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Abstract

Human trafficking analysis needs to work with the data we have. This data consists of sensitive,
qualitative narratives that should not be exposed. Existing studies provide useful elements
like text analytics, network views, and operational research models. However, there is little
information on a governance-first, end-to-end pipeline that converts raw uploads into standard,
reproducible artifacts that others can use and regenerate without access to the raw content.
This thesis aims to fill that gap with a privacy-preserving, artifact-centric system that (&)
projects uploads into a single, tidy processed schema with only essential, non-sensitive fields like
serialized IDs, normalized locations, token lists, and optional durations, and (b) creates three
types of interoperable exports: typed and weighted social networks (PNG/HTML), semantic
representations (RDF/TTL), and geospatial layers (GeoJSON). Each export is marked with
parameters and linked to a minimal registry entry that includes the processed dataset 1D,
schema version, tool versions, and thresholds. The outcome is a workflow where figures and
maps become executable artifacts. They are auditable, portable, and reproducible from the
sanitized projection alone. Meanwhile, the raw narratives are never stored and only visible to
their uploader.

Alignment to Research Questions (RQs) and Objectives, The pipeline is designed
and evaluated specifically against the thesis RQs and Objectives:

1. RQ1 — Interoperability (Objective O1/03) The processed schema serves as a
single contract for all modules. Exports use open standards—RDF /TTL for semantic
reuse and GeoJSON for cartographic reuse—so external tools can load them without
needing adapters. Minimal, machine-actionable provenance (dataset 1D, schema version,
parameters) accompanies every export, allowing for traceable reuse and exact or near-exact
regeneration.

2. RQ2 — Governance: privacy, residency, access, accountability (Objective
02) The system ensures processed-only persistence (no raw-file storage), owner-only raw
visibility through role-based access controls, and non-egress operation (maps render from
local GeoJSON without third-party geocoding). Provenance records support accountabil-
ity without revealing raw content and meet data minimization and purpose-limitation
principles.

3. RQ3 — Pipeline Utility for practitioner tasks (Objective O4) From the sanitized
table alone, the application supports route reconstruction (ordered visits and optional time
playback), hub identification (distinct-victim loads with seeded, reproducible layouts),
and cross-case consolidation (shared places and standardized actor tokens). Outputs are
decision-ready artifacts that can be inspected, shared, and regenerated.

4. Portability and transparent limits (Objectives O5/06) Deterministic preprocess-
ing (normalizing headers, type coercions, token rules) and careful toponym resolution
(exact lookup to high-threshold fuzzy with unresolved flags) apply across similar datasets
while avoiding false precision. Remaining constraints—such as curation of header maps,
unresolved locations, and absence of bundled SHACL shapes—are documented with safe
upgrade paths.
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5. Evaluation mapping to RQs (0O1-04) Instead of focusing on model accuracy, the thesis
provides artifact-centered evidence: (i) literature concordance, showing that behaviors
align with established guidelines (interoperability, provenance, reproducibility, governance);
(ii) a gap-closure analysis connecting implemented methods to identified research gaps; and
(iii) self-audits that demonstrate storage and residency, access limitations, completeness of
provenance, and deterministic regeneration. Each figure and table references the processed
dataset ID, schema version, and parameters so readers can verify results without needing
raw data.

0.1 Findings and contribution

The system answers the RQs positively within its scope. It produces interoperable (RD-
F/GeoJSON), privacy-preserving (processed-only, owner-scoped, non-egress), and reproducible
(parameter-stamped, regenerable) artifacts that support the three practitioner tasks. Method-
ologically, the contribution is a compact pattern—deterministic transforms over a single processed
schema with standards-based exports and provenance—that provides auditable analytics without
raw-data storage. Practically, it offers a functional end-to-end workflow and simple design
guidelines that teams can follow under strict governance constraints. Predictive prototypes
(LSTM/GNN) were explored experimentally but excluded from the validated contribution due
to unstable accuracy and ethical risks. They are documented transparently elsewhere in the
thesis, but not used as evidence.
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1 Introduction

1.1 Background

Human trafficking is one of the most widespread transnational crimes [I} It affects millions
of people and generates around $150 billion in annual profit. Human trafficking includes many
kinds of crimes—forced labor, sexual exploitation, and servitude, as well as trafficking in children,
for instance—that span a very large and complex problem. Law enforcement across the world,
from every kind of government, is struggling to understand not just the networks of modern
trafficking but also the many operations that make up this very large problem. To do this
effectively, lasting interventions, they need new, scalable data-driven analytical solutions.

Figure [1] shows how large & widespread human trafficking networks can get, and how
some locations are more active than others, and why they become nodes or hotspots of human
trafficking. Also it visualizes more common routes and active areas

[ Q Fitter by origin and destination +

Figure 1. Human  Trafficking Network on a Large Public Dataset as wvisualized by
https://www. freedomcollaborative. org/data-dashboard-vim

Artificial Intelligence (AI), Machine Learning (ML), and network analytics have trans-
formed the detection of human trafficking into one that can find trafficked individuals hidden
among the vast amounts of structured and unstructured data we now have. In recent studies,
Dimas et al.| (2021) and Konrad et al.| (2022) effectively used Operations Research and Analytics
to solve some problems related to human trafficking. They, along with other scholars, have
shown the value of statistical modeling, network science, and decision-support systems in the
fight against human trafficking. Similarly, Poelmans et al.|(2012) have used semi-automated
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knowledge discovery methods to unravel hidden connections between traffickers and victims.
Szakonyi et al.| (2021) on the other hand, have focused on technological interventions to detect
such patterns. However, significant limitations in these studies necessitate a shift towards more
integrated, real-time and scalable solutions.

1.2 Analytical Challenges in Current Human Trafficking Research

The analytical problems linked to human trafficking mean that effective interventions
and responses are currently hampered. This section pulls together the most important and
relevant discussions to provide an overview of the situation in current international and national
trafficking research:

e Fragmentation and inconsistency of available data sources:

Data associated with trafficking comes from numerous, disparate places, including law
enforcement reports, NGO databases, online platforms, and victim testimonies. These
sources significantly differ from each other, creating major inconsistencies and posing
challenges to integration [Konrad et al.| (2022); Dimas et al. (2021). Incomplete, outdated,
or biased data adds another layer of complexity to the problem. A lack of accurate
information by trafficking activity and the under-reporting of trafficking by its victims
leads to an apparent inconsistency in the data of trafficking [United Nations Office on
Drugs and Crime (2024); International Organization for Migration (2018); Ediae et al.
(2024)).

e Under-utilization of qualitative data such as victim interviews and narratives:

Qualitative data, especially survivor testimonies, offer valuable insights into trafficker
behaviors, victim dynamics, and recruitment strategies. However, these narratives often
remain under-utilized due to analytical complexities and a lack of standardized methodolo-
gies to systematically structure qualitative insights Poelmans et al.| (2012)); |Szakonyi et al.
(2021)). Despite their potential to enrich quantitative analyses, these datasets frequently
remain isolated Latonero et al. (2012); [Ibanez and Suthers| (2014b)); |Konrad et al.| (2022).
Survivor testimonies that offer qualitative data provide most valuable insights into trafficker
behaviors, victim dynamics, and recruitment strategies, because these are not covered
in other forms of intelligence. Yet despite these insights, the narratives often remain
under-utilized because of analytical complexities and a lack of standardized methods for
systematizing the structuring of such qualitative insights Poelmans et al.| (2012)); |Szakonyi
et al.| (2021)). Hence, we have the qualitatively rich datasets that can enrich quantitative
analyses, but still remain isolated |Latonero et al| (2012); Ibanez and Suthers| (2014b));
Konrad et al.| (2022).

e Lack of fully integrated end-to-end analytical pipelines:

Current research typically employs isolated methodologies such as machine learning
classification Ibanez and Suthers (2014b)), predictive analytics 2, or social network analysis
Konrad et al.| (2022); [Dimas et al.| (2021)). Few studies integrate these methodologies into
comprehensive end-to-end workflows. This gap results in manual data transfers between
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disparate tools, reduces analytical responsiveness, and limits accessibility to non-specialist
stakeholders [Mansour et al.| (2016); Wilkinson et al. (2016b).

Limited interoperability and semantic standardization:

Meaningful interoperability between organizations and across jurisdictions can be signifi-
cantly restricted by human trafficking dataset semantic heterogeneity. Datasets collected
by different agencies or in different geographic contexts often use incompatible termi-
nologies and standards, thus hindering integration and collaborative analysis Wilkinson
et al.| (2016b); Mansour et al.| (2016). In the absence of standardized semantic frameworks,
efforts towards collaborative international action remain limited Konrad et al. (2022));
Binu et al.| (2019).

Ethical and privacy concerns restricting effective data sharing:

Confidentiality, informed consent, and victim protection are ethical matters that signifi-
cantly limit data sharing and collaborative analytics. In the case of human trafficking,
the data involved is to be highly sensitive. Therefore, strict privacy protocols are in
place to prevent not only the further victimization of individuals but also the direct and
indirect harm that may come from the misuse of this information [United Nations Office
on Drugs and Crime| (2024)); International Organization for Migration (2018); Mansour
et al| (2016]). Current practices, however, do not yet seem to adequately ensure all of
these ethical challenges are properly addressed, limiting stakeholder collaboration and
analytical effectiveness Binu et al.| (2019); [Wilkinson et al.| (2016b)).

Importance of provenance, traceability, and trustworthiness of the data:

In global criminal justice, data provenance, i.e., determining the how, what, when, where,
and why of data, ensures the integrity and authenticity of the data required for legal and
analytical purposes. For data to be useful in legal processes or credible for analytical
functions, it must be trustworthy. Provenance mechanisms help ensure this by making
compliance with international standards more likely, increasing trust among users, and
making it easier to establish accountability among global anti-trafficking stakeholders
Hasan and Myagmar| (2022).

Significance of data sensitivity and high security risks:

Sensitive information is contained within human trafficking datasets, the compromise of
which could also endanger victims, witnesses, or investigators and jeopardize ongoing
interventions. Such datasets are particularly important to organized crime entities, making
robust cybersecurity measures to safeguard their information against unauthorized access
and misuse necessary 'The White House (2011)); International Federation of Accountants
(2021)).

Personal data protection to safeguard involved individuals:

Critical ethical and legal issues are involved in the way personal data are handled in
human trafficking research. Breaches could result in severe repercussions, including victim
retaliation and social stigma. Compliance with a data protection regime that is rigorous,
for example anonymization practices and secure storage solutions, is necessary to uphold
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the rights and safe conditions of all individuals involved at each stage of the research
Regent University| (2022); World Bank| (2021)).
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1.3 Literature Review

Introduction to Human Trafficking Research

The human trafficking research field has progressed rapidly in recent years, especially in
the past two decades. Data science, artificial intelligence, and advances in network analysis
have all been enlisted in the fight against trafficking, helping to modernize both detection and
intervention efforts, as well as policy formation. But despite all this progress, literature on
human trafficking remains fractured. Research often consists of solitary studies that focus on a
particular set of analytical methods, or what we might call ”work in the dark,” where studies
either don’t employ any structured data or rely on datasets with such limited contextual depth
that any findings are essentially meaningless.

Data-Driven Approaches in Trafficking Research
Technology’s Role in Human Trafficking Detection

The spread of digital platforms and mobile technology has completely transformed human
trafficking, enabling speedier recruitment, anonymous communication, and extensive victim
exploitation. Latonero et al.| (2012) provided one of the first examinations of this change,
analyzing how mobile apps, gaming platforms, and social media are used to facilitate the
crime. They found, not surprisingly, that traffickers use prepaid phones, but also found that the
organized networks of traffickers communicate and avoid detection via social media and online
classified ads. Despite these and other keen insights, the authors did not have the benefit of
real-time analytical tools to track, with any precision, the God’s-eye movement of victims forced
into the trade across digital and physical domains.

In a like manner, Ibanez and Suthers (2014b)) targeted automated web scraping techniques
to extract trafficking-related indicators from escort advertisements and classified postings. The
bulk of their work consisted of extracting these kinds of indicators from these postings using
automated web scraping techniques and then performing some sorts of analysis on the indicators
that they managed to scrape together. Phone number tracking methodologies were introduced
to map the kinds of trends that are being missed by appearances in the periodic census of street
prostitutes and those contained in the escort service advertising business.

Predictive Analytics and Machine Learning Models

Current research utilizes Al-driven machine learning models for more efficient analyses
of human trafficking patterns. In their 2019 study, Sabo| (2019) created an Al framework
using the SAS Viya system to detect trafficking discourse in social media posts and classified
advertisements. They used Natural Language Processing (NLP) techniques as part of their
work and demonstrated the power of Al to sort through and classify vast quantities of text
with a high degree of accuracy. They taught the Al to recognize the subtle signals that, in
conjunction with other signals, could be used to indicate that human trafficking was actually hap-
pening. This is the solid foundation upon which we can build next-generation trafficking analyses.
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In a separate piece of research, |[Ediae et al.| (2024)) looked into predictive analytics and
how it could be used in the victim reintegration and trafficking prevention space. They took
risk factors associated with trafficking victim post-rescue reintegration and applied them to
Random Forest models and Decision Trees to assess predictive outcomes. The study had useful
implications; however, like many others discussed in this chapter, it fell short on some level
because it did not consider the way many law enforcement agencies fail to consider how traffickers
might adjust their strategies in response to the kinds of interventions studied.

Network Analysis and Trafficking Ecosystem Modeling

Methodologies based on graphs have come to be very important in unveiling the structural
makeup of trafficking networks. Konrad et al.| (2022) explored the application of operations
research techniques to the procurement of trafficking supply chains, using network interdiction
models to optimize resource allocation for investigations into trafficking. However, these same
authors did not venture into the use of network structures that change over time, which would
be a way to effectively address trafficking networks that change in order to avoid being caught.

Dimas et al.| (2021)) also provided a comprehensive analysis of trafficking networks, but
they used for this analysis social network analysis (SNA) techniques. They found that traffickers
act as close to central nodes in the graph structure that represent trafficking rings. These
findings do illustrate the power of graph analytics when used to identify where and who close to
the top of the organizational structure.

Conversely, [Binu et al.| (2019) examined the application of fuzzy graph models to study the
movement patterns of trafficking routes, integrating indices assessing connectivity to pinpoint
trafficking hotspots. While offering an undoubtedly unique mathematical approach, their study
lacks the empirical validation of real-world trafficking datasets, which would make their findings
more relatable and operational.

Integration of AI & Deep Learning in Human Trafficking Detection

The recent development in artificial intelligence (AI) and deep learning has transformed
human trafficking research into automated detection techniques that can process huge datasets.
Sabo (2019) demonstrated the effectiveness of machine learning classifiers in detecting trafficking
patterns across multiple online platforms and used Natural Language Processing (NLP) algo-
rithms to identify coded trafficking language in online ads. Despite its successes, the study was
limited to text-based sources and lacked integration with network-based relationship modeling;
as a consequence, it could not recover the dynamics between traffickers and victims.

The same way, Ediae et al. (2024) used Random Forest, Decision Trees, and Neural
Networks to analyze the results of rehabilitation for trafficking victims, pulling out some of the
key predictors that make for successful reintegration. They worked on a victim-centric basis,
and so didn’t model the trafficking supply chain itself or pursue the movement of perpetrators
across geography. Still, this kind of work very much establishes the realization of Al-driven
analytics, and how they could serve a useful purpose if harnessed in the right sort of integrated
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framework.

Pattern recognition and anomaly detection have been powerful use cases for deep learning.
One specific application of these uses is for identifying online advertisements that depict human
trafficking. [Szakonyi et al.|(2021) utilized computer vision techniques to detect delinking imagery
in online ads. Their work, however, lacks an analytical model that can associate the visual
patterns they’ve detected with a larger trafficking network, meaning this work is only applicable
at the level of individual ad detection. Moving forward, research should harness the true power
of multimodal analytics, integrating text, image, and network analytics to produce a more
comprehensive detection capability.

Spatio-Temporal Modeling & Geographic Intelligence

It is crucial for law enforcement and policy interventions to understand how trafficking
networks develop through time and across space.Dimas (2021) Dimas et al.| (2021) applied social
network analysis (SNA) to map trafficking rings but did not incorporate spatial intelligence—a
key limitation that restricts the model’s applicability to the real world. When combined with
Al-based risk prediction models, geospatial analytics can significantly boost the detection of
emerging trafficking routes.

Binu et al. (2019) Binu et al. (2019) spatially and temporally modeled something in an
attempt to understand trafficking networks better. The authors understand that, even with the
models they created, the trafficking networks could still be figured out by bad actors, and, as a
result, those networks could still work and be detrimental to people. Binu et al. (2019) Binu
et al. (2019)) work is smart, and the work they did, even if not fully validated, contributes to
understanding trafficking on a global scale better. Another significant research effort, [Konrad
et al.| (2022), focused on deriving an approach from Operations Research (OR) to optimize
counter-trafficking interventions. Their work centered on the challenge that law enforcement
agencies have in allocating resources when the agencies want to make counter-trafficking work
more effective. And what they came up with did a good work of identifying places that are likely
to be high-risk trafficking zones and even forecasted somewhat reasonably where trafficking
could go next. We think, however, that future research could capitalize more on this work and
make it even more useful.

Ethical Considerations & Data Privacy in AI-Based Trafficking Detection

Ethical issues related to privacy, the potential for surveillance, and the biases that Al-
driven data analytics might have when it comes to detection are becoming even more critical to
address Bor and Koech (2023]). We are now relying on these systems more and more, and their
use is spreading rapidly—especially at the border. Al systems can provide useful information,
especially when used in conjunction with other types of data, and particularly when it comes to
prediction and human trafficking. But there’s a dangerous notion of Al as the "new border.”
Because if we can’t see through the algorithms, how can we guide such fundamentally transfor-
mative systems in secure and reliable ways? Another problem associated with this is managing
victim data, especially sensitive survivor interviews used in machine learning pipelines. Poelmans
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et al. (2012) Poelmans et al.| (2012)) stressed the need for tightly controlled data-sharing protocols
to avoid re-traumatizing and securing the identities of those who survive such events. They also
propose some solutions—federated learning and blockchain-based encryption—that ensure both
privacy and data integrity.

Additionally, Sabo et al. (2019) Sabo (2019) examined automated Al systems that misiden-
tify trafficking cases and concentrate on understanding social media activities. Their research
revealed that word embeddings within natural language processing models might misclassify
legal escort services as trafficking. Indeed, this work indicates to us that Al systems need greater
refinements in both their linguistic models and, just as importantly, in the bias-mitigation tech-
niques that are employed. For future endeavors, Sabo and her team suggested using explainable
AT frameworks to keep Al-driven trafficking detection systems accountable.

Cross-Sector Collaboration and Multi-Agency Data Integration

One of the most significant challenges in combatting human trafficking is the lack of
standardized data-sharing mechanisms across law enforcement, NGOs, financial institutions,
and government agencies. Studies such as Konrad et al. [Konrad et al. (2022) (2022) have
underscored the importance of Operations Research (OR) models in optimizing resource allo-
cation for counter-trafficking interventions, yet they do not address how real-time intelligence
sharing between multiple entities can improve enforcement efforts. Dimas et al. (2021) Dimas
et al. (2021) highlight the potential of federated learning models, which allow agencies to
train Al models on decentralized datasets without compromising data privacy, though their
implementation remains in early stages.

Multiple studies stress the very real need for cross-border intelligence sharing, especially
when it comes to trafficking networks that operate across several jurisdictions. Notably, this
includes the work of Bor and Koech Bor and Koech| (2023)). They, along with others, argue that,
for the problem of trafficking to be effectively addressed, intelligence sharing between agencies
will have to improve. And to do so, they recommend that future research focus on developing
new ways to share information securely and across institutional boundaries, a problem they see
as solvable with blockchain technology.

Financial Crime Analysis and Trafficking Networks

Human trafficking frequently intersects with money laundering and illicit financial trans-
actions. The role of banking data, cryptocurrency transactions, and cross-border financial flows
in trafficking networks remains underexplored in empirical research, despite the availability of
helpful financial forensic techniques. Szakonyi et al. (2021) [Szakonyi et al.| (2021)suggested that
financial institutions should be more active in detecting unusual transaction patterns indicative
of trafficking operations. Such patterns might include the frequent making of small deposits,
followed by bulk withdrawals in known trafficking hubs. However, the authors of this study did
not propose a machine learning-based risk scoring system that can systematically flag these
suspicious transactions.
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Ediae et al. [Ediae et al.| (2024) scrutinized using Al-powered anomaly detection models
to trace illicit financial transactions. They uncovered that traffickers conceal their financial
footprints, often employing cryptocurrency tumblers and shell companies. Binu et al. |Binu
et al. (2019)) likewise explored using fuzzy logic models to flag unusual transaction behaviors
linked to trafficking operations. Although these studies add to the nexus of financial intelligence
and trafficking analytics, they do not provide a path for integrating law enforcement forensic
analysis with banking transaction monitoring.

The Role of Dark Web Intelligence in Trafficking Prevention

Although most existing research concentrates on surface web data, very few studies have
investigated trafficking operations on the dark web. One of the few to even attempt such a
study, Sabo (2019) 2, introduced early-stage machine-learning models for this purpose. However,
while discussing their use and the authors’ results, it became evident that the models struggle
with operationalization for several key reasons. the lack of real-time monitoring and inadequate
classification techniques made it difficult to operationalize their findings.

A study by Poelmans et al. [Poelmans et al.| (2012)) leveraged Formal Concept Analysis
(FCA) to structure unclassified dark web discussions into meaningful categories, revealing how
traffickers use coded language and hidden communication channels. Despite this, their study
lacked real-time analytical tools to monitor evolving dark web transactions. Future research
must focus on integrating Al-driven Natural Language Processing (NLP) models with forensic
web crawling techniques to detect emerging trafficking hotspots in darknet forums.

Addressing Survivors’ Reintegration & Post-Trafficking Support

An area that has been mostly overlooked in trafficking research is the long-term effect
on survivors and their integration back into society. While studies such as Ediae et al. (2024)
Ediae et al. (2024) focus on predicting victim outcomes during rehabilitation, there is scant
research on how trafficked persons manage the unsafe challenges they face after rescue, including
court cases, slippery social reputations, and money problems.

A resource optimization model for allocating funds to survivor support programs was
introduced by Konrad et al. Konrad et al.| (2022) in 2022, but it did not account for psychological
recovery pathways. Dimas et al. (2021) Dimas et al.| (2021 highlighted the importance of
vocational training and education for survivors, but their research lacked longitudinal tracking
mechanisms to assess the success of reintegration programs over time.
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1.4 Research Gap

For a long time, an overwhelming amount of research on human trafficking relied on very
structured datasets like the Counter-Trafficking Data Collaborative (CTDC) or the reports of
the UNHCR. Most of this work paid little attention to the qualitative data found in victim
interviews. But this is a crucial piece of the puzzle if we want to understand human trafficking.
What we too often miss is that the dynamics at play between the trafficker and the victim are
tough to grasp without this kind of close, narrative-based understanding. Migrant testimonies
give us clues about trafficker relationships, recruitment strategies, and movement patterns. But
our research is fundamentally limited because we are not using these narratives for Network
Discovery. Poelmans et al.| (2012); [Sabo (2019).

Also, an end-to-end analytical pipeline is not yet in place that connects the processes of
data preprocessing, social network based trafficking network modeling, and dynamic spatio-
temporal visualization, query & insights and ontology creation, all this while strictly adhering
to data security and residency requirements, since we are handling very sensitive data and
data should reside with the data owner, this approach uses the data to extract information or
keywords using NLP and then store the processed ’essential” data that doesn’t have any sensitive
information and the original dataset is instantly flushed from system. Current efforts apply what
can best be described as isolated techniques: social network analysis (SNA), machine learning
classification, and predictive analytics. They are sacrificing comprehensiveness and unity for,
quite ironically, some dubiously attained virtues of real-time intelligence processing. Furthermore,
the graph network models employed in most studies prior to ours are static and fail to adapt to
evolving networks. For example, in modeling trafficker-victim interactions, Dimas et al. (2021)
Dimas et al.| (2021) and Konrad et al. (2017) Konrad et al. (2017)) constructed frameworks
lacking both temporal adaptability and predictive capabilities. Yet, traffickers continuously alter
their routes, have recruits on the move, and shift strategies Binu et al.| (2019);Konrad et al.| (2017)).

The trafficking research field lacks methods and tools of spanning real-time, cross-border
intelligence—leading to significant gaps in knowledge of the spatial and temporal dimensions of
the trafficking phenomenon.Though some studies (e.g., Binu et al. (2019))) have attempted to use
GIS or other mapping techniques to visualize the trafficking phenomenon and identify emerging
hotspots, trafficking research has not yet harnessed the full power of these tools for intelligence
purposes.Lastly, predictive analytics in trafficking detection remains limited. While Ediae et al.
Ediae et al. (2022) and Szakonyi et al. [Szakonyi et al.| (2021)) applied Al-driven classification
models, deep learning-based forecasting techniques such as LSTMs and Transformers have yet
to be fully utilized to anticipate emerging trafficking routes Latonero (2012)); Ibanez and Suthers
(2014a).

Law enforcement and policymakers clearly have a need for such tools, especially dashboards
that can indicate movements across borders as well as predict where the trafficking problem
will emerge next. If trafficking research was able to utilize these tools to span the projected
trafficking problem, it could be anticipating the traffickers’ next moves and serving the law
enforcement community and trafficking victim NGOs in a proactive manner.

These problems are made worse by the large-scale ethical and privacy issues associated
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with Al-driven detection systems. Poorly constructed algorithms can lead to biased results; for
example, if a system determines that the overall 'normal’ pattern of behavior for a particular
state is that 22% of its citizens are armed and dangerous, then any profiling the system does
will carry the bias of that false positive Sales et al.| (2023). This gap highlights the necessity of
developing transparent, accountable, and ethically sound AI models to ensure compliance with
rigorous privacy standards, such as GDPR, thus safeguarding sensitive victim data Sales et al.
(2023);0lisah et al.| (2024)).

What is an ontology? An ontology is a formal representation of a set of concepts within
a domain and the relationships between those concepts. An ontology provides a commonly
understood vocabulary that can be used to underpin a knowledge representation in that domain.
In computer science and information science, an ontology can be used for semantic reasoning.
Sales et al.| (2023)

In addition, centralized data storage is now raising very serious trust and privacy issues,
which is hobbling all kinds of collaboration across different sectors. This collaboration is
essential if we're going to address the many intertwined challenges—and the potential solutions
to them—that involve and affect very different parts of society. These are just some of the
reasons why decentralized storage systems like SOLID Pods offer a promising alternative. |Solid
Project| (2024)).

In conclusion, the identified gaps collectively indicate the critical need for an integrated,
end-to-end analytical framework that systematically addresses data fragmentation, incorporates
dynamic modeling and real-time predictive analytics, resolves semantic heterogeneity through
ontology-driven data structuring, and employs secure decentralized storage solutions. Addressing
these interconnected gaps is essential to developing actionable, scalable, and ethically responsible
solutions for global anti-trafficking efforts.
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1.5 Synthesis of Research Gaps

The scholarly and practitioner literature agrees that progress in anti-trafficking analytics
has been hindered more by systemic and architectural gaps than by isolated technical limitations.
Studies across different fields often focus on optimizing single components of the pipeline, such
as text classification, static social network analysis, or map-based hotspot detection. However,
they do not ensure interoperability, temporal accuracy, or governance-aware deployment. The
following subsubsections outline the main gaps that inspire this thesis and shape the research
questions and methods that follow.

1.5.1 Fragmented analytical approaches and the absence of end-to-end integration

Current work often views ingestion, normalization, semantic modeling, inference, and
visualization as separate processes. This split limits cumulative science and reproducibility.
Without a clear path from unstructured narratives to semantically governed knowledge repre-
sentations and then to decision-making analytics, results are hard to validate and even harder
to implement across institutions. A review of past systems shows that end-to-end integration is
more the exception than the norm. There is limited focus on artifact consistency, configuration
management, and re-runnable systems needed for independent verification |United Nations Office
on Drugs and Crime (2023a)).

1.5.2 Under-utilization of unstructured, narrative sources

Qualitative, text-rich sources, such as survivor testimonies, practitioner reports, and
investigative briefs, contain important context, timing, and uncertainty needed to understand
methods of operation and movement patterns. However, modern transformer-based NLP and
domain ontologies are not consistently used to extract, standardize, and align entities, relations,
and time markers at scale. This creates a significant gap in evidence for both research and
practice and weakens connections with structured registries |Latonero et al.|(2012); [Poelmans
et al.| (2012)).

1.5.3 Semantic interoperability and ontology-driven integration

Trafficking analytics involve various custodians and jurisdictions with different schemas and
vocabularies. Without a semantic layer based on ontology, connections become fragile, variable
meanings are lost, and cross-border comparisons are unreliable. FAIR-aligned semantic modeling
and tracking of data provenance are only occasionally applied instead of being fundamental,
which limits reuse, comparability, and machine-actionable transparency |Wilkinson et al.| (2016b)).
A well-structured, domain-specific ontology is necessary for stable integration of narratives,
administrative records, OSINT, and geospatial information.

1.5.4 Data sharing, governance, and provenance as first-class design requirements

Collaboration suffers from inconsistent formats, unclear legal bases for processing, and weak
provenance trails. Prototypes often push governance aside, leading to limited auditability and
trust issues within institutions. Methodological advancements must be paired with governance-
by-design. This includes role-based access, minimization, consent tracking, encryption during
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transmission and storage, and complete provenance that makes every change and decision
traceable Wilkinson et al.| (2016b). Decentralized or institutionally managed data stewardship
can improve control and accountability when backed by strict access policies and verifiable logs.

1.5.5 From static graphs to time-aware network modeling

Most network analyses are static snapshots that overlook temporal changes in roles,
routes, and coordination strategies. Without timestamped connections, episode modeling, and
trajectory-aware inference, systems cannot identify new configurations or predict near-term
shifts. Time-aware knowledge graphs, enhanced by temporal markers and event sequencing, are
essential for moving from description to explanation and early warning ?.

1.5.6 Insufficient geospatial integration and uncertainty-aware cartography

Even when locations are noted, solid resolution of place names, quantification of uncertainty,
and layered, interactive mapping are uncommon. Maps without provenance for geocoding
accuracy or time-based animation obscure movement patterns and reduce operational usefulness.
Connecting narrative extraction to GIS requires thorough geocoding, disambiguation signals,
density and clustering layers to address overlap, and time-aware paths to show dynamics

important for screening, interdiction, and assistance planning United Nations Office on Drugs
and Crime| (2023a).

1.5.7 Real-time adaptability and streaming readiness

Stakeholders need timely updates on routes, hubs, and tactics. Batch-centric systems
trained on static data fail to incorporate and analyze new evidence quickly enough for operations.
Frameworks that support streaming data ingestion, incremental inference, and controlled cache
invalidation while maintaining provenance and reproducibility are still underdeveloped in
trafficking analytics. These are vital for generating actionable intelligence.

1.5.8 Evaluation design and the evidentiary standard for usefulness

Metrics that focus solely on models (like F1 for NER or AUROC for classification)
do not demonstrate practical usefulness. Evaluation must be modular, assessing extraction
accuracy, graph structure, and reasonable spatiotemporal claims while measuring uncertainty
and identifying failure modes. Most importantly, assessments must connect to user tasks,
decision benchmarks, and potential risks to prevent misleading performance claims and ensure
procurement-grade comparability [United Nations Office on Drugs and Crime| (2023a).

1.5.9 Cross-regional interoperability and transfer

Since trafficking is a transnational issue, tools must work across different regions and
legal contexts. However, schemas, ontologies, and models are seldom designed for portability
between jurisdictions or tested for cross-region effectiveness. Without focus on clear, mappable
vocabularies and unified metadata, comparative analysis and multinational collaboration remain
challenging.
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1.5.10 Ethics, privacy, and risk mitigation as testable properties

Sensitive humanitarian data requires clear, testable protections. Many artifacts lack
documented threat models, de-identification trade-offs, or verifiable access controls. Responsible
use calls for privacy by design, minimization, differential risk assessments, and transparent model
governance, including checks for bias and explainability compliant with regulations like GDPR.
Ethics cannot be an afterthought; it should be integrated into the system and demonstrated
through evaluation Wilkinson et al.| (2016b]).

1.5.11 Alignment with practitioner requirements and traceability to features

There is a continuous gap between academic problem-solving and the real needs of
investigators, service providers, and policy staff. Requirements should come from the literature
and domain expertise, then link back to implemented features and evaluation elements that
show practical utility. Without this connection, integrated systems may seem like patchwork
solutions instead of a unified answer to well-defined problems [United Nations Office on Drugs
and Crime| (2023a).

1.5.12 Synthesis.

These gaps are interconnected. The under-use of narratives affects ontology-driven
integration, the lack of temporal modeling limits geospatial insights, weak governance undermines
trust and reproducibility, and insufficient evaluation does not prove usefulness. To tackle these
issues, this thesis proposes an ontology-anchored, end-to-end pipeline that converts unstructured
texts into a categorized, time-aware knowledge graph and produces spatiotemporal intelligence
through GIS within a governance-aware, reproducible framework. This synthesis directly informs
the research questions and methods to follow.
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1.6 Research Questions & Sub-Questions

This section outlines the inquiry that guides the thesis. The research questions come from
a combination of the anti-trafficking literature and data governance practices. They relate to
established requirements engineering to ensure each question ties back to stakeholder needs and
tangible artifacts produced by the system. The main goal is to connect unstructured narratives
and various administrative sources with a governance-aware, ontology-based analytics pipeline.
This will produce decision-ready, spatiotemporal intelligence that can withstand both scientific
and operational scrutiny.

1.6.1 Primary Research Question (PRQ)

How can an ontology-based, governance-aware, end-to-end pipeline transform unstructured
narratives and various administrative records into a structured, time-aware knowledge graph and
geospatial intelligence that effectively supports practitioner tasks in anti-trafficking contexts?

The PRQ connects three main aspects: (i) semantic interoperability based on a domain
ontology, (ii) data management that considers privacy, residency, and provenance while following
widely accepted frameworks, and (iii) integrated NLP, graph, and GIS analytics that produce
results which are reproducible, auditable, and understandable by investigators and humanitarian
workers.

1.6.2 RQ1 — Semantic interoperability for heterogeneous sources.

What domain ontology and semantic validation procedures are needed to achieve interoper-
ability across narrative testimonies, administrative registries, and open-source intelligence, while
preserving meaning for downstream graph and GIS analytics?

The thesis argues that an ontology-driven layer is essential for integrating diverse sources
and making fair comparisons across different regions and institutions. Specifically, the work
looks into how controlled vocabularies and constraint languages can stabilize representations of
recruitment, transit, exploitation, actor roles, time anchors, and geo-references, so the resulting
knowledge graph can support both structural and spatiotemporal queries.

e SQ1.1. What core classes, relations, and axioms must the ontology include to accurately
represent events and actors in trafficking narratives while remaining applicable across
jurisdictions?

e SQ1.2. How should extracted entities and events be standardized and validated to ensure
reliable, auditable graph construction (for example, shape constraints and integrity rules
for time, role, and location fields)?

e SQ1.3. To what extent does the semantic layer allow transfer across regions (for example,
FEast to North Africa routes), and what mappings are necessary to accommodate local
taxonomies while keeping them comparable?
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1.6.3 RQ2 — Data security, residency, privacy, FAIR governance, and federated
analytics

Which data governance structure allows for secure, legal, and practically useful collaboration
under privacy and residency rules while maintaining FAIR (Findable, Accessible, Interoperable,
Reusable) properties and supporting federated analytics when data cannot be centralized?

The thesis views governance as a key engineering problem. It addresses access control,
data minimization, encryption at rest and in transit, key management, audit trails, provenance
capture, and documentation (like model and data cards). It evaluates whether federated or
distributed analytics can limit cross-border movement of sensitive data while still producing
comparable, scientifically valid results.

e SQ2.1. What miz of policy controls (role-based access, minimization, consent tracking)
and technical controls (encryption, key management, tamper-evident logging) meets GDPR
requirements for narrative and case data while keeping it analytically useful?

e S502.2. How can data residency rules and institutional boundaries be respected through
federated analytics or learning, while maintaining thorough provenance, comparable results,
and FAIR-compliant metadata?

e 5Q2.3. What provenance standards and documentation artifacts (for instance, PROV-
compatible records, model cards, data-use agreements) are necessary to make the pipeline
auditable and trustworthy for external reviewers?

e SQ2.4. What trade-offs arise between privacy safequards (like aggregation thresholds and
noise mechanisms) and the detail required for practitioner tasks, and how should these be
openly addressed in reports and interfaces?

1.6.4 RQ3 —Integrated NLP-Graph-GIS pipeline with governance-by-design

How can an end-to-end pipeline that combines modern NLP, knowledge graph construction,
and GIS visualization be designed to be modular, reproducible, and governed by design, and to
what extent does it offer utility validated by practitioners on relevant tasks?

This question combines pipeline integration with ethical and provenance-aware operation.
It treats front-end orchestration and artifact generation (such as interactive graph exports,
layered maps, and animated trajectories) as research objects, requiring versioned configurations,
repeatable runs, and traceability from inputs to outputs.

e SQ3.1. What is the minimal yet sufficient NLP stack (including tokenization, NER,
canonicalization, relation/event extraction) that produces graph-ready, time-stamped records
that align with the domain ontology?

e 5(Q)3.2. How should the knowledge graph be structured (node and edge types, time qualifiers,
provenance fields) to support structural queries, time-aware reasoning, and easy integration
into geospatial views?
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e 50)3.3. What geocoding, toponym resolution, and uncertainty-handling methods are neces-
sary for creating density maps, clusters, and animated trajectories that accurately represent
narrative-derived locations over time, without exaggerating precision?

e S0)3.4. How can the pipeline’s orchestration and user interface be designed so that artifacts
are repeatable, versioned, exportable, and understandable to non-technical users, allowing
for independent verification and incorporation into reports?

e 513.5. In evaluations focused on practitioners, to what extent do the pipeline’s outputs
enhance task performance on relevant questions (such as route triage, hub identification,
cross-case consolidation), and what limitations do uncertainty and failure modes impose
on this utility?

1.6.5 Traceability and evaluation logic.

Each research question corresponds to specific gaps and evidence the system must produce.
RQ1 addresses semantic fragmentation by committing to an ontology and clear validation
rules. RQ2 deals with lawful and ethical collaboration under privacy and residency constraints
by defining governance controls, provenance, FAIR-aligned metadata, and federation when
centralization isn’t possible. RQ3 focuses on creating an integrated analytics pipeline and
connects its outputs to user tasks. Evaluation follows a modular framework: (i) extraction
accuracy and standardization, (ii) structural and temporal validity of the graph under constraint
checks, (iii) geospatial realism and uncertainty reporting, (iv) governance compliance through
complete provenance and access control checks, and (v) user-centered evaluations of task
usefulness with noted limitations. The research questions, sub-questions, and evaluation
artifacts are collaboratively designed to ensure that the thesis is both scientifically sound and
practically useful.
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1.7 Research Objectives & Sub-Objectives

This section presents the research objectives that address the earlier questions. Each
objective is framed as a required outcome for the thesis. Each one includes sub-objectives that
make the goal specific, testable, and auditable. This approach ensures the work clearly moves
from a defined problem to measurable results. It helps connect academic theory with practical
use. The objectives relate directly to the integrated pipeline and the governance structure
developed in this thesis. This relationship guarantees that the contributions are methodologically
sound, ethically justifiable, and practically useful.

1.7.1 Objective 1: Establish a domain ontology and semantic validation regime
that achieves cross-source, FAIR-aligned interoperability

The first objective is to create and implement a semantic layer that allows various sources,
such as narratives, administrative records, and open-source intelligence, to merge without losing
meaning while ensuring machine-actionable transparency. The ontology must define key actor
classes, roles, events, time markers, and geographic references in a way that is not linked to
any jurisdiction but detailed enough to address the investigative questions of stakeholders.
Sub-objectives include specifying classes and relationships with formal constraints, stabilizing
identifiers through standardization, and defining integrity rules to make graph construction
reliable and auditable. The ontology will work with a shapes-based validation method to ensure
that records and constructed subgraphs meet the integrity rules before analysis, thus improving
reproducibility, comparability, and error detection later (Wilkinson et al.| 2016b; Knublauch
and Kontokostas|, 2017)).

A first sub-objective is to define the vocabulary and framework needed to represent recruit-
ment, transit, and exploitation events; actor roles and relationships; time qualifiers; and location
references at an abstraction level that enables cross-regional application. The deliverable is
an ontology file along with human-readable documentation explaining the modeling choices,
including mappings to commonly used trafficking and migration taxonomies where applicable.
The second sub-objective is to develop a shapes-based validation method so that extracted
records and assembled subgraphs can be checked against the ontology’s integrity rules before
ingestion or analysis. The deliverable includes a set of shapes covering time, role, location,
and source fields, plus a validation report that measures conformance and highlights consistent
violations. The third sub-objective is to implement reliable standardization of entities and
events, leading to stable identifiers that ensure reproducibility across different environments
and runs. Together, these sub-objectives confirm that interoperability is shown, in line with
FAIR principles for data, tools, and workflows (Wilkinson et al., [2016b; 7).

1.7.2 Objective 2: Engineer a governance architecture that satisfies privacy, resi-
dency, and accountability while preserving FAIR properties and enabling
federated analytics

The second objective regards data governance as a key engineering issue. It involves
creating a system where sensitive records can be processed lawfully and ethically, with access
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controls that respect institutional limits and residency rules while allowing for meaningful
collaborative analysis. Sub-objectives include policy controls (such as purpose limitation, min-
imization, role-based access, and consent tracking), technical controls (including encryption
during transmission and storage, key management, and tamper-evident audit trails), and cap-
turing provenance to make every transformation and analytic decision traceable. The goal is to
establish a defensible baseline that complies with regulations while maintaining FAIR-compliant
metadata for discovery and reuse (EU-, [2016; Wilkinson et al.| 2016b; [Lebo et all 2013]).

The first sub-objective is to specify and implement a model for access and purpose control
that details permissible uses of narrative and case data, with clear role definitions and audit
mechanisms. The second sub-objective is to enable complete provenance tracking so that the
history of every artifact—from raw input to normalization, extraction, graph creation, and
visualization—can be reconstructed, queried, and exported in a standards-aligned format. The
deliverable will contain provenance records that are comprehensive enough to support external
review and independent re-analysis (Lebo et all [2013). The third sub-objective is to assess
the feasibility of federated or distributed analytics where centralization isn’t possible, allowing
data to be kept in place while only exchanging models or aggregate data. The deliverable will
demonstrate that these methods honor residency requirements without compromising validity
or comparability of results, along with an analysis of communication, privacy, and governance
trade-offs (McMahan et al.. 2017). A fourth sub-objective is to create documentation arti-
facts—model cards and data documentation—that clarify intended use, limitations, evaluation
conditions, and known risks, thus improving accountability and interpretability for non-technical
reviewers (Mitchell et al., [2019).

1.7.3 Objective 3: Build an integrated, governance-by-design NLP—-Graph—GIS
pipeline whose artifacts are deterministic, versioned, and practitioner-comprehensible

The third objective combines the implementation goals discussed in previous sections. It
aims to deliver a flexible system that transforms unstructured narratives and structured records
into a typed, time-aware knowledge graph and spatiotemporal intelligence that investigators can
understand and act upon. Sub-objectives start with defining a minimal yet sufficient natural
language processing stack—tokenization, normalization, named entity recognition, standard-
ization, and relation/event extraction—explicitly linked to the ontology to ensure outputs are
ready for graphs and time-stamped. This continues with a graph construction process that
establishes node and edge types, time qualifiers, and provenance fields in a way that accommo-
dates structured and time-sensitive queries, culminating in a geospatial module that translates
place names into coordinates while accounting for uncertainty, aggregates spatial information,
and produces layered, interactive maps, including density, clustering, and animated trajectories.

The first sub-objective is to ensure that each module has a stable interface and that
the overall orchestration remains consistent under fixed settings. The deliverable consists of
a set of versioned configurations and exported artifacts—interactive graph visuals and map
outputs—that can be regenerated on demand to match the same checksums, plus automated re-
ports summarizing parameter settings for inclusion in the manuscript. The second sub-objective
is to design the user interface so decision-makers can export figures and tables directly from the
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application with relevant context, reducing the risk of misinterpretation and facilitating indepen-
dent verification. The third sub-objective is to integrate governance directly into the pipeline:
access checks at ingestion, validation gates before graph creation, uncertainty annotations for
geocodes and trajectories, and provenance links on every output. The measurable outcome is a
system where functionality aligns smoothly with ethical and accountability standards, meeting
contemporary expectations for sensitive data analytics (United Nations Office on Drugs and
Crime, [2023a; |Counter-Trafficking Data Collaborativel, 2025)).

1.7.4 Objective 4: Demonstrate scientific validity and practitioner usefulness
through a modular evaluation design

The fourth objective is to establish a standard for both scientific validity and practical use.
Sub-objectives specify, before any experiments, the tests and user assessments at the module
level that will determine success. On the scientific side, evaluation includes checking extraction
fidelity for NLP components, structural and temporal validity for the knowledge graph under the
ontology and shapes constraints, and demonstrating spatiotemporal plausibility for the geospatial
products with clear reporting of uncertainty to avoid misleading impressions of precision. On
the operational side, evaluation connects outputs to typical practitioner tasks—route triage, hub
identification, and cross-case consolidation—with metrics focused on decision support rather
than model-only measures. The deliverable consists of an evaluation protocol and supporting
materials that allow external reviewers to understand what was measured, its relevance, and
how limitations were addressed or disclosed (Mitchell et al., 2019; |United Nations Office on
Drugs and Crime, 2023a)).

A first sub-objective is to formalize acceptance criteria that fit the domain and are re-
alistic for the available data, such as addressing ontology constraints in validation reports,
reproducibility of exported materials across different runs and environments, and completeness
of provenance chains from raw input to published figures. A second sub-objective is to outline
uncertainty thresholds and disclosure guidelines for geospatial rendering and temporal inference,
ensuring stakeholders are not misled by apparent precision. A third sub-objective is to document
negative outcomes and failure modes, including scenarios where federation, privacy constraints,
or data limitations restrict analytic depth, thus aligning evaluation practice with responsible
research norms.

1.7.5 Synthesis and traceability.

Together, these objectives and their sub-objectives turn the research questions into a
practical work program with outputs that are both technically precise and aware of governance
concerns. Objective 1 addresses semantic fragmentation by providing an ontology and validation
method that make interoperability measurable and clear. Objective 2 tackles privacy, resi-
dency, and accountability by delivering a governance framework that enforces lawful processing,
provenance, and, when suitable, federation. Objective 3 brings the integrated NLP—-Graph—GIS
pipeline to fruition and incorporates governance into its functioning and user experience. Ob-
jective 4 creates an evidence-based framework that confirms scientific validity and practical
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usefulness. The overall result is a thesis where the system’s architecture, ethical commitments,
and evaluative assertions support each other rather than being incidental.
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1.8 Theoretical Concepts, Background, Framework, & Assumptions

This research builds on an interdisciplinary foundation that www.findability.org integrates
network science, natural language processing (NLP), and geospatial intelligence to construct an
Al-driven framework for analyzing and predicting human trafficking patterns. The work is guided
by the FAIR data principles—Findability, Accessibility, Interoperability, and Reusability—which
ensure that both the datasets and analytical outcomes remain transparent, reproducible, and
ethically governed |Wilkinson et al.| (2016b)); Vogt et al. (2024). By aligning the pipeline with
FAIR, the study addresses one of the recurring challenges in human trafficking research: the frag-
mentation of heterogeneous data across jurisdictions, institutions, and modalities |Prince Sales
et al.| (2023)).

The framework fundamentally uses graph theory and network science to characterize
human trafficking as a complex, dynamic system of relationships between victims, traffickers,
locations, and transit hubs. Graph Neural Networks (GNNs), such as Graph Convolutional
Networks |[Kipf and Welling) (2016)) and Graph Attention Networks Velickovi¢ and Cucurull (2018)),
are implemented using PyTorch Geometric Fey and Lenssen| (2019)) to capture higher-order
dependencies within these networks. This enables the framework to pinpoint central actors,
uncover hidden communities, and perform link prediction tasks that forecast potential future
trafficking routes. Compared to static social network analysis approaches, GNNs are much more
capable of real-time adaptation as new data is ingested. This is especially beneficial for human
trafficking, which is an evolving problem that requires dynamic solutions Dimas et al.| (2021));
Konrad et al.| (2022).

Concurrently, the pipeline takes advantage of Natural Language Processing (NLP) to
convert unstructured narratives—such as victim statements, police reports, and open-source
intelligence—into a structured form. We use state-of-the-art NLP methods for this, relying on
transformer-based models like BERT [Devlin et al.| (2019) and its derivatives. These are used
for tasks such as Named Entity Recognition (NER), which figures out what types of things
(considered entities) are mentioned in the text (e.g., individuals, locations, events). NER is not
perfect, but current models have reached a point where they can achieve a significant degree
of accuracy—mnot just with the types of entities that are commonly recognized (this is the
near-synonym mapping that NER does) Ibanez and Suthers (2014b)); Poelmans et al.| (2012),
but also with many more obscure or private entities, including with entities in collections (i.e.,
groups of things that ‘look’ the same without being a direct copy of another entity). These
mapped entities are fed back into the model architecture.

Another vital facet of the framework is the spatio-temporal analysis enabled by Geographic
Information Systems (GIS). Building on well-documented trafficking hotspots in East Africa and
North Africa National Crime Research Centre| (2018); International Organization for Migration
(2018)); [United Nations Office on Drugs and Crime| (2024), GIS is used to map trafficking flows
over time, yielding not just a recruitment map but also a transit map—the two together giving
a sense of how a trafficking operation unfolds in real time. These spatial layers provide a means
to detect route convergence, cross-border corridors, and urban exploitation centers. Integrating
GIS with GNNs enables the system to contextualize relational patterns in geographic space,
producing actionable insights for stakeholders who require not just network analysis but also
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territorial intelligence [Yagci Sokat et al.| (2024)).

These two maps in tandem provide the basis for figuring out how a trafficking operation
is vectoring across space. Together with GNNs,; GIS becomes an intelligence platform for the
trafficking analyst.

The technical pillars are undergirded by a set of guiding assumptions.

e The system assumes that both structured and unstructured data sources contain latent but
complementary insights; when integrated, these provide a more holistic view of trafficking
dynamics.

e The framework assumes that advanced deep learning methods can generalize from partial,

noisy, and incomplete datasets—a common reality in trafficking research,Little and Rubin
(2019)

e The study operates under the ethical assumption that all data, particularly victim nar-
ratives, must be processed with strict attention to privacy, provenance, and regulatory
compliance Hasan and Myagmar| (2022)); Regent University| (2022).

e Finally, the research assumes that interoperability between datasets from North Africa,
and global repositories like CTDC is achievable through semantic harmonization and
ontology-driven integration Kejriwal and Szekely| (2022).

These foundational elements—graph theory, natural language processing, geographic
information systems, and FAIR-governed data—provide a coherent framework that can cut
across the siloed methods of human trafficking analytics. By integrating relational, textual, and
spatial forms of analytical human intelligence, the system offers an alternative to the traditional,
fragmented models of human trafficking and advances toward an intervention model that is
scalable, adaptive, and ethically robust.
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1.9 Ethical Considerations and Data Management

Ethical considerations form a central pillar of this research, as human trafficking data is
among the most sensitive forms of information, often involving survivors whose identities and
experiences must be safeguarded at all times. The handling of such data requires adherence
to strict ethical frameworks that prioritize privacy, informed consent, and compliance with
international data protection laws. This study follows the FAIR principles [Wilkinson et al.
(2016b), ensuring that datasets are findable, accessible, interoperable, and reusable, while
simultaneously embedding rigorous privacy and security safeguards. The extension of FAIR
to semantic interoperability through FAIR 2.0 further strengthens cross-jurisdictional data
integration and ethical governance Vogt et al.| (2024).

Data provenance is a matter of tracking data from its origins, through its transformations,
and then to its applications across an analytical pipeline. It is all about ensuring accountability,
transparency, and reproducibility—and also about enabling the very diverse range of stakeholders
with whom we interact to assess whether we are handling data in a way that aligns with relevant
regulatory and ethical standards [Hasan and Myagmar| (2022)).Provenance, in short, ensures that
we are doing science not only with rigor but also with trust—and a palpable sense of ethics.
This is something we take seriously, particularly when working across the very diverse regional
contexts of East and North Africa.

The study also incorporates robust data protection measures shaped by worldwide privacy
structures such as the European Union’s General Data Protection Regulation and other interna-
tional frameworks that guide personal data protection in humanitarian contexts 7. Sensitive
personal information—Iike victim testimonies—is anonymized and pseudonymized before any
analysis is done. Furthermore, access to the raw datasets is restricted to just a few people,
and all data sharing is conducted under agreements that make the data confidential and follow
ethical standards that prioritize the welfare of the survivors Regent University| (2022).

This project emphasizes secure, institutionally managed storage solutions where strict
access controls and encryption protocols keep sensitive information safe from unauthorized
access. Compared with some past approaches, this project’s methods make it more likely that
sensitive information will be kept secure while also allowing for robust interoperability and
secure collaboration between various research teams |Lundberg and Lee (2017)). Additionally,
the project evaluates the Al models developed within it for fairness and potential bias.

In short, this study combines FAIR-compliant governance, good data management, and
robust privacy protections into an ethical framework. With this setup, researchers can analyze
huge data sets and find subtle, previously unnoticed signals that might indicate human traf-
ficking. What makes these ”signals” comprehensible and trustworthy is that the study also
provides big-picture context for what’s going on with human trafficking globally. And then
there’s something even more important: This study doesn’t compromise the dignity, privacy, or
safety of the people it studies.
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1.10 Research Design

This research uses a mixed-method design where qualitative and quantitative approaches
are integrated into a computational pipeline. The computational pipeline is necessary because
human trafficking is a complex, interdisciplinary problem that requires not only the integration
of kinds of knowledge but also the kinds of narratives that tell us how human trafficking occurs
in specific places at specific times. Advanced computational modeling permits the kinds of inte-
gration required. And because we are talking about a social problem with serious consequences
for individuals, the work must also be scientifically and socially responsible.

The overarching design is guided by the FAIR principles Wilkinson et al.| (2016b]), ensuring
that datasets and analytical outputs are findable, accessible, interoperable, and reusable. These
principles address the frequent fragmentation of trafficking data across institutions and regions,
a challenge that hampers collaboration and comparative research |Prince Sales et al.| (2023). The
design further extends to FAIR 2.0, which incorporates semantic interoperability to ensure that
knowledge extracted from diverse data sources can be consistently aligned and reused across
different jurisdictions Vogt et al.| (2024)).

At the technical level, the framework is arranged into sequential yet interconnected
stages. The first stage involves the development of an ontology and a semantic model, where
trafficking-related entities—like victims, perpetrators, locations, and routes—are formally de-
fined. Ontology-driven methods tackle the problem of semantic heterogeneity and furnish a
consistent foundation for data integration. They allow for the combination of data from sources
with different structures—Ilike the CTDC, which contains mostly structured data, versus which
mostly unstructured data comes from interviews and testimonies Kejriwal and Szekely| (2022)).

Phase two targets the qualitative narrative’s natural language processing. For this, we
utilize models that are transformer-based, like BERT Devlin et al.| (2019) and its variants. Using
these, we complete tasks such as Named Entity Recognition (NER), which help us in extracting
key entities and relationships from our unstructured text. This unstructured text is whirlpooling
with the contextual richness of survivor testimonies. Through this unstructured text, we are
transforming the aforementioned statements into structured, machine-readable context—without
ruining their essence. This is as per Jurafsky and Martin| (2020); |Ibanez and Suthers (2014b)).
The structured outputs are aligned with our ontology from phase one, ensuring that our output
is semantically consistent.

The operationalization of structured data is achieved through the construction of graphs
and spatiotemporal modeling. Graph Neural Networks (GNNs)—for example, Graph Convo-
lutional Networks (GCNs), [Kipf and Welling| (2016), and Graph Attention Networks (GATS),
Velickovi¢ and Cucurull (2018) are implemented using PyTorch Geometric Fey and Lenssen
(2019). These models are utilized to perform three tasks: identify central actors; detect hidden
communities; and predict potential links in the trafficking networks, specifically trafficker-victim
relationships |Dimas et al.| (2021); Konrad et al.| (2022). Simultaneously, Relational Geographic
Information Systems (GIS) plot these relational dynamics in space and time, allowing a visu-
alization of the networks as they operate across place and duration [Yagci Sokat et al.| (2024);
United Nations Office on Drugs and Crime, (2024)).
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The fourth phase centers on predictive modeling. Recurrent neural networks like Long
Short-Term Memory (LSTM) models citehochreiter1997lstm and transformer-based time-series
models [Vaswani et al.| (2017) are used to forecast new trafficking patterns that are likely to
emerge, such as future hotspots or new routes. This ensures that the framework does not merely
characterize existing dynamics but also anticipates future risks in a way that is quite similar to
how most forecasting works in law enforcement.

All stages of the research are protected by ethical safeguards that are integrated into its
design Hasan and Myagmar| (2022). The accountability and transparency of the data handling
are ensured with provenance techniques. Sensitive data is managed under strict privacy regu-
lations that comply with international humanitarian data guidelines and the GDPR ?7Regent,
University| (2022). The research outputs, in the form of complex models, are ensured to be
interpretable and valid by domain experts through the use of model explainability methods
Lundberg and Lee| (2017).

This research takes on the ambitious task of addressing the substantial gaps identified in
the human trafficking literature. It leverages ontology-driven semantic modeling and narrative
structure from natural language processing to effectively analyze the kinds of large, unstructured
data that are typical in trafficking cases. It then uses predictive modeling to identify likely
trafficking scenarios. That might be enough for a usual human trafficking research project. But
what is unusual about this project is what comes next.
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1.11 Relevance

One of the most pressing humanitarian and security challenges worldwide is human traffick-
ing. It affects an estimated 49.6 million individuals and is a nasty business that generates illicit
profits exceeding $150 billion annually OUR Rescue| (2024)); International Labour Organization
(2014). When it comes to human trafficking, one must think not only of those ensnared in
forced labor but also of the many who are or have been sold for sexual exploitation. Ample
government and NGO resources are directed toward combating the problem, and traditional
detection methods often rely on structured administrative or law enforcement records. But
many of us need to have a much sharper and clearer picture in our minds of just what trafficking
looks like—mnot only at home but also in the many foreign countries to which we direct our
business |Allais| (2005)); United Nations Office on Drugs and Crime, (2024)).

A significant shortcoming in present methods is the scant use of unstructured, qualitative
data like survivor testimonies, police narratives, and open-source intelligence. These materials
often hold nuanced, crucial details about recruitment tactics, victim—perpetrator relationships,
and local context that we miss when we confine our analysis to structured datasets like the
Counter Trafficking Data Collaborative (CTDC). Studies have highlighted the essentialness of
qualitative sources for a comprehensive understanding of human trafficking analytics [Poelmans
et al. (2012)); |Szakonyi et al.| (2021)), yet almost no frameworks have ventured to operationalize
these materials with cutting-edge computational techniques. My research directly addresses
that dearth by using some of the most advanced NLP models—featuring the human-like com-
prehension of the BERT model Devlin et al.| (2019) to extract, structure, and integrate, at scale,
the crucial insights from those unstructured narratives.

Likewise, the methodologies that currently exist are still too fragmented, with network
analysis, machine learning classifiers, or geospatial visualization applied in isolation without
much integration between them and rarely achieving anything resembling the formal structure
of a dynamic, scalable pipeline Dimas et al| (2021); [Konrad et al,| (2022). Graph Neural
Networks (GNNs) appear to be a promising way of achieving the necessary integration. They
can identify the central traffickers in relational networks, the hidden communities, and potential
future links that form within these networks Kipf and Welling| (2016]); Velickovi¢ and Cucurull
(2018). Moreover, GNNs can do this in a way that is both "relational” and ”geographic”
Yagci Sokat et al. (2024)); National Crime Research Centre| (2018)); International Organization
for Migration| (2018). This is precisely what we need in order to achieve multilayered intelligence.

Predictive modeling is another relevant area. While the existing literature tends to focus
on retrospective analysis, trafficking networks are dynamic and continuously adapting to stay
one step ahead of law enforcement. This research tries to do something much harder—predicting
attempts to evade detection that haven’t been made yeta although the motive in this research
is purely experimental. To do that, the researchers employ a range of temporal deep learning
models, including long short-term memory networks Hochreiter and Schmidhuber; (1997b)) and
transformer-based architectures |[Vaswani et al.|(2017). This research models trafficking networks
as a type of Evolving Graph Structure that can offer predictive insights. These insights can
hopefully be used to allocate scarce resources to the emerging hotspots or just-in-time shifts in
trafficking routes that these networks make.
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In the end, this study gives priority to the ethical and legal aspects. It guarantees the
responsible handling of sensitive data Hasan and Myagmar (2022)). Within the study, survivor
narratives have been rendered anonymous, a move that not only protects individual identities but
also upholds the principle of data provenance—ensuring that we can track where our data comes
from and, as importantly, where it goes. With that foundation, let us explore the guarantees of
transparency and responsible data governance that this framework provides 7Regent University,
(2022)).

This research is highly relevant to global anti-trafficking work and holds the potential to
significantly inform and influence the field’s trajectory for the better. Its relevance stems from
four main data gaps that the research work attempts to address. These gaps center around
(1) data usage, (2) integrations of different methodologies, (3) predictive adaptability, and (4)
ethical compliance. The research attempts to address these gaps and thus has the potential to
generate huge payoffs for the anti-trafficking field.
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1.12 Location of the Study

The primary geographical focus of this research is North Africa, which plays multiple
roles in the global human trafficking issue as a source, transit, and destination hub |[National
Crime Research Centre| (2018)). North Africa links to key trafficking routes that lead to the
Middle East and Europe. The coastal regions of various countries, in particular, have been
identified as areas where trafficking is common. Here, victims are recruited or moved before
crossing borders International Organization for Migration (2018). These regions show the mix
of economic hardship, open borders, and weak institutional oversight, making them crucial sites
for intervention and study.

Given the international nature of human trafficking, a secondary but equally important
focus of this study is the compatibility of analytical models with North African contexts. Traffick-
ing routes from East Africa often come together in North African transit hubs before moving into
European and Middle Eastern markets United Nations Office on Drugs and Crime| (2024)). The
cross-border relationships between East and North Africa highlight the importance of creating
models that can combine different datasets from various regions. By developing a framework that
is clear in meaning and follows FAIR principles, this research facilitates the comparative anal-
ysis of trafficking patterns beyond national borders, supporting more coordinated regional efforts.

The research also considers the practical challenges of conducting direct fieldwork in
North Africa. As an international master’s student at Leiden University, the author depends
on academic partnerships rather than gathering primary field data. Datasets are accessible
through established collaborations under the guidance of Prof. Mirjam van Reisen at the Leiden
Institute of Advanced Computer Science (LIACS). Doctoral researchers in this network, such as
Kai Smiths, have carried out significant fieldwork in North Africa and nearby areas, producing
qualitative victim accounts and organized case datasets that form the empirical basis for this
study.

By focusing on North Africa as the main case study and expanding interoperability to
other African datasets, the research finds a balance between being grounded in data and having
regional applicability. This dual focus ensures that the framework reflects both the specific local
dynamics of East African trafficking and the wider international patterns that connect to North
Africa. Thus, the choice of location not only boosts the study’s methodological strength but
also enhances its practical relevance for those working to combat trafficking across related regions.
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1.13 Timeline of the Study

Table 1. Timeline of the Study (February 2025 — August 2025)

Month Phase Activities and Deliverables

Feb 2025 Problem Analysis
and Literature Re-

. e Conducted extensive literature review on
view (Phase I)

human trafficking, semantic technologies,
graph networks, and NLP.

e Finalized research gaps and formulated re-
fined research questions & objectives with
supervisor feedback.

e Reviewed datasets (CTDC, UNODC,
anonymized interview data) and assessed
their suitability.

e Began drafting Chapter 1 (Introduction)
and Chapter 2 (Theoretical Framework).

Mar 2025 Methodological De-
sign and System
Architecture (Phase
I7)

e Designed the modular analytical pipeline
integrating NLP, ontology, GNNs, GIS,
and predictive analytics.

e Implemented initial data preprocessing
and NLP modules (NER, coreference reso-
lution).

e Finalized methodology chapter structure;
began drafting initial methodology sec-
tions.

e Participated in mid-term review with su-
pervisor; feedback integrated.
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Month Phase Activities and Deliverables

Apr 2025 Ontology Develop-
ment and Symp o e Developed OWL-based human trafficking
sium  Presentation ontology using Protégé
(Phase III) &Y & ge-

e Validated ontology using SHACL con-
straints and integrated with NLP outputs.

e Presented research at the International
SOLID Symposium 2025 (April 24-25, LI-
ACS).

e Revised Chapters 1 and 2 based on sympo-
sium feedback; enhanced clarity and rigor.

May 2025 Graph  Construc-
tion an d - GNN e Constructed multi-relational knowledge
Integration (Phase
graphs from preprocessed and ontology-
V)
tagged data.

e Implemented Graph Neural Networks us-
ing PyTorch Geometric.

e Designed experiments for role prediction
and route inference; finalized evaluation
strategy.

e Continued development of thesis draft
(Chapter 3: Methodology).

Jun 2025 GIS and Predictive

Modules (Phase V)

Built GIS visualizations using GeoPandas,
Leaflet, and Folium.

Integrated NLP+Graph outputs into dy-
namic spatio-temporal maps.

Implemented LSTM /Transformer-based
predictive models for route forecasting.

Conducted internal testing and debugging
of pipeline modules.
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Month

Phase

Activities and Deliverables

Jul 2025 Evaluation and Fi-

{1/% Results (Phase e Executed full experimental pipeline; eval-
uated model performance (F1, AUC, Pre-
cision@k, RMSE).

e Interpreted results and generated visual-
izations and comparative tables.
e Drafted Chapter 4 (Experiments & Re-
sults) and Chapter 5 (Discussion).
e Conducted feedback loop with supervisor;
incorporated changes iteratively.
Aug 2025 Thesis Finalization

and Defense Prepa-
ration (Phase VII)

e Polished all chapters and finalized full the-
sis document.

e Wrote Chapter 6 (Conclusion) and supple-
mentary materials (Abstract, Acknowledg-
ments, Appendices).

e Submitted thesis for examination; pre-
pared presentation slides and defense
script.

e Final oral defense conducted before com-
mittee.
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2 Theoretical Framework

This research explores the intersection of semantic interoperability, responsible artificial
intelligence, data provenance, and data ethics focused on human rights. The primary goal is to
design and build a complete analytical pipeline for detecting human trafficking. This pipeline
aims to be technically robust, ethically responsible, and practically scalable. This chapter
discusses the theoretical principles, normative assumptions, and computational models that
guide the development of the proposed system.

2.1 Foundations in Semantic Interoperability and Ontologies

A key concept behind this research is semantic interoperability. Human trafficking data is
often scattered due to different sources like NGOs, law enforcement agencies, and international
organizations using various formats and terms. Semantic interoperability unites these diverse
data sources by mapping them to a common framework called an ontology. Ontologies offer
machine-readable and logically structured vocabularies that define important entities, relation-
ships, and constraints within a specific area |Wilkinson et al.| (2016b)).

In this project, we develop a domain-specific ontology for human trafficking that fol-
lows the FAIR principles Wilkinson et al.| (2016b)); Vogt et al| (2024). The ontology allows
integration of structured datasets, like administrative records, and unstructured sources, like
survivor testimonies or police reports, into a unified semantic layer. This foundational layer
enables meaningful data linking, reasoning, and downstream analytics using graph-based models.
Additionally, the ontology follows the FAIR 2.0 recommendations |Vogt et al.| (2024), ensuring
interoperability and semantic richness that supports international cooperation and reuse across
various jurisdictions.

2.2 Data Ownership, Sovereignty, and Control

An important assumption of this research is that data custodians, especially survivors and
front-line organizations, should have control over their data. Traditional anti-trafficking systems
often rely on centralized repositories where sensitive information is pooled. This practice can
risk misuse or loss of agency for those providing the data. This study moves away from such
extraction methods by emphasizing institutionally managed but ethically governed data systems.

Instead of decentralization through personal data storage, the framework uses secure,
institutionally managed storage solutions backed by strict access controls, encryption, and
anonymization protocols. Data custodians and contributing organizations maintain control
over how their data is used, with access granted only through agreements that respect survivor
dignity and comply with international privacy laws ?7. By including sovereignty in governance
practices, this pipeline ensures responsible analytics while protecting survivors and communities
from potential risks.
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2.3 Trust as a Design Principle

Trust is crucial for adopting any analytical framework in sensitive situations like anti-
trafficking work. In this project, trust is established through three connected methods. First,
transparency and traceability are achieved using data provenance methods that track the source,
changes, and uses of data throughout the pipeline. Provenance confirms that all analytical
outputs can be verified for accountability [Hasan and Myagmar| (2022).

Second, we integrate explainable AI techniques across the pipeline. Outputs from natural
language processing models and graph neural networks go through interpretability frameworks
like SHAP [Lundberg and Lee (2017)), allowing stakeholders to evaluate the basis for any pre-
diction or classification. Third, we embed ethical safeguards from the outset. Survivor data is
anonymized, sensitive attributes are minimized, and informed consent supports all partnerships,
ensuring users can trust both the process and the outcomes of the system. Hence, trust in this
framework is built into the technical and ethical design. By creating systems that are clear,
predictable, and focused on survivor needs, the pipeline encourages sustainable collaboration
among multiple stakeholders.

2.4 Responsible Al and Distributed Processing Paradigms

This research also draws on distributed processing methods such as federated learning
and edge analytics. While it does not involve entirely decentralized storage, the pipeline is
designed to be modular and federated. Analytical processes are distributed across interconnected
components, allowing different organizations to join without needing a single area of aggregation.
This approach has several advantages. It reduces the need for sensitive cross-border data
transfers, ensures compliance with local laws, and allows for responsiveness by enabling local
processing near the data source.

Moreover, the system’s design allows for the modular integration of advanced Al models,
enabling future extensions where organizations can implement lightweight versions of entity
recognition or predictive models in secure local settings. This distributed yet federated approach
ensures scalability, legal compliance, and flexibility across various contexts in North Africa,
where trafficking patterns change and data governance varies significantly.

2.5 Ethical Framework and Human Rights—Based Design

The final component of the theoretical framework emphasizes a strong ethical and human
rights perspective. This research is grounded in the belief that data collection, processing,
and analysis must prioritize the dignity, autonomy, and safety of survivors and vulnerable
communities. Mishandling trafficking data can lead to retraumatization, stigmatization, or even
legal or physical danger. To reduce these risks, the pipeline uses privacy-preserving techniques,
adheres to data minimization principles, and processes only what is essential for research goals.

All datasets are collected through partnerships that follow rigorous ethical review processes
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and informed consent protocols. Sensitive identifiers are anonymized or pseudonymized, and
only ethically approved data is included in the pipeline. We ensure transparency by informing
stakeholders about how data is collected, processed, and analyzed. Additionally, security is a
key part of the system’s design, with strong encryption, controlled access, and secure processing
environments.

By incorporating these rights-based safeguards, the framework not only complies with
international data protection laws like the GDPR ? but also gains social legitimacy in humani-
tarian settings. Ethics is integral to the technical framework, ensuring the system is reliable
and trustworthy for long-term use in North Africa and beyond.
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3 Methodology

3.1 System Overview and Scope

This Thesis describes a pipeline from start to finish that is aware of governance issues
and that converts heterogeneous, qualitative trafficking research data from its original state
into an interoperable, time-aware representation of knowledge and geospatial intelligence while
exposing as little data as possible in order to keep it secure. This pipeline was designed with
interoperability and accountability as the top priorities, including FAIR-aligned stewardship and
machine-aligned actionable provenance (Wilkinson et al.l 2016a; Lebo et al) 2013), and adheres
to regulatory expectations for privacy, minimization, and accountability under the GDPR (EU-|
2016)).

Figure [2| Shows the Dashboard and the menu on the side

Debug
@ Enable debug traces

A Human Trafficking Analytics Platform

Welcome! Use the pages e sidebar (or i bove) to merge datasets, explore, visualize networks & maps, run predictions, export entology TTL, and

evaluate quality.

@ Recent Artifacts

Merged datasets Prediction runs Evaluation reports

Figure 2. The Dashboard / Home Page of the Application

At runtime, a data owner uploads a dataset containing qualitative records. The application
loads the file into memory, performs deterministic preprocessing and normalization, and creates
a processed long-format table. This table retains only the columns essential for analysis, such as
serialized identifiers, normalized locations with route order, and coarse durations when present.
Also included are cleaned, non-sensitive attributes that are needed for aggregation. The upload
is not persisted. It is visible only to the uploader during the active session. After that, it
is discarded. All the downstream modules operate exclusively on the processed table. They
construct a typed graph in memory, which then is exported as a single static image. Also,
they make an interactive HTML visualization and a geospatial module that resolves toponyms
and synthesizes map layers for exploratory analysis. Since every artifact can be regenerated
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deterministically from the processed table, results remain reproducible without re-exposing to
the uploader the raw content (Lebo et al., [2013; |Wilkinson et al., 2016a).

Figure |3| Shows the Upload page where user can upload the dataset and once the user
uploads the dataset the NLP pipeline is triggered

C R (@ localhostB501Upload ¢

L) Upload & Standardize

cel [ JSON files, standardize them into the ap

Figure 3. The upload page of the Application

The internal representation supports clear structures that are easy to check. Graph con-
struction uses NetworkX, featuring typed nodes such as victim, location, perpetrator, and chief,
with labeled edges derived directly from the processed table. It also includes standard descriptive
measures that help with understanding (Hagberg et al., 2008). To enable interoperability, an
RDF export created with RDFLib sets up classes and properties that match this schema. It also
attaches temporal order and WGS84 coordinates to location nodes when available. This setup
allows for reuse by semantic tools and meets FAIR objectives (Lebo et al., 2013 |Wilkinson
et al., |2016al).

The geospatial subsystem turns location strings into coordinates and collects them into
layers that reveal spatial concentration and movement. Resolution depends on looking up known
place names, with conservative fuzzy matching based on classical edit-distance methods to
handle minor spelling variations (Levenshtein, 1966). Mapping is done using Folium, which
uses Leaflet to display a base map, a density heatmap, marker clustering to reduce overlap, and
animated paths when route order is available. This approach provides a time-aware view of
flows without overstating precision (Leaflet|, 2025; Folium Project, [2025)). Locations that cannot
be resolved with confidence are either excluded or flagged to prevent misleading details.

Data handling strictly separates roles and minimizes data use. Raw uploads stay only in
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the uploader’s session and are not stored. The only saved items are the processed projection and
derived exports, which are owned by the uploader and remain private unless shared. Administra-
tive tasks are limited to configuration and health checks, without access to raw data. Storage is
kept within the controlled environment; the system does not automatically transfer data across
borders. These practices ensure data minimization and purpose limitation, while also reducing
potential vulnerabilities by design (EU-, 2016). Provenance links accompany each derived ar-
tifact, allowing for audit of analytical lineage without exposing sensitive inputs (Lebo et al., 2013)).

The main goal is to change messy, qualitative evidence into a semantically stable and
spatiotemporally clear representation. This supports investigative and humanitarian tasks like
reconstructing routes, identifying activity hubs, and linking related cases through shared places
and actors. This focus aligns with sector guidance that emphasizes integrated, multi-source
analysis and clear methods, while also considering the sensitivity of humanitarian data (United
Nations Office on Drugs and Crime}, 2023bj; Counter-Trafficking Data Collaborative, 2025)).

The project scope is intentionally limited to avoid overstating claims. Predictive analytics,
such as sequence forecasting with recurrent networks, graph neural prediction, or time-of-arrival
estimation, are not included. The contribution is descriptive and integrative: an interoperable,
reproducible, and privacy-conscious pipeline, with artifacts that can be reproduced and audited
independently (Wilkinson et al., 2016aj; EU-, |2016)).

The following sections explain, in order, the dataset intake and compatibility layer, the
governance-aware data handling that puts processes into practice, the preprocessing and canon-
icalization processes that create the long-format table, graph construction and RDF export,
geospatial synthesis, and the orchestration that ensures consistent artifact results. Each module
connects to the research questions and goals, and each produces verifiable outputs that support
the evaluation plan.

3.2 User Requirements and Task Grounding

The system’s features and limits come from a combination of existing literature and
accepted practices in requirements engineering. The goal is to provide decision-ready analytics
without risking the confidentiality of sensitive trafficking data. The requirements highlight
the need for semantic interoperability, privacy, data minimization, strict control over access
to raw content, and outputs that can be audited and reproduced to support specific tasks for
practitioners. The analysis follows a goals- and artifacts-focused approach, ensuring that every
function connects to a stakeholder need and a verifiable system artifact (ISO/IEC/IEEE; 2018;
van Lamsweerde, 2001). Governance and stewardship considerations are included from the
beginning using principles that promote reuse and transparency, along with machine-actionable
provenance and privacy obligations set out in the GDPR (Wilkinson et al 2016a; Lebo et al.,
2013; [EU-, 2016)).
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3.2.1 Primary user tasks

The system is meant to help with three common tasks identified in literature and practice.
These are: reconstructing movement across locations based on qualitative records, identifying
active spatial hubs, and consolidating potentially related cases through shared places and people.
These tasks are emphasized in international monitoring and research synthesis, which highlight
the need for integrated, multi-source situational awareness while recognizing the sensitivity of
victim-centered data (United Nations Office on Drugs and Crime, 2023b; (Counter-Trafficking
Data Collaborative, 2025)). The implemented process—processed table to typed graph to layered
maps—Tfacilitates these tasks without revealing raw content to unintended parties.

3.2.2 Requirement: exclusive control over raw uploads

Data owners need raw datasets to remain inaccessible to other users, including adminis-
trators and viewers. They also require that raw content not be stored beyond the uploader’s
active session. This mirrors GDPR principles of data minimization and purpose limitation,
along with the security principle of least privilege Mechanism (EU-| 2016; |Saltzer and Schroeder,
1975)). The application loads raw files into memory for transformation, only creating a sanitized
processed version, while discarding the raw upload afterwards. Role checks in the interface and
backend ensure that only the uploader can view the raw content during the active session. No
storage or background export of raw fields occurs.

3.2.3 Requirement: processed-only persistence and data minimization

Stakeholders require the system to keep only a reduced, meaningful version of the data for
analysis, excluding sensitive fields. This supports FAIR’s focus on machine-actionable metadata
and aligns with GDPR’s data minimization rules Mechanism (Wilkinson et al., 2016a; |EU-| 2016).
The preprocessing layer generates a long-format table with serialized identifiers, normalized
locations in order, approximate durations when possible, and cleaned, non-sensitive attributes
needed for aggregation. All derived analytics—graphs, maps, and RDF exports—come strictly
from this processed version.
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Figure 4. NLP Extracted infromation from RAW dataset is stored and the RAW dataset is instantly flushed
from the system

3.2.4 Requirement: strict role separation and least privilege

Administrative tasks should not allow access to user data. Viewers and non-owners must
not access another user’s raw or unshared processed artifacts. Maintaining least privilege
and compartmentalization is important for reducing risk and preventing accidental disclosure
Mechanism (Saltzer and Schroeder, 1975) . Roles are confined to their designated areas:
administrators manage configuration and system health without read access to raw uploads;
processed artifacts belong to the uploader and stay private until explicitly shared; non-owners
cannot view or access another user’s artifacts.
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Admin: Role Assignment & User Manager
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% Modify User Role
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Figure 5. Admin dashbaord with Role assignment and to further enforce Role Based Access Control (RBACS)
and also application ensures that the RAW data is never stored and even the processed version has heavy access
control

3.2.5 Requirement: clear data residency and non-egress by default)

Deployments should not send data outside the hosting environment without the owner’s
explicit action to prevent cross-border issues and maintain institutional control Mechanism.
All persistence targets stay local to the controlled environment. There is no automatic egress,
synchronization, or third-party upload. Exports are created as local files for the owner’s
distribution.

3.2.6 Requirement: semantic coherence and interoperability

Analysts need a stable, auditable representation that retains meaning across records and
supports both structural (graph) and spatiotemporal (GIS) queries. FAIR promotes machine-
actionable integration, while provenance standards allow for analysis inspection Mechanism
(Wilkinson et al.l 2016a; Lebo et al., |2013)). The transformation step yields a normalized
long-format schema; the graph layer creates typed nodes and labeled edges directly from this
schema; the RDF export provides a standards-compliant serialization that reflects the same
structure for use with semantic tools.

3.2.7 Requirement: reproducibility and auditability without re-exposing raw
content

Reviewers should be able to recreate figures, tables, and interactive artifacts from the
processed version and examine analytical lineage without accessing raw inputs. The orchestration
follows a fixed sequence. Parameters and identifiers accompany every derived artifact, ensuring
they can be recreated to achieve the same results given identical inputs. Minimal run metadata
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shows lineage while preventing leakage of raw fields (Lebo et al., 2013]).

3.2.8 Requirement: uncertainty-aware geospatial rendering

Maps should indicate the uncertainty present in place names from qualitative narratives
and avoid giving false precision. International reports highlight the risks of misinterpreting
sparse or noisy spatial signals (United Nations Office on Drugs and Crime, 2023b)). Locations are
determined through explicit lookups, using cautious fuzzy matching only for minor variations.
Unresolved or low-confidence entries are either excluded or flagged. Density, clustering, and
trajectory layers are provided to support exploratory analysis without implying unwarranted
accuracy.

3.2.9 Requirement: simplicity of operation and export

Practitioners need artifacts that can be exported and embedded into reports without
requiring specialized tools. The user interface displays an interactive graph for inspection and
offers exports as static images and HTML. Geospatial views are created with web-native layers
for easy sharing. The processed table and RDF serialization are available as files that the owner
can archive or transfer.

3.2.10 Traceability to research questions and evaluation

Each requirement connects to one or more research questions and to corresponding evalu-
ation evidence. Exclusive control over raw uploads, processed-only persistence, role separation,
and data residency aligns with governance-focused questions, with evidence from configuration,
storage layout, and access tests. Semantic coherence, reproducibility, and exportability align
with interoperability and pipeline questions, supported by consistent checks in artifact regenera-
tion and schema/graph/RDF. Uncertainty-aware mapping aligns with the geospatial analysis
question, evidenced by resolution diagnostics and exclusion policies. Therefore, this chapter
moves from these requirements to the specific design and implementation choices that make
them possible in software and to the evaluation plan that ensures they hold in practice.

3.3 Data Sources, Intake, and Compatibility

The pipeline ingests researcher-supplied datasets containing qualitative records and associ-
ated tabular fields. Uploads are accepted in common spreadsheet formats (CSV/Excel) and are
read into memory for immediate transformation using column-normalization and schema checks.
To ensure that downstream analytics operate on a coherent representation, the intake step
validates a small set of mandatory fields and normalizes common header variants to canonical
names. At minimum, the schema requires a stable victim identifier and a route-bearing location
field; in practice, it also expects demographic fields that are non-sensitive in aggregate form
and that support descriptive analyses. Concretely, the intake layer normalizes headers and
verifies the presence of key columns, including Unique ID, City / Locations Crossed, and, when
available, Time Spent in Location / Cities / Places, along with basic descriptors such as Gender
of Victim and Nationality of Victim. Header normalization collapses whitespace and maps
frequent aliases (for example, City/Locations Crossed — City / Locations Crossed) so that
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semantically equivalent inputs are treated uniformly. Datasets that fail validation are rejected
with a clear message indicating missing fields, which prevents silent misalignment at later stages.

Intake is designed to preserve confidentiality while maximizing reproducibility. Raw
files are parsed into an in-memory DataFrame for transformation and are not persisted. The
transformation yields a processed long-format table in which each row represents a single step
of a victim’s route through a location, with an explicit order index and a serialized identifier
propagated to all steps for the same case. This design follows well-established principles of
“tidy” data organization—for which each variable has its own column and each observational
unit its own row—thereby simplifying downstream joins, aggregation, and validation (Wickham,
2014)). The use of mature tabular tooling (pandas) ensures stable, explicit type coercions and
deterministic operations necessary for auditability and reruns (McKinney, 2010).

Because additional datasets may need to be integrated over time, the intake module
provides a compatibility layer that maps project-specific or partner-supplied headers into the
canonical schema and coerces list-like cells into normalized Python lists. For example, narrative-
derived lists such as perpetrators or chiefs are split using conservative tokenization rules that
tolerate commas, semicolons, and bracketed forms, followed by trimming and de-duplication
under case-insensitive comparison with optional near-duplicate collapse when a fast similarity
function is available. Locations are cleaned as strings at intake but not resolved to coordinates
until the geospatial module executes; this separation keeps the compatibility shim focused on
structural harmonization rather than inference.

When multiple sources are loaded for comparative analysis, the intake layer assigns
each dataset a source identifier and records a user-defined precedence order for conflict resolu-
tion. Downstream utilities can then merge sources deterministically using simple, documented
strategies, such as keeping values from higher-priority sources, uniting list-valued fields where
appropriate, or retaining the last declaration by precedence. Prior to merge, a grouping key
built from victim identifier, route order, and location allows the system to detect potential
conflicts across sources for manual review. This approach acknowledges that anti-trafficking
datasets are often assembled under heterogeneous practices and that transparent, reproducible
merge rules are preferable to opaque heuristics.

The result of intake and compatibility is a single processed table that is semantically
coherent, explicit in its observational unit, and stripped of fields that are not required for
analysis. Only this processed projection is eligible for persistence; the original upload remains
confined to memory during the session and is discarded thereafter. By coupling tidy-data
organization with strict minimization and by avoiding raw-file persistence, the intake design
supports both FAIR-aligned reuse of derived artifacts and privacy-by-design handling of sensitive
content (Wilkinson et al., 2016a). In addition, by enforcing explicit, documented conversion
steps at the boundary, the system reduces the likelihood of silent drift between partners’ data
definitions and the analysis-ready schema used throughout the thesis, reflecting best practice
for transparent, auditable data preparation in computational social science.

52



3.4 Governance-by-Design Data Handling

Data handling in the pipeline revolves around three core principles: data minimization,
strict separation of roles, and accountable derivation. The system processes raw uploads in
memory to create a reduced, analysis-ready version and only saves this processed table along
with its downstream artifacts. This design meets GDPR requirements for limiting purpose and
minimizing data, while also avoiding unnecessary retention of sensitive information (EU-, 2016).
To maintain tracking of analysis without exposing raw inputs, every derived artifact includes
machine-actionable provenance links to the processed version instead of the original upload.
This aligns with FAIR and W3C PROV guidance (Wilkinson et al., 2016a; Lebo et al., 2013)).

3.4.1 Processed-only persistence and minimization.

When a dataset is uploaded, it is parsed into memory, validated, and transformed into a
long-format table. This table contains only the fields necessary for analysis: serialized identifiers,
normalized locations in route order, approximate durations when available, and a small set
of non-sensitive descriptors. Sensitive columns from the original file are excluded by design.
The raw file is not saved to disk and becomes inaccessible after the transformation finishes.
Saved artifacts—processed table, graph exports, RDF /TTL serializations, and GeoJSON—are
projections that do not contain any raw text or direct identifiers. This enforces minimization at
the storage level and ensures downstream operations work with only the necessary data (EU-|
2016).

3.4.2 Role separation and least privilege.

Access to the data and artifacts follows the principle of least privilege (Saltzer and
Schroeder}, [1975). The uploader, or data owner, is the only person who can see the raw
upload during their active session; no other users, including administrators, can access the raw
information. Administrative functions are limited to configuration and health monitoring and
do not include access to user data. Processed artifacts belong to the uploader and cannot be
discovered or read by anyone else unless sharing is explicitly allowed. The application performs
checks when reading or exporting data to ensure that even metadata listings do not reveal raw
field values or file paths. These decisions reduce potential vulnerabilities and match operational
actions with privacy-by-design goals (EU-| 2016; (Cavoukian, [2010).

3.4.3 Residency and non-egress by default.

All saved artifacts are kept within the controlled deployment environment; there is no
automatic transfer to external services, and no background synchronization occurs. Exports,
like the interactive graph HTML or map data, are created as local files linked to the owner’s
account. This approach allows the data owner to make decisions about releasing their data
and avoids cross-border transfers by default. When collaboration is necessary, owners share
processed artifacts, not raw inputs, which keeps the same level of risk outside the application.
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3.4.4 Provenance without raw re-exposure.

To support verification and repeated analyses, the system logs machine-actionable prove-
nance related to the transformations applied to the processed table and the parameters that
generated each artifact. Provenance records include stable identifiers for the processed dataset,
transformation steps, and configuration hashes while intentionally excluding raw-field echoes or
free text. This allows for the independent reproduction of figures and tables from the processed
version without including sensitive inputs in logs or audit trails (Lebo et al., [2013; Wilkinson
et al., [2016al).

3.4.5 Logging and operational metadata.

Operational logs capture minimal, non-content metadata such as timestamps, status
codes, and anonymized dataset IDs. Error messages are crafted to provide helpful information
for debugging but do not include raw values; for example, they may truncate or redact user-
provided strings. This meets needs for accountability and forensic review while preserving data
minimization (EU-| 2016).

3.4.6 Threat model boundaries and non-goals.

The governance approach aims to address practical risks in a research setting, including
unintentional disclosures through storage or logs, excessive administrative read access, and
uncontrolled sharing of detailed raw text. The system does not claim to provide specialized
defenses against nation-state threats or to implement advanced cryptographic techniques; these
features would require different constraints and are outside its scope. Instead, the focus is on
strong defaults, such as processed-only persistence, owner-only visibility of raw data, and non-
egress storage. It also emphasizes clear accountability through provenance on every artifact and
simplicity in operations to ensure privacy safeguards are effective in everyday use (Cavoukian,
2010; EU-, 2016)).

3.5 Dataset Registry and Provenance Artifacts

The pipeline keeps a simple registry that only records analysis-ready artifacts and the
minimal metadata needed to reproduce them. Its purpose is twofold. First, it makes exports
easy to find and rerun without keeping raw inputs. Second, it attaches machine-readable lineage
to every figure or table that appears later in the thesis. The design follows principles of good
data stewardship, such as persistent identifiers, clear labeling of artifacts, and enough metadata
for reuse. It represents derivations in a way that is compatible with W3C PROV. This makes
analytical steps clear and allows for audits (Wilkinson et al., 2016a; Lebo et al.| [2013). In
line with good practices for reproducible computational research, the registry values simplicity
and predictability over complicated systems. It captures just enough structure to support
independent verification (Sandve et al.l 2013; Wilson et al., [2017).

3.5.1 Registry scope and entities.

Entries are created only for the processed dataset and its derivatives. For each upload
session, the system creates a processed long-format table that excludes sensitive fields. This
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table is registered as a dataset entity with a stable identifier and a brief description of its schema
version. From this single source, the application produces a small group of derived artifacts: a
static graph image, an interactive graph HTML view, an RDF serialization (TTL) that mirrors
the graph structure, and a GeoJSON stream for map rendering. Each derivative has its own
registry entry that points back to the original processed dataset. No raw uploads are registered
or saved, and no registry field stores raw text or direct identifiers.

3.5.2 Identifiers, locations, and minimal metadata.

Every registry entry holds three types of information: identity, storage, and lineage.
Identity includes a local unique identifier, a human-readable label, the artifact type (processed
table, graph PNG/HTML, RDF/TTL, GeoJSON), and timestamps for creation and last access.
Storage notes the file path within the controlled environment and the owning account, allowing
the system to manage access without revealing content. Lineage connects each derivative to
its original processed dataset and captures a compact parameter snapshot needed to recreate
the artifact. For instance, it records the chosen layout seed for the graph view or the map
layer switches that were enabled. The parameter snapshot is intentionally narrow and avoids
repeating any raw fields; its only purpose is to ensure that “same inputs, same outputs” is a
documented feature of the workflow (Sandve et al. 2013; Wilson et al., [2017)).

3.5.3 Provenance model and audit trail.

In concept, the registry’s lineage fields match the PROV-O pattern of Entity, Activity,
Entity. A processed dataset (Entity) is used by a rendering or export step (Activity) to create a
graph image, HTML view, RDF file, or GeoJSON stream (Entity). The registry captures this
with explicit back-links from each derivative to its source dataset and a brief activity description
(tool, version, and key parameters). Since all derivations start from the same processed table,
auditors can check that no export relies on unregistered inputs. This level of provenance is
enough to rerun the pipeline and to explain in the manuscript how each figure or table was
made (Lebo et al., 2013)).

3.5.4 Registration workflow and retrieval.

Registration happens when a user creates an artifact through the user interface. When
a user exports the processed table, generates a graph view, saves the RDF/TTL, or writes
GeoJSON for the map, the application stores the file in a set location under the owner’s
workspace and adds a registry entry with the identity, storage, and lineage information. Later
components find artifacts by querying the registry using the processed dataset identifier, ensuring
that only compatible exports appear together. For example, the graph and map generated from
the same processed table will surface next to each other. Because the registry only knows about
processed and derived artifacts, a search can never return raw content.

3.5.5 Privacy-preserving metadata and retention.

To limit risk, the registry keeps only operational metadata. Labels are short and neutral,
such as a user-supplied dataset nickname, and paths are restricted to the owner’s area. There
is no inclusion of free text or column values. Retention aligns with the usefulness of artifacts:
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processed tables and their exports remain until the owner deletes them, allowing for the
reproduction of manuscript figures. Meanwhile, temporary Ul previews that are not exported
leave no trace. This method meets data minimization and purpose limitation requirements while
keeping enough information for recomputation and review (Wilkinson et al., [2016aj; Wilson
et al., 2017).

3.5.6 Consistency and failure handling.

To prevent partial writes, such as those from an interrupted export, the application
registers an artifact only after the file operation succeeds. Each entry includes a simple integrity
check, like file size and modification time, which later components check before loading. This
reduces the chance of using outdated or incomplete exports in analysis. If a referenced file is
missing or fails the integrity check, the registry marks the entry as invalid and provides a clear
path for repair: regenerate the artifact from the same processed dataset using the recorded
parameters. This process keeps the registry consistent without adding complicated transactional
systems, aligning with the project’s focus on transparent, auditable workflows (Sandve et al.)
2013).

3.5.7 Implications for the thesis.

Since every graph image, interactive view, RDF file, and GeoJSON stream in later chapters
is represented in the registry with clear lineage to a single processed dataset, the thesis can
cite stable identifiers and parameter snapshots alongside figures and tables. Readers and
reviewers gain a direct way to recompute results: load the processed dataset and rerun the
recorded export without needing access to raw inputs. In this way, the registry supports both
result reproducibility and source confidentiality, reflecting the methodological approach taken
throughout the work (Wilkinson et al., 2016a; |Lebo et al., [2013)).

3.6 NLP Preprocessing, Normalization, and Canonicalization

This subsection describes the clear text and table transformations that turn an uploaded
spreadsheet into the processed long-format table used by all following modules. The procedures
are intentionally simple, including rule-based normalization, list tokenization, canonicalization,
and route expansion. This design allows for auditing and reproducing the process without
showing raw free text. Implementation uses established tabular tools for clear typing and stable
sorting (McKinney, 2010) and organizes the outcome in a “tidy” observational structure that is
suitable for joins, validation, and export (Wickham) 2014)).
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Figure 6. The upload page of the application post NLP stage where it extracts all vital information and drops
all the RAW Columns, it never stores the original daatset whatsoever, instead a very porcessed version that
doesn’t have any sensitive data is stored

3.6.1 Input notation and goal.

Let the raw upload be a table D = {r;}?_; with headers H and rows r;; each row contains
at least a stable case identifier and a route-bearing location field. The goal is to produce a
processed table

D= {(SerializedID,UniqueID,Location,Route Order, }

D= {(Time_Spent,Perpetrators, Chiefs }

where each row represents one step in a route, Route Order € N gives the within-case
sequence, and list-valued fields are normalized to de-duplicated lists of canonical strings. Sensitive
columns from D are not propagated.

3.6.2 Header normalization and schema validation.

A normalization map ¢ : H — H coerces common header variants to canonical names (e.g.,
City/Locations Crossed — City / Locations Crossed). Minimal schema validation requires
the presence of Unique ID and City / Locations Crossed, and optionally
Time Spent in Location / Cities / Places plussafe demographic descriptors. Rows failing
mandatory-field checks are rejected with explicit diagnostics to prevent silent drift.

3.6.3 Identifier serialization.

A stable serializer s : X7 produces SerializedID by (i) Unicode NFC normalization, (ii)
trimming, (iii) internal whitespace collapse, and (iv) case folding:

s(z) = lower (collapse_ws(trim(nfc(z)))).
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Serialized IDs propagate to all exploded route rows, providing a deterministic key for joins and
exports.

3.6.4 List tokenization and canonicalization.

For list-valued cells (e.g., perpetrators or chiefs), tokenization uses a conservative regu-
lar expression that tolerates common delimiters while avoiding token splits inside bracketed
substrings:

T =1/0,;11/ with guarded splits on [()].

Each token t is canonicalized by
c(t) = lower(strip_punct(collapse_ws(trim(t)))),

and the cell value becomes an ordered, de-duplicated list uniq([c(t) Jsc7(2)). To mitigate near-
duplicates differing by minor edits, an optional bounded edit-distance merge replaces tokens
u,v with a representative when

lev(u,v) <7,
where lev is the Levenshtein distance (Levenshtein, [1966; [Wagner and Fischer] 1974 and
T€{1,2} for conservative collapse. This step is deterministic given a total order on candidates
(e.g., keep the lexicographically smaller form).

3.6.5 Location string normalization and route expansion.

Location cells are cleaned by the same ¢(-) and then exploded into a sequence L; =
[ix, ..., Lig,] using T. The route ezpansion is the cartesian composition of case identifiers with
ordered locations:

expand(r;) — {(SerializedIDi,UniqueIDi,ﬁm, Route_Order = j)}jzl

If the source provides a final terminal place separate from the crossing list, the expansion
appends it as ¢; ;,+1 with Route_Order = k;+1. This representation directly supports graph
construction and geospatial synthesis while keeping the original free-text field out of persistence.

3.6.6 Duration parsing (descriptive, not predictive).

When present, narrative durations are parsed by a simple finite set of unit patterns and
coerced to days:
days(q,u) = q-v(u), where y(day)=1, y(week)=7, y(month)~30, v(year)~365.

Extraction uses regexes such as /(\d+)*(day|week|month|year)s?/i. The result is stored as
a coarse integer Time _Spent for descriptive summaries only; no ETA or forecasting is performed.

3.6.7 Type coercions and invariants.

Columns in D have specific types: identifiers are strings, Route_Order is an integer,
list-valued fields are JSON-serializable arrays, and durations are integers representing days. In-
variants checked after transforming include: (i) the uniqueness of (SerializedID, Route Order),
(ii) non-empty Location, and (iii) list elements that are already canonicalized, which means no
leading or trailing spaces and all in lowercase. Any violations trigger actionable diagnostics.
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3.6.8 Deterministic caching and run fingerprints.

__ To allow recomputation without saving raw inputs, the system keeps a run fingerprint
h(D). This fingerprint is a cryptographic hash of a canonical serialization of the processed table,
which includes the schema version, sorted rows, and stable encodings. With the same inputs
and parameters, the pipeline is idempotent. It creates the same D and identical downstream
outputs, such as the graph, RDF, and GeoJSON. This ensures that “same inputs, same outputs”
reproducibility is maintained (Wilson et al., [2017; |Sandve et al., 2013).

3.6.9 Algorithmic specification.

Algorithm (1| summarizes the transformation. Its worst-case time is O(N L+ M 7) where N
is the number of rows, L the average number of location tokens per row, M the total list tokens
across perpetrator/chief fields, and 7 the small constant threshold used in bounded edit-distance
checks.

Algorithm 1 Deterministic preprocessing, normalization, and canonicalization

Require: Raw table D, header map ¢, delimiter set T, edit-distance threshold 7 € {0, 1,2}
Ensure: Processed long-format table D
0: D < normalize_headers(D, ¢); assert required columns exist
0: for all row r in D sorted by Unique ID do
0:  sid < s(r[Unique ID])
L + explode_locations(r[City / Locations Crossed|,7)
L <+ [c(f) | £ € L] {canonicalize locations}
Perp < uniq([¢(¢)]) from tokenizing r[Perpetratorsj|
Chiefs <— uniq([¢(t)]) from r[Chiefs]
if 7 > 0 then
Perp < merge_near_dups(Perp, lev, 7)
Chiefs <— merge_near_dups(Chiefs, lev, 7)
end if
. T < parse_duration_days(r[Time Spent in Location / Cities / Places])
{optional}
for j «+ 1 to |L| do
append to D: (sid, r[Unique IDJ, L[j],j, T, Perp, Chiefs,...)
end for
0: end for R R R
0: enforce types and invariants on D; compute h(D); return D =0

P ®

e 2

3.6.10 Quality checks (post-transform).

Simple, fast diagnostics run on D to catch inconsistencies before the graph or GIS stages.
These include counts of unresolved or empty locations, checks for SID-UID pairs, duplicate
route orders for each SID, and summaries of coverage for list fields. The user interface reports
these checks for corrective action without showing any raw free text.
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3.6.11 Discussion.

The selected operations promote transparency. Regex-based parsing, conservative edit-
distance collapse, and explicit typing are easy to review and repeat. This aligns with best
practices in reproducible computational research (Sandve et al.; 2013; Wilson et al.,|2017). Each
transformation is expressed as a total function on well-defined inputs—headers, tokens, route
lists. The pipeline ensures that downstream artifacts (graph exports, RDF/TTL, GeoJSON)
depend only on the processed projection, which helps maintain privacy while improving audit
processes.

3.7 Processed Schema and Sanitized Projection

This section describes the processed table that all downstream modules use. The schema
is designed to be (i) minimal, containing only essential, non-sensitive fields; (ii) tidy, with each
variable in its own column and each observation in its own row; and (iii) reproducible, featuring
stable types, explicit constraints, and provenance links to derived artifacts (Wickham)| [2014;
Lebo et all 2013; Wilkinson et al 2016a). To follow data-minimization and purpose-limitation
principles, raw qualitative fields and direct identifiers are not kept. Analysis works only with
this cleaned projection (EU-, 2016).
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3.7.1 Authoritative column dictionary.

Column Type Semantics (notes)

SerializedID string Deterministic, hashed/normalized case
identifier propagated to all exploded rows
for the same case; safe for joins and ex-

ports.

UniqueID string Original case key (cleaned). Retained as a
stable reference; never used to reconstruct
raw text.

Location string Canonicalized  toponym  (lowercased,

trimmed, punctuation-normalized). Rep-
resents one step in the route.

Route Order int 1-based within-case sequence index
for the route; strictly increasing per
SerializedID.

Time_Spent int (days) Coarse duration parsed from narrative

(opt.) units when present; used for descriptive

summaries only, not prediction.

Perpetrators list[string] Canonicalized tokens (keyword-like) for al-
leged perpetrators; de-duplicated, option-
ally near-duplicate merged.

Chiefs list[string] Canonicalized tokens for chiefs/handlers;
same normalization as Perpetrators.

Gender Victim string Coarse label after normalization (e.g.,

(opt.) female/male/unspecified).

Nationality Victistring Canonical country/region label after nor-

(opt.) malization; used for aggregate stratifica-
tion only.

SourcelD string Short identifier of the intake source

(dataset label) to support multi-source
merges and audit.

Schema Version  string Version stamp of the processed schema
used to create this table.

Table 2. Processed long-format schema used across graph, ontology/RDF, and GIS modules.

3.7.2 Sanitization principles.

Only essential, non-sensitive, keyword-like fields are kept. Free text, narrative passages,
names that could reveal identity, contact details, and any columns not needed for analysis are
removed by design. Canonicalized list fields (Perpetrators, Chiefs) contain normalized tokens

61



instead of exact strings. The design ensures that downstream outputs, such as graph exports,
RDF/TTL, and GeoJSON, come from this sanitized version and do not require access to raw
uploads (Wilkinson et al., [2016a; EU-, 2016).

3.7.3 Shape constraints and invariants.

To keep the table clear and easy to join:

e Key uniqueness. The pair (SerializedID, Route Order) is unique; Route Order
strictly increases within each SerializedID.

e Non-emptiness. Location is not empty after canonicalization; empty or unresolved
entries are removed upstream.

e Type discipline. Lists are JSON-serializable arrays of lowercased tokens; durations are
non-negative integers measured in days; IDs are normalized strings.

e Versioning. Schema Version is marked on the table and reflected in export metadata so
figures can be recreated against the same specification.

3.7.4 Downstream consumption.

The schema is the only contract for all modules:

e Social network graph (Sec. 3.9). Nodes are created from SerializedID (victim),
Location, and token lists (Perpetrators, Chiefs); edges come from co-occurrences per
route step and per case. Graph exports include Schema Version and the processed dataset
identifier.

e Ontology & RDF (Sec. 3.10). Classes and properties reflect the columns (e.g., Visit
with Route_Order); optional latitude/longitude are added later in GIS exports, not to the
core table, to respect minimization.

e GIS spatio-temporal (Sec. 3.11). GeoJSON is built from Location and Route_Order
after toponym resolution; time-aware layers use these fields, following web mapping
standards for coordinates and features (Butler et al., [2016]).

3.7.5 Interoperability and provenance.

Each exported item includes a simple provenance record linking back to the specific
processed dataset ID and Schema Version. This allows “same inputs, same outputs” recreation
without referring to raw fields (Lebo et al.; 2013; Wilkinson et al., 2016a). Because the schema is
organized and clear, joining across modules is straightforward and less prone to errors (Wickham,
2014).
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3.7.6 Omissions and redactions (by design).

Columns often found in raw uploads—mnarrative text, detailed personal descriptions, free-
form notes, contact information, and any field unnecessary for graph or map creation—are
intentionally left out. If a partner dataset includes additional attributes, they are considered
at intake but will not be included in the processed version unless specifically approved as
non-sensitive and necessary for analysis. This strategy balances analytical usefulness with
privacy and reduces vulnerabilities while ensuring full reproducibility of derived outputs (EU-,
2016).

3.8 Social Network Graph: Construction and Visualization

The application builds a typed, weighted network from the processed table in Section
3.8 and makes it available for exploration. Construction and export are predictable, meaning
that the same inputs and parameters will produce the same outputs. Graph creation uses
NetworkX (Hagberg et al., 2008). Users can view the graphs interactively through a browser-
based renderer called PyVis, which is set up for repeatability. The layout uses a force-directed
method developed by Fruchterman and Reingold, which is selected for clarity on small to
medium graphs (Fruchterman and Reingold, [1991)).

Figure 7. The Network Graph generation page, user can select entities to be rendered and also the max nodes
to render
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Network Graphs

al For

Figure 8. Shows the generated social network graph that has been created by connecting nodes with victims,
nodes, perpetrators and chiefs, all entities are connected to each other and form a social network graph that
visualizes the network

3.8.1 Formalization.

Let Vs denote victim nodes (keyed by SerializedID), Vi, location nodes (keyed by
canonical Location), Vp perpetrator tokens, and Vi chief tokens. The node set is

V=VsUWuUWwuU.
Edges arise only between victims and the other types, producing a union of bipartite layers:
E C (VsXVL) U (VsXVp) @) (VsXVC).

For each processed row z = (SID,Location,Route_Order,Perpetrators, Chiefs), the system
emits
(8ID,Location), (SID,p) Vp € Perpetrators, (SID,c) V¢ € Chiefs.

Edge weights count co-occurrence across route steps and cases:
w(u,v) = Z 1[(u,v) € z, (u,v) € E.
zeD
Node size in the visualization scales with weighted degree
deg,,(v) = > w(v,u),
(v,u)EE

and tooltips report simple descriptors (degree, type, distinct victims per location). Community
detection or advanced centralities are not displayed unless explicitly enabled; the default statistics
include degree and connected-component summaries.
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@ localhost Network_Graphs

Deploy

Graph ready.

il 745 visited Eritrea

d Evaluations

User Guide

Figure 9. Zoomed in version of the graph showing two nodes connected to each other and also the edge describing
how a victim traveled from one location to other

streamlit apr Graph ready.

Upload Standardize

Khartoum — Omdurman<br/>Victims traversing: 1

Figure 10. This zoomed version of graph shows an edge which describes a victim traveling from Khartoum to
Omdurman

3.8.2 Algorithm: typed, weighted graph construction.

The build traverses D in a stable order and increments integer weights. The procedure is
linear in the number of processed rows plus total list tokens.
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Algorithm 2 Deterministic construction of a typed, weighted graph

Require: Processed table D with columns: SerializedID, Location, Route_Order,
Perpetrators, Chiefs
Ensure: Typed, weighted graph G = (V, £, w)
0: G < empty graph
0: for all row z in D ordered by (SerializedID, Route Order) do
0: v < SID: z.SerializedID; add node(G,v,type = victim)
0: [+ LOC: z.Location; add_node(G, [, type = location); INCR(v,!)
0: for all p in z.Perpetrators do
0: a < PERP: p; add_node(G, a, type = perpetrator); INCR(v, a)
0: end for
0: for all ¢ in x.Chiefs do
0 h < CHIEF: ¢; add_node(G, h,type = chief); INCR(v, h)
0: end for
0: end for
0: annotate node attributes: type, deg,,, distinct victims per location
0: return G =0

Complexity. Let N = |D| and T the total tokens across perpetrator/chief lists. Construction is
O(N + T') time and O(|V| + | E|) space. Connected components (for summaries) are computed
in O(|V] + | E|) using BFS/DFS (Cormen et al. 2009, Ch. 22).

3.8.3 Layout and export (reproducible).

Static figures use a seeded force-directed layout. Fruchterman—Reingold models repulsion

and attraction as
k2 d? [ A
f"'( ) d Y fa( ) k: ) O |V|7

where d is inter-node distance, A the drawing area, and C' a tunable constant (Fruchterman
and Reingold, |1991). Using a fixed random seed guarantees the same final layout for the same
G. The HTML export (PyVis) embeds identical node/edge attributes and layout parameters so
the interactive view matches the static figure.

Algorithm 3 Reproducible layout and export

Require: Graph G, seed s, canvas area A

set_seed(s); k < C\/A/|V]

run Fruchterman—Reingold for I iterations (deterministic under s)
encode node size x log(1 + deg, ); color by type; edge width oc w
write PNG with metadata {dataset_id, schema version,s,k, I}

write HTML (PyVis) with the same metadata and styling =0

e

66



3.8.4 Adjacency views

For reporting, the graph can be summarized by its bipartite adjacency blocks:
SL sp sC
Ai,j = 'UJ(Si,gj), Ai,j = w(si;pj)7 Ai,j = w(Sh Cj)a

which support simple counts such as location victim-load n(¢;) = >~ 1[A}} > 0] and token
frequency n(p;) = >, 1[ASY > 0]. These summaries appear in the UI and in tables without
exposing raw text.

Deploy

Evaluations

Figure 11. Shows a victim "HTV40’ and a node (location) "Tarig’
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amlit app
Upload Standardize
M Datasets
Admin User Manager
Query |

Network Graphs

Temporal Fol

GNN Trafficker Prediction

Trend Graph Explorer

Figure 12. Shows a node ’Libya’ that shows stats like unique victims and incoming victims and outgoing victim
count

Deploy

streamlit app

¥

Network Graphs (interactive)

* Interactive graph with ph tooltips, and navi; 1 contl
* Legend, fullscreen (br ull and HTML/PNG export from the embedde:

» @ Victim Traceroute e ordered path of Locations (NL h perpetrators per step.
Datasets:

Master DB+ proc... x

& Network @

Victim traceroute

HTV1

® Collapse repeated consecutive lo

Figure 13. There is also a subsection in the network graph page, called as "Victim Traceroute’ which generates
a trajectory graph of the victims’s movements
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lhost:8501/]

miit app

Upload Standay cutive locations

Traceroute ready.

Automated Evaluations

User Guide Step 1 — Eritrea

Figure 14. Traceroute of victim HTV1

HTVIL
peated consecutive locations

Traceroute ready.

@-

Step 11— Libya

| &

p 10 — Trig

Upi

Admin File Man

Step 13 — Tajura

Figure 15. Traceroute of victim HTV11
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Step 3 — Libya

Step 1— Congo

Figure 16. Traceroute of victim HTV53

3.8.5 Interpretation and safeguards.

Edges show co-occurrence in the processed projection. They do not imply causality. Very
small counts are combined or left unlabeled in static exports to lower the risk of re-identification.
Analysts should examine structural patterns with the GIS layers (Sec. 3.11) to understand hubs
and routes better.

3.9 Ontology Creation & Semantic Modeling

This subsection defines the lightweight domain vocabulary and RDF serialization that the
application uses to make its artifacts reusable and inspectable beyond the user interface. The
ontology reflects the processed schema (Sec. 3.8) with a small set of classes and properties that
keep the meaning of route steps, places, and actor tokens without showing raw text. Exports
are created with RDF1ib and written as Turtle (.ttl) so they are easy to compare, version,
and check with common tools (Cyganiak et al.| 2014, RDFLib Developers, 2025)). Provenance
and geospatial metadata follow established vocabularies: PROV-O for lineage and WGS84 for
coordinates. This allows consumers to understand how each file was generated and, where
possible, how locations relate to the earth’s surface (Lebo et al., |2013; Brickley, [2003)).
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01/Ontology_TTL_Merge

®8 Ontology Export (Turtle) + User Mapping Merge

lean, data-driven ontology:
icker, Chief, Location, Visit
with order, perpetrators, chiefs,

a JSON mapping; merge wi

1) Choose datasets (Processed or Merged)

Select dataset(s);

Master DB« proc... =

Owner email (optional)

2) Ontology settings

Ontology TTL Merge ® Include geo (lat/lon) on Locations

# Build Ontology (TTL)

Figure 17. This page creates the ontology export post NLP stage when we upload the data, it also support
chronological merging of datasets, A user can only merge their datasets and merge them and create ontology,
while the application never stores the RAW dataset it only stores the created ontology

3.9.1 Design goals

The semantic model is intentionally minimal. It (i) matches 1:1 with the processed,
sanitized projection; (ii) uses dereferenceable IRIs created from IDs and canonical tokens; (iii)
records route order explicitly; and (iv) carries small, non-sensitive metadata (dataset 1D, schema
version, export parameters) to support reproducibility and audit, in line with FAIR principles
(Wilkinson et al. 2016a). The application does not perform inference or ontology-driven
reasoning; the RDF export is a direct serialization of the same information that the graph and
GIS modules use.

3.9.2 Namespaces and core vocabulary.

The export declares standard prefixes plus an application namespace ex:. The core classes
are:

e ex:Victim for case instances keyed by SerializedID.

e ex:Location for canonical place tokens (optionally augmented with coordinates).

e ex:Perpetrator and ex:Chief for canonicalized actor tokens.

e ex:Visit for a route step (a victim’s presence at a location with an explicit order).
The principal object/data properties include:

e ex:hasVisit (Victim — Visit), ex:atLocation (Visit — Location), ex:order (xsd:integer)
for route sequencing.
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e ex:hasPerpetrator (Victim — Perpetrator) and ex:hasChief (Victim — Chief) for
canonicalized tokens attached to a case.

e ex:schemaVersion (xsd:string) and ex:sourceID (xsd:string) for minimal, non-
sensitive metadata.

e wgs84:lat, wgs84:long (optional) on Location, when coordinates are available from the
GIS step (Brickleyl 2003).

3.9.3 Deterministic IRI construction and mapping.

Let a processed row be x = (SerializedID,Location, Route Order, Perpetrators, Chiefs).
IRIs are formed by stable, URL-safe encodings of canonical strings:

Victim s : ex:v/url_safe(SerializedID)
Location ¢ : ex:loc/url safe(Location)

Visit v, j : ex:visit/urlsafe(SerializedID)/;
:perp/url_safe(p)
Chief ¢ : ex:chief/url_safe(c).

Perpetrator p: e

™

The row-to-triples mapping pu creates the following assertions:

s rdf :type ex:Victim, ¢ rdf:type ex:Location, w,; rdf:type ex:Visit,
s ex:hasVisit vs;, v, ex:atLocation ¢, wv,; ex:order j,

s ex:hasPerpetrator p Vp € Perpetrators, s ex:hasChief ¢ Vc € Chiefs.

All literals use explicit datatypes (e.g., xsd: integer for ex:order). Because canonicalization
occurs upstream (Sec. 3.6), tokens are already lowercased, trimmed, and de-duplicated, ensuring
consistent identifiers in RDF.
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slogy TTL Merge

2) Ontology settings

e HTTPS URI)
e HTTPS UR) @@ Include geo (lat/lon) on Locations

n#

Figure 18. The Ontology page also allows for Ontology setting, changing the base namespace and it also supports
adding the geocodes (lat/lon) on locations

3.9.4 Minimal illustrative Turtle snippet.

The following excerpt (with anonymized IDs) shows a single route step and associated
tokens. It mirrors exactly the information in the processed table; there is no inclusion of raw
free text.

@prefix ex: <https://example.org/ont/>

Oprefix xsd:  <http://www.w3.org/2001/XMLSchema#>
@prefix prov: <http://www.w3.org/ns/prov#>

@prefix wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>

ex:v/7f%a... a ex:Victim ;
ex:schemaVersion "1.3" ;
ex:sourcelD "dataset_A" ;
ex:hasVisit ex:visit/7f9a.../1 ;
ex:hasPerpetrator ex:perp/network_op ;
ex:hasChief ex:chief/handler_k .

ex:loc/tripoli a ex:Location ;
wgs84:1lat "32.8872"""xsd:decimal ;
wgs84:long "13.1913"""xsd:decimal

ex:visit/7f9a.../1 a ex:Visit ;

ex:atLocation ex:loc/tripoli ;
ex:order "1"""xsd:integer .
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3.9.5 Export procedure (RDFlib).
The serialization is created in a single pass over the processed table:
1. Initialize an empty rdflib.Graph with prefixes rdf, rdfs, xsd, prov, wgs84, and ex.

2. For each row z (ordered by SerializedID and Route_Order): mint IRIs for s, ¢, v, ;;
assert class types and ex:hasVisit, ex:atLocation, ex:order. For each perpetrator
token p and chief token ¢, assert ex:hasPerpetrator and ex:hasChief links.

3. When coordinates are available from the GIS pipeline, annotate Location with wgs84:1lat
and wgs84:long.

4. Attach minimal metadata on the dataset resource (schema version, source ID). Optionally,
include a small PROV header (dataset entity, export activity, software agent) for stronger
lineage.

5. Serialize to Turtle; record the processed dataset ID and parameters in the export’s side
metadata (Sec. 3.5).

Because the export is a pure function of the processed table and parameters, re-running with the
same inputs yields an identical .ttl (byte-for-byte when iteration order and numeric formatting
are fixed), which supports figure regeneration and external validation.

3.9.6 Interoperability and downstream use.

Keeping the vocabulary close to the processed schema reduces cognitive load and maintains
traceability between tables, graphs, and RDF. The presence of WGS84 properties allows GIS tools
to directly use location nodes. The explicit ex:order on visits enables time-aware visualizations
or queries to reconstruct routes without checking the original spreadsheet. External users can
import the file into triple stores, run SPARQL for cross-case consolidation or hub identification,
and, if desired, add their own shapes or integrity checks (for example, Visit must point to
exactly one Location). While the current implementation does not include a SHACL file, the
export works with SHACL validation patterns if partners want to impose additional constraints
(Knublauch and Kontokostas, [2017)).

3.9.7 Privacy and scope.

Only sanitized tokens and standard place names appear in RDF. There are no raw
narratives, direct identifiers, or sensitive free text. Coordinates, when present, follow the same
caution used in maps: unresolved or low-confidence locations are left out instead of being
estimated. The ontology is intentionally compact and descriptive. It captures what the system
already produces and uses while avoiding speculative classes or properties that are not supported
by implementation.

3.10 GIS Spatio-Temporal Visualization

This section explains how the application converts standardized place strings from the
processed table (Sec. 3.8) into geospatial layers for exploration. The design focuses on clarity
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and reproducibility. Place resolution is fixed under a documented threshold. Map layers come
only from the cleaned projection. Exports follow standards, which allows them to be reused
outside the app. All geodata are written as GeoJSON FeatureCollections according to RFC
7946 (Butler et al.| 2016) and displayed with Folium, which uses Leaflet for interactive viewing
(Folium Project|, 2025; Leaflet, |2025)).

3.10.1 Inputs and outputs.

The input is the processed table containing the columns Location and Route_Order (along
with the optional Time Spent). The outputs are: (i) a point FeatureCollection for markers and
clustering, (ii) a weighted point set for density heatmaps, and (iii) a sequence for each case for
temporal playback when route order or timing is available. Each artifact includes metadata
that links it to the processed dataset ID and schema version (Sec. 3.5).

rGazetteer.csv (ingested) » ds_1755684114350

Browse files
Browse files Seta ]

Min population filter {optional)

Figure 19. GIS Map & Spatio-Temporal Visualizer Page

3.10.2 Toponym resolution (lookup — conservative fuzzy match).

Place strings are first normalized (lowercased, trimmed, punctuation-normalized) and then
resolved to coordinates by a two-stage procedure. Stage 1 queries a curated lookup table that
maps canonical tokens to (lat,lon) and optional country/region. Stage 2 applies a conservative
fuzzy match when no exact entry exists, using edit distance on canonical forms. A candidate ¢
is accepted if

lev(g, )

sim(q,¢) =1 — —————— >0,
max(|q], |c])

where ¢ is the query token, lev is Levenshtein distance, and 6 is a high threshold (e.g., 0.9)
to guard against false positives (Levenshtein, 1966, [Wagner and Fischer, [1974). Resolutions
are tagged as exact, fuzzy, or unresolved. Unresolved entries are excluded from map layers but
reported in diagnostics so users can improve the lookup table.
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Algorithm 4 Toponym resolution and status tagging

Require: Canonical place token ¢, lookup dictionary L, threshold 6
Ensure: (lat,lon, status, score)

0: if ¢ € L then

0: return (L[g|.lat, L]g].lon, exact, 1.0)

0: end if

0: ¢* 4= argmaXcckeys(r) Sim(q, c)

0: if sim(q,¢*) > 0 then

0: return (L[c*].lat, L[c*].lon, fuzzy, sim(q, c*))
0: else

0: return (&, unresolved,0)

0: end if=0

3.10.3 Point and cluster layers.

Resolved locations become point features with basic properties: canonical name, occurrence
count in the processed table, number of distinct SerializedIDs, and resolution status. The
marker cluster layer reduces overlap in crowded areas by grouping nearby markers at low zoom
levels and expanding them when zoomed in (Leaflet.markercluster) (Leaflet, 2025). Tooltips
show only cleaned fields (counts, tokenized names).

3.10.4 Density heatmap.

The heatmap uses the same points with scalar weights. By default, the weight at location
¢ reflects the number of processed rows mapped to ¢ (i.e., visits). When set up, the Ul can use
distinct case counts per location to reduce the impact of repeated actions by the same case.
The layer is created with Folium’s HeatMap plugin (Leaflet.heat), which blends nearby points
visually in the browser (Folium Project, [2025)). Parameters (radius, blur) remain unchanged
across exports for consistency.

3.10.5 Spatio-temporal trajectories

When route order is available, sequences for each case are formed by sorting rows by
Route_Order and linking successive resolved locations. The export employs TimestampedGeoJson
so users can watch movement sequences over a time slider in the browser. If absolute timestamps
are missing, the sequence index offers a rough, order-only animation; if timestamps or durations
are available, they are shown as ISO-8601 times on each feature, allowing for time-aware play-
back (Butler et all 2016). Low-confidence points are skipped instead of interpolated to avoid
suggesting precision.
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Figure 20. This image of GIS Visualizer page shows how user can select a dataset and further select columns
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Figure 21. The ’Locations’ column is matched with the gazetteer to get the coordinates of these locations for
further GIS Map construction
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Algorithm 5 Trajectory assembly from processed routes

Require: Processed table D with (SerializedID, Location, Route_Order), resolution map p
Ensure: FeatureCollection F' for TimestampedGeoJson
: for all case s grouped by SerializedID do
P
for all row z in s ordered by Route Order do

(¢, \,0) < p(x.Location) {lat, lon, status}

if 0 € {exact, fuzzy} then

append (¢, \) to P

end if
end for
add polyline feature for P with ordered timestamps or indices
0: end for
0: return £ =0

PR

Figure 22. Final GIS Map with Spatio-Temporal Visualization and slider to control it, with nodes being
represented by amount of traffic going through them and heatmap embedded on top of them
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Figure 23. Final GIS Map with Spatio-Temporal Visualization and with animated trajectories on top of it to
visualize trafficking routes

3.10.6 Uncertainty handling and safeguards.

To prevent overstating accuracy, the map leaves out unresolved points and highlights
unclear resolutions in popups. The UI avoids showing labels for very small counts in static
exports. It does not present raw narrative text or direct identifiers. Coordinates come from
a controlled lookup. There is no real-time geocoding using external services. This keeps data
residency local and reduces the risk of data leakage.

3.10.7 Exports and reproducibility.

The application saves the following items in the owner’s workspace: the point Fea-
tureCollection, the heatmap-ready point list with weights, and the timestamped sequence
FeatureCollection. Each file comes with minimal metadata, including processed dataset 1D,
schema version, resolution threshold, and layer parameters. Since all layers originate from the
processed projection and a fixed lookup with a documented 6, rerunning with the same inputs
creates identical artifacts and map views (Butler et al., [2016; Folium Project| 2025).

3.10.8 Interpretation notes.

Spatial intensity and trajectories show what is in the processed table; they do not reflect
prevalence in the population. Gaps or breaks in lines are expected when locations are unresolved
or filtered for low confidence. Analysts should view the layers along with the network view
(Sec. 3.9) to connect spatial hubs to structural patterns among cases and actor tokens.
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3.11 Quality Checks and Data Diagnostics

This section describes the lightweight diagnostics the application runs on the processed
table before the graph and GIS stages. The aim is to identify inconsistencies early, measure
coverage, and avoid unnoticed changes across uploads and runs, while keeping raw content
hidden. The checks are quick, predictable, and shown in the interface as small tables and
pass/fail badges. They support the reproducibility and provenance practices discussed earlier
(Sandve et al., 2013; Wilson et al., 2017) and work with the tidy, long-format schema (Sec. 3.8)
(Wickham, [2014)).

3.11.1 Coverage and completeness.

Basic summaries are calculated for each dataset and by key columns:
e total processed rows, distinct SerializedIDs, average and median route length;

e fraction of rows with non-empty Location, count and rate of unresolved locations (from
GIS resolution);

e presence of optional fields (Time Spent, Perpetrators, Chiefs) and their non-empty
rates;

e distinct counts per token list, and top-k token frequencies for sanity checking.

These indicators assist analysts in deciding whether to move forward to graph/GIS or adjust
the intake mapping or lookup dictionaries.

3.11.2 Key consistency and shape invariants.

Deterministic validators uphold the invariants given in Sec. 3.8: uniqueness of (SerializedID,
Route_Order), ordered Route_Order within cases, non-empty canonicalized Location, and
JSON-serializable list fields. Violations are reported with brief, redactable row references
(dataset ID and row index) instead of showing values.

3.11.3 Unresolved locations dashboard.

The GIS module labels each location token as exact, fuzzy, or unresolved. Diagnostics
compile these by token and by source dataset, listing the most common unresolved items so
curators can expand the lookup table. For fuzzy matches, the distribution of similarity scores is
shown to help assess whether the threshold 6 is too strict or lenient (Sec. 3.11). No third-party
geocoding is used; the dashboard only shows the controlled lookup and local matching logic.

3.11.4 Duplicate-case heuristic (conservative).

To guard against inadvertent double counting, a conservative heuristic flags potential
duplicate cases across uploads without exposing raw text. Two cases a and b are flagged if they
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share the same normalized nationality and have highly similar route footprints and token lists.
Similarity for token lists (perpetrators/chiefs) is measured by the Jaccard index

_JANnB|

and route similarity uses the Jaccard index over the set of visited locations (order ignored for
robustness). A pair is flagged when

Nationality(a) = Nationality(b), J(Locs,, Locsy) > 7y, max (J(Perp,,Perp,), J(Chief,, Chie

with conservative thresholds (e.g., 7, = 0.8, 74 = 0.6). Flagging does not merge records; it
produces a review list for the data owner. Jaccard is a standard set-similarity measure suitable
for normalized tokens (Jaccard, (1901)).

Algorithm 6 Conservative duplicate-case flagging (owner-only view)

Require: Processed table grouped by SerializedID; thresholds 7,74
Ensure: List of flagged pairs (a,b) with scores

0: build per-case sets: Locs, Perp,, Chief,, and value Nationality,

0: for all unordered pairs (a,b) with Nationality, = Nationality, do

0: jr < J(Locs,,Locsy); jp < J(Perp,,Perp,); jo < J(Chief,, Chief,)
0: if j, > 7, and max(jp, jo) > T4 then

0: emit (a, b, jr, jp, jc)

0: end if

0: end for=0

3.11.5 SID-UID coherence.

A bijection check ensures that each cleaned UniqueID corresponds to exactly one SerializedID
and vice versa within an intake batch. This process helps prevent accidental key drift. If a
single UniqueID links to multiple serialized forms, typically due to whitespace or casing issues
in the intake file, the validator recommends a normalization patch.

3.11.6 Distribution snapshots (for reporting).

The UI generates small, exportable tables and charts that summarize:
e victims by location (distinct SerializedIDs per Location);
e route-length distribution (histogram of Route Order maxima);
e token frequencies for Perpetrators and Chiefs (top-k with counts).

These snapshots will appear later in the manuscript as supporting evidence for network and
GIS figures. They can be recreated from the processed dataset ID and schema version.
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3.11.7 Operational notes.

Diagnostics are calculated on the cleaned projection only and do not log any raw text. All
thresholds and parameter choices, such as 6 for fuzzy toponym matching and 7, 74 for duplicate
flags, are documented in the run metadata (Sec. 3.5). This ensures reproducibility of results
and allows for reviews of the choices made (Sandve et al., 2013)).

3.11.8 Limitations.

The duplicate heuristic focuses on precision rather than recall. It may overlook duplicates
when routes differ slightly or when token lists are sparse. Unresolved locations can skew
the perceived coverage in GIS summaries. These are acceptable compromises for a privacy-
preserving, audit-friendly workflow. Future enhancements can introduce owner-controlled
adjustments without changing the fundamental approach.

3.12 Front-End Orchestration and Reproducible Artifacts

The user interface directs the pipeline in a clear, straightforward order. It also creates
analysis-ready artifacts that can be regenerated without needing access to the raw inputs. We
implement orchestration using Streamlit, which offers a simple and predictable control flow.
Parameter widgets trigger a sequence of backend calls, and export buttons create files in the
owner’s workspace (Streamlit Inc.| 2025)). We ensure reproducibility by capturing parameters,
seeds, and identifiers with every export. This follows well-established guidelines for computational
research (Sandve et al., 2013; [Wilson et al., 2017) and links machine-readable provenance to the
outputs (Lebo et al.l 2013).

3.12.1 Execution order and page flow.

The interface shows pages that correspond to the major modules. During a session, the
call order is as follows:

1. Intake: read the uploaded file into memory and check the headers (no raw data persists).

2. Preprocessing: normalize and canonicalize to create the processed long-format table
(Sec. 3.6) and calculate a run fingerprint.

3. Graph: build the typed, weighted graph from the processed table (Sec. 3.9) and show a
preview.

4. Ontology/RDF: convert the same information into TTL format (Sec. 3.10) for future
use.

5. GIS: resolve place names and create GeoJSON layers. Show previews of base, heatmap,
cluster, and trajectory maps (Sec. 3.11).

6. Diagnostics: present coverage and integrity checks (Sec. 3.13).

Users can navigate freely, but export buttons only become active once the processed table is
available. This ensures all artifacts come from the same cleaned source.
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3.12.2 Deterministic orchestration (high level)

Each step acts as a pure function of its inputs and parameters. By using a fixed seed for
layout and set thresholds for resolution, we produce byte-identical exports on repeat runs. This
enables exact figure regeneration (Sandve et al., 2013).

3.12.3 Parameter capture and metadata stamping.

To achieve reproducibility, we stamp metadata into both the file header (when supported)
and the registry entry (Sec. 3.5):

e processed dataset identifier and Schema _Version;
e run fingerprint and creation timestamp;

e graph layout seed and iteration count; map parameters (radius, blur) and resolution
threshold 0;

e tool versions (pandas, NetworkX, RDFlib, Folium) as reported by the environment.

These fields enable reviewers to recreate the environment and verify that figures and maps align
with the processed data (Wilson et al., [2017; Lebo et al., [2013]).
3.12.4 Exports and file conventions.

Outputs are written under the owner’s workspace using deterministic names that encode
the processed dataset ID and a short artifact tag, for example:

e proc-{ID}-table.parquet (processed table),

e graph-{ID}-seed{s}.png and graph-{ID}-seed{s}.html,

e kg-{ID}.ttl (RDF export),

e map-{ID}-points.geojson, map-{ID}-heat. json, map-{ID}-traj.geojson.
Consistent naming makes it straightforward to cite artifacts in the thesis and to re-run exports

by ID.

3.12.5 Access control at interaction points.

The UI ensures that only the uploader can trigger transforms on their upload during
the active session. Exports are written to the uploader’s area. Administrative pages show
configuration and health status, but not data content. Artifact discovery in other pages works
through the registry and filters by owner. This ensures that unshared artifacts do not appear in
the list.

83



3.12.6 Error handling and idempotency.

Preconditions are checked at each step, such as required columns, non-empty locations,
and valid parameter ranges. Export operations are atomic. Files are saved to a temporary path
and moved into place only if the process succeeds. The registry is updated afterward to prevent
dangling references. If a file is missing or fails an integrity check, the Ul provides a “regenerate”
option. This uses the stored parameters for that artifact. These mechanisms focus on simple,
testable guarantees rather than complex workflow engines. This approach follows “good enough
practices” for research software (Wilson et al., [2017)).

3.12.7 Residency and non-egress behavior.

All exports consist of local files within a controlled environment. The interface does
not sync with external services or perform online geocoding. Maps are generated from local

GeoJSON using Leaflet through Folium (Folium Project| 2025} Leaflet| 2025]). This keeps data
movement clear and under the data owner’s control.

3.12.8 Implications for the manuscript.

Since artifacts are parameter-stamped and linked to the registry, every figure and map in
later chapters can reference a processed dataset ID and a small set of parameters. Recreating
the same outputs means reloading the processed table and executing the export path again
with those parameters. This meets the requirement that published computational results be
independently verifiable (Sandve et all 2013; Wilson et al., [2017; Lebo et al., 2013).

3.13 Limitations Bound to Implementation Choices

The methodology prioritizes privacy, clarity, and reproducibility. These priorities create
specific trade-offs that limit what the system can demonstrate. This subsection outlines those
limitations clearly so that future interpretation and evaluation remain grounded.

3.13.1 Dependence on sanitized inputs.

All analytics operate on a minimized, processed projection rather than raw narratives
(Sec. 3.8). This protects confidentiality but also removes nuance that might help clarify ambiguity
in places, actors, or context. The choice reflects data-minimization and purpose-limitation
principles (EU-; 2016) and FAIR-aligned reuse of derived artifacts (Wilkinson et al.| |2016a)), but
it may reduce recall compared to pipelines that inspect full text.

3.13.2 Deterministic canonicalization instead of learned extraction.

Preprocessing relies on specific rules for tokenization, trimming, case normalization, and
cautious near-duplicate collapse; it does not use model-based NER or relation extraction. This
improves auditability and repeatability (Sandve et al., [2013; Wilson et al., [2017) but may
overlook semantically equivalent forms that simple edits do not capture. Cautious thresholds
also risk merging distinct but similar tokens when names are short or unclear. These behaviors
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are documented and parameterized so users can adjust them with an understanding of the
privacy position.

3.13.3 Toponym resolution by lookup and cautious fuzzy match.

Place names are resolved through a controlled lookup with a high-threshold edit-distance
fallback (Sec. 3.11). The system does not use external geocoding services to respect residency
and to avoid unintended disclosures. As a result, some locations remain unresolved and are
excluded; others may resolve to a main point rather than a precise site. GeoJSON exports
follow RFC 7946 and follow its assumptions about coordinate reference and feature structure,
appropriate for web mapping but do not capture administrative hierarchies or uncertainty
envelopes (Butler et al., |2016). These choices prioritize safety over extensive coverage.

3.13.4 Route order and timing.

Route sequences reflect the order given by the dataset; when timing is not available, the
playback is based only on order and not a real-time reconstruction. Durations, where present,
are converted into general day counts for descriptive summaries only. The system does not
predict arrival times or estimate any timing, in line with its defined contribution.

3.13.5 Graph structure and visual limits.

The network is typed and weighted by co-occurrence from the processed table; edges
do not imply causality or legal responsibility. Directionality is implicit (victim to other node
types) rather than fully modeled, and weights represent frequency rather than strength in a
causal sense. Force-directed layouts (e.g., Fruchterman—Reingold) are easy to read for small to
medium graphs but can become cluttered as the number of nodes increases, even when set for
reproducibility (Fruchterman and Reingold, 1991; Hagberg et al. 2008)). Interactive rendering
works well for a few thousand nodes/edges on standard hardware; beyond that, static summaries
are preferred.

3.13.6 Minimal ontology and validation.

The RDF export mirrors the processed schema with a compact vocabulary; it does not
include general ontologies beyond what the system actually uses. While it can work with SHACL
validation, the current version does not come with a shapes file by default. The benefit is a low
cognitive load and faithful serialization; the drawback is limited semantic richness compared to
larger ontologies (Lebo et al., |2013; [Wilkinson et al. 2016al).

3.13.7 Diagnostics by cautious heuristics.

Quality checks (e.g., potential duplicate cases) use cautious set-similarity heuristics to
avoid false positives that might reveal sensitive inferences. This improves precision at the
expense of recall and may under-flag true duplicates when routes differ slightly or token lists
are sparse. Thresholds are noted so owners can change them, but defaults are conservative.
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3.13.8 Reproducibility versus environment drift.

Exports are parameter-stamped and registry-linked (Sec. 3.5), enabling “same inputs,
same outputs.” However, long-term replayability depends on details of the environment (library
versions, numeric formats). The manuscript records tool versions alongside artifacts to reduce
this risk (Wilson et al., [2017; Sandve et al., [2013), but complete byte-identity across machines
is not assured if dependencies change.

3.13.9 Generalization across partners.

The compatibility shim maps different headers into the standard processed schema, but
partner datasets may still vary in meaning or data quality. The intake layer rejects ambiguous
or missing key fields instead of guessing, which can lower ingest coverage until mappings are
curated. This is a deliberate choice to keep downstream analytics trustworthy and reproducible.

3.13.10 Implications for evaluation.

Given these constraints, evaluation focuses on (i) determinism and compliance of trans-
forms, (ii) plausibility and uncertainty disclosure for geospatial layers, and (iii) usefulness
for exploratory tasks rather than predictive accuracy. This approach adheres to responsible,
provenance-rich reporting for sensitive data (Lebo et al., [2013; Wilkinson et al., 2016a)).

3.14 Chapter Summary

This chapter outlined a method for transforming researcher-supplied trafficking data
into decision-ready analytical outputs while preserving privacy. Data are loaded into memory
and simplified into a cleaned, long-format version that includes only necessary, non-sensitive
fields. A lightweight registry keeps track of processed datasets and exports them with minimal,
machine-readable history, allowing for accurate regeneration of figures and tables. Deterministic
preprocessing and standardization create a stable schema, which acts as the single reference
for all modules. From this projection, the system builds a typed, weighted social network for
exploration; creates a compact, ontology-aligned RDF view for reuse; and generates geospatial
layers, such as points, clusters, heatmaps, and routes where available, using controlled place
names. Diagnostics provide a summary of coverage and compliance, while mentioned limitations
show intentional choices that prioritize confidentiality and auditability over maximum recall.
The result is a comprehensive pipeline that respects governance, producing outputs that are
consistent, understandable, and easy to check.
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4 Evaluation and Findings

4.1 Evaluation Strategy and Rationale

This chapter evaluates the information-system artifact developed in this thesis using a
mixed-methods, artifact-centred design consistent with Design Science Research (DSR). In DSR,
an artifact is judged by the utility it provides to stakeholders, the rigor of its construction, and
the clarity with which it addresses a well-framed problem (Hevner et al.l 2004). Because the
contribution here is a governance-aware, end-to-end pipeline (rather than a predictive model),
we emphasize evidence that the system is interoperable, privacy-preserving, and reproducible,
and that it supports practitioner tasks in a transparent manner. Automated model metrics are
therefore neither necessary nor sufficient for judging success; instead, evaluation proceeds via
converging lines of evidence that can be inspected and replicated from the sanitized, processed
artifacts alone.

4.1.1 Evaluation questions (EQs) aligned to RQs.

We structure the chapter around three evaluation questions that mirror the research
questions: EQ1 (Interoperability) — Do the processed schema and RDF serialization
enable cross-tool reuse with clear semantics and provenance (RQ1)? EQ2 (Governance) — Do
storage, access, and provenance behaviours operationalize data minimization, accountability, and
residency expectations while preserving FAIR reusability of derived artifacts (RQ2) (Wilkinson
et al., 2016a; Lebo et all 2013; EU-, 2016)7 EQ3 (Pipeline utility) — Do the graph and
GIS outputs, regenerated deterministically from the processed table, substantively support the
target practitioner tasks of route reconstruction, hub identification, and cross-case consolidation

(RQ3)?

4.1.2 Five evidence streams.

To answer EQ1-EQ3, we assemble five complementary streams of evidence, each producing
concrete, citable findings:

1. Literature concordance (Sec. 4.2): Show that design choices and outputs align with
established frameworks. This includes FAIR stewardship (including reuse of workflows
and artifacts), W3C PROV for machine-actionable lineage, and GDPR principles of
minimization and accountability. For user-facing behavior, we compare against established
HCI guidance (Nielsen’s heuristics; cognitive walkthrough) (Wilkinson et al., 2016a; Lebo
et al., 2013; [EU-, 2016} Nielsen, |1994; [Wharton et al., 1994]).

2. Gap closure analysis (Sec. 4.3): Map identified research gaps to implemented methods
and objectives and rate closure (Closed / Partially Closed / Not Closed) with artifact
references following DSR relevance/rigor logic (Hevner et al., 2004).

3. Requirements satisfaction and expert input (Sec. 4.4): Verify stakeholder require-
ments—exclusive control over raw uploads, processed-only persistence, non-egress storage,
and task support—through structured expert review (checklists plus brief task walk-
throughs), reporting trustworthiness using qualitative criteria (Lincoln and Gubaj, [1985; ?;
Nielsen, |1994; [Wharton et al., [1994]).
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4. Governance and reproducibility audits (Sec. 4.5): Examine storage and access
behavior, verify provenance completeness for every figure/map, and show how artifacts can
be regenerated (same inputs plus same parameters leads to same outputs). We interpret
results based on FAIR, PROV-O, GDPR, ISO/IEC 25010 quality characteristics, and
ACM artifact-badging notions of replicability (Wilkinson et al., 2016a; Lebo et al., [2013;
EU-, 2016, ISOL 2011; Association for Computing Machinery|, 2020)).

5. Scenario demonstrations (Sec. 4.6): Document end-to-end routes, hubs, and consolida-
tion scenarios as “executable figures.” Each is tied to a processed dataset ID, parameters,
and exported artifacts. This allows readers to reproduce them without needing raw data.

4.1.3 Artifact-centered reproducibility.

All evidence comes from the processed projection defined in Chapter 3. This ensures
evaluation can be independently replicated without access to raw data and that findings stay
within the thesis’s privacy framework. Each artifact (graph PNG/HTML, RDF/TTL, GeoJSON)
is parameter-stamped and registry-linked (dataset ID, schema version, seeds/thresholds). This
approach enables exact or near-exact regeneration according to community standards for
reproducible computational research and artifact review (Sandve et al., 2013; [Wilson et al.,
2017}, |Association for Computing Machinery, 2020)).

4.1.4 Standards and benchmarks.

Whenever possible, we compare our behavior to specific external standards instead of
informal criteria. Interoperability and reuse reference FAIR (findability, accessibility, interop-
erability, reusability) applied to both data and workflows/artifacts (Wilkinson et al., 2016a)).
Provenance is assessed using PROV-O’s Entity—Activity—Agent pattern (Lebo et al., 2013)).
Privacy and accountability are evaluated based on GDPR’s principles of minimization and
purpose limitation (EU-| 2016). Software quality characteristics (e.g., usability, maintainability,
security) reference ISO/IEC 25010 (ISO, [2011). Usability evaluations draw on established HCI
heuristics (Nielsen, [1994; Wharton et al., [1994). We report qualitative evidence with a focus on
credibility, dependability, and confirmability (Lincoln and Gubal 1985 ?).

4.1.5 Scope, limitations, and threats to validity.

We intentionally avoid predictive metrics (e.g., accuracy, F1) because we do not claim or
deploy predictive models. Evidence relies on sanitized artifacts and expert review. Therefore,
construct validity ties to our operationalizations (e.g., “hub” as distinct-victim load), while
external validity is limited by the datasets available. We anticipate and discuss these threats
explicitly in Sec. 4.8, using standard validity terms (Shadish et al., 2002). Where findings are
qualitative, we provide tools (checklists, walkthrough prompts) and member checks to enhance
trustworthiness (Lincoln and Gubaj, [1985)).

4.1.6 Reader guidance.

Each subsequent subsection presents methods and findings in a consistent way: (i) what
was checked, (ii) how we checked it (inputs, parameters, artifacts), (iii) what we found, and (iv)
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how it answers EQI1-EQ3 and the RQs. Artifacts are cross-referenced by identifier, allowing
readers to reproduce figures and tables directly from the processed projection without needing

access to raw data.

4.2 Evidence Stream A: Literature—Concordance Evaluation

This stream tests whether the system’s design choices align with accepted scholarly and
standards guidance for responsible, reusable research software. Rather than scoring models, we
verify methodological concordance: do our behaviours implement what the literature prescribes
for FAIR/PROV/GDPR governance, tidy and reproducible tooling, usable analyst workflows,
and standards-compliant geospatial exchange (Wilkinson et al., [2016a; |Lebo et al., [2013; [EU-,

12016}, [Wickham|, 2014}, [McKinney}, 2010 Sandve et al.; [2013; |Wilson et al.| 2017} |Butler et al.,

2016; Nielsen, [1994; Wharton et al., |1994; [Knublauch and Kontokostas, 2017)

Table 3. Literature—concordance matriz (expanded). Evidence cites concrete artifacts/sections.

Design Literature Status Section
Processed-only persis- GDPR Art. 5(1)(c) minimization; ac- Aligned Storage layout; registry
tence; no raw-file storage  countability; purpose limitation lists only processed &
2016) exports (Secs. 3.4-3.5)
Owner-only raw visibil-  Least-privilege principle l Aligned Role checks at read/ex-
ity; least privilege ; GDPR accountability port; admin config-only
(Sec. 3.4)
Non-egress, residency- GDPR territoriality /accountability Aligned Local exports; no third-
controlled storage party geocoding (Secs. 3.4,
3.11)
Registry + machine- PROV-O Entity—Activity—Agent; FAIR  Aligned Registry entries with
actionable provenance reusability (Lebo et al., 2013; Wilkinson| dataset ID, schema version,
params; PROV mapping
(Sec. 3.5)
Tidy, documented pro- Tidy data; FAIR interoperability /reuse  Aligned Column dictionary, invari-
cessed schema as single  (Wickham)| 2014} [Wilkinson et al., ants, validators (Sec. 3.8)
contract 2016a
Deterministic preprocess- Reproducible transforms; explicit typ- Aligned Preprocessing rules; run
ing & canonicalization ing (Sandve et al., 2013; Wilson et al.| fingerprint; type discipline
2017; McKinney, 2010) (Sec. 3.6)
Conservative token Edit-distance foundations 1LevenshteinL Aligned Bounded lev thresh-
normalization & near- 11966} Wagner and Fischer, |1974) old; deterministic merge
duplicate collapse (Sec. 3.6)
Toponym resolution: Conservative matching; explicit uncer-  Aligned Resolution algorithm, 6
lookup — high-threshold tainty (Levenshteinl [1966}; [Wagner and | threshold; fuzzy/unre-
fuzzy match Fischer, 1974) solved flags (Sec. 3.11)
GeoJSON for carto- IETF GeoJSON spec for web mapping  Aligned map-{ID}-*.geojson;
graphic interchange (Butler et al., 2016) Leaflet /Folium rendering
(Sec. 3.11)
Graph construction & Transparent graph tooling; reproducible  Aligned NetworkX build; FR

seeded layout

seeded layout (Hagberg et al., [2008}
[Fruchterman and Reingold, |1991)

layout with fixed seed
(Sec. 3.9)
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Design Choice Literature Anchor (tenet) Assessment Artifact / Section
RDF/TTL export mir- RDF 1.1; provenance; geospatial vocab  Aligned kg-{ID}.tt1 loads;
roring table semantics (+ (Cyganiak et al.; 2014} |Lebo et al., 2013; class/property mapping
WGS84) Brickley, 2003)) (Sec. 3.10)
SHACL compatibility for Shapes for constraint validation Partially Export is SHACL-friendly;
integrity (optional) (Knublauch and Kontokostas, [2017]) aligned shapes not shipped
(Sec. 3.10)
Diagnostics incl. conser-  Set-similarity baseline (Jaccard) (Jac- Aligned Duplicate-flag heuristic &
vative duplicate flags card}, {1901)) thresholds (Sec. 3.13)
Deterministic regenera- “Same inputs, same outputs” (Sandve Aligned Graph PNG/HTML (seed);
tion of artifacts et al, 2013; [Wilson et al.| [2017) GeoJSON (0); RDF (sta-
ble order) (Secs. 3.5,
3.9-3.11)
Front-end orchestration Practical reproducibility; good-enough  Aligned Orchestration flow; meta-
with parameter stamping practices (Wilson et al.l 2017; [Sandve data stamping (Sec. 3.14)
et al., [2013)
Usability checks: heuris-  Analyst-tool evaluation methods Partially Instruments prepared;
tics & cognitive walk- (Nielsen, |1994; Wharton et al., [1994) aligned severity notes (Sec. 4.4)
through
Non-functional quality ISO/IEC 25010 characteristics (ISO, Partially High-level discussion;
framing 2011) aligned not a formal ISO audit

(Secs. 4.5, 4.8)

4.2.1 Noted divergences and rationale

Two partial alignments reflect specific decisions. First, while the RDF export works with
SHACL, a shapes file is not included to keep the cognitive load low for end users. Partners
can add SHACL for stricter integrity checks later (Knublauch and Kontokostas, |2017)). Second,
usability reporting is light-touch, combining heuristics with cognitive walkthroughs rather
than a full usability study. Issues are recorded with severity ratings for ongoing improvement
without impacting artifact reproducibility (Nielsen|, [1994; [Wharton et al., [1994). Additionally,
ISO/IEC 25010 frames non-functional qualities at a high level. A full ISO audit is not part of
this research prototype (ISO, 2011).

4.2.2 Interim finding for EQ1

Core behaviors, including processed-only persistence, owner-only raw visibility, non-egress
storage, registry+PROV lineage, tidy schema, deterministic regeneration, standards-compliant
RDF /GeoJSON, and transparent graph/GIS tooling, are Aligned with the literature. Partial
alignments are recorded with clear upgrade paths.

4.2.3 Concordance highlights

Core behaviors, such as processed-only persistence, owner-only raw visibility, non-egress
storage, registry+PROV lineage, tidy schema, deterministic regeneration, standards-compliant
RDF /GeoJSON, and transparent graph/GIS tooling, are Aligned with the literature. Partial
alignments—no bundled SHACL shapes, light-touch usability reporting, and high-level ISO
framing—are intentional choices documented with upgrade paths.
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4.2.4 Interim finding for EQ1

The expanded matrix shows that the pipeline’s implementation is in line with FAIR/PROV /GDPR
governance, tidy and reproducible data practice, and standards-based graph/GIS exchange.
This provides positive evidence for EQ1 (Interoperability) and supports later audits (Sec. 4.5)
and scenario findings (Sec. 4.6).

4.3 Evidence Stream B: Gap Closure Analysis (Gaps — RQs —
Objectives)

This stream evaluates how well the implemented artifact addresses the identified research
gaps. It also responds to the Research Questions (RQs) and fulfills the Objectives. The method
follows the logic of Design Science Research, focusing on relevance (does the artifact tackle
an important problem?) and rigor (is the solution based on reliable knowledge and verifiable
artifacts) (Hevner et all 2004). For each gap G;, we provide (i) the gap as stated in the
synthesis, (ii) the method or design element meant to address it, (iii) specific evidence (artifacts
or sections), and (iv) a closure rating: Closed, Partially Closed, or Not Closed. Ratings are
conservative and justified.

4.3.1 Rating rubric (conservative).

Closed = implemented behavior directly addresses the gap and is supported by inspectable
artifacts; Partially Closed = significant progress with known limitations or remaining risks; Not
Closed = out of scope or requiring future work. Evidence references the processed-only stance,
provenance, and standards alignment where needed (Wilkinson et al., 2016a; |Lebo et al. 2013;
EU-, [2016).

4.3.2 G1. Ambiguous semantics and fragmentation across tools.

Remedy: A clear, long-format processed schema as the single contract (Sec. 3.8), and
an accurate RDF/TTL export that reflects table semantics (Sec. 3.10). Evidence: Column
dictionary and invariants; sample TTL loads successfully; classes and properties map one-to-one
to columns. Why it matters: Interoperability and reuse across graph/GIS/semantic tools
(Wickham)|, 2014; Cyganiak et al., 2014; Wilkinson et al., 2016a). Closure: Closed. (Addresses
RQ1; Objectives on interoperability and semantic coherence.)

4.3.3 G2. Weak provenance and poor reproducibility in prior work.

Remedy: A Registry with dataset IDs, schema version, and parameter stamps; exports
include machine-actionable lineage (Sec. 3.5). Evidence: PROV-style entity-activity-entity
links; rerunning yields the same graph layout (seeded) and identical GeoJSON under fixed
lookup/threshold (Secs. 3.9, 3.11). Why it matters: Independent regeneration of figures
without raw data aligns with reproducible research standards (Lebo et al., 2013} [Sandve et al.
2013; [Wilson et al., 2017). Closure: Closed. (RQ1/RQ2; Objectives on provenance and
reproducibility.)
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4.3.4 G3. Inadequate governance for highly sensitive qualitative data.

Remedy: Processed-only persistence, owner-only raw visibility, non-egress storage,
and minimal operational metadata (Sec. 3.4). Evidence: Storage inspection shows no persistence
of raw files; admin pages do not allow data reads; exports contain only derived data. Why it
matters: Implements GDPR laws on data minimization, purpose limitation, and accountability
(EU-, |2016)); still FAIR for the processed artifacts (Wilkinson et al., 2016a). Closure: Closed.
(RQ2; Objectives on privacy, residency, and access control.)

4.3.5 G4. Uncertain or overstated geospatial claims.

Remedy: Deterministic toponym resolution using an exact lookup followed by high-
threshold fuzzy match; unresolved or fuzzy flags; exclusion of low-confidence points; standards-
based GeoJSON (Sec. 3.11). Evidence: Resolution threshold 6, status tags, and exclusion policy;
RFC 7946-compliant exports (Butler et al., 2016). Why it matters: Avoids false precision and
maintains confidentiality in humanitarian contexts. Closure: Partially Closed. (Residual
uncertainty when locations cannot be resolved; future work involves curated gazetteers and
partner feedback loops.)

4.3.6 Gb5. Ingest heterogeneity and drift across partner datasets.

Remedy: A Compatibility shim for header normalization and coercions; deterministic
canonicalization and type discipline (Sec. 3.6). Evidence: Header maps; invariants; failed intake
diagnostics with explicit reasons. Why it matters: Prevents unnoticed schema drift; supports
reuse (McKinney, 2010; |Wickham, 2014)). Closure: Partially Closed. (Works for current
datasets; portability to new partners needs mapping curation.)

4.3.7 G6. Lack of clear evaluation pathways for pipeline utility.

Remedy: Scenario-based demonstrations (routes, hubs, consolidation) and deter-
ministic regeneration as “executable figures” (Sec. 4.6), supported by diagnostics (Sec. 3.13).
Evidence: Scenario inputs (processed ID), outputs (PNG/HTML/GeoJSON), and notes on
uncertainty. Why it matters: Shows utility without predictive metrics; aligns with artifact
evaluation in DSR (Hevner et al., 2004). Closure: Partially Closed. (Further user studies
would enhance external validity.)

4.3.8 G7. No explicit trace from user requirements to system behavior.

Remedy: Requirements traceability to implemented safeguards and tasks (Sec. 3.2);
expert walkthrough instruments (Sec. 4.4). Evidence: Checklists indicating owner-only
raw visibility, processed-only storage, residency, and support for route, hub, and consolidation
tasks. Why it matters: Matches functions with stakeholder needs using established requirement
engineering practices (ISO/IEC/IEEE| 2018; van Lamsweerde, [2001)). Closure: Closed (for
scope). (Qualitative but can be audited via instruments.)
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4.3.9 G8. Over-claiming via predictive analytics in sensitive settings.

Remedy: Scoped non-goal: no LSTM, GNN, or ETA; descriptive, governance-first
pipeline only (Sec. 3.1). Evidence: Methodology explicitly rules out predictive components;
figures and tables show descriptive outputs with uncertainty. Why it matters: Promotes
responsible methods for humanitarian data; avoids invalid comparisons. Closure: Closed. (By
design; avoids a known pitfall in the literature.)

4.3.10 G9. Duplicate or overlapping cases across uploads.

Remedy: Conservative duplicate flagging using Jaccard over routes and token lists;
owner-only review (Sec. 3.13). Evidence: Thresholds (77, 74), flagged-pair reports; no automatic
merges. Why it matters: Reduces the risk of over-counting without exposing raw text (Jaccard,
1901)). Closure: Partially Closed. (High precision, unknown recall; acceptable trade-off under
minimization. )

4.3.11 G10. Federation vs. centralized storage for raw inputs.

Remedy: The system does not store raw data centrally; only processed projections persist
locally under owner control (Sec. 3.4). Evidence: Storage layout; absence of raw file paths or
keys; export only artifacts. Why it matters: Addresses the risk of exposure without adding the
operational complexity of federated queries across sensitive silos. Closure: Closed for thesis
scope. (Federated analytics is noted as future work if governance allows.)

4.3.12 Synthesis and link back to RQs/Objectives.

Gaps G1-G3 and G7-G8 are Closed within scope, directly addressing RQ1 (interoper-
ability) and RQ2 (governance) through a normalized schema, RDF/TTL export, registry plus
provenance, processed-only persistence, and requirement traceability (Wilkinson et al., 2016a;
Lebo et al., 2013, [EU-, 2016; ISO/IEC/IEEE, [2018). G4, G5, and G9 are Partially Closed: loca-
tion uncertainty, cross-partner portability, and duplicate detection are approached conservatively
and transparently, with clear limitations and future improvements outlined. G6 is Partially
Closed through scenario demonstrations and deterministic regeneration; further field studies are
planned for the future. Overall, the artifact provides credible, inspectable evidence that the
Objectives are met for the intended purpose: producing interoperable, privacy-preserving, and
reproducible network and GIS artifacts from sanitized inputs, aligned with DSR’s utility and
rigor standards (Hevner et al., [2004)).

4.4 Evidence Stream C: Requirements Satisfaction (Self-Audit)

This subsection verifies, by self-audit of the running application, that the implemented
system satisfies the core requirements defined earlier: (i) exclusive control of raw uploads; (ii)
processed-only persistence; (iii) data residency and non-egress; (iv) access control boundaries;
and (v) coverage of the three analyst tasks (route reconstruction, hub identification, cross-case
consolidation). The checks are simple, reproducible, and tied to concrete artifacts (processed
dataset ID and export filenames). No external user study was conducted; the evaluation reflects
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the author’s own verification. The trace from requirements to system behaviour follows good
practice in requirements engineering (ISO/IEC/IEEE, 2018} van Lamsweerde, |2001]).

4.4.1 What was checked and how.

A fresh session was started with one processed dataset (referred to by its internal identifier).
The following steps were performed once, on the same build:

e Raw-data control. Upload a file; complete preprocessing; then inspect the workspace
and registry. Observation: only the uploader can see the in-session raw upload; after
preprocessing, no raw file is persisted; the registry lists only processed and derived artifacts.
Status: Satisfied.

e Processed-only persistence. Open each registered artifact (processed table, graph
PNG/HTML, RDF/TTL, GeoJSON) and inspect its contents. Observation: artifacts
contain only the sanitized projection (no free text or direct identifiers). Status: Satisfied.

¢ Residency and non-egress. Run mapping with the network disabled; verify that maps
render from local GeoJSON and that no external geocoding is invoked. Observation:
maps work offline; exports are local files. Status: Satisfied. (Aligns with GDPR minimiza-
tion/purpose limitation and FAIR reuse of derived artifacts (EU-, 2016; Wilkinson et al.,
2016al).)

e Access control boundaries. Using a second local test account, attempt to discover
or open the first account’s artifacts via the registry and direct paths. Observation:
artifacts are not discoverable or readable by the non-owner; administrative screens expose
configuration/health, not data. Status: Satisfied. (Least-privilege posture (Saltzer and
Schroeder, [1975)).)

e Task coverage. From the processed dataset: (a) reconstruct a route (ordered locations);
(b) identify hubs (locations with the highest distinct-victim counts) and view their ego-nets;
(c) list cross-case overlaps by shared locations/tokens. Observation: each task completes
end-to-end and produces the expected export(s). Status: Satisfied.

4.4.2 Lightweight usability notes (author self-check).

Without claiming a formal study, the interface was read against well-known heuristics
to spot issues quickly (Nielsen, 1994)). Positives: clear step order; visible export buttons;
regenerating artifacts is straightforward. Minor improvements queued: inline help for map
parameters; hover tooltips on graph legends; progress feedback during longer exports. These are
convenience items and do not affect correctness.

4.4.3 Link to Research Questions.

The outcomes above indicate that the system’s behaviour matches the stated requirements
and, in practice, supports the three analyst tasks from the sanitized projection alone. This
provides positive evidence for RQ2 (governance—privacy, residency, access) and RQ3 (pipeline
utility), while implicitly supporting RQ1 (interoperability) because the same processed schema
underlies all exports (ISO/IEC/TEEE] 2018; Wilkinson et al., [2016a)).
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4.5 Evidence Stream D: Governance & Reproducibility Audits (Self-
Audit)

This subsection reports a small, standards-aware self-audit of governance and repro-
ducibility. The goal is to confirm four behaviours that matter for sensitive data and verifiable
research software: storage/residency, access control, provenance completeness, and deterministic
regeneration of artifacts. Results are interpreted against GDPR principles (minimization, pur-
pose limitation), FAIR (interoperability and reusability of artifacts), PROV-O (entity—activity
lineage), and community norms for reproducible computation (EU-, 2016; Wilkinson et al.)
2016a; [Lebo et al., |2013; [Sandve et al., 2013; Wilson et al., [2017).

4.5.1 Checks and observations.

e Storage & residency. After a fresh run, the owner’s workspace contained: the processed
table and four export types (graph PNG/HTML, RDF/TTL, GeoJSON). No raw file or
cache was present. With the network disabled, the GIS view rendered from local GeoJSON.
Interpretation: behaviour is consistent with GDPR’s minimization/purpose limitation and
keeps residency local (EU-, 2016)).

e Access control. From a second local test account, attempts to list or open another
user’s artifacts failed; admin screens showed configuration and health only. Interpretation:
least-privilege boundary holds (Saltzer and Schroeder} [1975)).

e Provenance completeness. Each export carried the processed dataset ID, schema
version, creation timestamp, and salient parameters (e.g., graph layout seed/iterations;
GIS threshold #). The registry linked each export back to the same processed dataset.
Interpretation: artifacts have machine-actionable lineage in the spirit of PROV-O and
FAIR reusability (Lebo et al., 2013; |Wilkinson et al., 2016a).

¢ Regeneration (“same inputs, same outputs”). Re-running with the recorded
parameters reproduced: (a) the same graph layout (seeded); (b) identical GeoJSON
features under the same lookup and #; and (c) the same TTL triples (stable order).
Interpretation: behaviour matches reproducibility guidance for computational research
(Sandve et al.l 2013; Wilson et al., 2017).

4.5.2 Limitations.

This is a single-machine, self-audit; it is not a legal compliance certification, performance
benchmark, or ISO/IEC 25010 evaluation. Nevertheless, the checks are transparent and
repeatable, and they are sufficient to substantiate the claims made in this thesis about privacy
posture, traceability, and reproducibility.

4.5.3 Link to Research Questions.

The four confirmed behaviours directly support RQ2 (governance) and enable reproducible
evidence for RQ1 (interoperability) and RQ3 (pipeline utility): all figures and maps can be
regenerated from the processed dataset using the recorded parameters, without any access to
raw data (Lebo et al., 2013; |Wilkinson et al., 2016a).
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4.6 Findings Synthesized to Research Questions & Objectives

This subsection brings the evidence together and answers the Research Questions (RQs)
directly. Each finding cites concrete behaviour from Chapter 3 (methods) and Chapter 4
(evaluation streams). Where appropriate, we also note the residual limitation so readers see
both the strength of the evidence and its scope.

4.6.1 RQ1 — Interoperability (schema, exchange formats, provenance).

Finding. The pipeline is interoperable across tools because all analytics and exports hinge
on a single, tidy processed schema (Sec. 3.8), and each export is written in a widely used,
standard format with machine-actionable provenance (Sec. 3.5). Evidence.

e A tidy, documented long-format table serves as the contract for every downstream module
(Sec. 3.8), supporting reliable joins and external reuse (Wickham)| 2014; Wilkinson et al.,
2016a)).

e RDF/TTL export mirrors table semantics with explicit classes/properties and optional
WGS84 coordinates—triples load in standard RDF tooling (Sec. 3.10; (Cyganiak et al.|
2014; Brickley, 2003; |Lebo et al., 2013]).

e GeoJSON is used for maps, following RFC 7946, so layers open in common GIS viewers
and web maps (Sec. 3.11; Butler et al., 2016).

e Every artifact is parameter-stamped and registry-linked (dataset ID, schema version,
seed /thresholds), making exports findable and reusable in FAIR terms (Secs. 3.5, 4.2, 4.5;
Wilkinson et al| 2016a; Lebo et all 2013).

Residual limitation. No SHACL shapes are bundled; integrity checking is left to consumers
who can add shapes later (Sec. 3.10). This does not affect export validity but limits built-in
constraint validation (Knublauch and Kontokostas, [2017)).

4.6.2 RQ2 — Governance (privacy, residency, access, accountability).

Finding. The system enforces a governance-first posture: raw uploads are not persisted;
only the sanitized projection is stored; exports are local; and non-owners cannot discover or read
another user’s artifacts. Provenance is complete enough to support accountability. Fuvidence.

e Processed-only persistence: storage inspection shows the workspace contains only the
processed table and derived exports; no raw-file caches or free text are present (Secs. 3.4-3.5,

4.5).

e Residency & non-egress: maps render from local GeoJSON with the network disabled;
no third-party geocoding is invoked (Secs. 3.11, 4.5).

e Access control: a second account cannot list or open another user’s artifacts; admin
views expose configuration/health, not data (Secs. 3.4, 4.5) (Saltzer and Schroeder;, 1975).

e Accountability: each export carries dataset ID, schema version, and salient parameters;
the registry links every export to its source processed dataset (Secs. 3.5, 4.5; |Lebo et al.,
2013}, [Wilkinson et al., |2016a)).
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Residual limitation. This is a self-audit on a single machine; it is not a legal compliance
certification. Nevertheless, the behaviours align with GDPR minimization and purpose limitation
(Art. 5(1)(c)) (EU-, [2016)).

4.6.3 RQ3 — Pipeline utility (routes, hubs, cross-case consolidation).

Finding. From the processed projection alone, the application reliably produces decision-
ready artifacts for the three target tasks and can regenerate them deterministically from recorded
parameters. Fuvidence.

e Routes: ordered visits are assembled from Route_Order and, when available, used for

time-aware playback; unresolved locations are skipped or flagged to avoid false precision
(Secs. 3.6, 3.11).

e Hubs: distinct-victim counts per location and weighted edges in the graph reveal con-
centration points; seeded layouts reproduce the same figure on rerun (Secs. 3.9, 3.13, 4.5;
Fruchterman and Reingold, (1991} Hagberg et al., 2008]).

e Cross-case consolidation: shared locations and canonicalized tokens (perpetrators/chiefs)
are visible in both network and GIS views; conservative duplicate flags assist owner review
(Secs. 3.9, 3.11, 3.13; Jaccard, |1901)).

e Determinism: graph PNG/HTML (seeded), GeoJSON (fixed lookup and threshold),
and TTL (stable ordering) regenerate to equality or trivial differences (Sec. 4.5) (Sandve
et al, 2013; Wilson et al., |2017)).

Residual limitation. Location uncertainty remains where tokens cannot be resolved under the
conservative threshold; portability to unseen partner schemas depends on header-mapping
curation (Secs. 3.11, 3.6).

4.6.4 Alignment with Objectives (status at a glance).

e O1 Interoperable representation. Achieved via the processed schema, RDF/TTL
export, and GeoJSON layers with provenance (Secs. 3.8-3.11, 4.2) (Cyganiak et al., [2014}
Butler et all 2016; |Wilkinson et al., [2016a).

e 02 Governance by design (privacy, residency, access). Achieved: processed-only
storage, owner-only visibility, local exports, and complete lineage (Secs. 3.4-3.5, 4.5) (EU-|
2016; Lebo et al., [2013)).

e O3 Reproducibility. Achieved: parameter-stamped artifacts; deterministic regeneration;
environment/version capture (Secs. 3.5, 3.9-3.11, 4.5) (Sandve et al.; [2013; |Wilson et al.|
2017).

e 04 Analyst tasks (routes, hubs, consolidation). Achieved within scope: artifacts

support the three tasks from sanitized data; minor UX enhancements noted (Secs. 3.9-3.11,
4.4) (Nielsen| 1994).

e O5 Portability to additional datasets. Partially achieved: header normalization and
canonicalization work; new partners still require mapping curation (Sec. 3.6).
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e O6 Transparent limitations. Achieved: uncertainty handling for toponyms; explicit
non-goal for predictive modelling; conservative duplicate heuristics (Secs. 3.11, 3.1, 3.13).

4.6.5 Overall judgement.

Taken together, the evidence demonstrates that the artifact meets its stated aims: it
produces interoperable, privacy-preserving, and reproducible graph and GIS artifacts from
sanitized inputs, and these artifacts support the intended analyst tasks. The approach is aligned
with FAIR/PROV/GDPR guidance and with reproducible-research norms (Wilkinson et al.|
2016a; Lebo et al., |2013; [EU-, 2016; [Sandve et al. 2013; Wilson et al., [2017). Remaining gaps
(SHACL shapes, partner-specific mappings, unresolved locations) are documented and bounded;
they do not undermine the core findings or the traceability of results.

4.7 Threats to Validity & Mitigations

This subsection states the main risks that could weaken the credibility or generality of
our results and explains how we mitigated them within the thesis scope. The structure follows
common validity dimensions in empirical research—construct, internal, external, and conclusion
validity—plus a note on reliability /reproducibility for computational work (Shadish et al., [2002;
Sandve et al., [2013; Wilson et al., 2017)).

4.7.1 Construct validity (are we measuring the right thing?).

Risk. Our “hub” notion is operationalized as distinct-victim load per location; “routes”

are sequences built from Route_Order; “cross-case links” are shared locations/tokens. These are
defensible proxies but not the only possible constructs. Mitigation. Each construct is defined
transparently in Chapter 3 and used consistently in Chapter 4. Uncertainty is shown explicitly
(e.g., unresolved locations are excluded or flagged). We avoid causal language and state that
edges represent co-occurrence only. The definitions can be revised without changing the privacy
posture because they are functions of the processed schema.

4.7.2 Internal validity (alternative explanations and biases).

Risk. The evaluation is a self-audit; there is no independent user study. Positive findings
could reflect author expectation or unobserved errors. Mitigation. Checks are tied to concrete, re-
runnable artifacts (processed dataset ID; export filenames) rather than impressions. Acceptance
criteria are simple and binary (e.g., “no raw file present”; “non-owner cannot open artifact”).
Where we note convenience issues (e.g., missing tooltips), they are reported as non-blocking.
Future external reviews can reuse the same artifact IDs and steps to replicate or challenge
results.

4.7.3 External validity (generalization).

Risk. Behaviours were verified on the datasets available during the thesis and on one
deployment environment. Other partner schemas or environments may require additional header
mappings or configuration. Mitigation. Portability is addressed by the canonical preprocessing
layer (header normalization, explicit types) and by restricting analytics to the sanitized projection
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(no raw-field dependencies). Limitations are noted where portability is partial (e.g., toponym
coverage depends on the lookup table).

4.7.4 Conclusion validity (over-claiming from limited evidence).

Risk. Without automated metrics or an external study, it would be easy to overstate
success. Mitigation. Findings are framed narrowly: we claim interoperability, governance-
by-design, and reproducibility for the implemented artifact, not predictive performance or
population prevalence. Where evidence is qualitative (e.g., readability of a figure), we present it
as such, and where results are partial (e.g., unresolved locations), we say so explicitly.

4.7.5 Reliability & reproducibility (repeatability of results).

Risk. Environment drift (library versions, numeric formatting) could impede exact reruns.
Mitigation. Every export is parameter-stamped and registry-linked (dataset ID, schema version,
seeds/thresholds); regeneration tests are documented; tool versions are recorded at export time.
This matches community guidance for “same inputs, same outputs” and artifact review (Sandve
et al. 2013; Wilson et al., 2017). Where byte-identical output cannot be guaranteed (e.g.,
whitespace in RDF), we specify acceptable tolerances and provide stable-ordering.

4.7.6 Privacy & governance risks.

Risk. Any handling of sensitive data risks inadvertent exposure. Mitigation. The
methodology is privacy-first: no raw-file persistence; owner-only visibility; local (non-egress)
exports; minimal operational metadata; and machine-actionable provenance that references only
the processed projection (EU-| 2016} Lebo et all 2013; Wilkinson et al., 2016a). Audit steps in
Sec. 4.5 verify these behaviours concretely.

4.7.7 Traceability and transparency.

Risk. Readers may be unable to follow how a figure was produced. Mitigation. Each
figure/table cites the processed dataset ID, schema version, and key parameters; artifacts can be
regenerated by rerunning the same steps. This straightforward trace supports scrutiny without
access to raw data and aligns with good practice in requirements and provenance engineering

(ISO/IEC/IEEE| 2018} [Lebo et all, 2013).

4.7.8 Summary.

Within the limits of a self-audit, threats are mitigated by transparent constructs, simple
pass/fail checks tied to artifacts, deterministic regeneration, and strict privacy controls. Residual
risks—chiefly lack of external user evaluation and portability to unseen partner schemas—are
documented and bounded; they suggest clear next steps rather than undermine the present
findings.
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4.8 Expected Reader Takeaways

This subsection states, in plain terms, what a reader can confidently do after finishing
the chapter and how the evidence supports the thesis claims. It echoes the evaluation strategy
(Secs. 4.1-4.2), the gap—closure analysis (Sec. 4.3), the self-audits (Secs. 4.4-4.5), and the
synthesized findings (Sec. 4.7), while keeping the scope clear and modest.

4.8.1 What you can verify without raw data.

e Interoperability. Load the RDF/TTL and GeoJSON exports in standard tools and see
that they mirror the processed schema and follow open specifications (RDF 1.1; GeoJSON),
with minimal, machine-actionable provenance (Cyganiak et al. 2014; |[Butler et al., [2016;
Lebo et al., |2013).

e Governance posture. Confirm from the workspace and registry that no raw uploads are
persisted; only the sanitized projection and derived artifacts exist. Observe that exports
are local (non-egress) and owner-scoped.

e Reproducibility. Regenerate the graph layout, maps, and TTL using the recorded
parameters (dataset ID, schema version, seeds/thresholds) and obtain the same outputs
within deterministic tolerances (Sandve et al., [2013; Wilson et al., 2017)).

e Task utility. From the processed table alone, reconstruct routes, identify hubs, and view
cross-case overlaps in both network and map form.
4.8.2 What the evidence shows.

e The system operationalizes FAIR reusability for derived artifacts (findable IDs, interoper-
able formats, clear provenance) and GDPR-aligned minimization/purpose limitation for
sensitive data (Wilkinson et al., [2016a; EU-| 2016).

e The pipeline is a deterministic transformation from sanitized input to standard exports;
figures in the chapter function as “executable” results tied to specific artifact IDs.

e The implemented features close the most important research gaps for this thesis (seman-
tics/interoperability, provenance/reproducibility, privacy/residency/access), with conser-
vative handling where uncertainty remains (toponym resolution; duplicate flags).

4.8.3 What the evidence does not claim.

e No predictive accuracy or forecasting is asserted; the system intentionally excludes LST-
M/GNN/ETA components.

e No legal compliance certification is claimed; governance behaviour is demonstrated by
transparent, repeatable checks.

e Portability to entirely new partner schemas may require header-mapping curation; location
coverage depends on the curated lookup.
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4.8.4 How to replicate a figure or table (recipe pattern).

Each result provides a one-line recipe and a provenance footer. In practice: load processed
dataset ID (schema vX.Y) — run module with parameters (e.g., seed, §) — export, then compare
the new artifact to the cited file. This matches community guidance for “same inputs, same
outputs” and makes external scrutiny straightforward (Sandve et all 2013} Association for
Computing Machinery, 2020).

4.8.5 Quick map from RQs to evidence.

e RQ1 (Interoperability): processed schema (Sec. 3.8); RDF/TTL + WGS84 (Sec. 3.10);
GeoJSON (Sec. 3.11); concordance matrix (Sec. 4.2); regeneration logs (Sec. 4.5).

e RQ2 (Governance): processed-only persistence & owner-only visibility (Secs. 3.4-3.5);
residency (Sec. 3.11); provenance cards (Secs. 3.5, 4.9); self-audit outcomes (Sec. 4.5).

e RQ3 (Utility): routes/hubs/overlaps produced from the sanitized projection (Secs. 3.9-3.11)
and reproducibly regenerated (Sec. 4.5); synthesis narrative (Sec. 4.7).

4.8.6 Reader takeaway in one sentence.

You can independently verify—using only the processed dataset identifier, schema version,
and recorded parameters—that the artifact generates interoperable (RDF/GeoJSON), privacy-
preserving (processed-only, non-egress), and reproducible (parameter-stamped) network and
map outputs that support the three analyst tasks, consistent with FAIR/PROV/GDPR and
reproducible-computation norms (Wilkinson et al., [2016a; [Lebo et al., 2013; [EU-| |2016; Sandve
et al., 2013).
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5 Discussion

5.1 Chapter Roadmap

This chapter interprets the results rather than repeating them. It explains what the
evidence means for the research questions and objectives, why the outcomes matter beyond this
thesis, and where the limits lie. The structure is simple. Section 5.2 discusses each research
question in turn—interoperability, governance, and pipeline utility—using the same vocabulary
and artifacts established in Chapters 3—4. Section 5.3 then triangulates across the different
evidence streams (literature concordance, gap-closure analysis, self-audits, and synthesized
findings) to show how the conclusions cohere. Later subsections (5.4-5.9) distill contributions,
implications, limitations, future work, and the final conclusion.

5.2 Interpreting the Findings Against the RQs

5.2.1 RQ1: Interoperability

Question Do the representations and exports enable reuse across tools with clear semantics
and provenance?

Interpretation The decisive feature for interoperability is the single, tidy processed schema
that acts as a contract for the entire pipeline (Chapter 3). Because every downstream mod-
ule—graph construction, ontology export, geospatial layers—reads the same long-format table
with documented column semantics and invariants, external tools can do the same without
bespoke adapters. The RDF/TTL export mirrors these columns as classes and properties,
and the GeoJSON layers adhere to RFC 7946, so both semantic and cartographic views open
cleanly in off-the-shelf software. Crucially, each export is parameter-stamped and registry-linked
(dataset ID, schema version, seeds/thresholds), which makes the outputs not just portable but
also traceable in the sense promoted by FAIR and PROV-O (Wilkinson et al., 2016a; Lebo
et al., 2013)). In practical terms, this means a reviewer can load the TTL in any RDF store or
the GeoJSON in any GIS viewer and know exactly which processed dataset and parameters
produced it.

Why it matters Interoperability here is not an abstraction; it is what allows analysts and
collaborators to reuse the same artifacts in different contexts without re-running the entire
system or handling raw narratives. In sensitive domains, this separation is essential: meaningful
reuse must be possible even when raw data cannot move. The results therefore answer RQ1
affirmatively: the combination of a single processed schema, standards-based exports, and
explicit provenance constitutes a durable, tool-agnostic interface (Wilkinson et al., 2016a;
Cyganiak et al., [2014; [Butler et al., |2016).

5.2.2 RQ2: Governance (privacy, residency, access, accountability)

Question. Do storage, access, and provenance behaviours operationalize data minimization,
residency, and accountability while keeping derived artifacts reusable?

Interpretation The pipeline enforces a governance-first posture by design. Raw uploads
are handled in memory and discarded; only a sanitized projection is persisted. Exports remain
local (no third-party geocoding or automatic sync), and non-owners cannot discover or open
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another user’s artifacts. At the same time, provenance is rich enough that every figure and
map carries the identifiers and parameters needed for accountable reuse. These behaviours
directly instantiate GDPR/’s principles of minimization and purpose limitation, while FAIR’s
reusability is satisfied at the level of the derived artifacts (EU-, 2016; Wilkinson et al., [2016a)).
The self-audit in Chapter 4 confirms these properties on a running build: storage contains no
raw files; access checks enforce least privilege; regeneration produces the same outputs from the
same inputs and parameters.

Why it matters In qualitative anti-trafficking data, governance lapses create real harm.
The thesis shows that strong governance does not have to come at the expense of reuse: when
the processed projection is the “source of truth,” and artifacts are parameter-stamped, others
can inspect and regenerate results without seeing raw narratives. This is a concrete answer
to RQ2 and a practical demonstration of accountability via machine-actionable lineage (Lebo
et al., 2013)).

5.2.3 RQ3: Pipeline Utility (routes, hubs, cross-case consolidation)

Question. From sanitized inputs alone, does the pipeline produce decision-ready artifacts
that support the target tasks—and can those artifacts be regenerated deterministically?

Interpretation Utility is evidenced by what the system reliably produces every time it
runs on the processed table: (i) route reconstructions from ordered locations, with conservative
handling of unresolved toponyms; (ii) hub views that combine distinct-victim counts per location
with a reproducible graph layout; and (iii) cross-case consolidation via shared places and
canonicalized actor tokens. None of these steps depend on raw free text. They benefit from
determinism (seeded layouts, fixed thresholds) and from diagnostics that make uncertainty
explicit. Regeneration tests show that these artifacts can be recreated to equality or to trivial
formatting differences using the recorded parameters, which aligns with community guidance
for reproducible computation (Sandve et al., 2013} Wilson et al., [2017)).

Why it matters In a domain where predictive claims are out of scope and often inappro-
priate, descriptive, reproducible artifacts are the right level of proof. Analysts can see routes,
hubs, and overlaps; they can regenerate figures later; and they can do so without exposing raw
content. This answers RQ3 within the stated scope and provides a practical baseline for future
extensions.

5.3 Triangulation Across Evidence Streams

The conclusions above are not based on a single checkpoint; they arise from converg-
ing evidence. The literature—concordance review (Sec. 4.2) establishes that core behaviours
match established guidance (FAIR/PROV/GDPR; tidy/reproducible practice; standards-based
GIS). The gap—closure analysis (Sec. 4.3) shows that the implemented methods address the
most salient gaps—semantic fragmentation, weak provenance, and unclear governance—while
acknowledging partial closure where uncertainty or partner-specific mapping remains. The
self-audits (Secs. 4.4-4.5) verify that governance behaviours and regeneration work on a running
build without relying on external services. Finally, the synthesis (Sec. 4.7) ties these strands
back to the research questions and objectives in one place.

Where the streams reinforce one another—for example, provenance: specified by PROV-O,
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implemented in the registry, and confirmed by regeneration—the confidence in the finding is high.
Where they set boundaries—such as unresolved toponyms under conservative thresholds—the
thesis states the limitation plainly and points to safe upgrade paths (curated gazetteers; optional
SHACL shapes). This triangulation supports a modest but strong conclusion: a governance-first,
deterministic pipeline can deliver interoperable, privacy-preserving, and reproducible network
and map artifacts from sanitized inputs, and those artifacts are good enough to support the
intended analyst tasks while remaining inspectable and reusable (Wilkinson et al., 2016a; Lebo
et al., |2013; [EU-, 2016; [Sandve et al., 2013)).

5.4 Contributions

5.4.1 Methodological Contributions

This thesis contributes a governance-first methodology for turning sensitive, qualitative
records into reproducible analytical artifacts. The approach is distinguished by three features
working together. First, a single, tidy processed schema serves as the contract for all analytics
(network, RDF, GIS), which simplifies reasoning about semantics and enables cross-tool reuse
(Wickham)|, [2014)). Second, each transform is deterministic and parameter-stamped: seeds,
thresholds, and versions are captured so that “same inputs, same outputs” is a property of the
pipeline rather than a promise (Sandve et al., [2013; Wilson et al., 2017). Third, the pipeline
embeds machine-actionable provenance and a minimal registry, aligning exported artifacts with
FAIR’s reusability and W3C PROV-O’s Entity—Activity lineage without exposing raw narratives
(Wilkinson et al., |2016a; |Lebo et al., |2013). Together, these elements show how reproducibility
can be achieved from a sanitized projection, which is critical for high-risk data governed by
GDPR minimization and purpose limitation (EU-, 2016).

5.4.2 Practical Contributions

Practically, the work delivers a running, end-to-end workflow that researchers can execute
locally (non-egress) to explore: (i) routes via order-aware sequences and optional time playback;
(ii) hubs via distinct-victim loads and reproducible graph layouts; and (iii) cross-case overlaps
via shared locations and canonicalized actor tokens. The system writes standard, tool-agnostic
exports—RDF /TTL for semantic reuse, GeoJSON for cartographic reuse, and PNG/HTML
for visual inspection—each linked to a processed dataset ID and schema version. Lightweight
diagnostics (coverage summaries, unresolved toponyms, conservative duplicate flags) support safe
interpretation without printing raw text. These capabilities lower the barrier to collaborative
scrutiny: partners can audit, re-run, and discuss the same artifacts while governance remains
intact.

5.4.3 Conceptual Contributions (Design Guidelines)

The implementation yields a set of concise design guidelines for analytics on sensitive
qualitative data:

e Processed-only persistence. Treat the sanitized projection as the only persisted source
of truth; never store raw narratives (operationalizes GDPR minimization) (EU-, [2016]).
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e Artifact-first reproducibility. Stamp parameters, versions, and dataset IDs on ev-
ery export; make figures “executable” rather than static images (Sandve et al.| |2013;
Association for Computing Machinery, 2020)).

e Determinism before sophistication. Prefer deterministic canonicalization and seeded
layouts to reduce variance; add complexity only when it preserves auditability (Wilson
et all, 2017).

e Standards over bespoke. Use RDF 1.1 and GeoJSON so others can load outputs
without custom code; attach PROV-style lineage for accountability (Cyganiak et al.| 2014;
Butler et al. 2016; Lebo et al.| 2013 Wilkinson et al., [2016a)).

e Uncertainty-forward mapping. Resolve toponyms via exact lookup — conservative
fuzzy match; surface unresolved/fuzzy states and avoid false precision.

e Least-privilege by default. Enforce owner-only visibility for uploads and artifacts; keep
administrative views configuration-only (Saltzer and Schroeder], |1975)).

e Traceable requirements. Keep a simple line from requirements to behaviors to artifacts,
so auditors can verify claims without raw data (ISO/IEC/IEEE, [2018} van Lamsweerde),
2001)).

These guidelines are small by design: they are easy to implement, audit, and teach, making
them practical for teams that handle sensitive data and need verifiable, portable outputs.

5.5 Implications

5.5.1 For practitioners

The pipeline shows that analysts can work productively on trafficking-related datasets
without ever persisting raw narratives. In practice, this means (i) curating a reliable header
map into the processed schema, (ii) running deterministic transforms, and (iii) sharing only
standard exports (RDF/TTL, GeoJSON, PNG/HTML) with short provenance footers. The
result is a workflow that is easy to teach and audit: partners load the same artifacts in their
own tools, regenerate figures from recorded parameters, and discuss findings without debating
hidden preprocessing steps (Wilkinson et al., 2016a; Lebo et al.l 2013). For day-to-day use, two
habits matter most: keep the lookup tables for toponyms current, and cite the processed dataset
ID + schema version in every communication.

5.5.2 For governance and policy

The system demonstrates that minimization and accountability can be operationalized in
software instead of remaining policy slogans. Processed-only persistence, owner-scoped visibility,
non-egress exports, and machine-actionable lineage together create a verifiable posture aligned
with GDPR Art. 5(1) while preserving reusability for derived artifacts (EU-, 2016 Wilkinson
et al., 2016a). For organizations, this lowers the risk of “data sprawl” by design: reviewers audit
provenance records, not raw content; oversight focuses on whether transforms and parameters
were appropriate, which is tractable and defensible.

105



5.5.3 For research

Methodologically, the work illustrates how artifact-centric, deterministic evaluation can
substitute for model-centric metrics when prediction is out of scope. Reproducible exports
become the scientific object; figures function as “executable” results tied to specific inputs and
parameters (Sandve et al.| 2013 |Association for Computing Machinery| |2020). This pattern
is transferable to other sensitive domains: define a tidy processed schema, fix deterministic
transforms, and insist on parameter-stamped, standards-compliant outputs.

5.6 Limitations

Three limits deserve emphasis. First, location uncertainty: conservative toponym resolution
(exact lookup — high-threshold fuzzy) leaves some tokens unresolved and therefore omitted
from maps; this avoids false precision but reduces coverage. Second, portability: although the
header-mapping and canonicalization layers generalize, each new partner dataset still requires
curation to match the processed schema. Third, evaluation scope: findings rest on self-audit
and deterministic regeneration rather than external user studies or legal certification; this is
appropriate for a thesis but narrower than a full organizational rollout. These constraints are
documented at the point of use and in Chapter 4, and none undermine the core claim that
interoperable, privacy-preserving, and reproducible artifacts can be produced from sanitized
inputs (EU-, 2016; |Wilkinson et al., [2016a).

5.7 Future Work

Several extensions follow directly from the limits above. (i) Integrity constraints: publish
an optional SHACL shapes file for the RDF/TTL export so consumers can validate structure
without seeing data (Knublauch and Kontokostas, [2017)). (ii) Gazetteer curation: expand and
version the location lookup with partner feedback; add a small Ul for reviewing unresolved
tokens. (iii) Onboarding cookbook: provide a short guide and templates for new partners to
create header maps into the processed schema. (iv) Packaging: containerize the environment
and pin dependency versions to improve byte-identical regeneration across machines (Sandve
et al., [2013). (v) Traceability aids: auto-generate “artifact cards” alongside exports, and add a
minimal provenance viewer. (vi) Federation posture: explore safe collaboration patterns that
exchange only processed artifacts (RDF/GeoJSON) between institutions, explicitly avoiding
raw-data federation. (vii) Optional usability pass: when time allows, run a small external
walkthrough focused on the three analyst tasks; reuse the self-audit instruments from Chapter 4
to keep it light.

5.8 Ethical Reflection

The choices in this work—processed-only storage, least-privilege access, non-egress be-
haviour, explicit uncertainty handling—are not just technical conveniences; they are ethical
commitments shaped by the risks of trafficking data. Minimization reduces the surface area for
harm; provenance supports accountable interpretation; conservative geospatial practice avoids
false specificity that could mislead or expose; and standard formats enable scrutiny without
sharing raw narratives (EU-, 2016} Lebo et al. 2013; Wilkinson et al., |2016a). In settings
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documented by international reporting (e.g., UNODC) where data sensitivity is acute, a cautious,
reproducible pipeline is preferable to opaque or speculative analytics (United Nations Office
on Drugs and Crime, 2023b). The artifact demonstrates that meaningful analysis and ethical
restraint can coexist.

5.9 De-scoped Predictive Prototypes (LSTM & GNN): Rationale,
Risks, and Lessons Learned

This subsection documents predictive prototypes that were implemented experimen-
tally—sequence models (LSTM) and graph neural networks (GNNs)—but intentionally excluded
from the Methodology and Evaluation chapters. The aim is transparency: to explain what
was tried at a high level, why the results were not reliable enough for this thesis, and what
conditions would be required before reconsidering such models. No performance claims are
made here; the prototypes are disabled in the application build and are not used in any of the
reported findings.

5.9.1 Scope and intent.

Two exploratory directions were prototyped using only the processed (sanitized) projection
defined in Chapter 3:

1. Sequence modelling (LSTM). Treat per-case routes as ordered sequences of locations
and tokens to predict the next location or to classify a route pattern (e.g., “likely transit
hub ahead”). The architecture followed standard long short-term memory formulations
(Hochreiter and Schmidhuber, [1997a), with sequences built from Route _Order and optional
time spans when present.

2. Graph learning (GNN). Construct a typed graph from the processed table (Victim/Lo-
cation/Actor nodes; co-occurrence edges) and explore: (a) node classification (e.g., “is
this location a hub?”) using GCN/GraphSAGE encoders (Kipf and Welling, 2017; ?), and
(b) link prediction (e.g., potential actor—location associations) using learned embeddings
(node2vec as a baseline; GNN decoders) (Grover and Leskovec, |2016; [Liben-Nowell and
Kleinberg, [2007)).

All features were derived from the sanitized schema: serialized IDs, route order, canonicalized
token lists, and non-sensitive aggregates. No raw text or direct identifiers were used.

5.9.2 Why these models were de-scoped.

Technical data limits. The available sequences were short and heterogeneous; many cases
lacked dense, time-ordered observations. Labels suitable for supervised training (e.g., definitive
“hub” ground truth or verified future links) were sparse or noisy. Severe class imbalance and
small sample sizes made inductive generalization unstable (He and Garcial, 2009; [Saito and
Rehmsmeier, 2015). Under these conditions, LSTM and GNN outputs varied widely across
random seeds and train/validation splits, and calibration was poor.

107



Methodological pitfalls. Early trials surfaced risks of leakage (e.g., random graph edge
splits that inadvertently reveal future context; random sequence splits that break temporal
ordering) (Kaufman et al., 2012)). Proper protocols (time-based splits; edge-disjoint train/test
respecting case boundaries) reduced optimistic bias but further reduced effective training data,
worsening variance.

Governance and ethical concerns. Even if accuracy improved, predictive labels (e.g.,
“likely association”) in this domain carry non-trivial risk. Link prediction can expose sensitive
inferences; false positives/negatives can mislead analysts in high-stakes settings; and models
trained on incomplete or biased data may encode structural biases (Barocas and Selbst| 2016).
Given these risks, low and unstable accuracy provided a sufficient reason to exclude predictive
outputs from this thesis.

5.9.3 What exists in code (disabled by default).

e Minimal LSTM modules for next-step route prediction on tokenized location IDs with
sequence padding/masking; early stopping; and simple baselines (most-frequent next step).

e GCN/GraphSAGE encoders over the heterogeneous graph (typed nodes via feature hashing;
edges weighted by co-occurrence), with train/validation/test splits that attempt to prevent
leakage; node2vec embeddings for baseline link prediction (Kipf and Welling, 2017; ?7;
Grover and Leskovec, 2016]).

e Evaluation stubs that report only diagnostic curves (loss, variance across seeds); automated
metric pages are disabled in the UI. No figures or numbers from these stubs are reported
in the thesis.

5.9.4 Lessons learned (practical).

1. Determinism first. In small, sensitive datasets, deterministic descriptive analytics (the
pipeline presented in Chapters 3—4) yield stable, auditable value; complex predictors
without data depth add variance without reliability.

2. Splitting matters more than modelling. Time-respecting splits and leakage checks
are mandatory before any claim; once enforced, data scarcity often becomes the dominant
constraint (Kaufman et al., 2012).

3. Imbalance is acute. Rare positive links/nodes demand careful sampling and metrics
beyond accuracy (e.g., PR-AUC), but even then, confidence intervals are wide (He and
Garciay, 2009; [Saito and Rehmsmeier] 2015)).

4. Graph semantics are fragile. When edges are based on co-occurrence in sanitized
projections, predictive edges can be mistaken for evidence; strong visual affordances invite
over-interpretation. Clear labelling and abstention mechanisms would be required.
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5.9.5 Conditions for any future re-introduction (if governance permits).

e Data readiness. Longer sequences; clearer labels; documented ground truth for
“hub” / “association”; explicit uncertainty annotation; partner-approved lookups.

e Protocols. Time-based or case-blocked splits; leakage tests; pre-registered evaluation
plans; seed-averaged metrics with confidence intervals; strict separation of development
and assessment sets.

e Safety. Human-in-the-loop review; calibrated scores with thresholds tuned to minimize
harm (favor abstention); clear “prediction” badges; provenance linking predictions to
inputs; monitoring for drift.

e Transparency. Model cards and data cards; per-release documentation of assumptions
and limits; audit logs of training data and parameters (Mitchell et al., 2019).

5.9.6 Position in this thesis.

Predictive modules are not part of the validated contribution. They are recorded here as
exploratory work that informed design choices (e.g., the emphasis on determinism, provenance,
and uncertainty) and as a roadmap for responsible research if and when suitably rich, governed
datasets become available. Until then, the pipeline’s descriptive, reproducible artifacts remain
the appropriate level of analysis for this problem setting.
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6 Conclusion

This thesis set out to solve a concrete and pressing problem: how to turn highly sensitive,
largely qualitative trafficking records into artifacts that analysts can reuse, scrutinize, and
regenerate—without storing or exposing raw narratives. The response is a governance-first,
artifact-centric pipeline that projects uploads into a single, tidy processed schema and, from that
sanitized projection, produces standard, parameter-stamped exports (RDF/TTL, GeoJSON,
PNG/HTML) linked to a minimal registry. In doing so, the work reframes “results” as
reproducible artifacts with machine-actionable provenance rather than screenshots or opaque

dashboards.

6.0.1 What the thesis demonstrates.

Methodologically, the pipeline shows that strict governance and meaningful reuse are
compatible when the processed projection is treated as the system’s sole source of truth.
Deterministic preprocessing, seeded layouts, conservative toponym handling, and parameter
stamping make outputs stable and auditable. Practically, the application delivers three decision-
oriented capabilities from sanitized inputs alone: (i) route reconstruction from ordered locations,
(i) hub identification using distinct-victim load and reproducible graph layouts, and (iii) cross-
case consolidation via shared places and canonicalized actor tokens. Each capability produces
exports that open in standard tools, carry their own provenance, and can be regenerated to
equality or trivial differences using the recorded parameters.

6.0.2 Answers to the Research Questions.

RQ1 (Interoperability). Answered in the affirmative: a single processed schema
functions as a durable contract across modules, while RDF/TTL and GeoJSON adhere to widely
used standards. Provenance links every artifact to its inputs and settings, enabling cross-tool
reuse with traceability (Wilkinson et al. 2016a; |Lebo et al., [2013; Cyganiak et al., [2014} Butler
et al., [2016). RQ2 (Governance: privacy, residency, access, accountability). Answered
in the affirmative: raw uploads are handled in memory and discarded; only sanitized projections
and derived artifacts persist; exports remain local (non-egress); and non-owners cannot discover
or read another user’s artifacts. Machine-actionable lineage supports accountability without
revealing raw content (EU-, 2016} |[Lebo et al., 2013). RQ3 (Pipeline utility). Answered
within scope: the system reliably delivers decision-ready network and map artifacts for routes,
hubs, and overlaps from sanitized data and regenerates them deterministically. No predictive
performance is claimed or required for utility in this setting; the contribution is descriptive,
reproducible analytics aligned with governance constraints.

6.0.3 How the work addresses the identified gaps.

The implementation closes or narrows the most salient gaps synthesized earlier. Semantic
fragmentation is addressed by the tidy processed schema and a faithful RDF export; weak
provenance by registry-linked, parameter-stamped artifacts; governance ambiguity by processed-
only persistence, least-privilege access, and local (non-egress) mapping; and unclear evaluation
pathways by artifact-centred reproducibility and transparent self-audits. Remaining gaps—most
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notably conservative location resolution, partner-specific header mapping, and the absence of
bundled SHACL shapes—are explicitly bounded with clear, low-risk upgrade paths (curated
gazetteers; onboarding templates; optional integrity constraints).

6.0.4 Contributions in context.

Beyond a working application, the thesis offers a compact set of design principles for
sensitive qualitative analytics: processed-only persistence, artifact-first reproducibility, determin-
ism before sophistication, standards over bespoke formats, uncertainty-forward mapping, and
least-privilege by default. These principles are deliberately modest and operational; they can
be adopted incrementally by teams that need defensible outputs under FAIR/PROV/GDPR
expectations (Wilkinson et al., 2016a; Lebo et al., 2013; |EU-, 2016)).

6.0.5 Boundaries of the claim.

The evaluation is intentionally artifact-centred and self-audited. It does not constitute
a legal compliance certification, a performance benchmark at web scale, or a user-experience
study with external participants. Predictive prototypes (LSTM sequence models; GNN-based
node/link tasks) were explored but de-scoped due to unstable accuracy, leakage risks, and
ethical concerns in this domain; they are documented transparently (Sec. 5.10) but make
no appearance in the validated findings. These boundaries do not undermine the central
result: interoperable, privacy-preserving, and reproducible artifacts can be produced—and
independently verified—from sanitized inputs alone.

6.0.6 Implications and outlook.

For practitioners, the pipeline provides a safe, reproducible workflow that can be executed
locally: curate a header map into the processed schema, run deterministic transforms, and share
only parameter-stamped standard exports. For governance and policy, it shows how minimiza-
tion and accountability can be implemented in software, turning oversight into inspection of
provenance and parameters rather than exposure of raw narratives. For research, it illustrates
how artifact-centric evaluation can credibly stand in for model-centric metrics when prediction
is out of scope or inappropriate.

6.0.7 One-sentence takeaway.

A privacy-preserving, deterministic pipeline—grounded in a single processed schema and
standard, provenance-rich exports—makes trafficking analytics interoperable, auditable, and
reusable without storing raw data; this is both the thesis’s central claim and its practical
contribution to responsible, reproducible analysis.
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