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1 Introduction

Cellular processes refer to the biochemical activities in a cell to sustain life. These processes,
such as cellular differentiation and immune responses, inherently unfold over time. In plants,
dynamic immune processes play a crucial role in defence mechanisms against pathogens. Over
millions of years, plants have evolved a two-tiered immune system. The first tier, known as
Pattern-Triggered Immunity (PTI), is activated at the plant cell surface level, where Pattern-
Recognition Receptors (PRRs) recognise pathogen-associated molecular patterns (PAMPs)
found in various pathogens. One well know example of a PAMP is flagellin found on bacteria.
Once PRRs are activated, a series of intracellular signaling cascade involving kinases and
reactive oxygen species occurs, leading to transcriptional reprogramming of defence responses
and plant growth to tackle a pathogen infection. In numerous cases, pathogens have evolved
to produce effectors which block PTI through Effector Triggered Susceptibility(ETS). In turn,
plants have also evolved nucleotide-binding Leucine-rich Repeats (NLRs) that recognise directly
or indirectly effectors. Upon recognition, NLRs lead to the activation of the second layer
of immune response, known as Effector-Triggered Immunity (ETI). ETI activation leads to
transcriptional reprogramming of the cell and a localized cell death response at the site of
infection. ETI often leads to stronger and more robust resistance against pathogens[39].

While PTI is more straightforward to study due to simple receptor/ligand-based PAMP detec-
tion at the plant surface, ETI mechanisms are more complex as effectors and NLRs are often
diverse and rapidly evolving. Many ETI mechanisms remain to be discovered. Research into
ETI can lead to a better understanding of plant immunity, enabling researchers to identify new
genes or mechanisms in plants. With more novel genes involved in ETI identified, which allows
for a more complete understanding of ETI, genetic breeding of disease-resistant plants can
eventually lead to environmentally friendly farming systems, as these new breeds will require
fewer pesticides.

To comprehend the mechanisms of a complex cellular process like ETI in plant immunity,
various methods, from microscopy-based techniques to biochemical approaches are used. One
of the modern techniques, RNA sequencing, quantifies RNA in a cell, thereby generating
gene expression data, and allowing the study of changes in gene expression. A Differentially
Expressed Gene (DEG) is defined as a statistically significant change observed, on a gene level,
between two conditions[3]. To research the influence of a treatment (treat) on a specimen, it
is compared to its untreated (mock) counterpart. Through statistical analysis, the researchers
ensure that the prediction of (in)significance can be trusted. Different statistical methods
require a different number of replicates. Replicates are a necessity to reduce the influence of
biological and technical variation.

Investigating temporal gene expression changes in biological systems is challenging as it requires
analysing multiple time points simultaneously rather than identifying differences at a single
time point for gene expression data. There are two analytical approaches towards Temporal
Differentially Expressed Gene (TDEG) analysis, static and dynamic, with each having their
pros and cons.

Static differentially expressed gene (SDEG) assumes independence between time points in the
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time series. It requires the time-series datasets under different conditions to consist of the same
number of time points taken at the same time. This method becomes unviable if samples are
taken at different time points. This could be the case when using data from different sources.
When conditions in data have the same dimensions, this method is more straightforward and
uses less time and resources to determine. However, it can fail to give a robust prediction on
the temporal biological process considered.

Dynamic Differentially Expressed Gene (DDEG) analysis better captures biological systems
but is harder to determine. It assumes interdependence between time points which, in theory,
allows for a non equal number of time points and/or samples taken at different time points.
This would allow new experiments to be performed using existing data from different sources,
that might not have the same size, allowing for the repurposing of previous research.

A few steps need to be followed to research the temporal gene expression changes in biological
systems. First, the Temporal Differentially Expressed Gene (TDEG) must be extracted from
the time series gene dataset. Using generalised temporal Gene Expression Patterns (GEP)
obtained through clustering, a Gene Expression Pattern Regulatory Network (GEPRN) can be
constructed. In a GEPRN, regulatory pattern-to-pattern interactions are inferred. With this
GEPRN, we can discover new key regulatory genes and their downstream processes, giving us
more insight into complex biological systems.

Tools for the dynamic method to analyze time series data are lacking as it requires every step of
the process to be dynamic, taking the interdependence of time points into account. The steps to
incorperate dynamic methods are DDEG prediction, clustering and network inference. If a single
method is not dynamic the ouput of that process cannot be interpreted as DDEG. Existing
tools require a certain number of replicates/time points or are built upon static methods[24].
Besides the issue related to the dynamic analysis methods, there are many options for data pre-
processing. Pre-processing often requires analysing and visualising the data in multiple rounds,
tweaking the pre-processing criteria slightly for every new dataset. This makes it difficult for
new people to start preprocessing their data. This results in a complex landscape where every
dynamic and pre-processing tool presents itself as the solution, having different applications
and limitations while not covering the full end-to-end process of DDEG analysis[24]. An easy to
use start-to-end pipeline is therefore crucial to assist lab scientists in their research, improving
reproducibility while preventing lab scientist to figure out the complex landscape of DDEG
analysis themself.

This thesis aims to address the following question: Can an end-to-end pipeline for non-
replicated time series bulk mRNA data infer gene expression pattern regulatory network reliably
representing complex time-dependent cellular processes such as immunity? The DDEG anal-
ysis field is convoluted by a variety of individual tools addressing only parts of the workflow.
The tool created in this thesis provides researchers with an accurate, modular and easy-to-use
end-to-end DDEG analysis pipeline. This is done by adapting and improving upon a previous
PhD thesis of Xin He [12]. The focus of this thesis is to improve the existing methodology
created by Xin He, improve usability and develop additional methodology for an easy-to-use
pipeline. This will be done by training a Long Short Term Memory neural network (LSTM)[13],
a machine learning model well known for its ability to handle time series data, and hierarchi-
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cal clustering with a Dynamic Time Warping (DTW)[4] distance matrix. DTW is a dynamic
method to calculate distance between dynamic time series data.

In this thesis, we will discuss the original pipeline of Xin He and go into the different modular
parts of the improved pipeline. This includes data preprocessing, dataset labelling, neural net-
work training, gene pattern clustering, Gene Expression Pattern Regulatory Network (GEPRN)
inference, and network analysis. In the end the pipeline will be applied to two datasets resulting
from ETI induction experiments on the Aradopsis thaliana.
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2 Related work

2.1 Previous work

This thesis is based upon the PhD dissertation of Xin HE [12]. A novel analysis pipeline was
presented to process and analyse time series gene expression data. The pipeline consisted of
five main parts: preprocessing, DDEGs prediction, clustering, network inference and network
analysis. Figure 1 shows a high-level overview of the files used by the pipeline.

The pipeline starts with pre-processing of the raw RNAseq data, which is done by filtering
and normalising counts to Transcripts Per Million (TPM). From the data, two-condition time
series, three different features were extracted: statistical feature, multidimensional feature and
time series feature. The statistical feature contains information on the difference in mean and
variance between the two conditions. The multidimensional feature contains distance metrics
such as Euclidean distance, Manhattan distance and cosine distance, these distance metrics
provide information on the similarity of the time series data. The time series feature is the DTW
distance, this method can perform a time shift to determine the smallest distance between two
time series. The amount of time the method can shift one time series depends on whether a
constraint is given[30].

After preprocessing, the reduced data is put through a pre-trained XGBoost model (Extreme
Gradient Boosting model) for DDEG identification[5]. An XGBoost model is an ensemble of
decision trees, where each tree is trained to correct the errors of the previous ones. Instead
of training a single strong model, XGBoost adds multiple weak models to itself, improving
performance through boosting. The XGBoost model was trained on 200 genes. The genes
were annotated by two field experts to form a dataset. Two criteria were used to annotate the
genes into three groups. The first criterion was a difference in gene expression between the two
conditions, and the second was similarity in temporal patterns. When both show a difference,
the gene was annotated as DDEG and when both criteria show little difference, the gene was
annotated as no DDEG. The final annotation was unsure, this was used to label genes that
showed a difference in one of the criteria but little difference in the other.

Next a K-means algorithm was used to cluster the predicted DDEGs into generalised gene
patterns, and the optimal number of clusters was determined using the elbow method [37].
The elbow method is a heuristic method to determine the number of clusters when this is
unknown. To find the optimal number of clusters, the inertia is set out against the number
of clusters. The name of the method stems from the shape of the curve that forms when
determining the optimal number of clusters. Finally, the gene patterns were fed to the Bayesian
Inference of Networks using Gaussian process dynamical models (BINGO) algorithm which
infers a gene pattern network [1]. This algorithm ”tries” out different network structures over
many iterations and determines the likelihood of the network. Through this iterative process,
the probability of a link between clusters is determined and a network is inferred.
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Figure 1: Schematic workflow overview of the previous pipeline created by Xin He[12].
Green represents python, blue Jupyter Notebook and red Matlab.

Adapting previous work

Taking this pipeline as the basis we can identify points of improvement. The current code
spans multiple files which have to be run one-by-one. Through workflow orchestration, having
a central ”main” file which calls parts of the pipeline when specified, the pipeline as a whole
becomes less confusing to use. The current pipeline reduces the input data into 3 features
specified above before doing DDEG prediction. By reducing the data it is possible to lose
crucial information making the DDEG prediction more difficult and the result less reliable. By
changing the prediction model from XGBoost to an LSTM model the ”raw” gene time series
expression data can be input instead of its reduced form. An LSTM makes use of a memory
and forget gate, and learns over iterations what to remember and what to forget. The DTW
distance function currently does not have a constraint set, by setting a constraint the time
warping is limited to prevent unwanted overlapping of genes. The current pipeline is trained
on 200 genes, labelled by two people, with cross-validation but without test set. A new bigger
dataset will be generated through multiple labelling rounds and a definition of non-statistical
DDEG will be defined by analysing the labelled data. The current clustering method is k-mean
clustering, this requires the clusters to be known before clustering. As there is no current idea
what the ideal number of clusters there should be it is approached by using the elbow method.
This can be improved upon by changing the clustering method to hierarchical clustering. Here
a cluster distance can be set and over time the range can be optimised resulting in a better
approximation of the number of clusters. The network inference method BINGO is currently
run with 20000 iterations, the BINGO paper recommends at least 50000 iterations [1]. As a
higher iteration number results in more accurate network inference, 300000 iterations will be
used.

7



2.2 Related tools

There is no established standard for data processing or downstream analyses in the dynamic
analysis of time-series gene expression data. Researchers often create their own methods for
their analysis, with each method having its own requirements and limitations, making it difficult
to compare findings across studies. Some of the created tools are built upon static tools, others
are outdated or written in another programming language. This creates a complex landscape
where a researcher has to take into account replicates, conditions, timespan and goal when
looking into tools for their analysis[25].

Taking a recent analysis pipeline like NetSeekR[33], it relies on SDEG identification tools like
edgeR[29]. It also uses older tools such as Weighted Correlation Network Analysis(WGCNA)[18]
and Dynamic Regulatory Events Miner(DREM)[31] for network inference. There are newer net-
work building tools, like BINGO, which can better capture the dynamic nature of time-series
data. Mathematical approaches such as lmms[34] and GPrank[36] among many assume the
data distribution and/or reduce the data to a simpler form. This is confounded when the num-
ber of sampling time points is limited. This is likely to result in not being able to capture all
the complexities of the dynamic gene expression system being modelled. Additionally. Mathe-
matical approaches based on statistics are dependent on the number of replicates, i.e. higher
number of replicates might result in a lower p value. This may result in false positives in a
dataset just by increasing the number of replicates. While there are multiple different paramet-
ric/statistical based tools in the field, they might not be able to find all hidden connections
in the dynamic data. While nonparametric tools are becoming more prevalent, they still make
up only a small portion in the field.
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3 Methods

This chapter describes the methods for both developing the pipeline and executing the pipeline
on research data. The section on pipeline development delves into the parts of the pipeline and
what methods are used. The section applying pipeline defines the data and variables which are
inputted into the pipeline.

Images in this thesis are outputted from the pipeline or made in BioRender.

3.1 Pipeline development

3.1.1 Programming languages and packages

Python 3.8, R 4.2.2 and matlab R2023a were used in this thesis. Table 1 shows the installed
packages, versions, and part of the pipeline in which they were used.

Table 1: Packages, their versions and part in the pipeline where they were used.
Package Version Used in
Pandas[22] 1.5.3 Main, preprocessing, clustering
Numpy[11] 1.24.3 Main, DDEG identification, clustering
Tensorflow[19] 2.13.0 Main, DDEG identification
Optuna[2] 3.6.1 DDEG identification
Seaborn[38] 0.13.2 Main, preprocessing, clustering
Matplotlib[14] 3.7.5 Main, preprocessing, clustering
Rpy2[10] 3.5.17 preprocessing
Scikit-learn[27] 1.3.2 Preprocessing, clustering
Tslearn[35] 0.6.3 Clustering
Goatools[16] 1.4.12 Clustering
Gprofiler[17] 1.0.0 Clustering
Umap-learn[21] 0.5.7 Clustering
pyvis[28] 0.3.2 Network analysis
Dash[15] 2.18.2 Network analysis
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3.1.2 Data

In the making of the pipeline, two time series gene expression datasets were used[8]. Both con-
sist of bulk mRNA-seq data of a Super-ETI(SETI) line from the A.thaliana plant. One dataset
consisted of plants which were injected with 50 µM β-estradiol, dissolved using DiMethylSul-
fOxide (DMSO), to activate the ETI response in the SETI plants, this is the treat dataset.
The other dataset consisted of plants injected with only DMSO solution, the mock. With the
only difference between the two groups being the β-estradiol, the effect of this ETI inducer
can be studied. The experiment setting is visualised in Figure 2. Both time series consist of
13 time points, taken at half-hour intervals between 0 and 4 hours, then at 1-hour intervals
Between 4 and 8 hours.

Figure 2: A) 13 plants were injected with a DiMethylSulfOxide(DMSO) solvent forming
the mock group and the other with a solvent and ETI inducer forming the treat group.
The plants used in this experiment are from a SETI line of Arabidopsis thaliana plants.
B) At specified times, the mock and treat plants were harvested after injection.
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3.1.3 Galaxy

The sequence files were provided in FASTQ format. Using a workflow created in Galaxy[6],
the files were converted into a gene counts file. The workflow can be found through the
following link: https://usegalaxy.org/u/nino_ver/w/ddeg-aligment-tximport. The
galaxy workflow converts FASTQ data into gene counts by using Salmon mapping[26] and
tximport[32] to convert the files into read count data. The workflow is shown in Figure 3.
The following inputs are required: a paired list data collection containing all the FASTQ files
of the data, a transcript reference file for the salmon aligner and a transcript-to-gene file for
tximport.

Figure 3: Galaxy workflow visualization. Blue represents a type of data and red shows the
tools.

3.1.4 Normalisation methods

After the galaxy workflow, the resulting gene count data is provided to the preprocessing step.
The main idea of preprocessing is to make samples comparable, filter out low-expressed genes
and reduce variation in the data. There are two types of variation: biological and technical.
Biological variation can be reduced by repeating the experiment and creating replicates. Tech-
nical variation can be reduced by normalising the data. Through preprocessing the gene counts
are converted into gene expression values. Normalisation is applied during preprocessing and
is important to make either within-sample or between-sample comparisons.

Normalisation combats technical variation, there are 3 well-known: library size, gene length,
and RNA composition[40]. For between-sample comparison, the number of reads per sample
must be roughly equal to that of the other samples, so normalising library size is important.
Outlier genes can distort the library size of the samples, so normalising for RNA composition
is important as well. For within-sample comparison, normalising for gene length is important
to be able to compare genes with each other. Depending on the approach and aim of the
researcher, both types of normalisation methods can be used interchangeably.
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Counts Per Million (CPM), Fragments Per Kilobase Million(FPKM), and Transcripts Per Mil-
lion (TPM) are examples of within-sample normalisation methods, while Trimmed Mean of
M-values (TMM) is an example of between-sample normalisation. In this pipeline TMM nor-
malisation will be used.

3.1.5 Preprocessing

Preprocessing consists of 5 steps that convert and filter FASTQ files into Gene expression
values, which are visualised in Figure 4. The first step uses the galaxy workflow described
previously and converts FastQ files to raw gene counts(1. alignment). This is followed by a filter
step which filters out genes with average counts, over the time series, below a set threshold and
genes in which one sample contributes more than a set fraction of the total count(2. Low count
filter). The filtered gene counts are then normalised using the TMM normalisation method,
leading to gene expression values(3. TMM normalisation). The last step is the repeating of the
filter step noted earlier(4. Low gene expression filter). After the galaxy alignment, the data is
visualised for each step as shown in Figure 4(5. Data visualisation).

Figure 4: Schematic overview of preprocessing workflow. Red boxes indicate a performing
step and blue boxes indicate a form of data.

To visualise the influence of each step during processing a figure consisting of multiple subplots
was made to show different aspects of the data. Table 2 shows an overview of the different
kinds of subplots.
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Table 2: Information of subplots and their axis of preprocessing visualisations.
Subplot Plot Axis
A Time series gene data, cluster 0, of 2-means clustering Log2-Fold change set out against time
B Time series gene data, cluster 1, of 2-means clustering Log2-Fold change set out against time
C PCA of genes coloured by 2-means clustering PCA component 1 set out against PCA component 2
D PCA of genes coloured by 4-means clustering PCA component 1 set out against PCA component 2
E PCA of samples with transparency as time PCA component 1 set out against PCA component 2

F
Heatmap of the number of samples per gene
falling below the set threshold

Samples per gene in mock set out against samples
per gene in treat

G
Histogram of mean expression per gene over
mock and treat

Gene count set out against mean expression

H
Distribution of contribution sample counts of
mock and treat aggregated

Sample counts set out against fraction of contribution

I Correlation plot of samples ordered by condition Samples set out against samples
j Correlation plot of samples ordered by time Samples set out against samples
K Boxplot of gene expression per sample of mock gene expression set out against mock samples
L Boxplot of gene expression per sample of treat Gene expression set out against treat samples

3.1.6 Dataset Annotation

To determine whether a gene is differentially expressed, statistical analysis is used to determine
if there is a significant change in expression. Since the data in this thesis contains no replicates,
we cannot determine the statistical significance of the genes in the dataset. The current goal for
the pipeline is to create an annotated dataset with the data provided and lay the groundwork
for identifying statistical DDEGs when multi-replicate data is used.

The data was manually annotated by multiple domain experts and consisted of randomly chosen
genes. The domain experts were provided with different types of visualized data of the genes
before annotation. The final annotation was determined through the majority or complete
agreement of the annotators. After each round, the annotation criteria and gene visualisation
were altered to improve annotation. Table 3 shows an overview of the different subplots during
annotation, and Figure 5 shows an example of the data provided for a gene during annotation.
In total, there were four rounds of annotating. An overview of the annotation criteria can be
seen in Table 4. In the final round, the set of instructions were given to annotate the final
training dataset.

Table 3: Information of subplots of the figure provided to the annotator(Fig 5).
Subplot Content Axis
A Lineplot of mock and treat gene expression Gene expression set out against time
B NCSRM fitted line plot of mock and treat gene expression Gene expression set out against time
C Line plot of foldchange with guidelines for labelling Log2foldchange set out against time
D Slope line plot of gene expression (mock and treat) and foldchange Acceleration set out against time
E Text containing properties of gene None
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Figure 5: Example of images annotators see during annotation. Information on subplots
are given in table 3.

Table 4: Instructions during each round of annotating.
Round Instructions

1
- Using only expression plots of mock and treat determine DDEG or no DDEG
- Take expression shape and distance into account with possible shift

2
- Take expression shape and distance into account with possible shift
- More than 3 points above threshold and/or 2 consecutive hours above threshold ->likely DDEG
- DTW distance below 0.6 and/ or euclidean distance below 0.6 ->likely no DDEG

3
- instructions with example images were shown of expression range, shape and log 2 fold
- Instructions from previous rounds

4
- instructions with example images were shown of expression range, shape,
fitted line artefacts and log 2 fold change
- instructions of previous rounds
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3.1.7 Neural network

To predict which genes are DDEGs, a Long Short Term Memory neural network (LSTM)[13]
was trained. This model specialises in handling time series data, since an LSTM unit contains
a cell state(memory) and forget gate, the node learns through training which patterns to
remember or forget. When an LSTM processes time series data, it goes through it time point
by time point. At every step, it ’decides’ what to remember and what to forget.

The LSTM was trained using empirical experimentation and a hyperparameter optimisation
package called Optuna[2]. The dataset used for this part consisted of 1004 samples. The data
was split into 2 parts: 1 part, of 251 samples, for testing and the other part, 753 samples for
a 3-fold cross-validation training.

The model was made using TensorFlow. In the exploration part of hyperparameter optimisation
the model contained one or two LSTM layers, one or two dense layers and one or two dropout
layers. All the layers were initialised as is unless specified: The first LSTM layer had return
sequences set to False and the final dense layer had a sigmoid activation function. A binary
cross entropy loss was used with the adam optimiser.
For simplification, only the last Optuna study and the final model will be discussed in depth.
The exploration resulted in a preference for a small model with one layer of each type with a
low learning rate of 0.00025.

The final optimisation round was an Optuna study of 50 trials with a TPESampler set at seed
4124. The settings are shown in Table 5. This resulted in two settings with a 0.280 and 0.286
loss. On inspection of the loss and false count figures, the curves are unstable. The decision
was made to lower all hyperparameters to increase curve stability.

Table 5: The setting of trial parameters for final Optuna optimization. The trial was
performed using a TPESampler with a trial budget of 50.

setting (min, max, step)
Nodes LSTM layer (5, 160, 5)
Nodes dense layer (5, 80, 5)
Dropout rate (0, 0.2, 0.01)

3.1.8 Clustering

Hierarchical clustering with a custom distance matrix was used. This distance matrix was made
using log2-Fold Change(FC) time series data. By setting a value for the parameter clustering
distance, clusters are obtained. By averaging the mock, treat and log2-FC time series data we
can obtain their respective centroids representing gene patterns. The genes for each cluster are
put into Gprofiler and GOATTOOLS for cluster annotation. The gene patterns are min-max
normalised before being put into the network inference step.
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3.1.9 Network inference

To infer a GEPRN from the data the BINGO algorithm is used [1]. It takes min-max normalised
centroids of clustering as input, together with an iteration parameter. The higher this number
is the more accurate the predicted network should be, this does lead to a longer running time.

3.1.10 Network analysis

In this step the inferred network is combined with a reference gene-to-gene network. The
reference network is taken from ChIP-Hub[9]. This gives an overview of known gene interactions
significant to the treatment and gene hubs of interest.

When data from 2 experiments is available it is possible to compare GEPRN networks in a
visualisation. This can be done in four different ways: up/down-regulation, perturbation, GO
pie chart and inter-network similarity.

3.2 Applying pipeline

3.2.1 Experiments data

The pipeline is applied to data from two experiments, in both the ETI pathways is induced
by an effector. These effectors are AvrRps4(S4) and AvrRpt2(T2). The goal is to compare
the networks and discover shared and unique genes of interest in the ETI pathway. The ma-
chine learning model was trained using S4 Data. The data of T2 was generated in the same
experimental setting as S4 [8].

3.2.2 Pipeline variables input

Table 6. shows the variable inputs for experiments in this thesis.

Table 6: Variables and their value for two experiments: S4 and T2.
Variable name S4 T2
To run [1,2,3,4,5,6] [1,2,3,4,5,6]
Mean threshold 10 10
Fraction threshold 0.95 0.95
Make DTW matrix True True
Constraint radius 1 1
Cluster distance 5.5 5.5
Bingo iterations 300000 300000
Link threshold 0.8 0.8
Perturbation threshold 0.8 0.8
Reference network True True
Second network True True
Input file name 1 AvrRps4 AvrRps4
Input file name 2 AvrRpt2 AvrRpt2
Input file name AvrRps4 AvrRpt2
DDEG model name lstm model.keras lstm model.keras
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3.2.3 DDEGs comparisson

After DDEG analysis the DDEG are overlapped with the DDEGs from 2 different tools: the
original pipeline of Xin He[12] and the tool SplineTimeR[23]. The overlap is visualised on a
Venn diagram.
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4 Results

This chapter describes the results of pipeline construction and execution. The first section
shows the structure of the pipeline and the output files produced when running, as well as
labelling results and neural network training. The second section delves into the biological
aspect when applying the pipeline on two ETI inducers on the A. thaliana. Here files outputted
by the pipeline will be discussed.

4.1 Pipeline development

The main pipeline consists of six main parts: sample sequencing, data preprocessing, DDEG
analysis, GEP clustering, GEPRN inference, and GEPRNs analysis. Except for sample sequenc-
ing each part is modular and can be exchanged for another, improved, method if needed. Each
part consists of 3 main actions: load data, perform function, and save data and/or visuali-
sation. Two parts of the pipeline are not in the main pipeline: Data annotation and LSTM
training. These two parts are only performed when there is no excisting trained model for
the data size/requirement. A schematic overview of the pipeline is shown in Figure 6 and an
overview of files and folders is shown in Figure 7.

Figure 6: A schematic overview of the created pipeline.
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Figure 7: Schematic overview of directory of pipeline and files. Yellow indicates folders,
green python files, red indicates matlab files and, blue indicates other files. # indicates
experiment name and * indicates multiple files.
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4.1.1 Input variables

Table 7 shows the variables the pipeline requires together with the input type and an expla-
nation of the variable.

Table 7:
Variable name Input type Explanation

To run List of integers

What part of the pipeline do you want to run?
Please include all the numbers in the ’to run’ list.
1 ->Load data
2 ->Preprocess data
3 ->DDEG
4 ->Clustering
5 ->Network inference
6 ->Network analysis

Mean threshold Integer Gene mean values below this threshold are filtered out.
Fraction threshold Float (0-1) Sample contribution to the mean above this threshold are seen as outliers.
Make DTW matrix Boolean If DTW matrix needs to be (re)made, for the first time always set to True.
Constraint radius Integer DTW sakoe chiba radius constraint.
Cluster distance Float Distance that determines the amount of clusters.
Bingo iterations Integer Number of iterations used in the network inference algorithm.
Link threshold Float (0-1) Acceptance threshold for cluster-to-cluster link.
Perturbation threshold Float (0-1) Threshold for perturbation identification.
Reference network Boolean Overlap inferred network with reference network.
Second network Boolean A Second network is present for network comparison analysis.
Input file name 1 String Name of the first experiment for network comparison analysis.
Input file name 2 String Name of the second experiment for network comparison analysis.
Input file name String Name of the experiment.
DDEG model name String Name of the DDEG identification model.
inter cluster link threshold float (0-1) Theshold for simmilarity between network cluster for comparison analysis.

4.1.2 Data preprocessing

Raw data in the form of FASTQ files are used as input for preprocessing. This resulted in
different files as output: visualisations in PNG form, Figure 9, and data in CSV form. Figure
8 shows a schematic of preprocessing steps and their output files, and Table 8 shows the files
and their content.
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Figure 8: Schematic overview of preprocessing with input, output and variables. The files
in bold are used as input in their representative next step.

Table 8: Filename and content of preprocessing output.
File name Content
1 gene data.csv Time series count for genes
2 data visualization.png Visualizing data pre-filter
3 excluded genes.csv Filtered out genes with their time series counts
3 included genes.csv Filtered genes with their time series counts
4 data visualization.png Visualization data post filter
5 tmm normalised genes.csv Time series gene expression time series data
6 data visualization.png Visualization data post normalization
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Figure 9: Data visualisation at the start of preprocessing. Information about the subplots
can be found in Table 2.

4.1.3 Labelling

Table 9 shows the results from the different annotating rounds. In the final round 1004 genes
were annotated, of which 530(52,8%) were DDEG. In this round also the lowest kappa score,
from all annotation rounds, was found between 2 annotators, 0.48 which is weak agreement
[20]. The highest kappa score in this round, 0.79, relates to a strong agreement. Since the
lowest score relates to weak agreement and we used a majority vote for the final annotation the
quality of the annotations is acceptable. Figure 10 shows the distributions of the annotators
who voted DDEG on each gene. The majority of genes had a complete inter-annotator agree-
ment for either DDEG or no DDEG. For around 100 genes the genes were difficult to classify
as 3 or 4 labellers voted differently than the rest. Figure 11 subplot A shows a difference in
the mean for DDEG and non-DDEG for DTW and Euclidean distance. The absolute average
log2-FC in subplot B is higher for DDEG than no DDEG which is closer to zero. Figure 12
shows a clear distinction between labelled DDEG (y) and non-DDEG (n). It is more clearly
visible when looking at subplot B where the absolute log 2 fold change violin plots are shown.
From 3 hours to 8 hours, the mean log2-FC of labelled DDEG is higher than non-DDEG. This
overlaps with the ETI induction which start at 2 hours.

Table 9: Results of labelling showing properties of each labelling round.
Round Labellers Genes (unique) Agreement type Kappa Cohen (max - min) labelled DDEG Labelled no DDEG
1 3 50 Complete (0.78) 0.8 - 0.65 23 16
2 3 100 Complete (0.71) 0.62 - 0.58 29 42
3 5 200 Majority 0.81 - 0.56 47 153
4 7 1004 Majority 0.79 - 0.48 530 474
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Figure 10: Gene count set out against DDEG votes by labelers.

Figure 11: Results from the final from the round.
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Figure 12: Violin plots of log 2 fold change for each timepoint. A) shows log2 fold-change,
B) shows absolute log 2 fold change.
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4.1.4 Training neural network

Figure 13 shows the final model architecture with hyperparameter settings. Figure 14 A shows
the loss and accuracy of the final training. The model was then used on the test set, where a
loss of 0.506 was obtained with an accuracy of 0.876. Figure 14 B shows the false predicted
curves for the train and validation dataset.

Figure 13: Architecture of final LSTM model.

25



Figure 14: A) False counts plotted against the epochs for a 3-fold training. Blue and
yellow lines represent training loss and validation loss respectively while green and red
represent the training accuracy and validation accuracy. B) False counts plotted against
the epochs for a 3-fold training. Blue and yellow lines represent false positive and false
negative counts respectively on the train dataset while green and red represent the false
counts on the test dataset.

4.1.5 DDEG prediction

The final pre-processed dataset is pulled through a pre-trained LSTM model, resulting in a
DDEG and no-DDEG gene set. The DDEG analysis outputs 2 files: one file contains the gene
names with their label (label predictions.xlsx) and a txt file showing the number of genes in
each group (label occurrence.txt).

4.1.6 GEP clustering

Extracting gene patterns is done through hierarchical clustering. Using the complete linkage
method and setting a distance cutoff clusters are obtained. Table 10 shows the files outputted
during clustering.
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Table 10: Clustering output files and their content
File name Content
DTW matrix.pickle DTW distance matrix of genes

cluster *.png
Timeseries foldchange plot of cluster of cluster genes and centroid
indicates cluster number

cluster * go.csv
Gene cluster GO annotation file from gprofiler
indicates cluster number

all clusters.png All foldchange centroids and genes clusters plotted in subplots

all clusters BP.png
All foldchange centroids and genes clusters plotted in subplots
with a table of top 5 biological process annotations

all clusters CC.png
All foldchange centroids and genes clusters plotted in subplots
with a table of top 5 cellular components annotations

all clusters MF.png
All foldchange centroids and genes clusters plotted in subplots
with a table of top 5 molecular functions annotations

all clusters dtw.png
All foldchange centroids and genes clusters plotted in subplots
with a corresponding subplot of foldchange, mock and treat DTW
distribution of the time series gene data to their corresponding centroid

clustering labels.csv Gene names with their foldchange time series and cluster label
fc centroids.csv Foldchange time series data of cluster centroids
mock centroids.csv Mock time series data of cluster centroids
treat centroids.csv Treat time series data of cluster centroids
heatmap centroids.csv Foldchange heatmap of centroids against time
tsne fc.png T-sne plot of genes labelled according to clusters
umap fc.png Umap plot of genes labelled according to clusters
dendrogram.png Dendrogram of genes with horizontal line set as cluster distance

dendrogram2.png
Dendrogram of genes with horizontal line set as cluster distance
with different settings

heatmap rela BP.png Heatmap cluster and biological processes GO annotations

heatmap rela BP filter.png
Filtered heatmap cluster and biological processes GO annotations
and parent annotations color labelled

heatmap rela CC.png Heatmap cluster and cellular components GO annotations

heatmap rela CC filter.png
Filtered heatmap cluster and cellular components GO annotations
and parent annotations color labelled

heatmap rela MF.png Heatmap cluster and molecular functions GO annotations

heatmap rela MF filter.png
Filtered heatmap cluster and molecular functions GO annotations
and parent annotations color labelled

4.1.7 Network inference

The BINGO algorithm takes the min-maxed normalised centroids of mock and treat to infer
GEP regulatory network.

Table 11: BINGO output files and their content.
File name Content
confidence matrix *.csv File containing prediction by BINGO algorithm for cluster-to-cluster
inferred network *.html Visualization of network
link matrix.csv Filtered confidence matrix *.csv to construct network
perturbation posterior.png Histogram predicting chance of cluster being in direct influence of perturbation
posterior distribution.png Histograms showing link summed link probabilities found by BINGO
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4.1.8 Network analysis

In network analysis, we combine different types of data. The inferred network is combined with
the ChIP-Hub reference gene-to-gene network to create a network highlighting known genes
of interest for the experiment[9]. If a second network is available, a network comparison can
be made. Table 12 shows the outputted files of this step.

Table 12: GEPRN analysis output files and their content.
File name Content
reference combined networ.html combined network of existing and inferred interactions.
networks cluster simmilarity.csv Cluster-to-cluster similarty between two GEPRNs.
simmilarity matrix.png Cluster-to-cluster simmilarity visualized in a heatmap.
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4.2 Applying pipeline

This chapter applies the pipeline to the S4 dataset, the images shown in this part are direct
or edited files to visualise the results from pipeline.

4.2.1 Preprocessing

Figure 15 shows the log2-FC plots of 2-means clustering at each step of preprocessing. The
smaller of the 2 clusters becomes more distinct after each step of the preprocessing, showing
a prolonged increase compared to the other cluster starting at the 2 hour mark until after 8
hours.

Figure 15: The 2-means clustering plots during every stop of preprocessing.

Figure 16 shows PCA plots with 2, types of k-means clustering. The plots of 2-means clustering
shows in each part of the preprocessing a fairly straight vertical line. The 4-means clustering
adds to this a rough horizontal line, leading to a rough separation into 4 quarters.
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Figure 16: 2 and 4 means clustering during every step of preprocessed visualised in PCA
plots.

The histogram plots in Figure 17 shows the largest change after filter steps as these figures
are mainly focussed on visualising the influence of filtering.

Figure 17: Overview of mean expression and fraction mean contribution of samples. After
every step a large change is visible and shows the influence of the filter and normalisation
steps.

Figure 18 shows no change between steps. In the correlation plot ordered by time, we see a
high correlation between mock and treat in the earlier hour and a decreasing correlation after
2.5 hours. In the conditions ordered correlation map mock has a high correlation with itself,
except with the hours before 4 hours and after 4 hours. Treat has a high correlation with itself
between 0 and 2 hours, after 2 hours it only correlates with local neighbours.
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Figure 18: Expression boxplots of mock and treat. Normalisation equalizes the mean of
the boxplots.

Figure 19 shows The lower range of the boxplot being removed after the first filtering, means
getting aligned after normalisation and again the lower range removed after the second filtering.

Figure 19: Boxplots of gene expression for all samples.

Figure 20 shows PCA plots of samples, a noticeable change occurs when normalising. The
heatmap shows the distribution of samples under an expression range, after each step a change
occurs.
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Figure 20: PCA plot of samples and expression filter heatmap

4.2.2 DDEG

The preprocessed genes are put into the trained LSTM model to predict DDEGs. Of the 11392
genes, 5816 were predicted to be DDEGs. By using the old pipeline on the same data and
pulling the data through an SDEG tool (SplineTimeR) we can see an overlap of DDEGs. Figure
21 shows this overlap, 1209 genes are predicted to be DDEGs by all tools, 948 are found to
be DDEGs by the current and original pipeline. 1862 genes are predicted to be DDEGs by the
pipeline and SplineTimeR. The current pipeline has 1797 genes, predicted DDEGs, which are
not found to be DDEGs by the other two tools.

Figure 21: Venn diagram of gene overlap between 3 tools: the (new) pipeline, old pipeline,
and the tool splinetimeR. The total DDEG’s found are next to the tool names.
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4.2.3 Clustering

After hierarchical clustering, the genes are coloured by cluster and are visualised into a T-SNE
and a UMAP plot (Figure 22). In both groups, the colours group together well and 2 main
groups can be seen. The foldchange GEP resulting from clustering are shown in figure 23.
Visible is that clusters 0 to 12 seem to show upregulation and clusters 13 to 23 seem to have
an overall downregulation.

Figure 22: T-SNE (A) and UMAP (B) of DDEGs colour labelled by clustering of S4.

Figure 23: Subplots containing log2-FC time series genes and their averaged centroids for
S4.
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GO annotation was performed on each cluster and visualised in three heatmaps relating to
their families: biological processes (Figure 24), molecular function (Figure 25) and cellular
component (Figure 26). Visible from the figures are four types of cluster annotation. the first
type of clusters does not contain enough genes to be annotated. The second type of clusters
is spread out over multiple second-layer GO functions, this can be contained within the first
layer of GO functions or spread out into different first-layer GO functions. The last type of
cluster has a singular GO function in the second layer.

Figure 24: Heatmap setting out the second layer of GO terms under biological processing
annotation against clusters, colour labelled by first layer GO term. The numbers and
colours in the heatmap represent the fraction of all GO terms, found for that cluster,
falling under the specified GO term.

The GO heatmap of biological processes, Fig 24, shows a lot of clusters enriched in metabolic
processes. Using Fig 23 we can see that after cluster 12, most clusters are downregulating.
During the immune reaction metabolic processes seem to slow down to focus on the immune
response. The clusters that are upregulated seem to be enriched in GO terms related to stimulus
and stress. We also see GO terms more directly related to immunity such as immune response,
cell death and response to other organism.
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Figure 25: Heatmap setting out the second layer of GO terms under molecular function
annotation against clusters, colour labelled by first layer GO term. The numbers and
colours in the heatmap represent the fraction of all GO terms, found for that cluster,
falling under the specified GO term.

The GO heatmap of molecular function, Fig 25, shows a lot of clusters fully enriched in a
singular GO term. Most clusters fall under the group of binding and catalytic activity. Small
molecule binding is the GO term most clusters are enriched in. This also account for clusters
0, 1 and 2 which have the response to other organism GO term in biological processes.
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Figure 26: Heatmap setting out the second layer of GO terms under cellular component
annotation against clusters, colour labelled by first layer GO term. The numbers and
colours in the heatmap represent the fraction of all GO terms, found for that cluster,
falling under the specified GO term.

The GO heatmap of cellular component, Fig26, shows some clusters that did not shows any
known enrichment for the GO terms. Cluster 6 is enriched in the most different GO terms
while cluster 2 is enriched in only cell periphery. With cluster 2 being enriched in response to
other organism, small molecule binding and cell periphery it is highly likely cluster 2 plays an
early role in immunity.
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4.2.4 Network inference

The BINGO algorithm predicts two things: the likelihood of a link existing between two clusters
and the likelihood of a gene being directly influenced by the perturbation. In Figure 27 we
can see the distribution of all links visualised on the left, as we are only interested in the
highly likely links, a zoom in can be seen on the right. Around 18 links have a likelihood of
0.8 or higher. Figure 28 shows cluster 0 with full certainty being directly influenced by the
perturbation.

Figure 27: Link counts set out against posterior probability from the BINGO algorithm
for AvrRps4. The right plot is a zoomed-in version of the left plot.

Figure 28: Pertubation probability set out against cluster numbers for AvrRps4. Indicates
the likelihood of a cluster being directly influenced by the perturbation.
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Combining both predictions from the BINGO algorithm allows us to visualise the network as
shown in Figure 29.

Figure 29: Inferred network for S4. Cluster numbers relate to the clusters in Figure 23.
An orange node is under direct influence of the treatment, a blue node is not under direct
influence.
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To make a network comparison a second dataset T2 was ran. The link likelihood distribution
and pertubation likelihood can be found in Figure 30 and 31. The inferred model can be found
in 32.

Figure 30: Link counts set out against posterior probability from the BINGO algorithm
for T2. The right plot is a zoomed-in version of the left plot.

Figure 31: Pertubation probability set out against cluster numbers for AvrRpt2. Indicates
the likelihood of a cluster being directly influenced by the perturbation.
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Figure 32: Inferred network for AvrRpt2. Cluster numbers relate to the clusters in Figure
45.

4.2.5 Network analysis

By overlapping the predicted network with a reference gene-to-gene network we can obtain 2
things: a validation of our inferred network as in lesser or larger extent we should find overlap
between the networks and a highlight of known genes that play an important role in the
perturbation. If overlapping the networks results in a to small network or no network at all, it
could indicate that the parameter settings of the pipeline need to be changed. When there is
alot of overlap forming a network we can focus on hub nodes, which could be genes previously
thought to have no influence on a defence response.
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Figure 33 shows the overlap of the inferred S4 network, Figure 29, with the reference network.
The network of S4 shows 3 genes that form hubs(Table 13). The overlap network for T2 can be
seen in 34 and the hub nodes in 14. The overlap of both inferred networks with the reference
network results in hub genes that are mainly transcription factors.

Figure 33: Inferred network for AvrRps4 overlapped with the reference network. Numbers
relate to clusters in figure 33.

Table 13: Hub genes, their names, cluster and description of S4.
Cluster Hub gene(code) Hub gene(name) Description[7]
0 AT2G38470 WRKY33 Transcription factor regulating defense pathways
14 AT2G33860 ARF3 Transcription factor that regulates plant growth
14 AT4G32980 ATH1 TRanscript factor that controls floral competency
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Figure 34: Inferred network for T2 overlapped with the reference network.

Table 14: Hub genes, their names, cluster and description of T2.
Cluster Hub gene (code) Hub gene (name) Description
9 AT5G04340 ZAT6 Transcription factor regulating root development and homeostasis
24 AT4G31800 WRKY18 Transcription factor regulating defense repsonse
4 AT2G02080 IDD4 Transcription factor regulating photosynthetic gene expression.
4 AT5G24470 PRR5 pseudo-response regulator regulating circadian rhythm events.

When 2 experiments have been performed with the same mock a network comparisson can be
performed to find overlap and differences between pertubations. This can be done by taking a
look at the cluster simmilarity between the two networks. Figure 35 shows such an overview,
where we can identify some simmilar clusters combinations. Cluster 6 from S4 overlaps the
most with cluster 11 from T2 with a value of around 0.4.
Figure 36 shows both networks with on the left S4 and on the right T2. Both have a hub
cluster under the direct influence of the perturbation. In Figure 37 shows for both network the
up and down regulation of the clusters, the majority in both networks are upregulated. Figure
38 shows the similarity from S4 to T2 based on a similarity threshold. While some cluster of
T2 shows similarity with one or two cluster(s) of T2 most do not pass the similarity threshold.
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Figure 35: Inter network cluster similarity between S4 and T2.

Figure 36: Inferred networks for S4 and T2. Cluster numbers relate to the clusters in
Figure 23 and 45 for S4 and T2 respectively. An orange node is under the direct influence
of the treatment, a blue node is not under the direct influence.
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Figure 37: Inferred networks for S4 and T2. Cluster numbers relate to the clusters in
Figure 23 and 45 for S4 and T2 respectively. Green nodes have an average upregulation
and red nodes an average downregulation of their gene expression pattern.
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Figure 38: Inferred networks for S4 and T2. Cluster numbers relate to the clusters in
Figure 23 and 45 for S4 and T2 respectively. Similarly from S4 to T2 is shown through
letters. corresponding clusters with the same letters have a similarity of 0.3 or higher.
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5 Discussion

This thesis aimed to adress the following question: Can an end-to-end pipeline for non repli-
cated time series bulk mRNA data infer gene expression pattern regulatory network reliably
representing complex time dependent cellular processes such as immunity? This resulted in
an easy-to-use end-to-end tool for time series DDEG analysis, allowing for new insights into
cellular processes through gene expression pattern analysis leading to the discovery of new
gene functions. The first focus point of this thesis was to improve upon a previously created
pipeline for time series FastQ bulk mRNA data into a GEPRN. By improving every step of the
pipeline this has been achieved(changing clustering algorithm, training a new machine learning
model, and annotating DDEG dataset). The second focus point was to improve usability and
reproducibility. By running the code from a main file, a clear overview of parameters and output
is maintained. Only the BINGO algorithm needs to be run separately due to it being written in
MATLAB. This allows for easy reproducibility by others and ease of use for researchers starting
with this pipeline.

Preprocessing is the first step of the pipeline, which processes FastQ files into gene expres-
sion, allows the user to fine-tune the amount of filtering on their dataset. Through visuali-
sations(Figure 9), the user can interpret and change the parameters. A labelled dataset was
created to train a machine-learning model for DDEG prediction. Here a non-statistical defi-
nition was made using data analysis (Fig 10. 11. 12.). The size of the dataset, 1004 genes,
is sufficient for the current model, as cross-validation is possible compared to the original
pipeline[12]. An LSTM model was trained for DDEG prediction, it is trained through 3-fold
cross-validation using an Optuna study for hyperparameter optimisation. The study shows al-
most equal performance for a lot of hyperparameter combinations, showing that the current
task is fairly easy to solve, it also shows that the loss is fairly high. This could be a result of
labelling indicating that the training data is inconsistently labelled. The hierarchical clustering
algorithm makes use of a DTW distance matrix, which allows for dynamic clustering23. The
one-time calculation for this matrix is a big improvement compared to using another clustering
algorithm like k-nn, which would greatly increase running time. While the parameter which
extracts the number of clusters from the algorithm is not known beforehand, it is most likely
to fall between a range that, with increased usage of the pipeline, can be determined. During
the GEP inference step the gene patterns are put into the BINGO algorithm, which then de-
termines the likelihood of different GEPRN configurations. The run time of the model greatly
increases as more GEPs are provided or the iterations are increased. Since the GEPs from
clustering, through changing the method, dropped from 43 in the old pipeline to 26 it was
possible to increase iterations to get more accurate inference predictions. The threshold for
perturbation posterior probability was increased from 0.3 to 0.8 compared to the old pipeline.

Since the experiment which provided the data in this thesis was not repeated, no replicates were
available. Due to this the biological variation could not be determined and/or reduced. Since
this pipeline consists of multiple parts which each their own error and points of optimisation
this greatly affects the result of each step of the pipeline and could have an avalanche effect:
biological variation with a possible error in each part of the pipeline can lead to an inaccurate
inferred network at the end. The current pipeline is limited to the 13 time points with specific
sample times for both mock and treat. This is due to the training data consisting of only those
number of samples and sample times. It is advised to improve the pipeline in 3 maim ways. the
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first is increasing the training dataset size and variety: sample times between mock and treat
not alligning, and a variable number of samples. the second improvement is by improving every
part of the pipeline individually. The last improvement in performing a study with replicates
and their influence. It is expected that increasing the number of replicates improves the inferred
model, but the exact difference between no and one replicate is at this point unknown.
Preprocessing can be improved upon by finetuning the filter method, which depends however
on the desired output by the user. Currently, the DTW function used in multiple parts of
the pipeline has a constraint of 1, meaning it can take direct neighbours into account when
calculating its distance. Since the time series does not have constant time between its points
(half-hour and 1-hour) this is most likely to have a negative influence on the pipeline predic-
tions/output. By making a weighted DTW function, taking the time difference between each
compared point into account, performance will be increased and is strongly recommended. It
is strongly recommended to further increase the size of the dataset, incorporate data from dif-
ferent experiments and further finetune a more accurate non-statistical DDEG analysis. While
labour-intensive it is crucial for the performance of the pipeline. The current model is, through
the training data, limited to 13 time points with specific time intervals and requires both con-
ditions to be of the same size and time interval.It is expected that increasing the dataset and
fine-tuning a better representing DDEG definition could lower the achievable loss. When mak-
ing the input data more flexible, different time differences between time points and different
sizes, it is expected that the training becomes more complex. However, it is expected that this
will not form an issue if the above-named quality of the training data increases. The number of
clusters is currently decided by a set variable, the ”best” range of this variable is likely to differ
per experiment or datatype and should be finetuned each time, however, it is most likely there
is a general ”best” range that can be found through empirical evidence. By using the pipeline
the user will find out what gives the best result, since the distance matrix only needs to be
calculated once this should not form an issue as clustering only takes minutes. For The Bingo
algorithm it is recommended to do an indepth study to what number of iterations is ideal, as
with the increase in iterations, the results should be more stable when repeated. A balance
between a stable and accurate result against running should be established. The similarity
measurement of clusters between two networks should be finetuned now the similarity in GO,
DTW and genes contributes equally to the final cluster-to-cluster similarity, it is expected that
a more refined approach can give a more accurate similarity.

The pipeline was applied to two datasets resulting from infecting the A. thaliana plant with
tho ETI inducers: AVRPS4(S4) and AVRPT2(T2). Thirteen samples were taken at intervals
between 0 and 8 hours, forming a time series dataset. The aim was to apply the pipeline to
both datasets, infer GEPRNs for both ETI inducers and make a comparison between both
networks.

For AvrRps4 the gene count at the beginning of the preprocessing was 33681 and after pre-
processing 11392. From 2 means clustering we can see that the genes can be divided into two
groups: higher and lower log2 fold-change (Figure 15 and 16). The PCA plots of the samples
(Fig 20 show that at the earlier time points until 2.5 hours mock and treat show similar ex-
pression patterns, after this time they diverge as expected.

DDEG analysis of the 3 tools: original pipeline, current pipeline and SplineTimeR show a large
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overlap in predicted DDEG (1209 genes)(Figure 21.). Interestingly the original pipeline and
SplineTimeR show a large number of genes that do not overlap. The current pipeline overlaps
best with both tools but has a large number of predicted DDEGs that the other models do
not find. This enforces our idea that the current pipeline definition of A non-statistical DDEG
is fairly loose. However, this is not of the most importance as the following steps can filter
out some of the less clear DDEGs from network inference. it is however recommended to get
a more strict definition as it can influence the pipeline performance.

Figure 22. shows a clear separation between 2 large groups for both T-SNE and UMAP. This
is up- and down-regulation of GEP. Within these 2 groups, a fairly clear separation of clusters
is seen as the genes coloured by cluster group together.

To calculate the DTW matrix we use logfold of mock and treat but no normalisation, this
allows for 2 patterns to be alike but stay separate clusters. Figure 23. shows an overview of
the log foldchange GEP for AvrRps4. Different size clusters can be seen with the smallest
containing 25 while the largest containing 1522 genes, this would indicate that a large number
of genes follow a very strong pattern.

Cluster GO term annotation provided a heatmap of go term with higher tier GO labelling was
created for CC, BP and MD (figure 24, 25 and 26). Clusters 0, 1 and 2 seem to be involved
in the start of the immune response, they are enriched in GO terms related to response to
stimulus, response to other organism and small molecule binding. Alot of the downregulated
clusters are erniched in GO terms related to metabolic processes, meaning during an immune
response these procceses slow down to focus on the immune response. This could indicate they
are involved in the effector binding which forms the start of the immune response. From these
heatmaps, we can see that some clusters are highly specific to a single or few GO terms while
others have less common ancestors. A factor in this could be clustering quality, spread-out
GO terms for clustering could indicate that a cluster should be split, while a single GO term
cluster might indicate that too many clusters are generated. through analysis and parameter
optimisation, a researcher should aim for an optimal distribution of clusters where the cluster
can be annotated to import GO terms.

The Bingo algorithm was run for 300000 iterations, 15 times more than in the original pipeline.
Visible in 27 is a good number of links found with a likelihood above 0.8. the set cut-off
could be increased to 0.9. Figure 28 shows a single cluster with almost complete certainty
of perturbation, cluster zero. looking at the cluster GEP in figure 23 shows one of the first
clusters to increase in its log2-FC expression, reinforcing the expectation of being under the
direct influence of the perturbation.
Network analysis is split into two parts, the first is the overlap with the reference network.
For both S4 and T2 an overlap network is created and 3 to 4 hub genes are found per
network. Almost all genes are transcription factors, which is promising as the ETI response
leads to transcriptional reprogramming. This means that the pipeline can find cluster-to-cluster
relations in which their genes have known interactions and the pipeline is able to find gene
hubs consisting of transcription factors.
The second part of network analysis comapres inferred models from two experiments. Here
T2 is compared to S4. From the similarity matrix we identify some clusters which are similar
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between the networks however, a lot of clusters have little or no similarity to clusters from the
other network. The highest similarity is just above 0.4, Since the method for calculating this
cluster-to-cluster similarity is novel, it is highly likely that improvements need to be made. The
visualisation of the networks allows for a quick and easy overview.
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6 Conclusion

Cellular processes inherently unfold over time. A complete analysis workflow specialised in
handling and processing time series data needs to be followed to research such processes
as the Effector-Triggered Immunity(ETI). The pipeline created in this thesis fills an existing
hole in the field of Dynamic Differentially Expressed Gene(DDEG) analysis. While many tools
are available, they are limited in their use due to replicate requirements, written in different
languages and methods which are built upon static methods. The created pipeline provides an
easy-to-use start-to-end analysis workflow consisting of preprocessing, DDEG prediction, Gene
Expression Pattern(GEP) clustering, GEP network inference, and network analysis. Since the
is modular, researchers can implement their own methods or swap them out while maintaining
a clear overview of the process. While multiple parts of the pipeline can be improved, the
pipeline is able to infer a network and highlight transcription factors for plant data.
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7 Supplementary materials

Figure 39: False counts plotted against the epochs for a 3-fold training for one of the
best settings 1 after optuna study. Blue and yellow lines represent false positive and false
negative counts respectively on the training dataset while green and red represent the
false counts on the test dataset.
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Figure 40: loss and accuracy plotted against the epochs for a 3-fold training for one of the
best settings 1 after optuna study. Blue and yellow lines represent train and validate loss
respectively while green and red represent the train and validate accuracy.
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Figure 41: False counts plotted against the epochs for a 3-fold training for one of the
best settings 2 after optuna study. Blue and yellow lines represent false positive and false
negative counts respectively on the training dataset while green and red represent the
false counts on the test dataset.
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Figure 42: loss and accuracy plotted against the epochs for a 3-fold training for one of the
best settings 2 after optuna study. Blue and yellow lines represent train and validate loss
respectively while green and red represent the train and validate accuracy.
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Figure 43: Data visualisation after filtering is applied. Information about the subplots can
be found in Table 2.

Figure 44: Data visualisation after normalisation is applied. Information about the sub-
plots can be found in Table 2.
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Figure 45: Subplots containing log2-FC time series genes and their averaged centroids for
T2.
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Figure 46: T2 heatmap setting out the second layer of GO terms under biological pro-
cessing annotation against clusters, colour labelled by first layer GO term.

Figure 47: T2 heatmap setting out the second layer of GO terms under molecular function
annotation against clusters, colour labelled by first layer GO term.
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Figure 48: T2 heatmap setting out the second layer of GO terms under cellular component
annotation against clusters, colour labelled by first layer GO term.
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