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Abstract

The Vehicle Routing Problem (VRP) is a generalization of the well-known Travelling Sales-
person Problem (TSP). The problem seeks to determine the optimal set of routes that a
fleet of vehicles must traverse to reach a given set of customers. In this study, we compare
the performance of a classical algorithm and its combination with a machine learning model
that provides an initial set of solutions to optimize and investigate if there exists a per-
formance gap. We propose a hybrid method called the Hybrid Machine-Learned Genetic
Algorithm (Hybrid-MLGA), which combines a variant of the Genetic Algorithm (GA) with an
encoder-decoder Graph Convolutional Network (GCN). In addition to the Hybrid-MLGA, we
present an open-source implementation of the encoder-decoder GCN model. We find that the
Hybrid-MLGA outperforms the standard GA up to a certain iteration budget, beyond which
both methods converge to nearly identical average solutions across all tested problem sets.
We show that a performance gap exists between randomly initializing the GA and initializing
it with generated solutions, the latter accelerating the convergence of the Hybrid-MLGA.
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1 Introduction

Efficient transportation from one location to another remains one of the central logistic challenges in
modern society. Applications range from the distribution of essential medical supplies to hospitals,
restocking supermarkets, to optimizing passenger transport. As demand continues to grow, so does
the need for robust and scalable solutions to such routing problems.

The Vehicle Routing Problem (VRP), a generalization of the classic Travelling Salesperson Prob-
lem (TSP), lies at the heart of this challenge. Originally introduced by Dantzig and Ramser | ],
who developed the first algorithmic approach for optimizing petrol deliveries, the VRP seeks to
determine the most cost-effective set of routes for a fleet of vehicles to serve a given set of customers.

Numerous variants of the VRP have been defined, such as the Capacitated VRP (CVRP),
where each vehicle has a limited carrying capacity; the VRP with Time Windows (VRPTW), which
imposes service time constraints at customer locations; and the Multi-Objective VRP (MOVRP),
which balances multiple competing goals such as cost, time, or the number of vehicles to use. In
this work, we focus on the CVRP, the foundational variant of the VRP.

A broad spectrum of solution methods has been developed to address VRP variants, ranging from
exact algorithms and classical heuristics to advanced meta-heuristics and, more recently, learning-
based approaches. Consequently, research interest in the field has risen in recent years | 1,
driven by the growing need for efficient logistics in increasingly dynamic and complex environments.

The first approach to solve the VRP was proposed in | ] by Dantzig and Ramser, which was
able to obtain near-optimal solutions to efficiently route petrol deliveries. Later, Clark and Wright
proposed an algorithm for obtaining near-optimal routes for a fleet of capacitated trucks | ]
within a set of limitations. As in the algorithm proposed by Dantzig and Ramser, the vehicles
originated from a single depot, servicing a set of customers. For an in-depth and comprehensive
review of the past and current approaches to solving the VRP, we direct you to | ) ,

) ) I ]

1.1 Classic Approach

Due to the NP-hard | | nature of the Vehicle Routing Problem, a significant amount of research
has been dedicated to solving the VRP using (meta) heuristics, as these have been widely recognized
as efficient approaches to hard optimization problems | ]. For example methods based on the
Genetic Algorithm (GA) | ).

One such approach was presented in | | for the classic VRP, where the authors implement
both a pure GA and a hybrid GA, which implements neighbourhood search to help the GA converge
faster. The promising results helped establish a precedent that GAs are a strong competitor for
solving the VRP.

Another method was proposed in | |, which aims to solve the VRPTW by representing it
as a multi-objective problem, minimizing the number of vehicles and the distance travelled. The
authors introduced a GA that makes use of the Pareto ranking technique and fairly considers both
dimensions of the problem.

Another recent approach in | | solved the VRPTW by introducing an improved GA. The
authors propose a heuristic initialization algorithm to generate high-quality initial populations, and
a local search operation to improve the performance of the GA. For a more in-depth review of the



GA, see | ].

In addition to the Genetic Algorithm, other algorithms that took inspiration from nature exist,
such as the Ant Colony Optimization (ACO) algorithm | , |. For example, | ]
simulates the decision-making process of ant colonies foraging for food and modified the original
ACO algorithm for the TSP | | to allow searching for multiple routes.

In | ], a novel approach to the ACO algorithm was introduced which modified the
original ACO algorithm by allowing ants to visit the depot(s) more than once, until all customers
were visited. For a review of other ACO algorithms and its real-world applications, we direct you
to | ] and | ].

Genetic and ACO algorithms are two of the most common meta-heuristic algorithms, but other
methods which solve the VRP exist in the literature, such as a hybrid approach using tabu search
and simulated annealing proposed in | ], or the exact algorithm proposed in | | which
solved the G-VRP, a variant of the VRP that includes potential refuelling stops along a route. The
authors model the G-VRP as a set partitioning problem where columns represent feasible routes. A
taxonomic review of other (meta) heuristic algorithms is presented in [ .

1.2 Machine Learning Approach

In recent years, learning to solve the VRP using machine learning (ML) has garnered much attention.
As shown in | |, the number of papers related to learning the VRP has almost doubled in
the last four years. Many ML approaches have been proposed, such as the influential paper by Kool
et al. | | which introduced an attention-layer-based model that solved the CVRP, trained
with the REINFORCE algorithm with a deterministic greedy rollout baseline.

Another method which uses attention is presented in [ |. The authors proposed an
encoder-decoder model based on modified pointer networks | |. They replaced the Recurrent
Neural Network encoder and instead directly used the embedded inputs. Similarly to | ,
the authors trained their model using the REINFORCE algorithm with a policy gradient approach.

1.3 Hybrid Methods

As discussed previously, much research has been done on solving the VRP using meta-heuristic
algorithms and recently using ML: methods. The question then arises: can these two methods be
combined? Numerous research studies have been presented that do exactly this.

For example, in [ |, the authors combined the encoder-decoder GCN-NPEC model
presented in | ] with a GA to further optimize the solutions generated by the model. They
trained the model with same methodology proposed in | |, using a REINFORCE algorithm
with a rollout baseline.

Another method based on the encoder-decoder structure is presented in | ]. In their
paper, the authors proposed a hybrid approach to solve the MOVRPTW (Multi-Objective VRP
with Time Windows) that combined weight-aware deep reinforcement learning (WADRL) with
the classical Non-dominated Sorting Genetic Algorithm II (NSGA-II) | | to optimize the
solution generated.

The preliminary work has shown that both machine learning and optimization methods yield
promising results, and that integrating machine learning with traditional optimization methods has
significant potential. However, both approaches face challenges related to complexity. Meta-heuristic



algorithms may require a substantial amount of time to reach satisfactory solutions, especially
as instances increase in size, while relatively simple machine learning models show a significant
performance gap to optimal solutions and struggle to generalize to unseen problem instances.

There exists a gap in performance between the two models: either a high quality solution
is found at the cost of long computation times, or a faster method yields poor solutions. The
literature suggests that combining meta-heuristic methods with learned models can improve
performance [()Z\W " 24], but it remains unclear how such hybrid approaches bridge this gap. This
bachelor thesis explores how integrating a machine learning model with a classical algorithm
influences the resulting performance. Specifically, our research question is:

What tmpact does providing initial solutions generated by a learned model to a metaheuristic
algorithm have on its convergence speed and solution quality?

2 Problem Definition

Figure 1: Example solution to the Vehicle Routing Problem using three vehicles. Adapted from
Vehicle Routing Problem Example by Maly LOLek [LLOL09].

In this section, we will define the problem of the classical VRP, also known as the Capacitated
Vehicle Routing Problem (CVRP). An instance of the VRP can be defined on a graph G = (V, £),
with V = {0,1,...,n}, where ¢ = 0 is defined as the depot and the set i € {1,2,...,n} as
the customer nodes. The set of edges can be defined as £ = {e; ;} with ¢,j € V. Each node is
characterized by a two-dimensional characteristic vector x; = {p;, d;} where p; is the position and
d; the demand of a node, with zy = {p;}, and each edge by the distance between the connected
nodes ¢ and j, w; ;. To generalize this problem to the real world, we take the graph G to be fully
connected. In other words, we have an edge between each two nodes, where we define the edge e; ;
different from e;;. The VRP employs a fleet of £ vehicles, each with a capacity c;.
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The goal of the VRP is to find the set of optimal vehicle routes that a fleet of vehicles must
traverse so that each customer is visited exactly once and each vehicle should start and end their
route at the depot. An example solution to an instance of the VRP is shown in Figure 1.

3 Genetic Algorithm

Algorithm 1 Hybrid Genetic Search (HGS) for CVRP

1: Input: Initial set of solutions {7y,...,7,}

2: Output: Best found solution 7*

3: Initialize population P < {m,...,7,}

4: Let 7* < argmingep f(m)

5: repeat

6: Select parents (wP', 7wP?) from P via k-ary tournament

7: 70 < XO(7P', 7wP?) Apply crossover
8: 7¢ + LS(7°) Improve offspring via search procedure
9: Insert 7€ into P

10: if f(mw°) < f(=*) then

11: T — T°

12: end if

13: if |P| > fimax then

14: Remove the least fit solutions until |P| = pimin

15: end if
16: until stopping criterion is met
return =¥

For this research, we want to determine what impact providing a good initial solution has on the
performance of a classical VRP solving algorithm. As discussed in the literature review, over the
years many good approaches have been developed, and a common choice is a Genetic Algorithm.
We choose a relatively new VRP solver package PyVRP | | that provides a high-performance
implementation of the Hybrid Genetic Search (HGS) algorithm [ ) ], which is a variant
of the Genetic Algorithm, specifically for vehicle routing problems.

In Algorithm 1, a pseudocode implementation of the HGS algorithm is shown. As mentioned
before, the HGS is a variant of the Genetic Algorithm which combines the global search capabilities
of a GA with local search methods. A GA works by evolving a population of solutions towards
better solutions. Starting with a population which is initialized from a given list of (random)
solutions, each iteration (generation) selects the k best individuals of the population and applies
mutation and cross-over operators to obtain the next generation. This process is repeated until a
maximum number of iterations is reached or the quality of the solution is satisfactory. Similarly to
the GA, the HGS also maintains a population of solutions, initialized from a given list of solutions,
as seen at Line 3. At Line 6, each generation selects two of the best existing solutions 7r?* and 7rP?
from the parent population P using a k-ary tournament and applies the crossover operator XO at
Line 7 to generate an offspring sequence that inherits features from both parent solutions. Unlike a
regular GA, the HGS further improves the offspring by applying a local search procedure LS at



Line 8 and adds this improved solution to the current population at Line 9. When the population
is full, as defined by .y, a survivor selection mechanism removes the least-fit solutions until the
minimum population size pyi, is reached at Line 14. This continues until the previously mentioned
stopping criteria are met. In this study, the random initialization of the population at Line 3 is
replaced with a set of solutions generated by a learned model.

4 Machine Learning Model

To address our research question, we require a relatively recent and effective model. From the
literature, we adopt the Graph Convolutional Network with Node Sequential Prediction and Edge
Classification (GCN-NPEC) | ], a relatively new and powerful approach. In this section, we
outline the structure of the model, summarizing the key components as described by the original
authors. Since certain details on the implementation of the model are not specified in the paper,
we introduce several modifications, which will be discussed in the relevant sections.

4.1 Learning Goal

The GCN-NPEC model is built upon a Graph Convolutional Network (GCN) architecture, incor-
porating sequential node prediction and edge classification. Its goal is to generate a sequence of
customers visits 7w = (my, 7o, ..., wp) int € {1,2,...,T} steps, where m, € {0,1,...,n}. The depot
(node 0) may be visited multiple times, with the customers in between each pair of depot visits

defining a route. The main objective of the model as defined in | | is:
T-1
min ¢, - Q, + ¢ Z Wr, w41 (1)

t=1

Where ¢, is the cost of a vehicle, (), the number of vehicles used and ¢; the cost per unit of travel.

4.2 GCN-NPEC

The model is divided into three main components: the graph encoder, the sequential decoder, and
the edge classifier. For a graphical overview of the model architecture, see the graphic provided
in Figure 2. The encoder produces representations of the nodes and edges of the graph G. The
sequential decoder takes the encoded nodes as input and aims to generate a solution to a CVRP
instance 7r in T steps, while the edge classifier aims to output a probability matrix that denotes
the probability of an edge being present in a solution. The original authors define the sequence
generated by the sequential decoder as the ground truth for the tours the edge classifier produces,
creating a joint-learning approach.

4.2.1 Graph encoder

Given a CVRP instance graph G, we want to encode the graph to extract its features. In | ],
the authors split this into two main parts: the input encoding and the Graph Convolutional Network
(GCN) | | which extracts the graph features.
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Figure 2: The architecture of the GCN-NPEC model. Figure reproduced from | ).

The input encoder encodes the nodes separately from the edges. As shown in Section 2, the
features of the nodes x; for i € {1,2,...,n} consist of their position and demand, and zy is given
only by its coordinates. The node’s features are initialized as vectors of dimension d,, obtained by
applying a fully connected (linear) neural network followed by the ReLU activation function:

" | ReLU(Waa? + by; Wazd + bs), ifi >0

where Wy, Wy, W3 are learnable weight matrices and by, by, bs are learnable parameters, and where
[ - ; -] represents the concatenation operator. Note that the dimension d, only represents the size
of the internal dimensions, as the concatenation operator changes the output dimension.

The edge features y; ; for ¢, 7 € V consist of the edge length w; ; and the adjacency between the
nodes ¢ and j. Although G is fully connected, we define the adjacency matrix A € RO+Dx(n+1) 59
follows:

1, if  and j k-nearest neighbours,
aj =< —1, ifi=j (3)
0, otherwise
Thus, nodes i and j are adjacent if they are k-nearest neighbours. In [ | k= 10 is used.

Finally, we use the length and adjacency of the edges to calculate the d, dimensional edge features:

Yij = ReLU ([W4w,-7j + b4; W5Cli7j + 65]) (4)

where Wy, W5 and by, b5 are trainable weight matrices and parameters respectively.

4.2.2 Graph Convolutional Network

The learned node and edge features are further processed with a (modified) Graph Convolutional
Network. The traditional GCN is an extension of the Graph Neural Network (GNN) | ]. A
generic GNN may implement three types of layers | |:

1. Permutation equivariant layers, which compute the node-wise features.

6



2. Local pooling layers, which coarsen the graph.
3. A permutation-invariant global pooling layer, which functions as the read-out layer.

The GCN extends the GNN by introducing a specific method to aggregate and update node features
with localized or spatial convolution operators, which enable the GCN to better capture features,
enabling more efficient training on large graphs.

In | ], the authors apply learned linear projections to the node and edge feature vectors

to obtain dj-dimensional embeddings. These embeddings serve as input to the first layer of the
GCN and are defined as:

h? = WElxi + bE1 (5)

hgi’j = WEQxei,j + bEQ (6)

The GCN updates these embeddings through L layers, where each layer ¢ = {1,2,..., L} consists

of two sublayers: aggregation and combination | |. The aggregation sublayer is defined
as | : |:

hiyi = o (W' AGGREGATE ({n{"Y,Vu € N(i)})) (7)

where th(i) denotes the aggregated embeddings of the neighbours of node i; W* is a learnable
weight matrix shared across all nodes at layer ¢; o is a non-linear activation function, such as the
ReLU; N(i) represents the neighbourhood of node i; and AGGREGATE is the function used to
combine the embeddings of all nodes in N (7).

The combination sublayer is then defined as follows | , |:

hf = COMBINE (h{ ™", k() ®)

Where COMBINE is a function that combines the node embeddings from the previous layer with
the aggregated embeddings of its neighbourhood.

4.2.3 Tailored GCN Encoder

In | |, the authors extend the standard GCN to incorporate edge embeddings, allowing both
node and edge features to be updated embeddings simultaneously. The updated node embeddings
at layer ¢ are given by:

hiw = o (W - AGGREGATE] (ATTENTION (h; ", {hy; ", Vu € N(i)}))) (9)

where W' is a trainable weight matrix at layer ¢, shared across all nodes; AGGREGATE; is the
aggregating function as defined earlier; ATTENTION is a function f : hgey X Hyaiues — Pvalues
that maps a key feature vector (h: ') and a set of candidate feature vectors to a weighted sum of
elements-i.e., the attention values | |. These values are calculated using scaled dot-product
attention | |. Note that the attention function described in Equation (9) only takes two
inputs, while the cited scaled dot-product attention takes three: queries, keys, and values. In our
implementation, we compute the attention values as follows:



ATTENTION (k™" h%™") = softmax M
Y Vdy
In this equation, we treat both the keys and values as the neighbouring node embeddings hf’l, as
the goal is to determine the relative importance of each node j € N (i) with respect to the query
node 1.
For each edge e;; € £, we define its neighbourhood as the two nodes (i and j) it connects. We
define the edge neighbourhood embeddings h{/\/(ei,j) as follows:

) “hiTN Wi €N(i), i€V (10)

Mo = 0 (Wg . AGGREGATE, ({hﬁ;}, Bt h§*1}>> (11)
AGGREGATEL, ({hi;jl, Rt hﬁ-l}) WER, + WER + WE R, (12)

where W£, W We and WE are trainable weight matrices. This extended aggregation sublayer

e’

integrates both the node and edge embeddings. The extended combination layer is then defined as
follows:

hi = (Vi -0t iy (13)
¢ -1,
h’el J [VE hel PR hN(ei,j)] (14)
where V} and Vj are trainable weight matrices. The updated combination sublayer follows the
strategy introduced in | ], in which the learned node and edge embeddings are concatenated
with their respective neighbourhood embeddings. As noted in | ], these combination sublayers
function as a skip connections between layers. To expand on this, we additionally incorporate
regular skip connections | | and apply layer normalization [ ].

4.2.4 Two Decoders

To decode both the encoded nodes and edges, the authors of | | propose a dual decoder with
separate networks to decode both features independently. Following this approach, we implement a
sequential prediction decoder and a classification decoder, according to [ ].

Sequential decoder: Following the authors, we employ a Recurrent Neural Network (RNN) with
a Gated Recurrent Unit (GRU) | ], combined with a context-based attention mechanism
known as the pointer network | |. The decoder maps the encoded node embeddings to a
sequence of nodes 7. We aim to generate this sequence in T steps, such that @ = {m, mo, ..., 71},
where T" > n + 1, as the depot can be visited multiple times and at least twice for each valid route.
We denote the sequence up to a step ¢t by m; with ¢t € {1,2,...,T}. Following [ ], our goal
is to learn a stochastic policy p(7 | S;0) that generates a solution sequence 7r on input S, while
minimizing the objective defined in Equation (1). From | ], we obtain:

T-1

P(m|S;0)= HP(WtH | S, m;0)

~+
Il
o
—~
—_
ot
~—

N
-

p<77t+1 ‘ f (57 06) 77Tt§9d)
0

-
Il



where P (7 | S;0) denotes the total probability of generating the sequence 7t on an input S. This
probability can be broken down into the product of probabilities for selecting each next node 1,
chosen on the input S, and previously chosen nodes ;. The function f (S, 0.) represents the graph
encoder, parametrized by 6. and 6, the learnable parameters of the sequential decoder. Following
standard practice in sequence modelling | , ], we use the GRU to encode the history of
the generated sequence m;_; into a fixed-length hidden state vector z;, such that:

p(ﬂ-t ’ f(S7 9€>77Tt*1;9d) %p(ﬂ-t ‘ f(Sv ee)azt;ed)' (16)

To implement p(m, | f(S,0.),2;64), we use the previously described pointer network. The
authors simplified the context weights by reducing the two learnable weight matrices to just one:

Wiz + Way = Wa[z; y] (17)

where W7, W, Wy are learnable weight matrices. Let hF be the node embeddings and z; the hidden
state of the final GRU layer. We then define the attention score weight of node ¢ at step ¢ u;; as:

—00, Vje N’

i = 18
. {W{;’; tanh(W,[hF; 2]), otherwise, (18)

where Wg; and Wy are learnable weights. To avoid selecting unfeasible nodes, we apply a mask by
assigning —oo to all nodes j € N’, where N’ denotes the set of infeasible nodes.

During decoding, a sequence 7 should adhere to the following rules to be considered a valid
solution to the CVRP. Each vehicle has capacity ¢, with ¢ > 0, and each node i has a demand
0 <d; <c, with dg = 0. At each step t we visit a node 7 and update its demand so that d; = 0 and
¢y = ¢;_1 — d;, where ¢;_1 — d; > 0.

A complete tour 7 contains at least one route 7", which starts and ends at the depot, and
visits at least one customer node. The total demand served on a route 7’7 must not exceed the
capacity of a vehicle, such that »_._ - d; <c.

Because each route must begin and end at the depot and include at least one customer node,
the depot cannot be selected in two consecutive decoding steps. Additionally, a node is considered
infeasible if it has a remaining demand of d; = 0, or if d; > ¢;. Thus, we define the set of masked
nodes as:

(19)

;=

, )N, U{0}, m_1=0o0rt=0
{ieV|di=0V d; >c¢}, otherwise

Finally, the masked attention scores are transformed into a pointing probability distribution towards
the input nodes p(m; | f(S,6.), m—1;04) = softmax(u;;) fori € V | ).

Classification decoder: While the sequential decoder generates a solution by selecting what
customer to visit using pointing attention scores, the classification decoder predicts the likelihood
of edges appearing in a solution. Specifically, it learns the edge-probability matrix Pe € [0, 1]"*",
where each entry Pg, . represents the probability that the edge between node ¢ and j is included in
the solution. A sequence 7r can then be constructed by traversing the edges indicated by Pe. For
example, consider the following edge-probability matrix:



010000
00000 1
100000

Pe=10 0001 0
100000
001000

Converting this matrix to a solution sequence gives 7w = (0, 1,5, 2,0, 3,4, 0).
To generate the probability matrix, we apply a Multi-Layer Perceptron (MLP) on the encoded
edge embeddings hé p and convert the generated logits to a softmax distribution:

Pe = softmax(MLP(heLi’j)),‘v’ei,j eé (20)

Combining both decoders, we implement a decoding loop that iteratively constructs a solution
7 over T steps. At each step t € {1,2,...,T}, the next customer to visit is selected from the set of
unmasked nodes A"\ N’ according to the chosen sampling strategy, thereby extending the previous
solution ;1. This process is repeated until all n customers are visited, using 1 < k < n vehicles.
A pseudocode outline of this procedure is provided in Algorithm 2.

Algorithm 2 Decoding Procedure

1: Initialize route 7 < [|

2: Initialize vehicle capacity C' < Chax

3: Initialize node mask N based on initial constraints seen in Equation (19)
4: while not all customers served do

5: Calculate the attention scores wu;;

6: if Greedy strategy then

7 Select next node i; < arg max; uy ;

8 else

9: Sample next node i, € V from wuy;

10: end if

11: Append i; to route: w < 7 U {i;}
12: Update vehicle capacity: C' «+ C' — z
13: Set demand of i; to zero: :ztglt +~0
14: Update mask NN/, , based on new state

15: end while
16: return route 7

4.2.5 Learning the VRP

Since obtaining optimal solutions for large VRP instances is often unfeasible, the authors propose
a self-supervised training approach. Because the extended GCN-NPEC model simultaneously
generates the node and edge embeddings, the solutions produced by the sequential and classification
decoder must represent the same graph information and be consistent with each other. This principle
forms the basis of the Joint-Learning Strategy proposed in | ].

10



The model is trained using a hybrid approach combining reinforcement learning (RL) and
supervised learning (SL). Following the original work, we employ the same REINFORCE algo-
rithm | ] with a rollout baseline. We calculate the advantages as the difference in the solution
quality-number of vehicles used and total tour length-between a sampled decoder and a greedy
decoder. We multiply the advantages by the sum of log probabilities of the selected nodes ob-
tained during decoding. Unlike to the original paper, we normalize the advantages using PyTorch’s
torch.normalize function! to be in the range [...] to vastly improve model training convergence.

In parallel, we supervise the classification decoder by comparing the edge probability matrix Pe
with the binary edge-probability matrix PF € {0,1}""", constructed from the sequence 7 generated
by the sequential decoder. This is done by minimizing the negative sum of the cross-entropy losses
between Pz and PF. Finally, we combine both losses into a weighted loss function:

Log=axLy0)+F xL.(0) (21)

Where 6 denotes the vector of all trainable parameters, and «, 8 the weighing coefficients for the
reinforced and supervised loss.

4.3 Implementation

Since the authors of | ] did not provide source code, we implemented the model from scratch
using the widely adopted machine learning framework PyTorch 2.7.0 | ] and the PyTorch
Geometric (PyG) library | |. Our implementation is divided into four main parts: Loading a

VRP instance, encoding and decoding an instance, and generating a final solution. As part of this
work, we provide an open-source implementation of the GCN-NPEC model, including training
and evaluating tools, at https://github.com/Plantius/vrp-gen-init. Further details on the
implementation are provided in Appendix A.

4.4 Training

We train the model largely following the original paper, with several modifications. We employ the
Adam optimizer and reduce the learning rate by a factor of 0.96 every epoch, down to a lower limit
of 3-107%. The cost per unit of travel is fixed at 1, and, contrary to the training process in the
original paper, set the unit cost of a vehicle at 1 to discourage the use of more vehicles than the
baseline. In Table 1, we provide an overview of the hyperparameter values used during training.

Due to computational and time constraints, we train three distinct versions of the model on
datasets of sizes 20, 50 and 100 nodes. We generate a training set of 10,000 instances for each size,
using the generator script provided in | |. All instances are created by sampling from a
random mixture of available parameter configurations (see Table 2). We train each model for 1000
epochs, with mini-batch sizes adapted according to the dataset dimension.

5 Experiment

To evaluate our research question, we compare the performance of a Genetic Algorithm and its
combination with the GCN-NPEC model. For the GA, we select a recent open-source implementation

'https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.normalize.html
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Component Hyperparameter Setting

a, B 1.0

Optimizer Adam

Learning Rate Initial: 1- 1073, decayed by 0.96 per epoch
Learning Rate Floor 3-10°¢

Gradient Clipping L2 norm clipped to 5.0

Weight Initialization Uniform in [—0.08,0.08], bias set to 0
Decoder GRU 2 layers, 256 hidden units

Encoder GCN 3 layers

(Classification Decoder MLP 3 layers

Table 1: Hyperparameters used during training of the model components.

of the Hybrid Genetic Search (HGS) algorithm (PyVRP | ]) that builds upon the foundational
work of | |. The goal of this experiment is to assess whether providing an initial (set of)
solution(s) to the HGS algorithm can:

1. Improve the quality of the solution
2. Accelerate the convergence time

We will evaluate the relative performance of the combine HGS algorithms, referred to as the
Hybrid Machine Learned Genetic Algorithm (Hybrid-MLGA), against its standard counterpart,
referred to as the baseline, on multiple test sets of varying problem sizes. Additionally, we compare
different variants of the Hybrid-MLGA against each other. To test the absolute performance of the
baseline and hybrid algorithms, we will evaluate their performance on the XML-100? benchmark
set [ |, and compare their results with the optimal solution.

5.1 Datasets

We generate five datasets named VRP-TEST-20, VRP-TEST-50, VRP-TEST-100, VRP-TEST-200,
and VRP-TEST-400, where the appended number indicates the dimensionality of the problem set.
Each test set contains 100 instances generated using the generator script provided by [ ],
sampling from a random mixture of available options. Note that individual instances within each
problem set may specify different vehicle fleet capacities. In addition to the generated problem sets,
we also evaluate the performance of the algorithms on the XML-100 benchmark set, which consists
of 10,000 instances of 100 nodes, for which optimal solutions are provided.

5.2 Setup

Our experiment is divided into three main parts: (1) comparing the performance of the Hybrid-
MLGA with the standard HGS algorithm, (2) comparing the Hybrid-MLGA variants against each
other, and (3) assessing the absolute performance of the Hybrid-MLGAs and the baseline algorithm.
We tested four variants of the model with greedy decoding:

2http://vrp.atd-lab.inf.puc-rio.br/index.php/en/new-instances
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Instance Feature

Options

Depot positioning

. Random
. Centred
. Cornered

Customer positioning

. Random
. Clustered
. Random-Clustered

Demand distribution

DN = | W[ W =

. Unitary

Small values with large CV (Coefficient of

Variation)

. Small values with small CV

. Large values with large CV

. Large values with small CV

. Depending on quadrant

. Many small values and few large values

Average route size r where r C A and |r| < |N|

DD ULk W N RO Uk Ww

. Very short, |r| ~ U([3,5])

. Short, |r| ~U([5,8])

. Medium, |r| ~U([8,12])

. Long, |r| ~U([12,16])

. Very long, |r| ~ U([16,25])
. Ultra long, |r| ~ U([25,50])

Table 2: Options used to generate the train and test problem sets, based on | ].

1. Model trained on VRP-TRAIN-20.
2. Model trained on VRP-TRAIN-50.
3. Model trained on VRP-TRAIN-100.

4. Randomly initialized model.

Each model will generates a set of one ore more initial solutions to initialize the population of
the HGS algorithm. For this research, we did not apply hyperparameter optimization and left the
parameters as default provided by the authors of PyVRP. For an overview of these parameters, see
Table 3. The HGS algorithm is run for a maximum number of iterations ¢ = 250 and the population
is initialized with a set of solutions of size 7 = 25, matching the default minimum population size.
We compare the absolute performance of the algorithms by comparing the optimal solutions of the
XML-100 benchmark set with the best solution found across iterations.

Finally, to investigate whether the solutions generated by the Hybrid-MLGA and the baseline
algorithm are statistically different, we apply a paired T-test on the total tour lengths of their best
solutions found across all iterations and test instances.
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Parameter Value

Population min size: 25, max size: 25 + 40
num elite: 4, num close: 5
lower bound diversity: 0.1, upper bound diversity: 0.5
Repair probability 0.8
Crossover operator —selective route exchange
Search method local search

Table 3: Hyperparameters of the Hybrid Genetic Search algorithm.

6 Results & Conclusions

We divide our results and our conclusions into several subsections. We conducted our experiments
using four models: one untrained model (randomly initialized) and the three models trained on
the VRP-TRAIN-20, VRP-TRAIN-50, and VRP-TRAIN-100 datasets, respectively. The Hybrid-
MLGAs were evaluated on five test sets containing 20, 50, 100, 200, and 400 customers. Each
experiment was repeated five times, and all algorithms were run for a maximum of 250 iterations.

6.1 Hybrid-MLGA Converges Faster

To investigate the difference between the randomly initialized HGS algorithm and the Hybrid-
MLGA, we compare the average best cost found across iterations, shown in Figure 3. Each subfigure
corresponds to one of the five problem sets and shows the average best cost with the 95% confidence
interval (CI).

6.1.1 Performance Gap

In Figure 3a the results for the VRP-TEST-20 set are shown. We observe that all four variants of
the Hybrid-MLGA outperformed the standard HGS during the first ~ 200 iterations, after which
all methods converged to a similar average solution quality. The random-GA performed slightly
worse than the other Hybrid-GAs for the first ~ 200 iterations, and the model trained on 20 node
instances provided the best initial solution. Similar to the results presented in Figure 3a, the results
in Figure 3b indicate that the HGS performed worse than all Hybrid-MLGAs for the first 150
iterations. The random-MLGA again performed slightly worse, and the model trained on instances
of size 50 provided the best initial solutions. The results in Figure 3¢ show that the HGS and
Hybrid-MLGAs converged to a similar average best solution after ~ 100 iterations, and the initial
best performer is the VRP-TRAIN-100-model. The results of the final two datasets are provided
in Figure 3d and Figure 3e. Consistent with the previous results, Figure 3d shows that the HGS
algorithm converged slower during the first ~ 100 iterations, and similarly in Figure 3e during the
first ~ 50 iterations. In both cases, the baseline eventually reached a similar average solution as the
MLGA variants. For both problem sets, the VRP-TRAIN-100-model, trained on the largest and
thus most similar instance size to the test sets, initially provided the best solution. Based on our
observations, we conclude that the HGS algorithm converges slower compared to all Hybrid-MLGA
variants.
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Figure 3: The average best cost per iteration, shown as the mean line with 95% CI for each problem
size. The prefix denotes the model used to initialize the population of the HGS.
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In addition to the results presented in Figure 3, we provide a more detailed analysis in the form
of five tables: Tables 5 to 9. These tables present a detailed overview of the best average solutions
obtained by the five algorithms at selected iterations, along with the relative difference to the HGS
algorithm for each Hybrid-MLGA variant.

6.1.2 Statistical Significance

To further support the validity of our results, we provide the statistical significance of the performance
differences between the Hybrid-GAs and the baseline at each iteration, as shown in Figure 4. Each
subfigure presents the p-value computed across all instances at a given iteration, with performance
differences considered significant when p < 0.05.

In Figure 4a, significant differences are observed for the first ~ 150 iterations, aligning with
the findings in Figure 3a, where the baseline and Hybrid-GA converge to similar average solutions
(within their 95% CI) after approximately 150 iterations. A similar trend is seen in Figure 4b,
where significant differences persist for the first ~ 70 iterations, after which the 95% confidence
interval of the baseline begins to overlap with the mean performance of the Hybrid-GAs. The
remaining subfigures follow a comparable pattern. In Figure 4c the difference in performance is
statistically significant for up to ~ 50 iterations, with the baseline converging after approximately
100 iterations, although the CI overlap begins at iteration ~ 10. Figure 4d shows statistically
significant differences during the first ~ 100 iterations, with the HGS algorithm converging around
the same point. In Figure 4e, the significant differences are observed during the first ~ 50 iterations
and again after ~ 170 iterations, while the HGS converges after approximately 50 iterations. From
these observations we can conclude that the gap between the Hybrid-MLGA variants and the
baseline algorithm is statistically significant.

6.1.3 Absolute Performance

To compare the absolute performance of the five algorithms, we provide the average solution cost
across iterations for the XML-100 benchmark set in Figure 3f. Furthermore, Table 4 presents the
average solution cost for selected instances, along with the corresponding average gap to the optimal
solution at selected iterations. As shown in Figure 3f, the HGS algorithm converged to a similar
average solution after approximately 200 iterations. This is further confirmed in Table 4, where all
five algorithms achieved an identical average optimality gap after around 200 iterations. Table 4
further shows that the Hybrid-GAs start with a substantially smaller optimality gap compared
to the baseline algorithm. After 250 iterations, all methods converged to near optimal solutions,
with final average gaps of 0.5% above the optimum. These observations indicate that the HGS
algorithm reaches near-optimal solutions within the chosen budget of 250 iterations, suggesting
that this iteration limit is appropriately selected.

6.1.4 Faster Convergence

To provide a more detailed comparison of the convergence speed of the five algorithms, we present
the average number of iterations the five methods required to reach a certain target in Tables 11
to 15. These targets were linearly selected between the worst and the best solutions found for each
instance with 0% representing the worst and 100% the best solution.
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Figure 4: Pairwise p-values between each learning-based model combination and the standard HGS
algorithm for different VRP test sizes, calculated using the two-sided T-test. Values below 0.05
indicate statistically significant differences between the two solutions.
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Iter HGS random vrp-train vrp-train-50 vrp-train-100
1 32365.40 (+65.7%) 21134.33 (+20.5%) 20833.37 (+19.5%) 21056.82 (+21.0%) 21425.29 (4+22.1%)
2 25497.88 (+32.1%) 19382.64 (+11.3%) 19279.55 (+10.9%) 19332.00 (+11.5%) 19610.45 (+12.3%)
3 23074.55 (+22.4%) 18747.16 (+8.3%) 18685.28 (+8.2%) 18708.61 (+8.5%) 18876.41 (+8.8%)
4 21826.79 (+17.7%) 18415.40 (4+6.8%) 18368.55 (4+6.8%) 18347.79 (4+6.8%) 18521.00 (4+7.2%)
5 21128.10 (+14.9%) 18187.66 (+5.8%) 18163.49 (4+5.9%) 18140.08 (4+5.9%) 18300.76 (4+6.3%)
10 19661.48 (4+9.4%) 17770.02 (+4.0%) 17783.09 (+4.1%) 17751.33 (+4.0%) 17832.97 (+4.2%)
20 18789.85 (+6.1%) 17555.89 (+2.9%) 17570.49 (+3.1%) 17541.93 (+2.9%) 17610.05 (+3.1%)
50 18097.20 (+3.7%) 17360.68 (+1.9%) 17362.66 (4+2.0%) 17342.12 (+1.9%) 17369.10 (+1.9%)
100 17550.98 (+1.9%) 17197.73 (+1.1%) 17194.29 (+1.1%) 17195.72 (+1.2%) 17210.35 (+1.1%)
150 17252.43 (+1.0%) 17133.33 (+0.8%) 17130.37 (4+0.8%) 17135.00 (4+0.8%) 17129.36 (4+0.8%)
200 17140.22 (+0.6%) 17097.36 (4+0.6%) 17096.40 (40.6%) 17096.93 (40.6%) 17097.07 (4+0.6%)
250 17078.38 (+0.5%) 17074.20 (+0.5%) 17073.99 (4+0.5%) 17074.22 (+0.5%) 17074.27 (+0.5%)
Avg +14.66% +5.37% +5.28% +5.47% +5.74%

Table 4: Average solution cost across all instances over 1 run at selected iterations, for the HGS
algorithm and Hybrid variants, including the average gap to the optimal solutions. Evaluated on
the XML-100 benchmark set.

All Hybrid-GAs exhibited similar convergence behaviour. Our observations indicate that the
gap in convergence speed between the baseline and hybrid algorithms depends on the problem
dimensionality, with the HGS algorithm converging noticeably slower. Furthermore, as observed in
Section 6.1.1, the MLGA variants consistently start with better solutions and improve them by a
relatively small amount, compared to the baseline algorithm. Ultimately, all algorithms eventually
reached nearly identical solutions, which were close to optimal in the case of the XML-100 dataset.

6.2 Training Causes Slight Improvement

To further investigate the differences among the four MLGA variants, we present Figure 5. Figure 5a
provides the results acquired on the VRP-TEST-20 set. We note that the randomly initialized
model performed the worst on average for the first ~ 200 iterations. On the VRP-TEST-50 set, the
random model converged slightly slower in the first 100 iterations, but performed almost identical
to the other models later on. In Figure 5¢, the VRP-TRAIN-20-model converged slightly slower for
the first ~ 50 iterations, and caught up to the other algorithms afterwards. Figure 3d shows that
the randomly initialized and VRP-TRAIN-20 model performed slightly worse, and both converged
to follow the general trend line set by the other models after ~ 100 iterations. Finally, in Figure 5e
the random model performed slightly worse for the first ~ 75 iterations, after which all models
converged to a similar average solution.

Comparing the Hybrid-MLGAs to each other, we conclude that the random-MLGA performed
the worst by a slight amount. As seen in Tables 5 to 9, the difference in performance varies by at
most 5.0%, compared to the best performer. This shows that training the model slightly improves
the performance of the Hybrid-MLGA. All algorithms converged at the same rate, except for
the random-model on the VRP-TEST-20 set, where it performed slightly worse than the other
algorithms for the first ~ 200 iterations.
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Iter HGS random vrp-train vrp-train-50 vrp-train-100
1 6925.56 5261.09(-24.0%) 5120.44(-26.1%) 5164.49(-25.4%) 5202.98(-24.9%)
2 6177.59 5070.41(-17.9%) 4981.42(-19.4%) 5014.69(-18.8%) 5052.72(-18.2%)
3 5945.01 5032.16(-15.4%) 4957.81(-16.6%) 4984.74(-16.2%) 4995.61(-16.0%)
4 5835.30 4992.72(-14.4%) 4945.07(-15.3%) 4961.76(-15.0%) 4964.82(-14.9%)
5 5786.66 4977.67(-14.0%) 4937.97(-14.7%) 4945.88(-14.5%) 4956.94(-14.3%)
10 5717.02 4961.87(-13.2%) 4911.95(-14.1%) 4930.96(-13.7%) 4931.67(-13.7%)
15 5713.73 4958.70(-13.2%) 4902.77(-14.2%) 4916.21(-14.0%) 4920.41(-13.9%)
25 5697.81 4955.19(-13.0%) 4893.75(-14.1%) 4905.35(-13.9%) 4898.59(-14.0%)
50 5658.91 4942.58(-12.7%) 4889.11(-13.6%) 4893.09(-13.5%) 4896.97(-13.5%)
100 5438.68  4919.31(-9.5%) 4875.32(-10.4%) 4884.27(-10.2%) 4883.03(-10.2%)
150 5237.72  4912.60(-6.2%)  4872.05(-7.0%)  4879.33(-6.8%)  4875.77(-6.9%)
200 4985.52  4891.88(-1.9%)  4871.99(-2.3%)  4878.48(-2.1%)  4875.18(-2.2%)
250 4855.14  4855.80(+0.0%) 4857.09(+0.0%) 4856.11(40.0%) 4856.78(+0.0%)
Avg -12.0% -12.9% -12.6% -12.5%

Table 5: Average solution cost across all instances over 5 runs at selected iterations for the HGS
algorithm and hybrid variants, including the difference relative to HGS. Evaluated on the VRP-

TEST-20 set.

Iter HGS random vrp-train vrp-train-50 vrp-train-100
1 18081.02 11864.80(-34.4%) 11414.90(-36.9%) 11012.24(-39.1%) 11173.06(-38.2%)
2 15038.85 11118.93(-26.1%) 11003.34(-26.8%) 10619.66(-29.4%) 10658.32(-29.1%)
3 13924.40 10809.64(-22.4%) 10729.59(-22.9%) 10480.20(-24.7%) 10446.84(-25.0%)
4 13398.28 10690.23(-20.2%) 10583.31(-21.0%) 10398.42(-22.4%) 10357.02(-22.7%)
5 13092.51 10595.63(-19.1%) 10514.77(-19.7%) 10340.18(-21.0%) 10314.95(-21.2%)
10 12202.17 10355.30(-15.1%) 10301.01(-15.6%) 10206.43(-16.4%) 10197.18(-16.4%)
15 11975.75 10302.66(-14.0%) 10201.09(-14.8%) 10153.56(-15.2%) 10160.49(-15.2%)
25 11712.77 10156.70(-13.3%) 10143.47(-13.4%) 10114.36(-13.6%) 10082.05(-13.9%)
50 11576.43 10081.77(-12.9%) 10046.66(-13.2%) 10036.61(-13.3%) 10027.33(-13.4%)
100 10616.39 9936.36(-6.4%) 9952.81(-6.3%) 9920.52(-6.6%) 9952.19(-6.3%)
150 9935.28 9858.88(-0.8%) 9862.92(-0.7%) 9874.55(-0.6%) 9866.49(-0.7%)
200 9847.95  9852.77(+0.0%)  9849.72(+0.0%)  9860.36(+0.1%)  9852.78(+0.0%)
250 0843.56  9846.81(+0.0%)  9845.17(+0.0%)  9848.60(+0.1%)  9847.86(+0.0%)
Avg -14.2% -14.7% -15.5% -15.5%

Table 6: Average solution cost across all instances over 5 runs at selected iterations for the HGS
algorithm and hybrid variants, including the difference relative to HGS. Evaluated on the VRP-

TEST-50 set.
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random

vrp-train

vrp-train-50

vrp-train-100

Iter HGS
1 29605.09
2 23782.60
3 21389.53
4 20087.44
5 18869.97

10 17192.64
15 16695.90
25 16339.25

18676.02(-36.9%)
17248.19(-27.5%)
16807.14(-21.4%)
16468.43(-18.0%)
16236.69(-14.0%)

15991.14(-7.0%)

15835.32(-5.2%)

15709.14(-3.9%)
15602.93(-3.6%)
15447.66(-1.7%)
15404.62(-0.0%)
15382.29(-0.0%)
15364.60(+0.0%)

18112.04(-38.8%)
17242.91(-27.5%)
16773.82(-21.6%)
16505.82(-17.8%)
16319.62(-13.5%)
16032.51(-6.7%)
15949.66(-4.5%)
15803.48(-3.3%)
15614.91(-3.5%)
15483.79(-1.5%)
15412.71(+0.0%)
15388.84(+0.0%)
15366.86(+0.0%)

18169.01(-38.6%)
16966.39(-28.7%)
16519.63(-22.8%)
16236.12(-19.2%)
16127.80(-14.5%)
15919.37(-7.4%)
15823.94(-5.2%)
15752.04(-3.6%)
15642.06(-3.4%)
15462.23(-1.6%)
15420.05(4-0.1%)
15391.81(+0.1%)
15373.66(~+0.1%)

17885.34(-39.6%)
16702.44(-29.8%)
16477.74(-23.0%)
16359.35(-18.6%)
16230.27(-14.0%)
15944.59(-7.3%)
15847.70(-5.1%)
15743.55(-3.6%)
15596.81(-3.6%)
15489.24(-1.4%)
15416.75(+0.1%)
15389.66(+0.0%)
15369.83(+0.0%)

50 16186.83
100 15712.94
150 15406.05
200 15382.82
250 15364.59
Avg

-10.7%

-10.7%

-11.1%

-11.2%

Table 7: Average solution cost across all instances over 5 runs at selected iterations for the HGS
algorithm and hybrid variants, including the difference relative to HGS. Evaluated on the VRP-

TEST-100 set.

Iter HGS random vrp-train vrp-train-50 vrp-train-100
1 73507.04  44769.09(-39.1%) 42001.84(-42.9%) 41277.97(-43.8%) 41088.61(-44.1%
2 55821.82 39642.08(-29.0%) 39278.54(-29.6%) 38356.53(-31.3%) 38109.82(-31.7%
3 49743.35 38076.71(-23.5%) 37556.70(-24.5%) 36974.24(-25.7%) 37230.42(-25.2%
4 46696.87 37282.56(-20.2%) 37204.99(-20.3%) 36262.95(-22.3%) 36644.42(-21.5%
5 4522417 36775.39(-18.7%) 36927.58(-18.3%) 36040.79(-20.3%) 36239.72(-19.9%
10 40966.75 35980.74(-12.2%) 35826.41(-12.5%) 35493.43(-13.4%) 35657.18(-

15 40091.87  35662.45(- 35514.28(- 35316.22(-11.9%) 35398.75(-11.7%

25 39496.61

)
)
)
)
)
)
11.0%)
35423.80(-10.3%)
)
)
)
)

)
)
)
)
)
)
11.4%)
35326.64(-10.6%)
)
)
)
)

35104.21(-11.1%

M M M O O

)
)
)
)
)
13.0%)
)
35181.34(-10.9%)
)
)
)
)

50 38242.84  34999.67(-8.5%)  35145.80(-8.1%)  34887.15(-8.8%)  34894.52(-8.8%
100 36537.47  34825.97(-4.7%)  34732.53(-4.9%)  34514.89(-5.5%)  34597.23(-5.3%
150  34304.33 34332.07(+0.1%) 34330.97(+0.1%) 34323.15(+0.1%) 34321.38(+0.0%
200  34246.26 34264.72(+0.1%) 34267.62(+0.1%) 34257.77(+0.0%) 34258.61(+0.0%
250  34200.97 34216.84(+0.0%) 34217.17(+0.0%) 34207.84(+0.0%) 34212.96(+0.0%)
Avg -13.6% 14.1% -14.9% 14.8%

Table 8: Average solution cost across all instances over 5 runs at selected iterations for the HGS
algorithm and hybrid variants, including the difference relative to HGS. Evaluated on the VRP-

TEST-200 set.
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Figure 5: Average best cost per iteration, shown as the mean line with 95% CI for each problem
size. Only Hybrid-MLGA variants are shown, where the prefix denotes the model used to initialize
the population of the HGS.
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Iter HGS random vrp-train vrp-train-50 vrp-train-100
1 115962.31 78932.61(-31.9%) 73535.25(-36.6%) 73397.36(-36.7%) 73169.03(-36.9%
2 87171.50 70528.94(-19.1%) 66974.61(-23.2%) 66536.06(-23.7%) 67051.53(-23.1%
3 77785.27 67141.26(-13.7%) 64812.52(-16.7%) 63897.56(-17.9%) 64169.37(-17.5%
4 73902.61 65405.37(-11.5%) 63148.88(-14.6%) 62831.58(-15.0%) 62781.65(-15.0%
5 72035.44 63628.25(-11.7%) 62599.25(-13.1%) 61934.52(-14.0%) 61805.84(-14.2%

10 66373.50
15 64318.31
25 61738.12
50 58447.89

59912.08(-6.9%
59453.76(-3.7%

)
)
)
|
60618.24(-8.7%)
|
58228.94(-0.4%)

)

)

)

)
)
)
;
60054.05(-9.5%)
59095.80(-8.1%)
58391.56(-5.4%)
57568.50(-1.5%)

)

)

)

58880.43(-8.5%
58472.71(-5.3%

)

)

)

|
59237.29(-10.8%)
|
57550.36(-1.5%)
)

)

)

)
)
)
;
60114.66(-9.4%)
59325.57(-7.8%)
58298.95(-5.6%)
57611.19(-1.4%)

)

)

)

100 56716.89 56808.69(+0.2%) 56805.52(+0.2%) 56808.28(+0.2%) 56810.15(+0.2%
150  56610.12 56681.41(+0.1%) 56677.20(+0.1%) 56680.03(+0.1%) 56668.35(+0.1%
200  56528.70 56581.64(+0.1%) 56589.82(+0.1%) 56577.77(+0.1%) 56575.61(+0.1%
250  56464.19 56510.37(+0.1%) 56515.57(+0.1%) 56507.77(+0.1%) 56507.14(+0.1%)
Avg -8.2% -9.9% -10.2% -10.0%

Table 9: Average solution cost across all instances over 5 runs at selected iterations for the HGS
algorithm and hybrid variants, including the difference relative to HGS. Evaluated on the VRP-
TEST-400 set.

6.3 Generalizes to New Dimensions

As discussed previously, the models trained on a certain size of instances initially perform the
best on unseen instances of the same size. Notably, even if they did not perform the best at
the start, all models generalize to unseen problem sizes, having a similar solution quality as the
“specialized” models. To further investigate this, we review the results for the VRP-TEST-200
and VRP-TEST-400 sets. These datasets are of a size no model is trained on, thus providing a
good indicator of the performance of the MLGAs on problems of unseen dimensions. We notice
that the larger the dimension, the less spread out the solutions of the four variants of the model
become. In Figure 5d, the best performer is the model trained on a dimension closest to that
of the VRP-TEST-200 set, which is the VRP-TRAIN-100-model, and the same is seen for the
results presented in Figure 5e. We conclude that the GCN-NPEC model generalizes well to unseen
dimensions, and delivers robust performance, even when untrained.

6.4 Hybrid-MLGA Delivers Better Anytime Performance

While reporting the average performance over a whole test set provides a useful overall comparison
between methods, it may not fully capture the differences across individual instances, which can
vary in characteristics such as route length or customer distribution. To address this limitation, we
additionally provide the Aggregated Empirical Cumulative Distribution Functions (ECDFs) for all
five methods.

The ECDF shows the cumulative fraction of (run, function, target) triples that reach the target
cost v as a function of the number of iterations t. At each ¢, the ECDF value corresponds to the
proportion of runs for which the best-found solution is at least as good as the target. A higher
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ECDF value indicates better performance, as a greater fraction of runs achieved the target value
with fewer iterations. A steeper curve implies more stable behaviour, as most runs reach a target
with the same iteration budget. A left-shifted curve shows a faster convergence rate, and a higher
curve indicates a larger success rate.

For this experiment, we generate 10 targets for each instance, linearly selected between the
worst and best solutions reached for the relevant instance. We use the IOHanalyzer | ]
web application to generate the aggregated ECDF plots, treating each instance as an individual
function, and present these curves in Figure 6. Note that instances where the targets were identical
are excluded from the aggregation, as they would unfairly skew the results. In such cases, the
ECDF values would always be 1.0; therefore, the maximum proportion in Figure 6 does not reach
1.0 at 250 iterations, as would be expected if those instances were included.

For the VRP-TEST-20, VRP-TEST-50, VRP-TEST-100, and VRP-TEST-200 sets, the ECDF
curves for the HGS algorithm are less steep compared to those of the other algorithms, suggesting
less stable behaviour and greater variance in performance. Notable are the results in Figure 6c¢,
which shows that the HGS is less stable for only the first ~ 15 iterations, after which all algorithms
are identically stable, and the results in Figure 6e, which show that the HGS is more stable than
the hybrid algorithms after the first ~ 10 iterations. Comparing the stability of the MLGAs to each
other, Figure 6a shows that the VRP-TRAIN-20-model is slightly more stable and has a faster
convergence rate compared to the other algorithms, and Figure 6b shows that the VRP-TRAIN-50-
model has the fastest convergence rate and highest stability in the first 10 iterations, and is overtaken
by the VRP-TRAIN-20 model afterwards. In Figure 6¢, the four algorithms have the almost exact
same convergence rate and stability, and Figure 6d shows that the VRP-TRAIN-50-model performs
better than the VRP-TRAIN-100-model in both convergence rate and stability. Finally, Figure 6e
shows that the models follow an almost identical ECDF curve. From these observations we can
conclude that the VRP-TRAIN-50-model is slightly more stable and converges slightly faster than
the other models, and that the Hybrid-GAs are more stable and converge faster than the baseline
algorithm, even on unseen and untrained problem sizes. The Hybrid-MLGAs thus provide better
anytime performance.

6.5 Hybrid-MLGA Reaches Targets Faster

In the previous sections, we have shown that the HGS algorithm converges slower than the hybrid
algorithms. To expand on this, we provide the average runtimes of the five algorithms and the
average inference times of the four models for each test set in Table 10. We note that the random-
model, VRP-TRAIN-20-model, and VRP-TRAIN-100-model have similar run times per iteration,
and that the VRP-TRAIN-50-model takes slightly longer compared to the other models, on all
datasets. The runtimes of the HGS are slightly longer compared to the MLGAs and the inference
times start much lower than the runtimes but continue to increase the larger the dimensionality of
the problem set becomes. For the VRP-TEST-200 set, the inference time is still inside the standard
deviation of the runtime, except for the VRP-TRAIN-100 model. For 400 node instances, the
inference time increased to be greater than the algorithm runtime.

In addition to the generated test sets, we compare the performance of the baseline algorithm
with the Hybrid-MLGAs on the XML-100 benchmark set in Table 4. These results, consistent
with earlier findings, further demonstrate that the Hybrid-GAs converged faster compared to the
baseline algorithm.
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Figure 6: Aggregated Empirical Cumulative Distribution Functions (ECDFs) over all tested problem
instances and runs in the respective test sets. Each plot shows the fraction of (run, instance, target)
triples for which the best solution found within a given evaluation budget achieves at least a certain
quality level v. Results are aggregated over all instances and all 5 runs per instance. Generated
using IOHanalyzer [DWY 7 18].
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Dim Type HGS random train train-50 train-100
020 RT  0.033 £ 0.010  0.0290 £ 0.0054 0.0295 £ 0.0057 0.0466 £ 0.0083 0.0261 £ 0.0060
INF - 0.00063 + 0.00002 0.00063 £ 0.00002 0.00099 + 0.00004 0.00060 £ 0.00002
n50 RT  0.038 £ 0.007  0.0355 £ 0.0053 0.0346 + 0.0049 0.0465 £+ 0.0067 0.0343 £+ 0.0058
INF - 0.00329 + 0.00009 0.00328 £ 0.00007 0.00505 + 0.00016 0.00325 £ 0.00007
0100 RT  0.044 £ 0.008  0.0400 £ 0.0061 0.0410 £ 0.0060 0.0511 4 0.0080 0.0407 £+ 0.0061
INF - 0.0137 £+ 0.0004 0.0139 £ 0.0001 0.0211 £ 0.0005 0.0170 £+ 0.0016
10200 RT  0.056 £ 0.020  0.0470 £ 0.0112 0.0498 + 0.0119 0.0759 + 0.0243 0.0499 + 0.0117
INF - 0.0527 £+ 0.0007 0.0518 4+ 0.0013 0.0660 + 0.0046 0.0635 4+ 0.0058
10400 RT  0.163 £ 0.071  0.1376 £ 0.0521 0.1420 £+ 0.0531 0.1903 £ 0.0642 0.1766 £+ 0.0711
INF - 0.2018 4 0.0082 0.1969 £+ 0.0077 0.2549 £+ 0.0687 0.2584 4+ 0.0342

Table 10: Average runtime (RT) per iteration (in seconds) for HGS and Combi, and inference
time (INF) per instance across different model variants: random, vrp-train, vrp-train-50, and
vrp-train-100. Each value is given with its standard deviation.

When considered alongside the runtimes and inference times presented in Table 10, and the
difference in iterations needed to reach a certain target shown in Tables 11 to 15, we conclude
that the best performing Hybrid-MLGA achieves a lower overall runtime to reach a certain target
compared to the standard HGS algorithm, across all problem sizes. Note that this includes the
overhead of generating the 25 solutions used to initialize the HGS population.

% to best cost HGS random vrp-train  vrp-train-50 vrp-train-100
0% 0.00 0.00 0.00 0.00 0.00
10% 3.80 0.12 (-3.68) 0.08 (-3.72)  0.09 (-3.71) 0.09 (-3.72)
20% 3.81 0.17 (-3.64)  0.14 (-3.68)  0.13 (-3.68) 0.17 (-3.64)
30% 447 025 (-4.22)  0.15 (-4.32)  0.18 (-4.29) 0.24 (-4.23)
40% 451  0.32 (-4.19)  0.16 (-4.35)  0.60 (-3.91) 0.34 (-4.17)
50% 511 0.38 (-4.73)  0.18 (-4.93)  0.67 (-4.44) 0.48 (-4.63)
60% 5.68 0.54 (-5.14)  0.30 (-5.38)  1.95 (-3.73) 2.10 (-3.58)
70% 590 1.16 (-4.74)  0.58 (-5.32)  2.52 (-3.38) 2.31 (-3.59)
80% 7.42 198 (-5.44) 1.04 (-6.38)  3.23 (-4.19) 2.57 (-4.85)
90% 8.43 5.21(-3.23) 1.84 (-6.59)  4.08 (-4.36) 4.30 (-4.13)
100% 21.66 15.23 (-6.43) 12.58 (-9.08) 18.05 (-3.61) 16.78 (-4.88)

Table 11: Average number of iterations required to reach selected target solutions, evaluated across
all instances over 5 runs for the HGS algorithm and hybrid variants, including the difference relative
to HGS. Each target is linearly spaced apart, between the worst and best cost. Evaluated on the
VRP-TEST-20 set.
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% to best cost HGS random vrp-train  vrp-train-50  vrp-train-100
0% 0.00 0.00 0.00 0.00 0.00
10% 2.59 0.06 (-2.53) 0.06 (-2.53) 0.02 (-2.56) 0.06 (-2.53)
20% 260  0.11(-249)  0.09 (-2.52)  0.07 (-2.54)  0.08 (-2.52)
30% 3.52 0.19 (-3.33) 0.19 (-3.32) 0.12 (-3.40) 0.15 (-3.37)
40% 3.60 0.26 (-3.34) 0.58 (-3.03) 0.21 (-3.40) 0.22 (-3.39)
50% 464 040 (-424) 090 (-3.74) 047 (-4.17)  0.73 (-3.91)
60% 5.06 1.09 (-3.97) 1.17 (-3.89) 1.01 (-4.05) 0.96 (-4.10)
70% 5.56 1.77 (-3.79) 2.07 (-3.49) 1.77 (-3.79) 2.16 (-3.40)
80% 762 547 (-2.15) 481 (-2.81) 441 (-321)  5.34 (-2.28)
90% 13.15 13.89 (+0.75) 12.24 (-0.90) 11.73 (-1.42)  10.77 (-2.38)
100% 108.13 76.76 (-31.37) 70.07 (-38.05) 78.05 (-30.08) 76.51 (-31.62)

Table 12: Average number of iterations required to reach selected target solutions, evaluated across
all instances over 5 runs for the HGS algorithm and hybrid variants, including the difference relative
to HGS. Each target is linearly spaced apart, between the worst and best cost. Evaluated on the
VRP-TEST-50 set.

% to best cost HGS random vrp-train vrp-train-50  vrp-train-100
0% 0.00 0.00 0.00 0.00 0.00
10% 0.66 0.09 (-0.57) 0.09 (-0.57) 0.04 (-0.62) 0.06 (-0.60)
20% 0.67 0.13 (-0.54) 0.13 (-0.53) 0.07 (-0.60) 0.10 (-0.57)
30% 0.91 0.19 (-0.73) 0.23 (-0.68) 0.14 (-0.77) 0.16 (-0.76)
40% 1.04 0.35 (-0.70) 0.38 (-0.67) 0.34 (-0.71) 0.28 (-0.76)
50% 1.71 0.73 (-0.98) 0.76 (-0.95) 0.60 (-1.11) 0.68 (-1.03)
60% 2.22 1.49 (-0.74) 1.39 (-0.83) 1.37 (-0.86) 1.62 (-0.60)
70% 4.05 3.94 (-0.11) 3.59 (-0.46) 4.00 (-0.05)  4.22 (+0.17)
80% 9.50  10.41 (+0.91)  10.55 (+1.05)  11.07 (+1.57) 11.04 (+1.54)
90% 26.62 24.21 (-2.41) 25.70 (-0.92)  26.87 (+0.25)  26.52 (-0.10)
100% 186.00 158.40 (-27.60) 153.02 (-32.98) 153.04 (-32.96) 182.23 (-3.77)

Table 13: Average number of iterations required to reach selected target solutions, evaluated across
all instances over 5 runs for the HGS algorithm and hybrid variants, including the difference relative
to HGS. Each target is linearly spaced apart, between the worst and best cost. Evaluated on the
VRP-TEST-100 set.
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% to best cost HGS random vrp-train vrp-train-50  vrp-train-100
0% 0.00 0.00 0.00 0.00 0.00
10% 1.45 0.09 (-1.36) 0.04 (-1.41) 0.01 (-1.44) 0.04 (-1.41)
20% 1.46 0.16 (-1.31) 0.07 (-1.39) 0.03 (-1.43) 0.08 (-1.38)
30% 1.97  0.26 (-1.71) 0.18 (-1.78) 0.13 (-1.84) 0.19 (-1.78)
40% 2.08 0.39 (-1.69) 0.34 (-1.74) 0.23 (-1.85) 0.32 (-1.76)
50% 2.70 0.87 (-1.83) 0.75 (-1.95) 0.61 (-2.10) 0.63 (-2.07)
60% 3.36 2.21 (-1.15) 1.70 (-1.66) 1.57 (-1.79) 1.74 (-1.62)
70% 5.42 5.84 (4+0.41) 5.05 (-0.37) 4.92 (-0.51) 5.08 (-0.34)
80% 13.78  15.14 (+1.36)  14.76 (+0.98)  13.92 (4+0.14)  14.79 (+1.01)
90% 20.05  24.10 (-4.95)  23.56 (-5.49)  25.41 (-3.64)  25.95 (-3.10)
100% 236.83 213.59 (-23.24) 196.65 (-40.19) 162.85 (-73.98) 192.63 (-44.20)

Table 14: Average number of iterations required to reach selected target solutions, evaluated across
all instances over 5 runs for the HGS algorithm and hybrid variants, including the difference relative
to HGS. Each target is linearly spaced apart, between the worst and best cost. Evaluated on the
VRP-TEST-200 set.

% to best cost HGS random vrp-train vrp-train-50 vrp-train-100
0% 0.00 0.00 0.00 0.00 0.00
10% 0.49 0.14 (-0.34) 0.10 (-0.39) 0.06 (-0.43) 0.07 (-0.42)
20% 0.50 0.21 (-0.28) 0.13 (-0.37) 0.11 (-0.39) 0.11 (-0.38)
30% 0.77 0.40 (-0.38) 0.25 (-0.53) 0.18 (-0.60) 0.24 (-0.54)
40% 0.84 0.70 (-0.14) 0.57 (-0.27) 0.41 (-0.43) 0.47 (-0.37)
50% 1.47 1.34 (-0.13) 1.21 (-0.26) 1.02 (-0.45) 1.28 (-0.19)
60% 2.01 3.78 (+1.77) 3.08 (+1.07) 2.71 (4+0.70) 2.74 (+0.73)
70% 4.43 7.53 (+3.10) 7.33 (+2.90) 6.79 (42.36) 6.47 (42.04)
80% 11.82  16.39 (+4.57)  16.59 (+4.77)  17.13 (+5.31)  15.91 (+4.09)
90% 27.73 27.35 (-0.38) 23.96 (-3.78) 26.50 (-1.24) 25.88 (-1.85)
100% 237.60 214.46 (-23.14) 208.83 (-28.77) 225.75 (-11.85) 193.55 (-44.05)

Table 15: Average number of iterations required to reach selected target solutions, evaluated across
all instances over 5 runs for the HGS algorithm and hybrid variants, including the difference relative
to HGS. Each target is linearly spaced apart, between the worst and best cost. Evaluated on the
VRP-TEST-400 set.
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6.6 Summary

In the previous sections, we discussed the difference between the HGS algorithm and our Hybrid-
MLGA. We concluded that the HGS performed worse than the hybrid method, up to a certain
iteration budget, and above this budget all algorithms eventually reach a similar average solution
quality for all tested dimensions of problems. The final solutions reached are close to optimal, with
only a 0.5% gap. The models trained on a certain size of instances generated better initial solutions
for instances of the same size. Moreover, the closer the dimensionality of the training instances to
the problem size, the better the generated solutions, even on unseen dimensions. The GCN-NPEC
model generalized well to other dimensions. The untrained model performed very close to the
trained models and much better than the standard HGS algorithm. The Hybrid-MLGAs are more
stable and converged faster or similar compared to the baseline algorithm, with the exception of the
n400 problem set, where the HGS was slightly more stable at iterations greater than 15. Overall,
the Hybrid-MLGA provided better anytime performance compared to the HGS algorithm, and
the hybrid-GA reached a similar solution quality faster. Finally, we have shown that there exists
a statistically significant performance gap between randomly initializing the HGS algorithm and
providing initial machine learned solutions to fill the population of the HGS, which allowed the
Hybrid-MLGA to converge faster.

7 Future Work

Due to time and computational constraints, we evaluated the performance gap using only one
model and one Genetic Algorithm. As a result, it remains uncertain whether our results generalize
to other models or algorithms. Future research could investigate this relation by evaluating multiple
state-of-the-art meta-heuristic algorithms to assess if a performance gap persists. Additionally,
comparing multiple solution generating methods could provide insights into how different methods
influence the final algorithm performance.

Applying hyper parameter optimization (HYPO) to either the HGS and/or GCN-NPEC model
may also influence the performance of the Hybrid-MLGA. Finally, specifically for the GCN-NPEC
model, generating solutions using the edge probability matrix provided by the classification decoder
may provide better solutions than the solutions produced by the sequential decoder, or training the
model for a larger amount of epochs may further improve performance.
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A Technical Specification

The following sections provide implementation details related to our adaption of the GCN-NPEC
model.

A.1 Data loader

To represent a VRP instance as a graph, we utilized the PyTorch Geometric (PyG) library | ]
in combination with the VRPLIB package [ |. VRPLIB provides functionality for reading and
writing VRP instances using a (semi-)standardized data format. Upon loading a VRP instance, it
automatically calculates the edge lengths based on a specified method, such as Euclidean distance
or provided distance matrices.

We implemented a custom Dataloader® class that parses VRPLIB instances into PyG Data®
objects. Each Data object key components of a VRP graph, such as the demand and positions
of the nodes, the edge lengths (also called edge weights), and the edge indices (which nodes are
connected to which other nodes). Additionally, we pre-calculate the adjacency matrix A, as defined
in Equation (3). A Data object represents a complete VRP instance, containing all the necessary
information on its structure and parameters (fleet size, fleet capacity, etc.).

A.2 Encoding

As illustrated in Section 4.2.1, the graph encoder comprises of two main parts: the initial graph
instance encoding and the subsequent GCN layers that extract the encoded features. In our
implementation, we divide these parts into two classes: the VRPInputEncoder class and the GCNLayer
class. The VRPInputEncoder closely follows the specification outlined in Section 4.2.1, although with
certain deviations. Specifically, because the concatenation operation doubles the feature dimensions
d, and d,, we take the output dimension of the encoded node and edge features to be 2 - d, and
2 - d,, respectively. The resulting embeddings generated by Equation (5) and Equation (6) have a
final dimension of dj,.

A key function of GCN layers is to update the graph node features via message passing
within their neighbourhood. The GCN-NPEC model extends this concept by incorporating edge
feature updates and enabling joint updates of the node and edge embeddings simultaneously.
We implement these message passing networks with the PyG MessagePassing base class, which
provides a message passing framework and is built to work with PyG Data objects. We calculate the
aggregated attention scores for a node’s neighbourhood N(7) with the MessagePassing.update
method and built-in aggregation method®. Similarly, the aggregated edge features over the edge
neighbourhood N (e; ;) are computed according to Equation (12).

The aggregated features are then combined in the forward pass of each GCN layer, and passed
to the next layer of the GCN stack. Because both the node and edge embeddings are combined via
the concatenation operation, it is essential to ensure each layer has consistent input and output

3https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html

“https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.Data.html

Shttps://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.
MessagePassing.html

33


https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.Data.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.MessagePassing.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.MessagePassing.html

dimensions, to support multi-layer GCN architectures. As briefly mentioned by the authors in
[ ], we add a skip-connection and layer normalization to each sublayer.

Finally, we integrate the VRPInputEncoder with L GCN layers in a single PyTorch Module.
This module receives a VRP instance and outputs learned node and edge embeddings.

A.3 Decoding

We implement the Lg,.,-layered recurrent neural network (RNN) with the gated recurrent units
(GRU), as described in Section 4.2.4, with PyTorch’s GRU® module. We compute the last hidden
state of the GRU module z; as defined in Equation (18). The sequential decoder finally returns
returns a vector representing the pointing probability distribution towards the nodes.

The classification decoder is relatively straightforward to implement. We stack L,;.p PyTorch
Linear layers” to generate a Lj;rp-layered Multilayer Perceptron (MLP). Although the authors
do not specifically mention this, we apply a non-linear activation function (in our case the ReLU
function) after each layer, excluding the final output layer. The classification decoder finally returns
an edge probability matrix, as defined in Equation (20).

A.4 Generating a solution

To construct a viable solution 7, we follow the decoding procedure outlined in Algorithm 1 from
the original work | |. At each decoding step ¢, a customer node is selected to visit, while all
infeasible nodes are masked. After visiting the node, the vehicle capacity, remaining demand and
node mask N, are updated, as described in Section 4.2.4 The complete decoding loop is presented
as pseudocode in Algorithm 2..

Shttps://docs.pytorch.org/docs/stable/generated/torch.nn.GRU.html
"https://docs.pytorch.org/docs/stable/generated/torch.nn.Linear.html
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