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Abstract

Human error remains a leading cause of road accidents, underscoring the importance of
developing autonomous vehicles capable of safe navigation. This study investigates the training
of reinforcement learning (RL) agents for autonomous driving in the CARLA simulator,
with a focus on collision avoidance. We implement and compare three approaches: Proximal
Policy Optimisation (PPO), Soft Actor-Critic (SAC), and a hybrid PPO combined with
Model Predictive Control (PPO+MPC). Each agent is trained using a reward function that
emphasises collision avoidance. Performance is evaluated based on safety metrics, learning
efficiency, and adaptability to new scenarios. Preliminary expectations suggest that while
model-free methods such as PPO and SAC may excel in complex environments, the hybrid
PPO+MPC approach could offer advantages in structured settings. However, after comparing
the three approaches, the results were unexpected: both the PPO agent and the PPO+MPC
hybrid underperformed, while SAC demonstrated the most promising results in terms of safety
and adaptability.
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1 Introduction

1.1 Topic

Self-driving cars have captured the imagination of both the public and researchers alike, combining
sleek technology with the promise of safer, more efficient transportation. These vehicles are equipped
with advanced sensors, cameras, and intelligent software that enable them to navigate complex
environments autonomously. Among the many approaches to enable autonomy, Reinforcement
Learning (RL) has emerged as a powerful technique for teaching cars to make decisions in real time.
RL is a branch of machine learning in which an agent learns to make decisions by interacting with
its environment, receiving feedback in the form of rewards or penalties. The agent’s goal is to
maximise cumulative rewards, effectively learning an optimal policy for decision making. In the
real world, however, there is no such thing as an optimal policy, since the real world is dynamic
and thus no state is the same. This makes RL very difficult to use in a real-world environment.

1.2 Problem statement

The objective of this study is to develop and compare various RL algorithms to enable a self-driving
car to navigate from a predefined start point to a destination while avoiding collisions in a dynamic
environment simulated using CARLA | , |. The research seeks to provide
information on the effectiveness of different RL approaches for autonomous driving tasks, with a
particular focus on collision avoidance and decision making in dynamic conditions.

To achieve this, the study is guided by the following central research question.

Problem Statement:

e Can a RL agent be trained to navigate autonomously in CARLA based on collision avoidance?

This overarching inquiry is further explored through the following sub-questions:

RQ1. What RL algorithms are most effective for collision avoidance in dynamic environments?
Given the critical importance of collision avoidance in autonomous driving, this question aims to
identify which RL algorithms are most capable of enabling safe navigation in environments with
dynamic obstacles.

RQ2. How can different reward structures let the agent find the route to its destination?

In addition to avoiding collisions, an effective autonomous agent must successfully navigate to its
destination. This question explores how various reward designs impact the agent’s route-finding
behaviour and goal-oriented performance.

RQ3. Does the use of MPC with an RL algorithm improve its performance? MPC is known for its
effectiveness in handling short-term, reactive manoeuvres such as emergency braking. This question
investigates whether combining MPC with an RL algorithm improves the agent’s overall driving
performance, particularly in scenarios requiring rapid decision-making.

1.3 Method

To investigate the research problem, I will perform an experiment using a simulated self-driving
car within the CARLA simulator. The focus of the experiment will be on applying RL techniques



to train an autonomous driving agent capable of navigating complex environments. The agent
will interact with the simulation to learn driving behaviours through trial and error, guided by a
reward function designed to encourage safe driving. This experimental setup enables controlled,
repeatable testing and provides a foundation for analysing the capabilities of RL in autonomous
driving applications.

1.4 Overview

The next chapter provides a comprehensive review of the existing literature pertinent to this thesis,
concentrating on key algorithms, prior experimental studies, and the simulation environments
commonly employed in this domain. This chapter is structured into distinct sections covering
algorithms, simulation environments, and Model Predictive Control (MPC), offering a foundation
for the research conducted. Chapter three elaborates on the experimental methodology, detailing
the implementation and training of multiple algorithms within the Carla simulation environment.
This section emphasises the hands-on development process and the design choices made to compare
algorithmic performance. Following this, the results chapter presents a detailed visualisation of
the experimental outcomes, primarily through graphs, which illustrate significant performance
variations as well as some unexpected behaviours. The thesis concludes with a reflective discussion
that synthesises the findings, critically evaluates the research approach, and explores the limitations
encountered. Additionally, it outlines possible avenues for improvement and suggests directions for
future work, thereby situating the contribution within a broader research context.



2 Related work

This chapter reviews the existing body of research relevant to the scope of this thesis. It begins by
examining key algorithms that have shaped the development of the methods under consideration.
Next, the chapter explores the various simulation environments commonly used to evaluate these
algorithms, with particular attention to their features and limitations. Finally, it discusses prior
work related to MPC, highlighting its applications and relevance to the current study. Together,
these sections provide a comprehensive background and context for the experimental work that
follows.

2.1 Algorithms

A fundamental theoretical grounding for RL is laid out in the seminal textbook Reinforcement
Learning: An Introduction by Richard S. Sutton and Andrew G. Barto | , ).
This work introduces the core concepts of RL, such as the Markov Decision Process (MDP)
framework, value functions, policy iteration, and temporal-difference learning. The book provides
rigorous mathematical foundations alongside conceptual clarity, making it a cornerstone in the
field. However, the focus is predominantly on stationary environments with fixed dynamics. The
classical RL frameworks described by Sutton and Barto assume a stable world model, which is often
not reflective of many real-world applications where agents must adapt to changing conditions.
This thesis builds on the principles introduced in this foundational work but extends them to
scenarios characterised by dynamic or non-stationary environments, necessitating the development
or application of more adaptive learning strategies.

More recent advances in deep RL are surveyed by Yuxi Li in Deep Reinforcement Learning:
An Overview [Li, ]. The paper outlines key algorithmic classes—value-based, policy-based,
and actor-critic methods—and highlights challenges such as stability, exploration, and sample
efficiency. While this survey provides an overview of deep RL up to 2017, it largely centres on static
environments.

In their study, [ | compared the performance of Proximal Policy optimisation
(PPO) and Soft Actor-Critic (SAC) algorithms in multi-agent scenarios for collision avoidance
among autonomous vehicles. The research demonstrated that both algorithms achieved comparable
success rates, with PPO showing faster convergence and SAC offering more stable performance
in dynamic environments. While their focus was on multi-agent interactions in a 2D setting, the
insights into each algorithm’s strengths are pertinent to this thesis.

This research extends the application of PPO and SAC to a single-agent context within a complex
3D environment, where the agent must navigate and adapt to dynamic changes. The choice of
these algorithms is informed by their demonstrated capabilities in handling dynamic scenarios, as
evidenced by [ |. By evaluating their performance in a more complex spatial
setting, this study aims to assess their adaptability and efficiency in single-agent, high-dimensional
tasks.

2.2 Environment

The paper "SAC-RL: Continuous Control of Wheeled Mobile Robot for Navigation in a Dynamic
Environment” | , ] presents a RL approach utilising the SAC algorithm for autonomous



navigation of wheeled mobile robots in dynamic settings. The authors design a reward function that
balances goal-reaching efficiency with obstacle avoidance, incorporating penalties for collisions and
deviations from the desired path. To manage complex environments, the study employs sub-goal
setting, where intermediate targets are defined approximately every 4 metres, simplifying the
navigation task into manageable segments. This work directly addresses the challenges of dynamic
environments by enabling the robot to adapt its trajectory in response to moving obstacles and
changing conditions. The combination of SAC’s entropy-based exploration and the structured reward
function allows the robot to learn policies that are both safe and efficient in non-static settings.
Building upon the insights from this study, the current research adopts a simplified approach to
reward structuring and goal setting. Recognising that the primary objective for autonomous vehicles
is to avoid collisions, the reward function is streamlined to heavily penalise collisions while being
more permissive of off-path movements, such as driving off-road or in unintended directions, if it
ensures safety. Additionally, instead of predefining sub-goals at fixed intervals, this work explores a
dynamic goal-updating mechanism, where the goal position is incrementally moved as the agent
progresses. This strategy aims to encourage the agent to plan over longer horizons and adapt more
fluidly to the environment, potentially leading to more robust navigation behaviours in complex,
dynamic 3D settings.

Given the inherent risks and logistical challenges of conducting real-world experiments in autonomous
driving, this study employs CARLA (Car Learning to Act), an open-source simulator specifically
designed for autonomous driving research | : ]. CARLA provides a high-fidelity,
urban driving environment that supports the development, training, and validation of autonomous
driving systems. Built on the Unreal Engine, it offers realistic rendering of urban layouts, dynamic
actors (such as vehicles and pedestrians), and diverse environmental conditions, including varying
weather and lighting scenarios. A key advantage of CARLA is its flexibility in configuring sensor
suites and environmental parameters, allowing researchers to simulate a wide range of scenarios
and test the robustness of autonomous agents under different conditions. This includes the ability
to model complex traffic situations, such as intersections with multiple agents, adherence to traffic
rules, and unexpected events like pedestrians crossing the road or sudden obstacles. Such capabilities
are crucial for developing and evaluating RL algorithms intended for dynamic and unpredictable
environments.

2.3 Model Predictive Control

[ | introduce a novel motion planning framework that combines visual inputs
with human feedback to generate socially compliant driving behaviours. The framework consists of
two main components: a data-driven policy that interprets visual information to produce high-level
driving decisions, and a local trajectory optimisation method that ensures the safe execution of
these decisions. By employing Interactive Imitation Learning, the authors jointly train the policy
and a Model Predictive Controller (MPC), resulting in driving behaviours that closely resemble
human actions. The approach is validated in realistic simulated urban scenarios, demonstrating
improvements in safety—evidenced by a reduction in collisions—and data efficiency compared to
prior methods. This work highlights the potential of integrating human-in-the-loop learning with
traditional control techniques to enhance the performance and social acceptability of autonomous
vehicles.

[ ] provide an extensive review of MPC, emphasising its practical applications



across various engineering domains. The paper delves into the theoretical foundations of MPC, its
historical evolution, and the challenges associated with its implementation, particularly the compu-
tational demands. By highlighting real-world applications in areas such as power electronics, process
industries, and mechanical systems, the authors demonstrate the versatility and effectiveness of
MPC in handling complex control tasks. This review serves as a valuable resource for understanding
the current state of MPC and its potential future developments.

[ | present an innovative control framework that combines PPO, a RL

technique, with MPC to manage the dynamics of uncertain floating platforms in zero-gravity
conditions. Conducted within the Zero-G Lab at the University of Luxembourg, their approach
leverages the predictive capabilities of MPC to guide the PPO learning process, resulting in a
system that adapts effectively to unmodeled dynamics and external disturbances. Experimental
results demonstrate that this integrated PPO-MPC method achieves faster convergence and superior
stabilisation performance compared to PPO alone, highlighting its potential to enhance the reliability
of autonomous systems in space exploration contexts.
This thesis adopts gradient-based RL approaches, which optimise policies by computing gradients
of expected reward with respect to policy parameters. Two popular algorithms are used: PPO,
known for its balance between performance and stability, and SAC, which incorporates entropy
maximisation to encourage exploration. These methods are evaluated in dynamic environments to
assess their adaptability to evolving conditions.

2.4 Chapter conclusion

This chapter reviews the foundational and contemporary research that underpins the current
study, with a focus on algorithms, simulation environments, and MPC. Foundational texts such
as Sutton and Barto’s work established the core principles of RL, while more recent advances,
including those in Deep RL, have extended these ideas to complex, high-dimensional problems.
The comparative analysis of PPO and SAC algorithms has revealed their respective strengths in
dynamic environments, providing justification for their selection in this thesis.

The review of simulation environments has underscored the importance of designing adaptive
reward functions and flexible goal setting mechanisms to reflect real-world challenges. Based on
previous work, this study adopts a streamlined reward structure that prioritises collision avoidance,
and introduces a dynamic goal-update strategy to foster long-term planning and adaptability.
Central to this simulation strategy is the use of CARLA, an open-source high-fidelity simulator
designed for autonomous driving research. CARLA enables safe and repeatable testing in richly
detailed 3D urban environments, complete with dynamic elements such as traffic, pedestrians, and
varying weather conditions. Its flexibility in sensor configuration and scenario generation makes it
an ideal platform for evaluating the adaptability and performance of RL algorithms under realistic
conditions.

Finally, the exploration of MPC highlights its relevance for integrating predictive control into
autonomous systems, particularly when combined with RL. Hybrid approaches, such as PPO-
MPC, demonstrate the potential for improved stability and adaptability in uncertain or changing
conditions.

Together, these insights provide a robust theoretical and methodological foundation for the ex-
periments conducted in subsequent chapters. By situating this thesis within the broader research
landscape, this chapter highlights how the current work seeks to advance the field through the



application and evaluation of modern RL algorithms in complex, dynamic 3D environments.



3 Experimental setup

To get answers to these questions, I will use CARLA to train a self-driving car. The car should be
able to drive from point A (start) to a random point B (end) without colliding with anything. The
experimental design consists of a single task executed in multiple configurations. The objective is
for an autonomous agent to navigate a vehicle in a straight line across an intersection, covering a
distance of up to 20 metres. The experiment is carried out three times, each with a different control
strategy to evaluate performance under varied conditions.

e Proximal Policy optimisation (PPO)
e PPO combined with Model Predictive Control (PPO+MPC)
e Soft Actor-Critic (SAC)

In each trial, the agent starts from a fixed position. Execute a sequence of actions with the aim of
reaching a designated goal point while avoiding collisions. After each attempt, the agent updates
its policy based on the outcome, either successful completion or failure, and then restarts the task
using the learnt policy.

The goal is initially placed three metres from the starting position. After each successful episode,
the goal is incrementally moved farther away, 1 metre at a time, until it reaches a final distance
of twenty metres. This progressive increase in distance allows the agent to gradually learn more
complex behaviours as the difficulty of the task increases.

The experiment is carried out within a simulated intersection environment. This setting is selected
for its dynamic nature; traffic can approach from multiple directions, making it one of the most
complex and variable scenarios in autonomous driving. As such, it provides a meaningful context
for evaluating the adaptability and robustness of different learning algorithms.

3.1 Reinforcement learning
3.1.1 State space and actions

The RL environment is responsible for processing agent actions and returning updated states. In
this work, the environment is implemented using the CARLA simulator, a high-fidelity platform
for autonomous driving research. The simulated vehicle in CARLA is equipped with multiple
sensors, many of which produce high-dimensional image data, resulting in a large state space due
to the per-pixel information content. Fortunately, CARLA also provides access to sensors that
output lower-dimensional structured data, which can simplify state representation and reduce
computational complexity.

For this implementation, the agent’s state is derived from a radar sensor, yielding a 14-dimensional
continuous state vector. The first two elements represent the relative position of the goal and the
heading angle towards it. The remaining 12 values encode information about the six closest objects,
including their relative distances and velocities with respect to the sensor.

The action space is continuous and two-dimensional, with both values restricted to the interval
[—1,1]. The first value controls the steering angle, while the second regulates the throttle or braking
input.
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3.1.2 Rewards

As discussed previously, in RL, the environment provides rewards associated with specific states
and actions. In the context of our environment, we evaluate multiple reward structures to guide
the agent’s behaviour effectively.

The initial reward structure assigns a negative reward for collisions and a positive reward for
successfully reaching the goal. However, this formulation proved insufficient, as the agent lacked a
clear incentive to progress toward the goal, often opting to avoid movement altogether to minimise
the risk of collisions.To ensure that training episodes would complete within a reasonable time
frame, we imposed a time limit of 100,000 timestamps per episode.

To address this issue, we introduced a distance-based penalty, in which the agent incurs a negative
reward proportional to its distance from the goal at each timestamp. This modification effectively
encourages the agent to minimise its distance from the goal, thereby promoting goal-directed
behaviour. However, this adjustment introduced a new challenge. Since every non-terminal state
receives a negative reward and the number of such states increases with the distance to the goal,
the total cumulative reward collected during an episode decreases as the goal is placed farther
away. This is undesirable as we aim for a reward structure that promotes consistent performance
improvement over time. The agent’s behaviour also regressed at times to remaining stationary, as
waiting for the episode to time out resulted in a higher cumulative reward than actively attempting
to reach the goal and risking a collision.

To mitigate this, we considered two alternatives: (1) providing incremental rewards for each unit
of distance reduced between the agent and the goal, or (2) scaling the terminal reward based on
the total distance from the start to the goal. We adopted the latter approach. Specifically, upon
reaching the goal, the agent receives a reward equal to 1,000 times the total distance travelled. The
final reward function is therefore defined as follows:

e Goal reached: Reward = 1,000 x distance
e Collision: Reward = —10,000

e Each non-terminal state: Reward = —distance to goal

This revised structure effectively balances incentives for goal-reaching behaviour while preserving
reward scalability across varying episode lengths.

3.2 PPO

PPO employs an Actor-Critic (AC) architecture ( [ |), where a neural
network simultaneously estimates both the policy (actor) and the value function (critic). The
actor network outputs a probability distribution over possible actions, from which an action is
sampled and executed by the agent. After the agent interacts with the environment and observes
the resulting new state, this information is fed back onto PPO to update the policy and determine
subsequent actions. The shared Actor-Critic network consists of an input layer, followed by three
hidden layers of sizes 128, 256, and 128 respectively, and finally separate output layers for the actor
and the critic.
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To get an action, the AC network returns a mean and a standard deviation. Then, PPO makes a
normal distribution from which it samples an action. The standard deviation term determines the
exploration-exploitation trade-off.

In our PPO implementation, the clipping parameter ¢ was set to 0.2, which effectively controls
the maximum allowable policy update per training step to ensure stability. The learning rate
used to optimise the actor and critic networks was 1 x 1074, balancing convergence speed and
training stability. For each policy update, the algorithm performs 15 epochs on the collected batch
of experience, with a batch size of 4096. The discount factor v, which determines the importance
of future rewards, was set at 0.99, while the Generalised Advantage Estimation parameter \ was
chosen as 0.95 to balance bias and variance in the calculation of the advantage. Unlike some policy
gradient methods, exploration in this approach is driven solely by the learnt standard deviation
of the Gaussian action distribution of the policy, without using an entropy regularisation term.
Furthermore, we are using an Adam optimiser to train the AC network.

3.3 SAC

In this implementation of SAC, both the actor and critic networks are modeled as fully connected
neural networks, each comprising three hidden layers with 128 units per layer and employing
ReLU activation functions. To address overestimation bias, two critic networks are maintained
concurrently, following the twin Q-learning framework. Corresponding target networks are updated
using a soft update mechanism with a smoothing coefficient of 7 = 0.005.

The actor and critic losses follow the standard SAC formulation. The entropy temperature coefficient
a is fixed at 0.2 throughout training, rather than being learned, as is done in some variants. This
simplification allows for more controlled comparisons and improved stability in training.
Experiences are stored in a replay buffer with a capacity of 100, 000 transitions, from which mini-
batches of size 4096 are sampled during training. For environments with multi-dimensional action
spaces, log-probabilities are summed across action dimensions when computing the entropy term.
The most notable deviation from the standard SAC formulation is the use of a fixed entropy
coefficient, as opposed to adapting o dynamically. This modification was made to reduce algorithmic
complexity and promote consistent learning behaviour.

The following hyperparameters were used throughout all experiments: a learning rate of 1 x 1074, a
discount factor v = 0.99, a soft update coefficient 7 = 0.005, a fixed entropy temperature o = 0.2,
and a batch size of 4096.

3.4 MPC

MPC is a decision-making strategy that plans a sequence of actions over a fixed time horizon by
predicting future states. At each time step, MPC simulates how the system will evolve under various
action sequences and evaluates these simulated trajectories based on a predefined objective or cost
function. Then, the best trajectory is selected and the first action is executed before repeating the
process at the next time step. This approach allows the system to continuously adapt to changes in
the environment.

In this study, we use an MPC horizon of five, meaning each candidate trajectory consists of five
state-action pairs. For each decision step, three such trajectories are simulated, and the best one is
selected based on a cost function that evaluates criteria such as proximity to obstacles and path
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efficiency to determine the immediate control action. An initial configuration using a horizon of 15
and 10 candidate trajectories was also tested, but this led to significant computational overhead
and reduced responsiveness. To improve real-time performance and enable more reactive behaviour,
the horizon and number of trajectories were reduced accordingly.

Importantly, these trajectories are simulated internally, without directly interacting with the CARLA
environment during the decision-making process. Instead, vehicle dynamics, such as velocity and
position, are estimated on the basis of a simplified internal model. Although this introduces a
degree of inaccuracy, it more closely mirrors real-world decision-making, where a vehicle cannot
"replay” multiple options in the environment before choosing the best. Rather, it must rely on
internal predictions to guide its actions.

This setup highlights the practical trade-off between accuracy and real-time feasibility. Although
it may lack the fidelity of simulating every trajectory in the full environment, it allows for fast,
reactive decision-making, aligning with how autonomous systems must operate under real-world
constraints.

3.5 Chapter conclusion

This chapter outlined the experimental framework developed to evaluate the performance of
different control strategies for autonomous vehicle navigation in a complex intersection scenario.
By leveraging the CARLA simulator, we created a controlled yet dynamic environment to test the
ability of RL agents to safely and efficiently drive from a fixed starting point to an incrementally
more distant goal.

We implemented and tested three control strategies: PPO, PPO enhanced with Model Predictive
Control (PPO+MPC), and SAC. Each strategy was evaluated through repeated trials, with the goal
distance increasing after each successful episode to progressively challenge the agent’s capabilities.
The experiment emphasised safe and goal-directed behaviour, with a carefully designed reward
structure that balanced the need for exploration, progress, and collision avoidance.

The PPO algorithm utilised an Actor-Critic architecture with clipped updates to ensure stability
during policy improvement, although SAC incorporated entropy maximisation to encourage robust
exploration. The hybrid PPO+MPC approach introduced an anticipatory planning component,
enabling more reactive decision-making without relying solely on policy learning. The experimental
parameters, such as network architectures, learning rates, discount factors, and batch sizes, were
tuned to ensure comparability and training efficiency across all approaches.

Together, these methodologies enabled a thorough investigation into the trade-offs between learning-
based and planning-based approaches. The setup provides a robust platform for assessing general-
isation, adaptability, and safety in autonomous driving systems - key components in real-world
deployment scenarios. The results of these experiments will offer insight into the strengths and
limitations of each method, setting the stage for the comparative performance analysis presented in
the following chapter.
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4 Results

Having established the methodology, we now present the results of our experiments. These findings
highlight the key results observed during the testing and form the basis for a subsequent discussion.

4.1 PPO

The initial experiment was conducted using only the PPO agent. In this setup, the agent received
an environmental state, selected an action accordingly, executed the action, and received a new
state in return. This cycle was repeated continuously throughout each episode.

As illustrated in Figure 1, the reward increases rapidly at the beginning of each episode, which is
consistent with typical RL dynamics, where the agent quickly learns basic behaviours that yield
positive outcomes. Following this initial phase, the reward generally stabilises near the maximum
attainable value, as expected. However, after approximately episode 100, some runs exhibit a decline
in performance. This can be attributed to the agent either becoming too slow or experiencing
frequent collisions, both of which lead to reduced rewards. It is also noteworthy that the graph
terminates around episode 200. The reasons for this vary between runs: in some cases, the agent
began to idle and prolong the episode duration unnecessarily, while in others, the simulation
experienced a crash. Despite these inconsistencies, most runs reached at least 200 episodes, and this
cut-off sufficiently captures the relevant performance trends. Therefore, the graph was truncated at
this point for clarity and consistency.

Reward
v
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-10000
-15000
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-20000
0 50 100 150 200

Figure 1: Episode-wise reward during training using the PPO algorithm. The plot shows rapid
initial improvement followed by increased variance and eventual decline in performance, suggesting
convergence instability or policy degradation over time.
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Figure 2: Training loss across steps for the PPO algorithm. The loss shows early stabilisation with
intermittent spikes and fluctuations, indicating periods of unstable policy updates or transitions
during learning.

Figure 2 shows that the loss function remains relatively stable throughout training, especially
when compared to the variability observed in the reward trends. The mean loss centres around
approximately -0.1, with occasional negative outliers. This pattern aligns with expected behaviour
in RL, where the loss typically begins at a higher value and gradually stabilises as the agent
improves its policy. In this case, the stabilisation occurs around -0.1, indicating convergence in the
policy updates.

This stability in the loss function complements the reward dynamics discussed in Figure 1. While
rewards fluctuate more visibly due to environmental interactions and episode-specific events (e.g.,
collisions or idle behaviour), the relatively consistent loss values suggest that the underlying policy
optimisation is proceeding as intended. The combination of rising rewards and stabilising loss
reflects effective learning and policy refinement during the training process.

4.2 PPO + MPC

During initial trials, the stand-alone PPO algorithm failed to produce satisfactory results, often
struggling to navigate effectively to the goal. To address this, PPO was combined with MPC in
an effort to enhance stability and performance. Although early results of the integrated approach
mirrored the same ineffective behaviour, subsequent debugging led to noticeable improvements.
The agent began to consistently reach its destination, initially moving cautiously, but eventually
achieving a more reasonable speed.

However, a technical issue related to the simulation environment emerged during the training. The
agent spawn point was located on an active roadway, which occasionally caused nearby vehicles to
collide with the agent immediately after spawning. Although the system was designed to wait for
the spawn area to clear, high-speed vehicles approaching from a short distance sometimes caused
unavoidable collisions. These incidents led to disproportionately large penalties—of 10,000—recorded
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on episodes of minimal duration, thus skewing some training results. To mitigate this issue, we
excluded all episodes with fewer than 10 timestamps from the training data.
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Figure 3: Episode-wise reward during training using the PPO + MPC algorithm. The shaded
region indicates the variance over multiple runs. A general decreasing trend in reward is observed,
highlighting performance instability.
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Figure 4: Training loss over time for the PPO + MPC algorithm. While the loss generally stabilises,
occasional spikes are visible, indicating moments of high prediction error or learning adjustment.

As illustrated in Figure 4, the loss decreases progressively towards zero over time, reflecting the
expected training behaviour. In contrast, the results shown in Figure 3 diverge from the anticipated
outcome. The mean reward initially starts at a relatively high value, likely because the goal is easily
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attainable, making exploratory actions more susceptible to suboptimal performance. Additionally,
the agent frequently reverts to its initial plan, as evidenced by the oscillatory pattern in the reward
curve.

Although the mean reward exhibits a periodic pattern, the overall trend is downward, which is not
desirable. This decline can be attributed to the increasing distance the vehicle must travel, resulting
in more time steps to reach the goal. In our environment, the agent incurs a penalty at each time
step, proportional to its distance from the goal, to encourage goal-directed movement. However,
when the initial distance is larger, the cumulative penalty increases accordingly. To mitigate this
effect, we adjusted the reward for reaching the goal to be proportional to the travel distance, but
this modification proved insufficient.

4.3 SAC

In contrast to PPO and PPO + MPC, which required significantly longer to complete each episode
and, consequently, each run, the SAC algorithm demonstrated much faster performance. In most
cases, SAC was able to complete the driving task and update its policy in under two minutes. This
efficiency explains why the reward curve in Figure 6 terminates after approximately 1000 episodes,
compared to 150-200 episodes in the PPO-based experiments. Additionally, due to the shorter
runtime per episode, it was possible to conduct a greater number of experimental runs with SAC,
resulting in a denser and more compact graph, especially when contrasted with Figure 3.
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Figure 5: Zoomed-in view of the SAC training reward curve (episodes 0-200) shown in Figure
6. The agent initially learns effective behaviours, with a rapid increase in reward followed by a
plateau and a gradual decline. The early training dynamics highlight a strong learning phase before
long-term degradation sets in.

Figure 5 reveals reward dynamics similar to those previously observed in Figure 1. The reward
begins at a low value, increases rapidly as the agent learns effective behaviours, and then plateaus.
However, around episode 100, a gradual decline in performance is observed, likely due to slower
driving speeds or increased inefficiency. After approximately episode 700, the reward appears to

17



stabilise again, at around —75,000. It stabilises even more from 850, because than the goal stopped
moving. This plateau is not indicative of performance degradation per se, but rather a consequence
of the predefined time limit imposed on each episode. In many of these later episodes, the SAC
agent continued to drive toward the goal but did so too slowly to reach it within the allowed
time, resulting in no reward being assigned. Without such a time constraint, it is reasonable to
expect that the reward curve would have continued to decline at the gradual rate observed between
episodes 200 and 600.
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Figure 6: Full episode-wise reward curve during training using the SAC algorithm. After initial
improvement, the reward steadily declines, indicating a deterioration in the agent’s ability to
consistently achieve the goal. This trend suggests potential issues with long-term policy stability.

A notable difference between the PPO-based experiments and the SAC experiment lies in the
way the goal was incrementally moved. In the PPO-based setups, the goal position was shifted
by 1 metre every 50 episodes until it reached a distance of 20 metres from the agent. In contrast,
the SAC experiment employed a finer-grained progression, moving the goal by 0.1 metre every
5 episodes—also culminating in a final distance of 20 metres. In both cases, the initial goal was
placed 3 metres from the agent, implying that it would require a total of 850 episodes to cover the
full 20-metre distance.

4.4 Chapter conclusion

Given that neither of the PPO-based experiments extended to 850 episodes, it is evident that they
did not complete the full task. In contrast, SAC successfully covered the entire distance within
the duration of its experiment. While this may not be immediately apparent from Figure 6, closer
inspection reveals that toward the end of the graph, the reward curve becomes relatively flat with
minimal downward deviation. Instead, occasional upward deviations suggest that the agent was
sometimes able to reach the goal slightly more efficiently than in previous episodes. This consistent
performance toward the end supports the conclusion that SAC was able to complete the task
successfully, reaching the 20-metre goal within the allotted time.
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As observed in both the PPO-based and SAC experiments, the reward curves exhibit typical RL
behaviour during the initial phase, stabilising after a period of rapid improvement. However, a
noticeable change occurs around episode 100. At this point in training, the agent is required to
travel approximately 5 metres to reach the goal, which yields a reward of 5,000. However, the
penalty incurred per timestamp has also increased to 5 (up from an initial value of 3), and the
longer distance requires more timestamps to complete.

As a result, the cumulative penalties begin to outweigh the reward, particularly when the agent
is slow or inefficient. This imbalance likely causes the overall reward to decrease, leading to the
downward trend observed in the reward graphs. This effect is most clearly illustrated in the SAC
experiment, where the decline in performance is more pronounced after episode 100, corresponding
to the increased difficulty and higher penalty accumulation.
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5 Conclusion

In this study, we explored various RL algorithms and environments, focusing on a comparative
analysis of PPO, PPO combined with MPC and SAC. Among these, SAC demonstrated the most
promising performance, successfully reaching the final goal within the set time constraints. This
outcome suggests that SAC was the best suited for the tasks evaluated in these experiments. We
also aimed to assess performance in terms of collision avoidance; however, this proved difficult due
to the incomplete execution of the PPO-based experiments.

The experiments highlighted how different reward structures can significantly influence learning
outcomes. As discussed in chapter three, multiple reward configurations were tested, with the
selected structure offering the most potential. Nevertheless, the trends observed in the reward
graphs raise important questions: Was the underlying concept correct but the implementation
flawed, or was the reward design itself fundamentally misguided? Future research could address this
by testing alternative structures, such as applying a constant per-timestamp penalty, introducing
exponentially scaled rewards for goal completion, or providing incremental rewards as the agent
approaches the goal.

Additionally, we examined the specific influence of MPC. However, based on the available results,
no definitive conclusion can be drawn about whether MPC enhances or hinders PPO’s performance.
Both the reward and loss graphs were limited in scope, and given PPO’s relatively poor performance
on its own, it remains unclear how much MPC contributed, positively or negatively.

The central research question posed was: Can a reinforcement learning agent be trained to navigate
autonomously in CARLA based on collision avoidance?

In summary, the answer is yes, an RL agent can indeed be trained to navigate autonomously in
CARLA with an emphasis on collision avoidance. However, the more complex question is how
this can best be achieved. While SAC showed promise, the overall findings were inconclusive and
leave room for substantial improvement. Further experimentation, particularly with refined reward
structures and extended training durations, could offer deeper insights. It would also be valuable to
revisit PPO under these improved conditions to better assess its capabilities.

Although the experiments did not deliver the results we hoped for, they delivered hope for better
results.

5.1 Limitations

Several limitations were encountered during the course of the experiments. The first major constraint
was the experimental setup itself. All experiments were performed on a single personal computer,
which was also required for other tasks. This limited the available computational resources and
significantly slowed the training process compared to what could have been achieved using cloud-
based infrastructure. In addition, time constraints played a critical role. Due to these limitations, a
decision was made not to fully complete the PPO-based experiments and instead proceed with the
partial results available at the time.

Another key limitation was related to the CARLA simulator. Although CARLA proved to be a
powerful and flexible tool for simulating autonomous driving environments - particularly due to its
compatibility with Python, which was used for the experiments - it also presented several challenges.
The simulator is resource-intensive, requiring a substantial amount of memory and computing
power. Moreover, its complex installation process made it difficult to set up the environment on
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alternative machines, thereby restricting the ability to parallelise or relocate the experiments.

5.2 Future work

Although some suggestions for future work have already been mentioned, this section elaborates on
several promising directions for further research. The primary recommendation is to explore more
deeply how a RL agent can be effectively trained in the context of autonomous navigation. The
agent’s performance is largely influenced by the design of the reward structure, with a secondary
influence from the choice of hyperparameters. Given that the reward structure used in this study
did not produce consistently effective results, it would be logical to prioritise this area for future
research.

Several alternative approaches have already been proposed, such as applying a fixed per-timestamp
penalty rather than one based on distance, introducing exponentially scaled rewards for goal
completion, or awarding incremental rewards as the agent moves closer to the goal. These methods
could provide more stable learning signals and better incentivise efficient behaviour.

In addition, it would be valuable to investigate the discrepancy in performance between PPO
and SAC. Understanding why PPO underperformed while SAC showed more promising results
could offer key insights into the suitability of different algorithms for this type of task. Finally, a
compelling line of inquiry would be to evaluate whether integrating MPC with SAC—as opposed
to PPO—can further enhance performance. Such experiments could help isolate the contribution of
MPC and better understand its interaction with various RL algorithms.
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