.017 -0.029 0.263 0.228
Walktrap 0.943 0.477 0.491 0.472 0.468 0.549 0.479 0.085 0.072
Fluid 0.953 0.233 0.149 0.238 0.177 0.531 0.269 0.367 0.318
Label
Propaga-
tion

0.880 0.174 0.188 0.165 0.147 0.382 0.282 0.220 0.188

EM 0.191 -0.053 -0.054 -0.013 -0.036 -0.015 -0.022 0.492 0.445
SBM 0.955 0.006 0.013 0.022 0.006 0.335 0.170 0.183 0.152
SBM -
Nested

0.954 0.341 0.316 0.441 0.372 0.510 0.313 0.384 0.298

Table C.5: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.4. The 5 best (unrounded) scores are in bold.
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C.6 Results: LFR Density mu 0.6

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.138 -0.019 -0.003 -0.018 -0.022 -0.002 0.002 0.345 0.310
Combo 0.356 -0.042 -0.005 -0.044 -0.048 0.049 0.052 0.541 0.505
Leiden 0.611 -0.096 -0.061 -0.107 -0.113 0.182 0.126 0.567 0.538
Louvain 0.623 -0.076 -0.047 -0.086 -0.090 0.201 0.136 0.565 0.535
Paris 0.366 0.300 0.157 0.275 0.333 0.021 0.123 0.287 0.343
RB-C 0.620 -0.101 -0.060 -0.114 -0.120 0.183 0.119 0.570 0.542
RB-ER 0.624 -0.127 -0.077 -0.140 -0.146 0.173 0.103 0.572 0.545
Significance 0.858 0.527 0.471 0.477 0.389 0.516 0.560 0.576 0.553
Eigenvector 0.096 -0.009 -0.002 -0.007 -0.011 -0.001 0.002 0.123 0.140
RSC-K 0.739 0.514 0.545 0.474 0.478 0.366 0.536 0.447 0.415
RSC-SSE 0.411 0.120 0.154 0.082 0.125 0.023 0.090 0.044 0.071
RSC-V 0.838 0.533 0.423 0.497 0.433 0.596 0.509 0.578 0.551
Spectral 0.047 -0.001 0.010 -0.001 -0.001 0.009 0.011 0.261 0.191
Deepwalk 0.769 0.541 0.529 0.533 0.501 0.506 0.550 0.557 0.541
Fairwalk 0.751 0.540 0.514 0.532 0.501 0.476 0.535 0.553 0.538
Node2Vec 0.773 0.544 0.533 0.539 0.506 0.500 0.554 0.564 0.546
Infomap 0.850 0.517 0.483 0.476 0.433 0.610 0.539 0.551 0.526
Spinglass 0.510 -0.104 -0.037 -0.111 -0.116 0.090 0.067 0.565 0.533
Walktrap 0.674 0.558 0.557 0.558 0.515 0.314 0.569 0.536 0.505
Fluid 0.706 0.539 0.438 0.533 0.485 0.412 0.496 0.583 0.571
Label
Propaga-
tion

0.000 -0.012 -0.000 -0.012 -0.012 -0.003 -0.003 -0.000 -0.000

EM 0.174 -0.039 -0.051 -0.006 -0.021 -0.017 -0.016 0.500 0.444
SBM 0.657 0.245 0.180 0.236 0.228 0.407 0.414 0.154 0.117
SBM -
Nested

0.677 0.453 0.400 0.448 0.443 0.492 0.512 0.162 0.125

Table C.6: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.6. The 5 best (unrounded) scores are in bold.
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C.7 Results: LFR Conductance mu 0.2

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.586 -0.323 -0.157 -0.320 -0.325 -0.086 -0.200 -0.013 -0.010
Combo 0.912 -0.672 -0.638 -0.672 -0.672 -0.500 -0.497 -0.002 -0.002
Leiden 0.917 -0.663 -0.635 -0.663 -0.663 -0.488 -0.485 -0.003 -0.003
Louvain 0.915 -0.664 -0.631 -0.664 -0.664 -0.481 -0.480 -0.001 -0.000
Paris 0.713 0.021 -0.021 0.022 -0.002 0.183 0.021 0.071 0.055
RB-C 0.918 -0.666 -0.632 -0.666 -0.666 -0.479 -0.475 -0.005 -0.004
RB-ER 0.943 -0.609 -0.570 -0.609 -0.609 -0.322 -0.315 -0.002 -0.002
Significance 1.000 -0.006 -0.003 -0.003 -0.002 -0.054 -0.009 -0.009 -0.008
Eigenvector 0.323 -0.307 -0.171 -0.259 -0.310 -0.061 -0.142 -0.267 -0.261
RSC-K 0.990 -0.072 -0.056 -0.052 -0.043 -0.248 -0.076 -0.058 -0.048
RSC-SSE 0.976 -0.211 -0.225 -0.084 -0.153 -0.314 -0.204 0.151 0.082
RSC-V 1.000 -0.000 -0.000 -0.000 -0.000 -0.004 -0.001 -0.000 -0.000
Spectral 0.120 -0.068 -0.028 -0.068 -0.068 -0.039 -0.042 -0.194 -0.140
Deepwalk 0.984 -0.224 -0.262 -0.173 -0.211 -0.083 -0.146 0.087 0.054
Fairwalk 0.982 -0.234 -0.276 -0.171 -0.213 -0.135 -0.156 0.081 0.045
Node2Vec 0.982 -0.239 -0.272 -0.194 -0.227 -0.118 -0.192 0.061 0.036
Infomap 1.000 -0.000 -0.000 -0.000 -0.000 -0.004 -0.001 -0.000 -0.000
Spinglass 0.727 -0.437 -0.172 -0.437 -0.437 -0.217 -0.195 -0.069 -0.054
Walktrap 0.995 -0.188 -0.213 -0.187 -0.187 -0.170 -0.159 -0.002 -0.002
Fluid 0.982 -0.093 -0.143 -0.053 -0.095 -0.069 -0.033 0.126 0.087
Label
Propaga-
tion

0.982 -0.148 -0.099 -0.148 -0.146 -0.062 -0.042 -0.009 -0.008

EM 0.292 0.136 0.174 0.015 0.127 0.047 0.073 -0.605 -0.555
SBM 0.973 -0.520 -0.591 -0.514 -0.517 -0.406 -0.402 0.019 0.011
SBM -
Nested

0.983 0.253 0.163 0.486 0.360 0.240 0.223 0.468 0.337

Table C.7: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.2. The 5 best (unrounded) scores are in bold.
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C.8 Results: LFR Conductance mu 0.4

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.352 -0.097 -0.018 -0.095 -0.097 -0.025 -0.066 -0.337 -0.294
Combo 0.830 -0.576 -0.478 -0.576 -0.576 -0.499 -0.459 -0.290 -0.253
Leiden 0.862 -0.595 -0.494 -0.595 -0.595 -0.477 -0.406 -0.220 -0.192
Louvain 0.869 -0.594 -0.495 -0.594 -0.594 -0.465 -0.399 -0.163 -0.144
Paris 0.539 -0.411 -0.295 -0.388 -0.470 -0.009 -0.166 -0.154 -0.165
RB-C 0.863 -0.591 -0.492 -0.591 -0.591 -0.481 -0.407 -0.213 -0.186
RB-ER 0.872 -0.506 -0.368 -0.505 -0.505 -0.384 -0.259 -0.187 -0.163
Significance 0.985 -0.200 -0.127 -0.134 -0.089 -0.498 -0.251 -0.272 -0.240
Eigenvector 0.197 -0.136 -0.027 -0.109 -0.141 -0.015 -0.043 -0.204 -0.225
RSC-K 0.933 -0.357 -0.335 -0.309 -0.272 -0.327 -0.405 -0.252 -0.204
RSC-SSE 0.791 -0.433 -0.452 -0.398 -0.411 -0.272 -0.462 -0.001 0.006
RSC-V 0.990 -0.075 -0.077 -0.030 -0.020 -0.361 -0.132 -0.094 -0.085
Spectral 0.096 -0.062 -0.024 -0.061 -0.062 -0.038 -0.046 -0.284 -0.211
Deepwalk 0.942 -0.474 -0.517 -0.424 -0.450 -0.548 -0.469 -0.264 -0.249
Fairwalk 0.936 -0.494 -0.525 -0.450 -0.471 -0.555 -0.490 -0.326 -0.299
Node2Vec 0.943 -0.477 -0.521 -0.426 -0.453 -0.549 -0.468 -0.248 -0.238
Infomap 0.989 -0.177 -0.187 -0.144 -0.136 -0.437 -0.187 -0.125 -0.112
Spinglass 0.703 -0.329 -0.118 -0.329 -0.329 -0.237 -0.196 -0.331 -0.289
Walktrap 0.943 -0.581 -0.588 -0.577 -0.573 -0.596 -0.573 -0.116 -0.097
Fluid 0.953 -0.326 -0.326 -0.308 -0.280 -0.485 -0.359 -0.328 -0.297
Label
Propaga-
tion

0.880 -0.504 -0.433 -0.497 -0.482 -0.545 -0.458 -0.294 -0.251

EM 0.191 0.029 0.070 -0.015 0.013 0.024 0.016 -0.503 -0.456
SBM 0.955 -0.571 -0.612 -0.559 -0.563 -0.581 -0.497 -0.161 -0.149
SBM -
Nested

0.954 -0.077 -0.220 0.343 0.139 -0.348 -0.079 0.407 0.242

Table C.8: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.4. The 5 best (unrounded) scores are in bold.

74



C.9 Results: LFR Conductance mu 0.6

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.138 -0.042 0.002 -0.042 -0.043 -0.004 -0.017 -0.428 -0.382
Combo 0.356 -0.160 -0.045 -0.162 -0.166 -0.062 -0.121 -0.600 -0.564
Leiden 0.611 -0.367 -0.188 -0.370 -0.372 -0.253 -0.310 -0.626 -0.598
Louvain 0.623 -0.375 -0.198 -0.378 -0.380 -0.263 -0.316 -0.620 -0.591
Paris 0.366 -0.334 -0.211 -0.293 -0.408 -0.012 -0.116 -0.205 -0.259
RB-C 0.620 -0.378 -0.199 -0.382 -0.383 -0.250 -0.310 -0.627 -0.600
RB-ER 0.624 -0.346 -0.165 -0.350 -0.351 -0.223 -0.279 -0.629 -0.603
Significance 0.858 -0.554 -0.514 -0.518 -0.440 -0.395 -0.574 -0.594 -0.575
Eigenvector 0.096 -0.054 -0.007 -0.041 -0.058 -0.006 -0.015 -0.147 -0.154
RSC-K 0.739 -0.556 -0.602 -0.498 -0.536 -0.290 -0.558 -0.412 -0.396
RSC-SSE 0.411 -0.161 -0.254 -0.104 -0.200 -0.021 -0.114 -0.037 -0.052
RSC-V 0.838 -0.573 -0.541 -0.552 -0.499 -0.522 -0.583 -0.605 -0.583
Spectral 0.047 -0.047 -0.020 -0.046 -0.048 -0.020 -0.027 -0.254 -0.187
Deepwalk 0.769 -0.599 -0.611 -0.593 -0.578 -0.449 -0.604 -0.589 -0.583
Fairwalk 0.751 -0.599 -0.602 -0.592 -0.579 -0.412 -0.594 -0.587 -0.581
Node2Vec 0.773 -0.597 -0.609 -0.592 -0.576 -0.453 -0.605 -0.593 -0.584
Infomap 0.850 -0.579 -0.557 -0.552 -0.515 -0.566 -0.593 -0.604 -0.580
Spinglass 0.510 -0.237 -0.081 -0.240 -0.242 -0.131 -0.192 -0.618 -0.588
Walktrap 0.674 -0.545 -0.559 -0.553 -0.540 -0.214 -0.541 -0.494 -0.473
Fluid 0.706 -0.567 -0.544 -0.563 -0.537 -0.320 -0.540 -0.574 -0.568
Label
Propaga-
tion

0.000 -0.006 -0.000 -0.006 -0.006 -0.004 -0.004 0.000 0.000

EM 0.174 0.024 0.063 -0.015 0.001 0.022 0.012 -0.468 -0.415
SBM 0.657 -0.576 -0.538 -0.580 -0.583 -0.493 -0.583 -0.152 -0.111
SBM -
Nested

0.677 -0.633 -0.614 -0.637 -0.640 -0.537 -0.625 -0.155 -0.115

Table C.9: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, µ = 0.6. The 5 best (unrounded) scores are in bold.
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C.10 Results: ABCD Size xi 0.2

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.608 0.180 -0.008 0.177 0.179 -0.044 -0.055 0.043 0.030
Combo 0.910 0.654 0.612 0.654 0.654 0.448 0.448 -0.000 -0.000
Leiden 0.915 0.652 0.613 0.652 0.652 0.438 0.438 -0.000 -0.000
Louvain 0.915 0.648 0.610 0.648 0.648 0.431 0.431 -0.000 -0.000
Paris 0.743 -0.068 -0.022 -0.048 -0.011 -0.375 -0.113 -0.152 -0.125
RB-C 0.916 0.649 0.610 0.649 0.649 0.431 0.431 -0.000 -0.000
RB-ER 0.891 0.165 0.087 0.165 0.165 -0.202 -0.200 -0.001 -0.001
Significance 0.999 -0.004 -0.002 -0.002 -0.001 -0.123 -0.006 -0.006 -0.005
Eigenvector 0.286 0.266 0.091 0.214 0.262 0.028 0.086 0.184 0.171
RSC-K 0.962 -0.175 -0.121 -0.132 -0.074 -0.426 -0.245 -0.256 -0.204
RSC-SSE 1.000 0.001 -0.000 0.001 0.001 0.012 0.001 0.003 0.002
RSC-V 0.998 -0.051 -0.070 -0.051 -0.051 -0.041 -0.037 -0.000 -0.000
Spectral 0.006 0.038 -0.006 0.038 0.038 0.005 0.005 -0.000 -0.000
Deepwalk 0.975 0.063 0.136 -0.118 -0.023 -0.039 0.025 -0.273 -0.195
Fairwalk 0.968 0.080 0.175 -0.129 -0.018 -0.039 0.039 -0.306 -0.224
Node2Vec 0.974 0.066 0.150 -0.125 -0.026 -0.036 0.028 -0.298 -0.217
Infomap 1.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
Spinglass 0.735 0.516 0.239 0.516 0.516 0.211 0.237 0.013 0.009
Walktrap 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
Fluid 0.975 0.089 0.181 0.049 0.113 -0.199 0.000 -0.222 -0.169
Label
Propaga-
tion

0.978 0.020 -0.078 0.024 0.020 -0.070 -0.070 0.016 0.012

EM 0.545 -0.183 -0.103 -0.110 -0.217 -0.054 -0.100 0.019 -0.013
SBM 0.964 0.570 0.615 0.570 0.570 0.431 0.431 -0.000 -0.000
SBM -
Nested

0.995 -0.058 -0.024 -0.166 -0.107 -0.113 -0.069 -0.185 -0.131

Table C.10: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, ξ = 0.2. The 5 best (unrounded) scores are in bold.
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C.11 Results: ABCD Size xi 0.4

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.461 0.157 0.001 0.154 0.157 -0.004 -0.005 0.068 0.048
Combo 0.878 0.649 0.572 0.649 0.649 0.437 0.437 0.001 0.000
Leiden 0.887 0.655 0.581 0.655 0.655 0.431 0.430 0.000 0.000
Louvain 0.890 0.654 0.582 0.654 0.654 0.424 0.424 -0.000 -0.000
Paris 0.820 -0.163 -0.063 -0.122 -0.050 -0.256 -0.211 -0.265 -0.236
RB-C 0.889 0.653 0.581 0.653 0.653 0.427 0.427 0.000 0.000
RB-ER 0.881 0.443 0.319 0.443 0.443 0.085 0.086 -0.000 -0.000
Significance 0.998 -0.013 -0.007 -0.007 -0.004 -0.225 -0.019 -0.020 -0.017
Eigenvector 0.255 0.226 0.065 0.178 0.229 0.018 0.062 0.180 0.175
RSC-K 0.937 -0.189 -0.130 -0.164 -0.091 -0.383 -0.272 -0.300 -0.237
RSC-SSE 0.957 -0.018 -0.013 0.005 0.005 -0.187 -0.034 -0.025 -0.025
RSC-V 0.998 -0.018 -0.023 -0.017 -0.016 -0.104 -0.016 -0.004 -0.003
Spectral 0.103 0.065 -0.005 0.064 0.066 0.002 0.007 -0.100 -0.071
Deepwalk 0.974 0.125 0.215 -0.052 0.042 0.001 0.056 -0.268 -0.193
Fairwalk 0.963 0.145 0.220 -0.024 0.070 0.020 0.092 -0.211 -0.146
Node2Vec 0.974 0.109 0.196 -0.072 0.026 -0.002 0.044 -0.274 -0.196
Infomap 1.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
Spinglass 0.734 0.500 0.229 0.501 0.501 0.205 0.234 0.008 0.005
Walktrap 0.998 -0.003 -0.003 -0.002 -0.001 -0.131 -0.006 -0.005 -0.004
Fluid 0.966 0.054 0.166 0.029 0.093 -0.353 -0.025 -0.236 -0.186
Label
Propaga-
tion

0.906 0.071 -0.078 0.075 0.071 -0.084 -0.083 0.021 0.016

EM 0.434 -0.115 -0.065 -0.030 -0.134 -0.029 -0.045 0.033 0.020
SBM 0.969 0.538 0.591 0.538 0.538 0.399 0.399 -0.000 -0.000
SBM -
Nested

0.995 0.056 0.088 0.021 0.043 0.019 0.029 -0.061 -0.039

Table C.11: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, ξ = 0.4. The 5 best (unrounded) scores are in bold.
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C.12 Results: ABCD Size xi 0.6

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.290 0.109 -0.004 0.110 0.113 0.002 0.016 0.166 0.132
Combo 0.826 0.607 0.465 0.607 0.607 0.329 0.376 0.005 0.004
Leiden 0.851 0.618 0.490 0.618 0.618 0.367 0.370 0.003 0.002
Louvain 0.853 0.620 0.499 0.620 0.620 0.378 0.380 0.000 0.000
Paris 0.588 0.024 0.088 0.028 0.127 -0.059 -0.087 -0.243 -0.247
RB-C 0.853 0.622 0.505 0.622 0.622 0.376 0.388 0.002 0.002
RB-ER 0.849 0.572 0.438 0.572 0.572 0.278 0.292 0.003 0.002
Significance 0.978 -0.104 -0.056 -0.071 -0.042 -0.528 -0.145 -0.161 -0.137
Eigenvector 0.144 0.123 0.021 0.094 0.131 0.012 0.028 0.067 0.048
RSC-K 0.858 -0.167 -0.100 -0.148 -0.069 -0.162 -0.247 -0.294 -0.231
RSC-SSE 0.757 -0.086 0.003 -0.047 -0.006 -0.113 -0.098 -0.146 -0.140
RSC-V 0.984 -0.048 0.003 -0.033 -0.017 -0.482 -0.043 -0.079 -0.064
Spectral 0.092 0.073 0.003 0.073 0.075 0.012 0.018 -0.032 -0.027
Deepwalk 0.957 0.109 0.193 0.020 0.089 -0.052 0.082 -0.144 -0.095
Fairwalk 0.937 0.137 0.227 0.026 0.103 -0.072 0.117 -0.122 -0.072
Node2Vec 0.960 0.107 0.193 0.012 0.082 -0.058 0.071 -0.163 -0.109
Infomap 0.999 0.002 0.002 0.002 0.002 -0.008 0.001 0.000 0.000
Spinglass 0.733 0.488 0.224 0.488 0.489 0.183 0.227 0.013 0.010
Walktrap 0.872 -0.102 -0.079 -0.065 -0.021 -0.402 -0.183 -0.195 -0.165
Fluid 0.901 0.005 0.193 0.009 0.085 -0.391 -0.046 -0.264 -0.225
Label
Propaga-
tion

0.000 0.042 0.001 0.042 0.042 0.012 0.012 0.000 0.000

EM 0.356 -0.055 -0.028 0.001 -0.051 -0.017 -0.018 0.016 0.004
SBM 0.964 0.548 0.592 0.548 0.548 0.381 0.402 -0.000 -0.000
SBM -
Nested

0.982 0.121 0.210 0.019 0.094 0.016 0.058 -0.206 -0.137

Table C.12: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, ξ = 0.6. The 5 best (unrounded) scores are in bold.
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C.13 Results: ABCD Density xi 0.2

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.608 -0.137 -0.017 -0.134 -0.137 0.039 0.042 -0.039 -0.027
Combo 0.910 -0.642 -0.574 -0.642 -0.642 -0.409 -0.409 -0.000 -0.000
Leiden 0.915 -0.646 -0.581 -0.646 -0.646 -0.400 -0.400 -0.000 -0.000
Louvain 0.915 -0.640 -0.576 -0.640 -0.640 -0.390 -0.390 -0.000 -0.000
Paris 0.743 0.050 0.007 0.040 0.005 0.365 0.090 0.134 0.108
RB-C 0.916 -0.647 -0.581 -0.647 -0.647 -0.395 -0.395 -0.000 -0.000
RB-ER 0.891 -0.390 -0.298 -0.390 -0.390 0.035 0.033 0.001 0.001
Significance 0.999 0.002 0.001 0.001 0.001 0.069 0.003 0.003 0.003
Eigenvector 0.286 -0.173 -0.061 -0.133 -0.170 -0.019 -0.059 -0.105 -0.094
RSC-K 0.962 0.124 0.088 0.097 0.058 0.365 0.171 0.176 0.139
RSC-SSE 1.000 -0.001 -0.000 -0.001 -0.001 -0.011 -0.001 -0.003 -0.002
RSC-V 0.998 0.036 0.048 0.036 0.036 0.027 0.025 0.000 0.000
Spectral 0.006 -0.014 0.009 -0.014 -0.014 -0.000 -0.000 -0.000 -0.000
Deepwalk 0.975 -0.180 -0.219 -0.062 -0.126 -0.060 -0.104 0.171 0.117
Fairwalk 0.968 -0.195 -0.253 -0.061 -0.135 -0.074 -0.125 0.178 0.123
Node2Vec 0.974 -0.169 -0.222 -0.044 -0.113 -0.055 -0.101 0.199 0.140
Infomap 1.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
Spinglass 0.735 -0.382 -0.155 -0.383 -0.383 -0.172 -0.195 -0.012 -0.008
Walktrap 1.000 -0.000 -0.000 -0.000 -0.000 -0.001 -0.000 -0.000 -0.000
Fluid 0.975 -0.183 -0.249 -0.155 -0.200 0.104 -0.051 0.168 0.127
Label
Propaga-
tion

0.978 -0.027 0.052 -0.030 -0.027 0.050 0.050 -0.010 -0.008

EM 0.545 0.170 0.077 0.112 0.199 0.052 0.088 0.022 0.061
SBM 0.964 -0.618 -0.639 -0.618 -0.618 -0.440 -0.440 -0.000 -0.000
SBM -
Nested

0.995 0.031 0.009 0.110 0.064 0.073 0.042 0.130 0.087

Table C.13: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, ξ = 0.2. The 5 best (unrounded) scores are in bold.
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C.14 Results: ABCD Density xi 0.4

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.461 -0.106 -0.005 -0.103 -0.107 0.004 0.004 -0.057 -0.039
Combo 0.878 -0.613 -0.512 -0.613 -0.613 -0.392 -0.392 -0.001 -0.001
Leiden 0.887 -0.629 -0.532 -0.629 -0.629 -0.389 -0.389 -0.000 -0.000
Louvain 0.890 -0.629 -0.533 -0.629 -0.629 -0.383 -0.383 -0.000 -0.000
Paris 0.820 0.133 0.039 0.106 0.037 0.252 0.183 0.247 0.218
RB-C 0.889 -0.627 -0.531 -0.627 -0.627 -0.385 -0.385 -0.000 -0.000
RB-ER 0.881 -0.484 -0.364 -0.484 -0.484 -0.131 -0.132 0.000 0.000
Significance 0.998 0.009 0.004 0.005 0.003 0.158 0.013 0.013 0.011
Eigenvector 0.255 -0.160 -0.044 -0.122 -0.161 -0.013 -0.049 -0.122 -0.116
RSC-K 0.937 0.149 0.102 0.132 0.074 0.362 0.215 0.240 0.188
RSC-SSE 0.957 0.021 0.017 0.002 0.001 0.189 0.037 0.027 0.026
RSC-V 0.998 0.019 0.022 0.018 0.018 0.075 0.013 0.003 0.002
Spectral 0.103 -0.037 0.004 -0.036 -0.037 -0.002 -0.006 0.106 0.076
Deepwalk 0.974 -0.200 -0.262 -0.074 -0.143 -0.057 -0.099 0.198 0.138
Fairwalk 0.963 -0.205 -0.252 -0.086 -0.156 -0.075 -0.128 0.135 0.089
Node2Vec 0.974 -0.178 -0.237 -0.053 -0.124 -0.051 -0.085 0.201 0.141
Infomap 1.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
Spinglass 0.734 -0.396 -0.162 -0.397 -0.397 -0.169 -0.198 -0.004 -0.002
Walktrap 0.998 0.003 0.003 0.002 0.001 0.101 0.005 0.004 0.004
Fluid 0.966 -0.120 -0.209 -0.099 -0.149 0.280 -0.013 0.194 0.152
Label
Propaga-
tion

0.906 -0.016 0.101 -0.018 -0.016 0.100 0.096 -0.014 -0.010

EM 0.434 0.115 0.060 0.035 0.137 0.028 0.043 -0.020 0.002
SBM 0.969 -0.585 -0.613 -0.585 -0.585 -0.400 -0.400 -0.000 -0.000
SBM -
Nested

0.995 -0.063 -0.097 -0.024 -0.049 -0.021 -0.032 0.067 0.042

Table C.14: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, ξ = 0.4. The 5 best (unrounded) scores are in bold.
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C.15 Results: ABCD Density xi 0.6

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.290 -0.061 0.010 -0.064 -0.064 0.000 -0.010 -0.119 -0.090
Combo 0.826 -0.561 -0.402 -0.562 -0.562 -0.300 -0.344 -0.003 -0.002
Leiden 0.851 -0.583 -0.438 -0.583 -0.583 -0.342 -0.346 -0.002 -0.002
Louvain 0.853 -0.587 -0.448 -0.587 -0.587 -0.351 -0.354 0.000 0.000
Paris 0.588 -0.023 -0.087 -0.023 -0.117 0.059 0.081 0.252 0.254
RB-C 0.853 -0.591 -0.454 -0.591 -0.591 -0.348 -0.358 -0.002 -0.002
RB-ER 0.849 -0.560 -0.421 -0.560 -0.560 -0.290 -0.301 -0.003 -0.002
Significance 0.978 0.088 0.047 0.060 0.036 0.498 0.123 0.138 0.117
Eigenvector 0.144 -0.093 -0.017 -0.070 -0.099 -0.011 -0.025 -0.044 -0.025
RSC-K 0.858 0.156 0.102 0.141 0.072 0.160 0.231 0.267 0.209
RSC-SSE 0.757 0.078 -0.015 0.041 -0.003 0.118 0.096 0.150 0.145
RSC-V 0.984 0.038 -0.010 0.027 0.014 0.419 0.025 0.062 0.050
Spectral 0.092 -0.046 -0.002 -0.046 -0.047 -0.011 -0.016 0.054 0.043
Deepwalk 0.957 -0.168 -0.230 -0.099 -0.153 0.012 -0.115 0.091 0.053
Fairwalk 0.937 -0.205 -0.269 -0.125 -0.182 0.027 -0.161 0.042 0.010
Node2Vec 0.960 -0.165 -0.225 -0.090 -0.147 0.038 -0.096 0.119 0.075
Infomap 0.999 -0.002 -0.001 -0.002 -0.002 0.008 0.000 0.000 0.000
Spinglass 0.733 -0.406 -0.170 -0.406 -0.407 -0.164 -0.205 -0.010 -0.007
Walktrap 0.872 0.079 0.058 0.050 0.003 0.415 0.168 0.202 0.170
Fluid 0.901 -0.049 -0.236 -0.047 -0.120 0.390 0.016 0.266 0.226
Label
Propaga-
tion

0.000 -0.026 -0.001 -0.026 -0.026 -0.011 -0.011 0.000 0.000

EM 0.356 0.058 0.026 0.003 0.059 0.017 0.018 -0.013 0.003
SBM 0.964 -0.607 -0.624 -0.607 -0.607 -0.391 -0.409 0.001 0.001
SBM -
Nested

0.982 -0.165 -0.247 -0.057 -0.136 -0.026 -0.064 0.219 0.146

Table C.15: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 5 LFR networks with n = 10, 000, ξ = 0.6. The 5 best (unrounded) scores are in bold.
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C.16 Results: ABCD Conductance xi 0.2

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.608 -0.183 -0.166 -0.180 -0.183 -0.192 -0.251 0.013 0.010
Combo 0.910 0.475 0.403 0.475 0.475 0.232 0.232 -0.000 -0.000
Leiden 0.915 0.444 0.385 0.444 0.444 0.214 0.214 -0.000 -0.000
Louvain 0.915 0.428 0.370 0.428 0.428 0.203 0.203 -0.000 -0.000
Paris 0.743 -0.077 -0.050 -0.067 -0.039 -0.305 -0.102 -0.115 -0.092
RB-C 0.916 0.433 0.371 0.433 0.433 0.204 0.204 -0.000 -0.000
RB-ER 0.891 -0.274 -0.296 -0.274 -0.274 -0.307 -0.306 -0.001 -0.001
Significance 0.999 -0.001 -0.001 -0.001 -0.000 -0.038 -0.002 -0.002 -0.002
Eigenvector 0.286 0.063 0.020 0.044 0.060 0.007 0.024 0.037 0.035
RSC-K 0.962 -0.106 -0.077 -0.083 -0.051 -0.330 -0.147 -0.144 -0.113
RSC-SSE 1.000 0.000 -0.000 0.000 0.000 -0.002 -0.000 0.000 0.000
RSC-V 0.998 -0.032 -0.040 -0.031 -0.031 -0.021 -0.019 -0.000 -0.000
Spectral 0.006 -0.043 -0.040 -0.043 -0.043 -0.034 -0.034 -0.000 -0.000
Deepwalk 0.975 0.066 0.110 -0.023 0.027 -0.008 0.040 -0.146 -0.099
Fairwalk 0.968 0.029 0.078 -0.062 -0.009 -0.029 0.028 -0.135 -0.093
Node2Vec 0.974 0.043 0.087 -0.035 0.010 0.003 0.031 -0.144 -0.102
Infomap 1.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
Spinglass 0.735 0.282 0.098 0.283 0.283 0.091 0.111 0.000 -0.000
Walktrap 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
Fluid 0.975 0.035 0.078 0.019 0.046 -0.092 0.003 -0.104 -0.077
Label
Propaga-
tion

0.978 -0.102 -0.147 -0.095 -0.101 -0.088 -0.089 0.026 0.019

EM 0.545 -0.186 -0.119 -0.125 -0.217 -0.045 -0.098 -0.024 -0.055
SBM 0.964 0.350 0.425 0.350 0.350 0.288 0.288 -0.000 -0.000
SBM -
Nested

0.995 -0.032 -0.012 -0.097 -0.058 -0.059 -0.035 -0.109 -0.072

Table C.16: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods

were used on 5 LFR networks with n = 10, 000, ξ = 0.2. The 5 best (unrounded) scores are in
bold.
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C.17 Results: ABCD Conductance xi 0.4

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.461 -0.192 -0.089 -0.185 -0.194 -0.066 -0.130 0.031 0.021
Combo 0.878 0.162 0.041 0.162 0.162 -0.004 -0.002 -0.001 -0.001
Leiden 0.887 0.179 0.069 0.179 0.179 0.023 0.023 -0.000 -0.000
Louvain 0.890 0.199 0.082 0.199 0.199 0.008 0.008 0.000 0.000
Paris 0.820 -0.097 -0.055 -0.103 -0.055 -0.160 -0.126 -0.169 -0.139
RB-C 0.889 0.196 0.075 0.196 0.196 0.011 0.011 0.000 0.000
RB-ER 0.881 -0.304 -0.276 -0.304 -0.304 -0.257 -0.256 -0.000 -0.000
Significance 0.998 0.002 0.001 0.001 0.001 0.014 0.003 0.003 0.003
Eigenvector 0.255 -0.058 -0.021 -0.053 -0.063 -0.002 -0.005 -0.005 0.002
RSC-K 0.937 -0.072 -0.052 -0.073 -0.058 -0.230 -0.071 -0.066 -0.050
RSC-SSE 0.957 -0.008 -0.006 -0.007 0.000 -0.090 -0.023 -0.029 -0.022
RSC-V 0.998 -0.021 -0.029 -0.022 -0.022 0.000 -0.016 0.000 0.000
Spectral 0.103 -0.080 -0.042 -0.079 -0.080 -0.046 -0.046 -0.204 -0.143
Deepwalk 0.974 0.067 0.069 0.089 0.081 0.028 0.040 0.019 0.013
Fairwalk 0.963 0.055 0.064 0.078 0.073 0.034 0.050 0.020 0.013
Node2Vec 0.974 0.094 0.084 0.129 0.116 0.051 0.054 0.043 0.030
Infomap 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Spinglass 0.734 -0.090 -0.049 -0.090 -0.090 -0.007 0.007 -0.011 -0.009
Walktrap 0.998 -0.002 -0.002 -0.001 -0.001 -0.028 -0.004 -0.003 -0.003
Fluid 0.966 0.058 0.064 0.058 0.053 0.019 0.048 0.031 0.025
Label
Propaga-
tion

0.906 -0.118 -0.106 -0.117 -0.118 -0.115 -0.104 0.003 0.003

EM 0.434 -0.077 -0.054 -0.029 -0.094 -0.013 -0.030 0.005 -0.004
SBM 0.969 0.116 0.207 0.116 0.116 0.170 0.170 0.000 0.000
SBM -
Nested

0.995 0.004 0.037 -0.042 -0.013 -0.008 0.004 -0.079 -0.050

Table C.17: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods

were used on 5 LFR networks with n = 10, 000, ξ = 0.4. The 5 best (unrounded) scores are in
bold.
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C.18 Results: ABCD Conductance xi 0.6

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.290 -0.100 -0.019 -0.094 -0.101 -0.011 -0.031 -0.070 -0.059
Combo 0.826 -0.420 -0.298 -0.421 -0.421 -0.184 -0.211 -0.007 -0.005
Leiden 0.851 -0.392 -0.300 -0.392 -0.392 -0.202 -0.198 -0.003 -0.003
Louvain 0.853 -0.384 -0.298 -0.384 -0.384 -0.206 -0.207 -0.000 -0.000
Paris 0.588 -0.100 -0.089 -0.095 -0.127 0.002 -0.025 -0.004 0.008
RB-C 0.853 -0.403 -0.317 -0.403 -0.403 -0.206 -0.207 -0.004 -0.003
RB-ER 0.849 -0.447 -0.341 -0.447 -0.447 -0.277 -0.279 -0.007 -0.006
Significance 0.978 0.044 0.024 0.031 0.018 0.250 0.062 0.069 0.059
Eigenvector 0.144 -0.069 -0.012 -0.053 -0.073 -0.006 -0.013 -0.011 0.001
RSC-K 0.858 -0.002 -0.016 0.000 -0.017 -0.028 0.014 0.049 0.038
RSC-SSE 0.757 0.024 -0.006 0.029 0.006 0.047 0.037 0.067 0.062
RSC-V 0.984 0.015 -0.008 0.009 0.001 0.251 0.017 0.034 0.028
Spectral 0.092 -0.042 -0.002 -0.041 -0.042 -0.008 -0.011 -0.230 -0.158
Deepwalk 0.957 -0.046 -0.082 0.000 -0.033 -0.006 -0.032 0.068 0.040
Fairwalk 0.937 0.001 -0.059 0.063 0.028 -0.025 -0.033 0.084 0.056
Node2Vec 0.960 0.003 -0.038 0.049 0.016 0.014 -0.005 0.088 0.062
Infomap 0.999 0.002 0.001 0.002 0.002 -0.000 -0.001 -0.001 -0.001
Spinglass 0.733 -0.308 -0.128 -0.309 -0.309 -0.099 -0.116 -0.017 -0.014
Walktrap 0.872 -0.304 -0.336 -0.321 -0.337 -0.094 -0.248 -0.010 -0.004
Fluid 0.901 0.077 -0.020 0.086 0.042 0.214 0.077 0.178 0.150
Label
Propaga-
tion

0.000 -0.020 -0.000 -0.020 -0.020 -0.006 -0.006 -0.000 -0.000

EM 0.356 0.003 -0.003 -0.005 -0.009 0.006 0.002 0.004 0.021
SBM 0.964 -0.209 -0.229 -0.209 -0.209 -0.106 -0.101 -0.002 -0.002
SBM -
Nested

0.982 0.050 0.057 0.068 0.054 0.044 0.043 0.042 0.027

Table C.18: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods

were used on 5 LFR networks with n = 10, 000, ξ = 0.6. The 5 best (unrounded) scores are in
bold.
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C.19 Results: HICH-BA Multiple Majorities Size

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.890 0.281 0.295 0.277 0.279 -0.251 0.222 -0.001 0.001
Combo 0.961 0.107 0.134 0.101 0.101 -0.337 0.103 0.007 0.008
Leiden 0.956 0.103 0.117 0.100 0.100 -0.379 0.081 0.003 0.003
Louvain 0.956 0.103 0.117 0.100 0.101 -0.373 0.082 0.003 0.003
Paris 0.681 0.248 0.250 0.257 0.277 -0.031 0.194 -0.113 -0.091
RB-C 0.956 0.103 0.117 0.100 0.100 -0.379 0.081 0.003 0.003
RB-ER 0.294 -0.444 -0.443 -0.382 -0.377 -0.339 -0.430 -0.364 -0.356
Significance 0.302 -0.299 -0.334 -0.297 -0.259 -0.071 -0.269 -0.274 -0.279
Eigenvector 0.672 0.326 0.267 0.349 0.322 0.069 0.338 0.272 0.200
RSC-K 0.222 -0.007 -0.170 -0.008 -0.010 0.054 0.096 0.059 0.057
RSC-SSE 0.580 0.151 0.125 0.152 0.110 0.036 0.183 0.139 0.103
RSC-V 0.508 -0.292 -0.345 -0.293 -0.292 -0.398 -0.183 -0.010 -0.007
Spectral 0.132 0.125 0.011 0.119 0.125 0.146 0.165 -0.036 -0.028
Deepwalk 0.517 0.085 0.240 -0.088 -0.027 0.124 0.196 -0.218 -0.229
Fairwalk 0.513 0.104 0.246 -0.021 0.034 0.091 0.197 -0.167 -0.186
Node2Vec 0.519 0.042 0.212 -0.030 0.007 0.096 0.192 -0.184 -0.202
Infomap 0.669 -0.113 -0.062 -0.045 -0.028 -0.387 -0.159 -0.147 -0.134
Spinglass 0.923 0.045 0.088 0.049 0.050 -0.421 0.064 -0.006 -0.006
Walktrap 0.789 0.018 0.015 0.023 0.024 -0.231 0.005 -0.010 -0.009
Fluid 0.616 0.072 0.337 0.186 0.214 -0.029 0.210 -0.219 -0.197
Label
Propaga-
tion

0.635 -0.189 -0.251 -0.192 -0.206 -0.282 -0.121 0.077 0.062

EM 0.044 0.141 0.141 0.200 0.204 0.061 0.173 -0.050 -0.054
SBM 0.875 -0.008 0.017 -0.399 -0.284 -0.387 -0.027 -0.413 -0.307
SBM -
Nested

0.880 -0.025 -0.009 -0.379 -0.275 -0.344 -0.032 -0.373 -0.274

Table C.19: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 10 HICH-BA networks with n = 10, 000, containing multiple majority communities. The
5 best (unrounded) scores are in bold.
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C.20 Results: HICH-BA Multiple Majorities Density

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.890 -0.037 -0.022 -0.025 -0.026 0.285 -0.017 -0.012 -0.013
Combo 0.961 -0.216 -0.256 -0.204 -0.204 0.122 -0.197 -0.018 -0.018
Leiden 0.956 -0.213 -0.222 -0.203 -0.203 0.197 -0.156 -0.014 -0.014
Louvain 0.956 -0.213 -0.222 -0.203 -0.203 0.207 -0.156 -0.014 -0.014
Paris 0.681 -0.447 -0.448 -0.454 -0.468 -0.033 -0.401 0.119 0.096
RB-C 0.956 -0.213 -0.222 -0.203 -0.203 0.197 -0.156 -0.014 -0.014
RB-ER 0.294 0.352 0.340 0.298 0.300 0.342 0.322 0.266 0.265
Significance 0.302 0.382 0.380 0.310 0.250 0.146 0.392 0.384 0.381
Eigenvector 0.672 -0.346 -0.302 -0.363 -0.344 -0.072 -0.364 -0.245 -0.179
RSC-K 0.222 0.171 0.271 0.099 0.065 0.033 0.090 0.102 0.069
RSC-SSE 0.580 -0.090 -0.041 -0.123 -0.094 0.034 -0.085 -0.064 -0.042
RSC-V 0.508 0.139 0.169 0.142 0.141 0.242 0.036 0.005 0.003
Spectral 0.132 -0.018 0.053 -0.014 -0.018 -0.033 -0.070 0.037 0.028
Deepwalk 0.517 -0.327 -0.401 -0.292 -0.348 -0.203 -0.306 0.108 0.165
Fairwalk 0.513 -0.331 -0.389 -0.302 -0.358 -0.184 -0.306 0.013 0.098
Node2Vec 0.519 -0.293 -0.420 -0.358 -0.389 -0.203 -0.320 0.062 0.137
Infomap 0.669 0.073 0.038 0.033 0.020 0.428 0.102 0.099 0.089
Spinglass 0.923 -0.151 -0.202 -0.143 -0.144 0.216 -0.159 -0.008 -0.008
Walktrap 0.789 0.000 -0.005 -0.014 -0.018 0.437 0.020 0.032 0.029
Fluid 0.616 -0.267 -0.440 -0.335 -0.353 -0.105 -0.362 0.166 0.148
Label
Propaga-
tion

0.635 0.110 0.176 0.104 0.133 0.366 0.040 -0.120 -0.093

EM 0.044 -0.119 -0.138 -0.144 -0.151 -0.057 -0.150 0.129 0.126
SBM 0.875 -0.033 -0.053 0.329 0.209 0.302 -0.005 0.368 0.257
SBM -
Nested

0.880 0.020 0.006 0.394 0.276 0.327 0.022 0.384 0.268

Table C.20: Average NMI and average ΦCPM
density scores for the 24 CD methods. CD methods were

used on 10 HICH-BA networks with n = 10, 000, containing multiple majority communities. The
5 best (unrounded) scores are in bold.
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C.21 Results: HICH-BAMultiple Majorities Conductance

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.890 0.008 -0.012 0.022 0.022 -0.142 -0.007 -0.023 -0.022
Combo 0.961 -0.092 -0.081 -0.063 -0.062 -0.260 -0.066 -0.044 -0.043
Leiden 0.956 -0.079 -0.085 -0.059 -0.059 -0.251 -0.054 -0.027 -0.027
Louvain 0.956 -0.079 -0.085 -0.059 -0.059 -0.237 -0.054 -0.027 -0.027
Paris 0.681 -0.186 -0.184 -0.185 -0.183 -0.103 -0.194 -0.002 -0.001
RB-C 0.956 -0.079 -0.086 -0.059 -0.059 -0.252 -0.054 -0.027 -0.027
RB-ER 0.294 -0.231 -0.197 -0.237 -0.205 -0.233 -0.251 -0.254 -0.228
Significance 0.302 0.059 0.019 -0.009 -0.039 0.047 0.097 0.093 0.081
Eigenvector 0.672 -0.117 -0.135 -0.099 -0.127 -0.066 -0.116 -0.009 0.005
RSC-K 0.222 0.108 0.064 0.070 0.042 0.063 0.135 0.112 0.085
RSC-SSE 0.580 -0.046 -0.013 -0.075 -0.105 0.000 0.046 0.146 0.114
RSC-V 0.508 -0.344 -0.356 -0.341 -0.341 -0.321 -0.308 -0.006 -0.005
Spectral 0.132 -0.303 -0.321 -0.306 -0.303 -0.283 -0.296 -0.027 -0.020
Deepwalk 0.517 -0.128 -0.044 -0.169 -0.170 -0.015 -0.044 -0.149 -0.099
Fairwalk 0.513 -0.026 -0.070 -0.096 -0.093 -0.056 -0.063 -0.099 -0.074
Node2Vec 0.519 -0.210 -0.126 -0.297 -0.298 -0.055 -0.072 -0.202 -0.137
Infomap 0.669 -0.068 -0.036 -0.016 -0.011 -0.092 -0.093 -0.079 -0.076
Spinglass 0.923 -0.039 -0.066 -0.016 -0.016 -0.276 -0.106 -0.030 -0.030
Walktrap 0.789 -0.087 -0.096 -0.091 -0.096 0.028 -0.081 0.035 0.030
Fluid 0.616 -0.028 -0.040 -0.001 0.006 -0.039 -0.069 -0.060 -0.055
Label
Propaga-
tion

0.635 -0.206 -0.179 -0.212 -0.173 -0.129 -0.227 -0.182 -0.153

EM 0.044 0.025 0.012 0.044 0.042 0.007 0.029 0.057 0.050
SBM 0.875 -0.092 -0.102 -0.153 -0.133 -0.266 -0.100 -0.109 -0.093
SBM -
Nested

0.880 -0.031 -0.030 -0.056 -0.047 -0.182 -0.058 -0.075 -0.069

Table C.21: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods

were used on 10 HICH-BA networks with n = 10, 000, containing multiple majority communities.
The 5 best (unrounded) scores are in bold.
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C.22 Results: HICH-BA Multiple Minorities Size

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.204 -0.088 0.175 -0.047 0.074 -0.155 0.010 -0.450 -0.410
Combo 0.388 -0.371 -0.268 -0.399 -0.315 -0.409 -0.333 -0.475 -0.433
Leiden 0.275 -0.422 -0.226 -0.429 -0.347 -0.353 -0.318 -0.481 -0.452
Louvain 0.272 -0.411 -0.154 -0.440 -0.366 -0.285 -0.247 -0.482 -0.451
Paris 0.694 0.328 0.342 0.324 0.326 -0.027 0.307 -0.002 -0.000
RB-C 0.281 -0.432 -0.233 -0.459 -0.394 -0.338 -0.305 -0.484 -0.455
RB-ER 0.149 -0.311 -0.208 -0.020 0.022 -0.366 -0.369 -0.344 -0.342
Significance 0.134 -0.294 -0.332 -0.228 -0.147 -0.039 -0.260 -0.269 -0.282
Eigenvector 0.147 0.199 0.328 0.155 0.229 0.165 0.238 -0.362 -0.314
RSC-K 0.462 0.327 0.223 0.183 0.102 0.372 0.382 0.375 0.312
RSC-SSE 0.546 0.225 0.165 0.142 0.081 0.239 0.295 0.274 0.224
RSC-V 0.848 0.113 0.155 0.116 0.118 -0.353 0.129 0.008 0.004
Spectral 0.144 0.472 0.454 0.472 0.472 0.360 0.446 -0.000 -0.000
Deepwalk 0.200 0.162 0.252 -0.196 -0.193 0.025 0.162 -0.249 -0.277
Fairwalk 0.244 0.151 0.240 -0.232 -0.220 0.015 0.140 -0.289 -0.288
Node2Vec 0.209 0.149 0.240 -0.220 -0.218 0.014 0.145 -0.235 -0.260
Infomap 0.285 -0.225 -0.137 -0.102 -0.063 -0.427 -0.296 -0.280 -0.259
Spinglass 0.260 -0.324 -0.031 -0.311 -0.206 -0.242 -0.179 -0.472 -0.440
Walktrap 0.224 -0.067 -0.044 0.031 0.020 -0.053 -0.096 -0.048 -0.058
Fluid 0.214 -0.045 0.241 0.167 0.230 -0.004 0.033 -0.387 -0.365
Label
Propaga-
tion

0.801 0.041 0.034 0.057 0.045 -0.290 0.044 0.034 0.023

EM 0.024 0.295 0.376 0.474 0.483 0.081 0.261 -0.084 -0.087
SBM 0.896 -0.011 0.000 -0.375 -0.238 -0.440 -0.010 -0.377 -0.242
SBM -
Nested

0.874 -0.010 -0.001 -0.360 -0.239 -0.409 -0.011 -0.360 -0.242

Table C.22: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 10 HICH-BA networks with n = 10, 000, containing multiple minority communities with
one large majority community. The 5 best (unrounded) scores are in bold.
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C.23 Results: HICH-BA Multiple Minorities Density

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.204 -0.316 -0.286 -0.330 -0.373 -0.119 -0.228 0.253 0.224
Combo 0.388 -0.055 -0.147 -0.037 -0.085 0.087 -0.015 0.267 0.237
Leiden 0.275 0.231 -0.135 0.234 0.182 0.028 -0.085 0.273 0.252
Louvain 0.272 0.183 -0.252 0.202 0.152 -0.061 -0.199 0.275 0.251
Paris 0.694 -0.485 -0.456 -0.485 -0.488 -0.141 -0.440 0.023 0.017
RB-C 0.281 0.237 -0.179 0.255 0.211 -0.017 -0.139 0.275 0.253
RB-ER 0.149 0.292 0.220 0.125 0.129 0.232 0.300 0.223 0.238
Significance 0.134 0.307 0.296 0.181 0.112 0.085 0.321 0.303 0.306
Eigenvector 0.147 -0.308 -0.260 -0.283 -0.324 -0.128 -0.221 0.139 0.131
RSC-K 0.462 0.009 0.059 0.022 0.019 -0.123 -0.028 -0.040 -0.043
RSC-SSE 0.546 -0.064 0.016 -0.018 -0.008 -0.087 -0.061 -0.089 -0.080
RSC-V 0.848 -0.437 -0.443 -0.439 -0.440 -0.106 -0.376 -0.095 -0.068
Spectral 0.144 -0.296 -0.283 -0.296 -0.296 -0.246 -0.292 0.000 0.000
Deepwalk 0.200 -0.346 -0.432 -0.319 -0.305 -0.154 -0.294 -0.023 0.063
Fairwalk 0.244 -0.363 -0.419 -0.337 -0.342 -0.110 -0.242 0.102 0.134
Node2Vec 0.209 -0.324 -0.400 -0.281 -0.266 -0.149 -0.268 -0.037 0.048
Infomap 0.285 0.119 0.067 0.051 0.032 0.431 0.158 0.151 0.139
Spinglass 0.260 -0.053 -0.329 -0.060 -0.110 -0.149 -0.235 0.266 0.244
Walktrap 0.224 0.139 0.094 0.005 0.001 0.128 0.196 0.138 0.143
Fluid 0.214 -0.436 -0.331 -0.505 -0.521 -0.104 -0.202 0.203 0.189
Label
Propaga-
tion

0.801 -0.058 -0.044 -0.110 -0.077 0.277 -0.070 -0.091 -0.058

EM 0.024 -0.210 -0.238 -0.266 -0.280 -0.050 -0.152 0.139 0.135
SBM 0.896 0.008 -0.001 0.210 0.125 0.320 0.006 0.213 0.130
SBM -
Nested

0.874 0.014 0.003 0.262 0.165 0.317 0.016 0.265 0.170

Table C.23: Average NMI and average ΦCPM
size scores for the 24 CD methods. CD methods were

used on 10 HICH-BA networks with n = 10, 000, containing multiple minority communities with
one large majority community. The 5 best (unrounded) scores are in bold.
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C.24 Results: HICH-BAMultiple Minorities Conductance

CDMs NMI FCCN F1 FCCE FCCE+ AVGF1 SWF1 SWFCCE SWFCCE+

CNM 0.204 -0.097 -0.303 -0.127 -0.212 -0.026 -0.183 0.403 0.364
Combo 0.388 0.225 0.088 0.254 0.168 0.289 0.193 0.424 0.384
Leiden 0.275 0.374 0.025 0.380 0.303 0.195 0.119 0.431 0.403
Louvain 0.272 0.371 0.022 0.397 0.329 0.197 0.107 0.432 0.402
Paris 0.694 -0.481 -0.474 -0.479 -0.481 -0.139 -0.441 0.008 0.006
RB-C 0.281 0.384 0.123 0.409 0.348 0.254 0.189 0.434 0.405
RB-ER 0.149 0.248 0.151 -0.038 -0.050 0.176 0.285 0.236 0.257
Significance 0.134 0.322 0.339 0.220 0.140 0.062 0.308 0.303 0.313
Eigenvector 0.147 -0.277 -0.305 -0.249 -0.308 -0.138 -0.225 0.235 0.220
RSC-K 0.462 -0.213 -0.121 -0.110 -0.058 -0.299 -0.265 -0.266 -0.222
RSC-SSE 0.546 -0.144 -0.026 -0.070 -0.036 -0.171 -0.143 -0.187 -0.158
RSC-V 0.848 -0.384 -0.406 -0.386 -0.388 0.035 -0.367 -0.069 -0.049
Spectral 0.144 -0.545 -0.533 -0.545 -0.545 -0.463 -0.528 0.000 0.000
Deepwalk 0.200 -0.236 -0.314 0.010 0.042 -0.069 -0.210 0.060 0.144
Fairwalk 0.244 -0.199 -0.275 0.057 0.064 -0.036 -0.146 0.222 0.243
Node2Vec 0.209 -0.181 -0.296 0.089 0.119 -0.070 -0.196 0.075 0.152
Infomap 0.285 0.197 0.116 0.088 0.055 0.420 0.258 0.246 0.227
Spinglass 0.260 0.221 -0.132 0.208 0.111 0.114 0.014 0.422 0.392
Walktrap 0.224 0.144 0.099 0.014 0.007 0.094 0.193 0.144 0.148
Fluid 0.214 -0.165 -0.274 -0.328 -0.371 -0.031 -0.089 0.345 0.324
Label
Propaga-
tion

0.801 -0.070 -0.051 -0.115 -0.079 0.273 -0.085 -0.108 -0.073

EM 0.024 -0.286 -0.342 -0.423 -0.436 -0.073 -0.232 0.140 0.135
SBM 0.896 0.010 -0.002 0.328 0.205 0.413 0.008 0.330 0.209
SBM -
Nested

0.874 0.007 -0.005 0.303 0.200 0.343 0.002 0.302 0.202

Table C.24: Average NMI and average ΦCPM
conductance scores for the 24 CD methods. CD methods

were used on 10 HICH-BA networks with n = 10, 000, containing multiple minority communities
with one large majority community. The 5 best (unrounded) scores are in bold.
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C.25 Results: Performance LFR mu 0.2

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.586 0.846 4.819 0.068 0.524 0.041
Combo 0.912 0.988 1.289 0.594 0.737 0.299
Leiden 0.917 0.989 1.229 0.614 0.738 0.318
Louvain 0.915 0.990 1.252 0.608 0.732 0.305
Paris 0.713 0.543 3.056 0.591 0.718 0.661
RB-C 0.918 0.991 1.218 0.621 0.736 0.313
RB-ER 0.943 0.982 0.858 0.729 0.795 0.446
Significance 1.000 1.000 0.005 0.999 0.974 0.948
Eigenvector 0.323 0.133 8.041 0.020 0.262 0.064
RSC-K 0.990 0.967 0.165 0.963 0.984 0.969
RSC-SSE 0.976 0.916 0.388 0.744 0.950 0.858
RSC-V 1.000 1.000 0.001 1.000 1.000 1.000
Spectral 0.120 0.281 7.782 0.005 0.389 0.004
Deepwalk 0.984 0.944 0.255 0.905 0.905 0.762
Fairwalk 0.982 0.937 0.293 0.903 0.897 0.738
Node2Vec 0.982 0.936 0.290 0.850 0.914 0.768
Infomap 1.000 1.000 0.001 1.000 1.000 1.000
Spinglass 0.727 0.964 3.454 0.179 0.326 0.030
Walktrap 0.995 0.986 0.076 0.954 0.993 0.961
Fluid 0.982 0.937 0.291 0.911 0.903 0.758
Label
Propaga-
tion

0.982 0.958 0.281 0.873 0.966 0.839

EM 0.292 -2.072 7.765 0.004 0.125 0.063
SBM 0.973 0.978 0.426 0.880 0.875 0.663
SBM -
Nested

0.983 0.944 0.281 0.872 0.900 0.776

Table C.25: Scores of partition quality measures. CD methods were applied to LFR networks with
10,000 nodes and with µ = 0.2.
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C.26 Results: Performance LFR mu 0.4

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.352 0.594 6.746 0.025 0.333 0.012
Combo 0.830 0.934 2.368 0.366 0.657 0.173
Leiden 0.862 0.958 1.968 0.467 0.652 0.192
Louvain 0.869 0.966 1.863 0.476 0.652 0.201
Paris 0.539 0.438 6.438 0.179 0.383 0.144
RB-C 0.863 0.958 1.952 0.471 0.644 0.199
RB-ER 0.872 0.960 1.831 0.491 0.625 0.206
Significance 0.985 0.007 0.240 0.976 0.536 0.316
Eigenvector 0.197 0.178 9.146 0.016 0.135 0.010
RSC-K 0.933 0.784 1.047 0.451 0.916 0.845
RSC-SSE 0.791 0.314 3.047 0.063 0.766 0.614
RSC-V 0.990 0.972 0.163 0.982 0.982 0.981
Spectral 0.096 0.187 8.215 0.004 0.336 0.004
Deepwalk 0.942 0.820 0.914 0.767 0.822 0.588
Fairwalk 0.936 0.801 1.018 0.746 0.810 0.570
Node2Vec 0.943 0.824 0.895 0.783 0.825 0.588
Infomap 0.989 0.971 0.168 0.977 0.980 0.960
Spinglass 0.703 0.917 3.740 0.179 0.326 0.030
Walktrap 0.943 0.870 0.869 0.432 0.968 0.814
Fluid 0.953 0.861 0.748 0.875 0.842 0.708
Label
Propaga-
tion

0.880 0.830 1.731 0.298 0.895 0.547

EM 0.191 -1.974 8.414 0.001 0.064 0.045
SBM 0.955 0.947 0.704 0.836 0.855 0.616
SBM -
Nested

0.954 0.837 0.744 0.773 0.794 0.576

Table C.26: Scores of partition quality measures. CD methods were applied to LFR networks with
10,000 nodes and with µ = 0.4.

92



C.27 Results: Performance LFR mu 0.6

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.138 0.161 8.652 0.008 0.079 0.012
Combo 0.356 0.493 7.421 0.042 0.234 0.012
Leiden 0.611 0.685 5.183 0.179 0.436 0.071
Louvain 0.623 0.704 5.011 0.181 0.445 0.072
Paris 0.366 0.031 9.133 0.058 0.214 0.092
RB-C 0.620 0.690 5.104 0.204 0.439 0.073
RB-ER 0.624 0.693 5.063 0.211 0.429 0.075
Significance 0.858 0.425 2.440 0.712 0.135 0.041
Eigenvector 0.096 0.076 9.749 0.004 0.069 0.002
RSC-K 0.739 0.144 3.924 0.142 0.672 0.419
RSC-SSE 0.411 -0.844 8.765 0.016 0.210 0.084
RSC-V 0.838 0.525 2.595 0.703 0.569 0.530
Spectral 0.047 0.075 8.622 0.002 0.328 0.003
Deepwalk 0.769 0.304 3.671 0.525 0.556 0.389
Fairwalk 0.751 0.252 3.944 0.497 0.512 0.357
Node2Vec 0.773 0.316 3.621 0.532 0.569 0.403
Infomap 0.850 0.596 2.390 0.715 0.673 0.617
Spinglass 0.510 0.631 6.161 0.112 0.293 0.027
Walktrap 0.674 190.865 5.036 0.074 0.191 0.111
Fluid 0.706 0.135 4.739 0.439 0.425 0.296
Label
Propaga-
tion

0.000 0.000 8.015 0.000 0.020 0.000

EM 0.174 -2.471 8.638 0.001 0.051 0.037
SBM 0.657 0.682 4.291 0.027 0.781 0.240
SBM -
Nested

0.677 0.640 4.102 0.028 0.845 0.335

Table C.27: Scores of partition quality measures. CD methods were applied to LFR networks with
10,000 nodes and with µ = 0.6.
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C.28 Results: Performance ABCD xi 0.2

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.608 0.811 4.534 0.075 0.546 0.065
Combo 0.910 0.978 1.302 0.608 0.714 0.281
Leiden 0.915 0.979 1.242 0.627 0.717 0.292
Louvain 0.915 0.979 1.231 0.631 0.715 0.298
Paris 0.743 0.650 2.524 0.645 0.794 0.722
RB-C 0.916 0.980 1.225 0.632 0.721 0.292
RB-ER 0.891 0.913 1.552 0.252 0.767 0.391
Significance 0.999 0.999 0.009 0.998 0.969 0.939
Eigenvector 0.286 0.108 8.288 0.022 0.176 0.040
RSC-K 0.962 0.886 0.592 0.600 0.976 0.963
RSC-SSE 1.000 0.999 0.007 0.999 1.000 1.000
RSC-V 0.998 0.993 0.036 0.970 0.997 0.989
Spectral 0.006 0.009 7.870 0.000 0.477 0.004
Deepwalk 0.975 0.926 0.389 0.837 0.896 0.722
Fairwalk 0.968 0.905 0.506 0.805 0.872 0.666
Node2Vec 0.974 0.922 0.403 0.835 0.883 0.696
Infomap 1.000 1.000 0.000 1.000 1.000 1.000
Spinglass 0.735 0.936 3.326 0.199 0.348 0.033
Walktrap 1.000 1.000 0.000 1.000 1.000 1.000
Fluid 0.975 0.925 0.395 0.880 0.877 0.704
Label
Propaga-
tion

0.978 0.945 0.346 0.804 0.961 0.835

EM 0.545 -0.214 6.966 0.045 0.218 0.136
SBM 0.964 0.981 0.546 0.851 0.843 0.590
SBM -
Nested

0.995 0.984 0.086 0.964 0.960 0.917

Table C.28: Scores of partition quality measures. CD methods were applied to ABCD networks
with 10,000 nodes and with ξ = 0.2.
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C.29 Results: Performance ABCD xi 0.4

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.461 0.701 5.740 0.039 0.420 0.028
Combo 0.878 0.973 1.711 0.495 0.646 0.186
Leiden 0.887 0.976 1.597 0.528 0.659 0.203
Louvain 0.890 0.976 1.559 0.537 0.666 0.212
Paris 0.820 0.540 2.840 0.576 0.780 0.762
RB-C 0.889 0.976 1.570 0.534 0.662 0.214
RB-ER 0.881 0.946 1.672 0.404 0.675 0.262
Significance 0.998 1.000 0.032 0.992 0.913 0.840
Eigenvector 0.255 0.177 8.554 0.023 0.138 0.019
RSC-K 0.937 0.815 0.972 0.419 0.953 0.919
RSC-SSE 0.957 0.877 0.673 0.693 0.969 0.962
RSC-V 0.998 0.994 0.036 0.984 0.997 0.989
Spectral 0.103 0.209 7.801 0.004 0.412 0.005
Deepwalk 0.974 0.923 0.403 0.861 0.872 0.682
Fairwalk 0.963 0.893 0.576 0.810 0.860 0.647
Node2Vec 0.974 0.922 0.410 0.859 0.878 0.685
Infomap 1.000 1.000 0.000 1.000 1.000 1.000
Spinglass 0.734 0.936 3.326 0.200 0.346 0.034
Walktrap 0.998 0.996 0.027 0.995 0.999 0.999
Fluid 0.966 0.901 0.545 0.859 0.860 0.688
Label
Propaga-
tion

0.906 0.858 1.346 0.306 0.938 0.636

EM 0.434 -0.457 8.721 0.017 0.109 0.074
SBM 0.969 0.981 0.476 0.875 0.859 0.619
SBM -
Nested

0.995 0.985 0.079 0.980 0.960 0.912

Table C.29: Scores of partition quality measures. CD methods were applied to ABCD networks
with 10,000 nodes and with ξ = 0.4.
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C.30 Results: Performance ABCD xi 0.6

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.290 0.433 7.169 0.021 0.244 0.012
Combo 0.826 0.942 2.325 0.355 0.553 0.110
Leiden 0.851 0.954 2.029 0.421 0.578 0.134
Louvain 0.853 0.955 2.006 0.422 0.587 0.138
Paris 0.588 0.257 6.074 0.222 0.449 0.340
RB-C 0.853 0.954 2.011 0.425 0.584 0.141
RB-ER 0.849 0.943 2.061 0.380 0.603 0.161
Significance 0.978 2.689 0.350 0.923 0.590 0.369
Eigenvector 0.144 0.110 9.296 0.009 0.084 0.005
RSC-K 0.858 0.616 2.111 0.133 0.878 0.809
RSC-SSE 0.757 0.362 3.574 0.100 0.775 0.686
RSC-V 0.984 0.962 0.251 0.958 0.981 0.979
Spectral 0.092 0.181 8.022 0.004 0.041 0.000
Deepwalk 0.957 0.889 0.672 0.847 0.865 0.667
Fairwalk 0.937 0.838 0.992 0.791 0.823 0.602
Node2Vec 0.960 0.895 0.632 0.855 0.867 0.668
Infomap 0.999 0.998 0.010 0.996 0.999 0.996
Spinglass 0.733 0.916 3.322 0.203 0.354 0.035
Walktrap 0.872 0.694 1.973 0.511 0.828 0.724
Fluid 0.901 0.746 1.566 0.712 0.739 0.552
Label
Propaga-
tion

0.000 -0.000 7.828 0.000 0.020 0.000

EM 0.356 -0.505 9.888 0.004 0.055 0.045
SBM 0.964 0.977 0.549 0.856 0.849 0.569
SBM -
Nested

0.982 0.952 0.284 0.921 0.895 0.752

Table C.30: Scores of partition quality measures. CD methods were applied to ABCD networks
with 10,000 nodes and with ξ = 0.6.
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C.31 Results: Performance HICH-BA MMaj

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.890 0.892 0.436 0.915 0.244 0.057
Combo 0.961 0.962 0.166 0.977 0.865 0.720
Leiden 0.956 0.960 0.186 0.975 0.328 0.109
Louvain 0.956 0.960 0.186 0.975 0.332 0.111
Paris 0.681 0.680 1.321 0.697 0.915 0.652
RB-C 0.956 0.961 0.187 0.975 0.326 0.108
RB-ER 0.294 0.001 7.237 0.051 0.002 0.000
Significance 0.302 0.001 8.951 0.020 0.003 0.000
Eigenvector 0.672 0.685 1.181 0.693 0.323 0.069
RSC-K 0.222 0.207 2.212 0.041 0.487 0.487
RSC-SSE 0.580 0.577 1.768 0.537 0.711 0.594
RSC-V 0.508 0.501 1.421 0.242 0.649 0.500
Spectral 0.132 0.129 2.016 0.077 0.759 0.207
Deepwalk 0.517 0.511 2.255 0.261 0.528 0.179
Fairwalk 0.513 0.507 2.273 0.263 0.512 0.173
Node2Vec 0.519 0.513 2.207 0.264 0.554 0.217
Infomap 0.669 -0.909 1.999 0.725 0.018 0.000
Spinglass 0.923 0.930 0.333 0.959 0.279 0.095
Walktrap 0.789 -2.897 1.030 0.859 0.026 0.001
Fluid 0.616 0.614 1.907 0.578 0.502 0.155
Label
Propaga-
tion

0.635 0.692 1.151 0.473 0.069 0.006

EM 0.044 0.033 3.913 0.002 0.157 0.017
SBM 0.875 0.881 0.574 0.889 0.409 0.170
SBM -
Nested

0.880 0.884 0.549 0.892 0.434 0.184

Table C.31: Scores of partition quality measures. CD methods were applied to HICH-BA networks
with 10,000 nodes, containing multiple majority communities.
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C.32 Results: Performance HICH-BA MMin

CDMs NMI RMI VI ARI PF1 NF1

CNM 0.204 0.168 3.326 0.055 0.016 0.000
Combo 0.388 0.372 2.324 0.082 0.584 0.312
Leiden 0.275 0.253 3.452 0.044 0.184 0.024
Louvain 0.272 0.250 3.303 0.048 0.195 0.026
Paris 0.694 0.694 0.394 0.759 0.890 0.450
RB-C 0.281 0.260 3.367 0.045 0.265 0.050
RB-ER 0.149 0.003 7.812 0.036 0.002 0.000
Significance 0.134 0.004 10.089 0.003 0.004 0.000
Eigenvector 0.147 0.134 2.176 0.021 0.364 0.014
RSC-K 0.462 0.432 0.617 0.509 0.634 0.634
RSC-SSE 0.546 0.527 0.679 0.583 0.713 0.662
RSC-V 0.848 0.845 0.243 0.905 0.782 0.557
Spectral 0.144 0.139 0.724 0.123 0.876 0.161
Deepwalk 0.200 0.182 2.392 0.037 0.374 0.063
Fairwalk 0.244 0.227 2.263 0.088 0.418 0.096
Node2Vec 0.209 0.191 2.411 0.048 0.409 0.090
Infomap 0.285 -0.029 3.881 0.203 0.015 0.000
Spinglass 0.260 0.237 3.242 0.048 0.183 0.015
Walktrap 0.224 0.003 5.411 0.165 0.004 0.000
Fluid 0.214 0.198 2.975 0.063 0.169 0.002
Label
Propaga-
tion

0.801 1.150 0.366 0.858 0.082 0.007

EM 0.024 0.002 2.888 -0.035 0.147 0.001
SBM 0.896 0.894 0.180 0.907 0.674 0.458
SBM -
Nested

0.874 0.872 0.224 0.880 0.597 0.356

Table C.32: Scores of partition quality measures. CD methods were applied to HICH-BA networks
with 10,000 nodes, containing multiple minority communities with one large majority community.
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