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Abstract

This thesis explored the Crazyflie system, the Flow Deck, the MultiRanger deck and some of
its limitations as well as the development of a multimodal drone control system that enables
interaction with the Crazyflie 2.1 nano quadrotor using hand gestures and voice commands.
Traditional drone control relies on joystick based input, which can be unintuitive and requires
significant practice. This system explores more natural human communication methods to
lower the learning curve and improve user experience by the means of an interactive pet.

The project uses gesture recognition using MediaPipe Hands with a K-Nearest Neighbors
classifier and voice recognition using the VOSK speech engine coupled with natural language
processing techniques such as sentence embeddings and cosine similarity. This thesis used a
design-based research approach.

Results showed that under ideal conditions, both input modes performed reliably, with
added features like idle animations and obstacle avoidance improving the pet like experience.
The drone responded in real time and could be operated hands free. This work serves as an
early step in drone research, with the Crazyflie 2.1, at Leiden University.

The full implementation, including earlier prototypes, is available on GitHub:
https://github.com/exu0201/crazyflie-interactive-pet
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1 Introduction

The use of drones has seen a significant increase in popularity in various fields, such as research,
education, logistics and recreation. These unmanned aeruial vehicles (UAVs) can be used for a wide
range of tasks, including surveying, delivery, filming and autonomous navigation. Most drones are
controlled manually by a human with the use of a remote controller. These controllers typically
consists of two joysticks, one for managing the altitude (thrust) and rotation (yaw) and the other
one for forward/backward (pitch) and lateral (roll) movement.

While the usage of these joystick based control remains the standard, it does present several
limitations. This method of controlling can be unintuitive and often requires the usage of both
hands, which increases the difficulty to master the controls of a drone for users. But humans have
evolved a more natural and intuitive way of communicating, namely gestures and voice. These
two are natural communication methods and would lower or even remove the learning curve of
controlling a drone. By implementing a gesture and voice based interface, we can make drone
operations more user friendly and efficient.

We will be exploring the implementation of such multi modal interface that will allow users
to control a drone through its voice and gestures.

The Crazyflie 2.1+, categorized as a quadrotor, is an open-source experimental platform that
is used widely for research and education in robotics and control engineering [Gie17]. The Crazyflie
is an easy-to-use and modifiable UAV, making it perfect for educational purposes. Using tools such
as MediaPipe, Vosk and a K-Nearest neighbors classifier, voice commands and hand gestures will
be used to control the drone.

Since Leiden University has not really done research involving drones, this project represents
a great first step toward integrating UAVs into its research and educational activities. As one of
the first students to work with drones in this context, this thesis aims to explore and establish a
foundation for future drone related research at the university.

Thus the primary aim of this thesis is to explore the Crazyflie system, some of its limitations and
controlling of the Crazyflie drone without relying on traditional joystick based input. In addition to
the drone having a pet like behaviour.

Can a Crazyflie 2.1+ nano-drone be transformed into an interactive pet that
is controlled by hand gestures and/or voice commands?

This question will be addressed through the development and testing of a multimodal control
system. The effectiveness of this system will be evaluated based on responsiveness, accuracy and
the interactive behaviour of the drone.

1.1 Thesis overview

This bachelor thesis, carried out at the Leiden Institute of Advanced Computer Science (LIACS),
under the supervision of Mike Preuss, explores the implementation of a multimodal drone interface
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using gesture and voice control. This chapter contains the introduction; Section 2 discusses related
work; Section 3 provides technical background on the Crazyflie 2.1 platform, its supporting hardware
decks, and the software libraries used; Section 4 describes the design-based approach used and the
integration of each pipeline; Section 5 discusses the results and limitations. Finally, Section 6 talks
about the conclusion and suggests directions for further research and system improvements.

2 Related Work

2.1 Gesture Based Drone Control

Prior work has explored gesture recognition as an intuitive control interface for drones. Dadi
[Dad18] developed a multi tier system enabling gesture based navigation of Crazyflie drones using
a smartwatch (Moto 360) equipped with a gyroscope. The sensor data was transmitted from the
wearable to a smartphone via Bluetooth, then forwarded to a PC using socket programming, and
finally delivered to Crazyflie drones via a Crazyradio dongle. This architecture enabled real time,
wireless gesture based control of single or multiple drones.

The system demonstrated that inertial sensor data from consumer wearables could be effectively
repurposed for drone navigation tasks. Simple arm movements such as lifting or tilting the wrist
could be mapped to basic drone maneuvers like takeoff, directional movement, and landing. While
the approach allowed for hands free control, it relied on a layered communication pipeline that
introduced latency and increased system complexity. Additionally, the need to wear a specific device
constrained the naturalness of interaction and limited accessibility for general users.

2.2 Gesture Recognition Using Wearables

Choi et al. [CHO17] proposed an intuitive drone control system using hand gestures captured by
a smartwatch’s IMU. The system uses a recurrent neural network with LSTM cells to classify
nine distinct gestures in real time. These gestures are mapped to drone commands like takeoff,
hover, and land. The Crazyflie nano quadrotor responds to recognised gestures via a low latency
ROS based interface. The system also aligns the drone’s heading with that of the user for intuitive
maneuvering, demonstrating high classification accuracy and minimal latency in real world tests.
Their method leverages the temporal features of IMU signals using a hybrid deep learning archi-
tecture composed of convolutional and LSTM layers. The gesture classifier is trained offline but
operates in real time, achieving 98.9% accuracy on a test set of 3,000+ samples. The inclusion of a
heading alignment feature based on magnetometer data addresses the common problem of spatial
disorientation, enabling the drone to move in a direction relative to the user rather than its own
frame of reference.

2.3 Simulink Based Control of Nano quadrotors

Meghana Gopabhat Madhusudhan [Mad16] developed a nonlinear mathematical model of the
Crazyflie 1.0 nano quadrotor using Simulink. The study involved designing and tuning attitude
and altitude controllers based on the quadrotor’s dynamic equations of motion. The full model
incorporated six degrees of freedom and considered rotor thrust, body frame transformations, and
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aerodynamic drag. These controllers were then implemented in a real time Simulink environment,
enabling stable autonomous flight using model-in-the-loop simulation.
The project validated that Simulink could serve not only as a modeling tool but also as a control
interface for small UAVs. Real time controller output was routed through an interface board to the
drone, demonstrating closed-loop operation without the need for onboard computation. Although
the system did not include gesture or voice interfaces, it represents a significant contribution in
terms of control stability and precise system modeling. Compared to the current work, which
prioritizes real time human interaction through voice and vision, Madhusudhan’s study emphasizes
system-level dynamics and controller fidelity.

2.4 Skeleton-Pose-Based Gesture Recognition with Monocular Vision

Marinov et al. [MVW+21] introduced Pose2Drone, a modular Human Drone Interaction framework
built entirely on RGB based skeleton pose estimation using OpenPose. The system classified user
orientation (front, side, back) and recognized arm gestures through geometric analysis of 2D joint
positions, enabling both gesture based control and a face following mode. A neural network based
monocular distance estimation, trained on body and face features, allowed the drone to maintain a
safe distance without depth sensors.

The gesture vocabulary included eleven commands covering translational and rotational movement
as well as special actions like “circle around” and “take a photo,” achieving an average recognition
accuracy of 93.5% in varied lighting and orientation conditions. By relying only on the drone’s
onboard camera, the framework offers greater portability than depth based solutions and is well
suited for outdoor use. However, performance is sensitive to pose estimation quality, and certain
gestures, particularly “down,” were harder to detect due to physical execution challenges.

2.5 Body Gesture Control Using Depth Cameras

Gio et al. [GBV21] developed a Natural User Interface (NUI) for drone control using a Microsoft
Kinect depth camera to capture full body skeletal data. The system calculated joint angles in
real time and mapped them to drone movement and rotation commands, while incorporating
continuous flight speed control by linking gesture amplitude to velocity. To extend beyond basic
piloting, an interactive gesture controlled menu enabled tasks such as photo and video capture,
flips, and takeoff/landing, all with visual feedback from the drone’s camera and a live skeleton
overlay. Battery status monitoring and audio alerts supported operational safety.

User studies with both experienced and new pilots found the interface intuitive, particularly
for beginners who required minimal instruction. While experienced pilots completed tasks slightly
faster with traditional controllers, the gesture system offered a more natural interaction style.
However, its dependence on Kinect hardware restricted use to indoor or fixed-sensor environments,
and latency from the Tello SDK introduced noticeable delays between gesture execution and drone
response.
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3 Background

This chapter will provide information get familiar with the Crazyflie and to understand the
implementation of the multimodal drone control system based on gestures and voice.

3.1 Drone Control Basics

quadrotor drones like the used Crazyflie 2.1 are controlled by adjusting four main parameters:
thrust, yaw, roll and pitch.

• Thrust - controls the altitude of the Crazyflie 2.1

• Yaw - controls the Crazyflie’s rotation around its vertical axis. This rotates the quadrotor
left or right and thus changes the direction the front of the quadrotor is facing

• Roll - controls the Crazyflie’s rotation around its horizontal axis from front and back, which
causes it to move left or right.

• Pitch - controls the Crazyflie’s rotation around its horizontal axis from left to right, making
the Crazyflie able to fly forward or backward.

These drones can be controlled with either low level commands, which is the direct control of the
motor, or high level commands, in which a target position is specified. This project will focus on
the high level commander of the Crazyflie. This allows the Crazyflie to be able to move to a specific
coordinate in 3D space using a go to(x, y, z, yaw, duration) command.

Figure 1: The Crazyflie 2.1 with Flow and MultiRanger Decks attached
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3.2 Crazyflie Overview

The Crazyflie 2.1+ is an open-source experimental platform, easy-to-use and modifiable UAV,
which makes it perfect for this project. Researchers have used the Crazyflie in various studies in
autonomous navigation, swarm coordination, and human-drone interaction. It weighs 27 grams and
is even smaller than some modern smartphones. The Crazyflie 2.1+ is also equipped with Bluetooth
LE and a long-range and low latency radio [AB25]. This equipment gives the user the added ability
to control the quadrotor with their mobile as their controller. In combination with a Crazyradio
2.0, it is able to display data on the computer and use a generic game controller as its controller.

3.2.1 Crazyradio 2.0

The Crazyradio 2.0 is an open source, long range USB radio dongle built around the Nordic
Semiconductor nRF52840 chipset. It features a 20 dBm power amplifier and low noise amplifier
(LNA) to enhance signal performance. Although it is designed for the Crazyflie, its open firmware and
Python based API make it also an useful tool for applications requiring lower latency communication
than Wi-Fi, with less emphasis on bandwidth. The Crazyradio 2.0 is also equipped with an USB
bootloader, which allows for firmware updates without additional hardware. It also has a 64 MHz
Cortex-M4F processor, 1 MB of flash memory and 256 KB of RAM. The Crazyradio 2.0 operates
in the 2.4 GHz ISM band and supports multiple radio modes, including Bluetooth Low Energy
(BLE) and IEEE 802.15.4 [Bit25a]. This radio dongle allows the wireless communication between
a PC and one or more Crazyflies. It is used as the primary way of controlling the Crazyflies via
cflib, which will be discussed in more detail later in this thesis.

Figure 2: The Crazyradio 2.0 used in this project
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3.2.2 Flow Deck

The Flow Deck is an expansion board that adds optical flow and time of flight capabilities to the
Crazyflie. The Flow Deck is mounted under the Crazyflie and includes a PMW3901 optical flow
sensor and a VL53L1x ranging sensor. The PMW3901 optical flow sensor is used to measure the
movements of its horizontal plane and the VL53L1x is used to measure the drone’s altitude [Bit25b].

The optical flow sensor works by capturing motion relative to the ground by comparing im-
age frames at high speed, which allows the Crazyflie to estimate horizontal position changes. The
ranging sensor provides accurate vertical distance measurements from the floor, enabling altitude
control. These two sensors combined allow the drone to be able to fly pre-programmed scripts.

Figure 3: The Flow Deck used in this project

3.2.3 MultiRanger Deck

The Multi-ranger Deck is also an expansion deck that is mounted on top of the Crazyflie. It has the
ability to detect nearby objects by measuring distances in five directions: front, back, left, right, and
up. It uses multiple VL53L1x time-of-flight sensors to provide millimeter level precision for ranges
up to 4 meters. This allows for implementing basic collision avoidance, range based behaviours and
interactive responses to the environment [Bit25d].
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Figure 4: The MultiRanger used in this project

For optimal performance, the Multi-ranger Deck is often used in combination with the Flow Deck
V2. Together, these two decks give the Crazyflie a great understanding of its surroundings, enabling
it to sense nearby objects.

3.3 CFlib (Crazyflie Python Library)

The CFlib is the official Python library developed by Bitcraze to communicate with and control
Crazyflie drones. It provides a high level and low level interface to interact with the drone wirelessly
using radio links. The library contains tools for initialization, logging, communication, and direct
motor control, making it a core component in almost any Crazyflie based project.

CFlib abstracts away the complexities of packet communication, allowing developers to focus
on sending commands such as takeoff, land, or go to a specific location. It also includes classes
for logging drone sensor data, interfacing with the Kalman filter (for position estimation), and
managing connections.

3.4 HighLevelCommander

The HighLevelCommander is a module within cflib that allows for simple movement commands to be
issued to the drone at a higher level of abstraction. Rather than manually calculating motor thrust
or using PID control, this interface enables the user to send pre-built commands like takeoff](),
land(), and go to(x, y, z).

This simplifies movement control significantly, especially in position controlled environments
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where a Flow Deck or Loco Positioning System is used. It handles things like trajectory generation
and position maintenance internally, which is useful for projects focused on gesture or voice input
rather than raw flight dynamics.

3.5 Kalman filter

The Crazyflie nano quadrotor uses an onboard Kalman filter for real time state estimation. This
filter fuses data from multiple onboard sensors, including the inertial measurement unit (IMU),
optical flow sensor, and range sensors, to estimate the drone’s position and orientation in 3D space.
One of the key outputs of this estimator is kalman.stateZ, which represents the estimated altitude
of the drone above ground level, measured in meters. This variable is essential for height-dependent
flight maneuvers, such as takeoff, landing, and vertical translation.

Figure 5: Visual representation of the Kalman filter process used in the Crazyflie estimator, showing
prediction, measurement fusion, and state correction. Taken from Bitcraze [Bit24].

The Kalman filter operates by predicting the drone’s state based on physical models and then
correcting those predictions using incoming sensor data. In early stages of flight or when the environ-
ment lacks sufficient features (e.g., for optical flow), the estimate may be noisy or unreliable[Bit24].
As shown in Figure 5, the Kalman filter integrates predicted and measured states to estimate
position variables like kalman.stateZ.

3.6 MediaPipe & Hand Landmarks

MediaPipe Hands is a machine learning framework developed by Google that enables real time
hand tracking using computer vision. It is capable of detecting 21 unique landmarks on a human
hand, which correspond to key joints and fingertips [Goo19]. These landmarks are tracked in a
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three dimensional space (x, y, z), resulting in 63 values per hand. When both hands are detected,
the total number of features becomes 126.

The system is commonly used in gesture recognition tasks, as it provides detailed structural
information about hand poses. Each landmark represents a consistent location, such as the tip of
the index finger or the base of the palm. For example, by analyzing the relative distance between
the fingertips and the palm, the system can distinguish between an open hand and a closed fist.
This makes MediaPipe a useful tool for applications ranging from sign language recognition to
augmented reality interaction.

3.6.1 K-Nearest Neighbors

The K-Nearest Neighbors algorithm is a widely used and intuitive method for classification. It is
considered a nonparametric algorithm, which means it does not make strong assumptions about the
underlying data distribution. Instead, KNN operates by comparing new input data to previously
seen examples.

Figure 6: Simple visual representation of the K-Nearest Neighbors

The way it works is simple: when a new data point needs to be classified, the algorithm calculates
the distance from that point to all examples in the dataset. The ”k” closest data points are selected,
and the most common label among them becomes the predicted outcome. For instance, if a system
is trained to recognise hand gestures and a new hand pose is input, KNN will identify the gestures
from the training set that are closest in shape and position to the new one, and classify it accordingly.
A simple generic visualisation can be seen in Figure 6. In this example the new data point would
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be categorised as Class A for k = 5.

KNN is often used in scenarios where interpretability, ease of training, and flexibility are im-
portant. Its main limitation lies in performance, especially with larger datasets, since it stores and
compares all examples directly.

3.7 VOSK & Natural Language Processing

VOSK is an open-source speech recognition toolkit that allows for real time, offline transcription of
spoken language. It supports a variety of languages and is designed to work on lightweight devices
such as smartphones or embedded systems. Unlike cloud based alternatives, VOSK processes all
data locally, making it a privacy friendly option for speech driven applications [Inc19].

Speech recognition is only one part of the puzzle when it comes to understanding language.
Natural Language Processing (NLP) refers to a broad set of techniques that allow computers to
analyze, interpret, and generate human language. In the context of voice control, NLP is used to
go beyond simple word detection and understand the actual meaning or intent behind a sentence.

For example, phrases like ”could you take off”, ”please lift off”, or ”start flying” might be worded
differently but share the same intention. NLP techniques make it possible to interpret these kinds
of variations by converting text into formats that are more meaningful to machines.

3.7.1 Cosine Similarity

Cosine similarity is a mathematical technique used to compare two vectors by measuring the angle
between them (see Figure 7). It is commonly used in NLP to evaluate how similar two pieces of
text are, regardless of their length or specific words used.

A⃗

B⃗

θ

cosine similarity =
A⃗ · B⃗

∥A⃗∥∥B⃗∥

Figure 7: Cosine similarity between two sentence embedding vectors. A smaller angle θ implies
greater semantic similarity.
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In a typical application, sentences are first converted into semantic vectors using a model like
Sentence Transformers [RG19a]. These vectors represent the semantic meaning of the text. Cosine
similarity then compares the direction of the vectors: a score close to 1 means the texts are very
similar, while a score close to -1 means they are completely opposite in meaning.

This approach is useful when analyzing freeform speech or text, as it can identify the underlying
meaning even when different words or phrases are used. It is particularly effective for applications
like intent recognition, document clustering, or search engines.

4 Methodology

4.1 Design-Based Iterative Approach

This project followed a design-based research methodology, where the system was developed through
multiple iterations and gradual refinement. Instead of designing the final system from the start, a
series of prototypes were created, tested, and improved upon based on performance and usability.

The first prototype featured a simple voice interface with hardcoded commands. It relied on
direct string comparisons and allowed only fixed phrases like ”takeoff” or ”land.” This initial version
showed the possibility of voice control, but lacked flexibility.

In the second iteration, gesture control was introduced using hand landmark data. However,
this version used basic pattern matching logic and struggled with reliability due to the lack of
trained models. From this stage onward, both gesture and voice pipelines were continuously improved.

Later prototypes incorporated a trained K-Nearest Neighbors model for gesture classification,
and a sentence similarity system for more robust voice command understanding. Each iteration
introduced more realistic control, better error handling, and increased safety mechanisms, such as
cooldown timers and obstacle detection.

This iterative design allowed the system to evolve through experimentation and feedback. The final
system combines voice and gesture recognition with safety constraints and supports a range of
commands, offering a more natural interaction model for drone control.

4.2 System Overview

This project required both software and hardware components to function. Before any control
logic could be implemented, the drone itself had to be assembled. This included mounting the
motors, attaching the propellers and battery and connecting expansion decks such as the FlowDeck
and MultiRanger. This was done quite easily, though extra attention is needed when attaching
the propellers as there are two kinds of propellers, one being clockwise and the other one being a
counterclockwise propeller.

Once the Crazyflie was built, the installation of the Crazyflie client software was the next step.
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This client can be used to connect to the Crazyflie via the Crazyradio 2.0 to control the Crazyflie
with a compatible game controller. While the official documentation states the use of a Playstation
3 and Xbox 360 controller [Bit25c], a Playstation 4 controller was used, which also functioned
correctly to control the Crazyflie.

4.3 Flight Stabilization

Before executing any movement commands, the system performs a stabilization check using the
Crazyflie’s onboard Kalman filter. A logging configuration is set up to continuously monitor
both the vertical position estimate (kalman.stateZ) and the roll angle from the onboard stabi-
lizer. The drone is only considered ready for flight once the altitude estimate stabilizes and the
roll deviation stays within a safe threshold (in this project set to 1.5) for several consecutive readings.

This check helps ensure that the estimator has properly converged and that the drone is physically
upright and stable before initiating flight. Without this step, issuing high level movement or take off
commands could result in erratic behaviour, such as uncontrolled drift or sudden tilting, especially
in cases where the estimator hasn’t locked onto the correct position yet. Essentially, this acts as a
basic safety gate that blocks flight commands until the Crazyflie is in a trustworthy state.
In addition to this preflight check, a custom takeoff routine was created to replace the default
take off() function from the HighLevelCommander. Rather than issuing a single takeoff command,
the system gradually increases the altitude in small, incremental steps, giving the drone time to
stabilize after each lift. This staged ascent leads to a noticeably smoother and more controlled
takeoff, reducing wobble and mid air corrections during initial lift.

However, even with these improvements, takeoff stability remains somewhat affected by the surface
the drone is flying over. The FlowDeck, which handles optical flow and altitude estimation, performs
best over matte surfaces. When flying over shiny, reflective, such as polished tiles or white desks,
the optical flow sensor struggles to detect movement, leading to erratic hovering, misjudged height
changes or drifting.

4.4 Gesture Command Pipeline

The gesture control pipeline is based on real time input from a laptop camera. For this project, the
integrated webcam of a Samsung Book5 Pro 360 was used to capture the user’s hand movements.
These frames are processed using Google’s MediaPipe Hands framework, which detects 21 landmark
points per hand. Each landmark contains three coordinates (x, y, z), and since the system supports
detection of both hands, a single frame can yield a total of 126 numerical features (21 points × 3
coordinates × 2 hands). To ensure consistent recognition regardless of distance or hand size, the
raw coordinates are normalized by selecting a base landmark (the wrist) and scaling all points
relative to a reference fingertip.

Before the system could recognise gestures, a dataset had to be created. This was done by recording
multiple samples of hand gestures directly using the same MediaPipe pipeline. For each recognised
gesture, such as ”takeoff”, ”land”, ”forward”, or ”spin”, dozens of frames were recorded and saved

12



Figure 8: The implemented hand gestures, drawn using Autodraw [Goo23].

into a CSV file, with each row containing the 126 normalized landmark features and a label
representing the intended gesture (see Figure 8). The labeled dataset was then used to train a
K-Nearest Neighbors (KNN) classifier using the scikit-learn library.

KNN is a nonparametric classification algorithm that works by comparing the input sample
to the stored training examples. It calculates the Euclidean distance between the input gesture
vector and each sample in the dataset. The gesture is classified based on the most common label
among the “k” nearest samples in this feature space. This approach is easy to retrain and extend,
adding a new gesture simply involves collecting more labeled data and retraining the model.

During runtime, the camera continuously captures hand positions, and the extracted landmark
vectors are passed into the trained KNN model to make a real time prediction. Once a gesture is
recognised with high enough confidence, the corresponding drone command is executed. A cooldown
timer is implemented to avoid unintentional rapid triggering of repeated commands and to provide
smoother flight control. The gesture recognition process is illustrated in Figure 9.
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Figure 9: Gesture input pipeline Figure 10: Voice input pipeline

4.5 Voice Command Pipeline

Voice input in this system is captured using the built in microphone of the used laptop or an
external microphone connected to the laptop. For this project, the audio is processed in real time
using VOSK, an open-source offline speech recognition engine. VOSK converts the audio stream
into text, making it possible to understand user commands without relying on an internet connection.

Once the speech has been transcribed to plain text, the system needs to understand the meaning
behind the user’s words. Rather than matching commands through simple string comparison, a
more flexible Natural Language Processing (NLP) approach is used. The spoken sentence is passed
into a sentence embedding model. Specifically, the ‘all-MiniLM-L6-v2’ model from SentenceTrans-
formers [RG19b]. This model encodes the sentence into a fixed length vector that captures semantic
meaning, allowing similar sentences with different wording to produce similar vector representations.
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To determine which command the user most likely intended, the sentence vector is compared
to a pre-encoded list of example command vectors. Each command, such as “takeoff,” “land,” “go
forward,” or “spin,” has several example phrases associated with it (e.g., “please take off,” “can
you lift off,” etc.). The comparison is done using cosine similarity, a method that evaluates how
close the angle between two vectors is. The higher the cosine similarity score (closer to 1), the more
semantically similar the sentences are. If the similarity score between the user’s sentence and any
of the predefined examples exceeds a defined threshold, the command is accepted and interpreted
as the corresponding action.

This approach gives the system a level of language flexibility that traditional hardcoded command
systems lack. For example, the phrases “can you please fly up one meter” and “rise by a meter” would
both be interpreted as the same “go up” command. Additionally, the system scans the transcribed
text for numerical values. If the user includes a distance modifier (e.g., “move forward two meters”),
that number is extracted using regular expressions and used to scale the drone’s movement. If no
number is found in the sentence, a default movement value is applied instead (in this case 0.3 meters).

To prevent misinterpretation or frequent command execution, a cooldown period is introduced after
each recognised command. This ensures that repeated voice triggers don’t result in uncontrolled
behaviour. Throughout this pipeline, debug statements are printed to the console, including what
the system heard and which command it thinks was run, allowing the user to understand how their
input is being processed in real time. An overview of the voice input pipeline is shown in Figure 10.

4.6 Trick learning

An additional feature developed in the final prototype is the ability for the drone to learn new
”tricks” or command sequences during runtime. This allows users to define and teach the drone a
custom sequence of actions using their voice.

The trick learning process begins with the user activating learning mode via the voice com-
mand “learn a new trick.” The system then prompts the user to provide a name for the new trick.
Once named, the user can perform a sequence of voice commands (such as “takeoff,” “spin,” “land”)
that will be stored in memory as the steps for that custom trick. The process concludes with the
voice command “end trick,” which saves the sequence to a temporary in-memory structure.

The system stores the trick name along with the sequence of associated commands in a dic-
tionary, and dynamically updates the NLP embedding model used for intent recognition. This
allows the newly learned trick name to be matched as a valid command in future interactions
during the same session. Each time the user calls the custom trick (e.g., “do the happy spin”), the
drone executes each saved step in sequence, giving the impression of a choreographed behaviour.

This feature transforms the Crazyflie from a reactive drone to a programmable, interactive compan-
ion that can learn and repeat custom behaviours. It showcases not only flexibility in control, but
also a form of personalization that strengthens the pet like experience for the user.
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4.7 Drone Communication

The Crazyflie 2.1 quadrotor is wirelessly controlled through the use of the Crazyradio PA, a USB
radio dongle that establishes a real time link between the host computer and the drone. This radio
connection allows for low latency communication, which is essential for both flight stability and
timely command execution. The system transmits commands over a specific radio channel, and the
drone is identified via a unique URI (radio://0/80/2M).

To issue movement commands, the system makes use of the Crazyflie’s HighLevelCommander inter-
face. This interface provides higher level movement instructions such as position based navigation,
where the drone is instructed to fly to a specific (x, y, z) coordinate with a given yaw angle. All
position data is managed relative to the drone’s current estimated location, which is continuously
tracked via the FlowDeck.
Movement is carried out using the go to function, which sends a command to the drone to fly to a
new 3D coordinate. To maintain safety and stability, each movement is small and incrementally
updated based on user input. The system includes a local position tracker to store and update the
drone’s estimated location after each command.

Beyond basic command execution, the drone is also designed to behave in a more lifelike manner.
The system introduces a pet like interaction model, where the Crazyflie responds to certain moods
based on user engagement. If the drone receives frequent commands, it maintains an “active” or
“happy” state. However, if it does not receive any gesture or voice input for an extended period of
time, it gradually transitions into “bored” or “sad” moods. These moods are expressed through
movement animations: for example, in a bored state, the drone may rotate gently left and right in
place; in a sad state, it may dip slightly downward and then hover quietly.
This idle mood logic is implemented using a timer loop that periodically checks the time elapsed
since the last user interaction. If the user resumes communication (by issuing a command), the
drone returns to its neutral or happy state. This behaviour adds an element of personality to the
Crazyflie, adding to the idea of it being more than just a machine.

4.8 Safety, Stability and Environment Awareness

Before executing any commands, the system ensures that the onboard position estimator is stable.
This is crucial, as all subsequent movements rely on accurate and reliable position data. The
FlowDeck, which combines an optical flow sensor with a height sensor, provides position estimation
by tracking movement across surfaces. At startup, the software waits for the estimator to stabilize
by logging the vertical position (kalman.stateZ) and roll angle to confirm that the drone is level
and hovering stably.

To enhance environmental awareness and indoor safety, the drone is equipped with the Mul-
tiRanger deck. This deck provides real time distance measurements in five directions: front, back,
left, right and up. Before executing any directional movement, the system queries the MultiRanger
data to check whether the path is clear. If an obstacle is detected within a predefined minimum
distance (e.g., 300 mm), the movement in that direction is blocked and the command is ignored.
This ensures that the drone does not collide with walls, furniture, or people during indoor operation.
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In addition to environmental safety, an emergency stop mechanism is implemented. This can
be triggered at any time through either a specific voice command or gesture. When activated, the
drone performs an immediate and controlled landing, bringing itself to a zero altitude state and
disabling further movement commands until the system is manually reset.

Together, the layered communication system, real time environmental sensing, idle mood sys-
tem, and emergency failsafes contribute to a safe and engaging user experience. The Crazyflie acts
not only as a programmable drone, but also as an interactive and semi-autonomous companion.

5 Results

5.1 Gesture Recognition Accuracy

The performance of the gesture recognition system was evaluated by training a K-Nearest Neighbors
(KNN) classifier on a dataset of labeled hand poses. Each gesture sample consisted of 126 normalized
landmark features, extracted using the MediaPipe Hands framework. The model demonstrated high
classification accuracy, particularly for gestures with distinct hand shapes and spatial configurations.
Common commands such as takeoff, land, and forward were consistently detected with near-perfect
accuracy, especially when performed clearly in front of the camera.

Overall, the trained model achieved an accuracy of 99.66% on the test set. Table 1 shows the
precision, recall, and F1-score for each gesture class. Most classes achieved an F1-score of 1.00, with
only minor variation in cases such as left, which occasionally overlapped with similar gestures like
right.

Despite the high performance, recognition accuracy showed some sensitivity to environmental
conditions. In low lighting, shadows could partially obscure hand landmarks, leading to misclassifi-
cations. Gestures performed too quickly or outside the center of the camera frame were also more
likely to be missed. Additionally, hand poses with similar structural features, such as left and right,
sometimes resulted in false positives due to their spatial resemblance.

These results suggest that while the system performs reliably under optimal conditions, minor
environmental changes or user inconsistency can impact prediction quality. Table 1 summarizes the
performance metrics:
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Table 1: Classification performance of the gesture recognition model on the test set.
Gesture Precision Recall F1-Score Support
down 1.00 1.00 1.00 179
happy 1.00 0.99 1.00 122
land 1.00 0.99 1.00 140
left 0.98 1.00 0.99 97
right 1.00 0.99 1.00 158
sad 1.00 0.99 1.00 151
takeoff 0.99 1.00 1.00 172
up 0.99 1.00 1.00 154
Accuracy 0.9966 1173
Macro Avg 1.00 1.00 1.00 1173
Weighted Avg 1.00 1.00 1.00 1173

5.2 Voice Command Interpretation

The voice control system demonstrated consistent performance under optimal conditions. In a
quiet environment, VOSK handled real time transcription with minimal delay and high accuracy.
The integration of sentence embeddings allowed for flexible phrasing, meaning that users were not
restricted to memorizing exact command sentences. For instance, both “fly forward” and “move
ahead” were correctly interpreted as the same “forward” intent due to the semantic similarity
measured via cosine similarity.

This flexibility improved the usability of the system, allowing users to speak naturally rather
than staying to strict templates. However, in noisier settings or when the user mumbled or spoke
too softly, recognition errors occurred more frequently. In some cases, VOSK would misinterpret
the sentence or return an incomplete transcription. To mitigate false positives, a cosine similarity
threshold was introduced to ensure that only semantically confident matches triggered drone
commands. This filter proved effective in rejecting unintended inputs, although it occasionally
ignored commands that were semantically close but fell below the similarity cutoff. Overall, the
voice interface worked reliably as long as the user spoke clearly and environmental noise was
minimal.

5.3 System Responsiveness

System responsiveness was a critical aspect of this multimodal drone interface. Once a gesture or
voice command was detected and interpreted successfully, the drone typically responded within
1 to 2 seconds. This delay accounts for the processing time required to analyze camera input or
audio, classify the intent, and communicate the command to the drone via the Crazyradio 2.0.

Drone movements were executed correctly. For example, when a command such as “go up one
meter” was issued, the drone would ascend steadily and return to its current tracking point after
the motion was completed. If no numerical value was included in a command, a default step size of
0.3 meters was applied, which proved sufficient for most indoor navigation tasks.
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5.4 Safety and Obstacle Handling

Safety was also considered during system development, especially since the drone was flown indoors.
The MultiRanger deck was used to provide real time distance readings in five cardinal directions:
front, back, left, right and up. These sensors allowed the drone to assess its surroundings before
moving. If an obstacle was detected within a defined safety margin—typically around 30–40 cm—the
drone would cancel the intended movement in that direction and remain in place. This helped
prevent collisions with walls or objects.

Downwards obstacle avoidance was not implemented, as the MultiRanger deck does not include
a downward sensor. As a result, the drone still depended on the operator’s awareness of ground
clearance. Emergency landing was included as a failsafe and was triggered via either the “stop”
voice command or the corresponding gesture. In all tested cases, this command resulted in a safe,
controlled descent to zero altitude and a full stop of all commands.

5.5 Limitations and Observations

Despite the system’s good performance, several limitations and technical challenges became apparent
during testing and real-world use.

Gesture recognition was most accurate when the user’s hand remained within the center of the
webcam’s field of view. If the hand drifted too far to the sides or moved too quickly, MediaPipe
tracking would lose precision or fail entirely. Lighting conditions also played a major role. Dim
environments or strong shadows reduced detection confidence, which increased the likelihood of
misclassifications. Inconsistent or cluttered backgrounds occasionally introduced false positives as
well.

The Flowdeck, while generally reliable, had a few notable shortcomings. When flying over shiny or
reflective surfaces, the optical flow sensor would often return incorrect data, causing the drone to
drift unpredictably or misjudge its altitude. In some cases, this led to unstable takeoffs or crashes.
Following a crash, both the program and the drone had to be restarted to reestablish a working
state. Additionally, the onboard Kalman filter would sometimes report a high roll angle at startup,
preventing a clean takeoff altogether and thus the drone having to be restarted again. Even during
normal operation, the drone occasionally failed to maintain a stable hover.

Battery life was another practical constraint. The standard Crazyflie battery allowed for roughly 5
minutes of flight time per charge, while recharging took between 45 minutes and 1 hour. A larger
battery was tested and provided a few additional minutes of flight, but also required a longer
charging time and increased the drone’s overall weight. The effect of this larger battery on the
drone’s stability has not been tested in this research.

Space was also a consideration. While the Crazyflie is small, it still requires a sufficiently large and
unobstructed area for initial takeoff. Small rooms or environments with obstacles come with a risk
to both the drone and the surroundings.
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On the voice recognition side, the system generally performed well with the lightweight VOSK
model. However, a larger and more accurate VOSK model was also tested. While this improved
transcription accuracy slightly, it introduced noticeable delays. Voice commands took longer to
process and respond to, which affected the system’s overall responsiveness and real time feel.

Finally, a small mention goes to the use of the wireless charging deck. While it is technically
functional and can recharge the Crazyflie without requiring a physical cable, it proved to be largely
impractical in this setup. The main issue is that the wireless charging deck occupies the same
expansion slot as the Flowdeck, which is essential for flight stabilization and position estimation.
Since only one deck can be used on the bottom port at a time, the wireless charger cannot be
attached simultaneously with the Flowdeck. This means the drone has to be manually disassembled
and reassembled each time to switch between flying and charging configurations, adding unnecessary
steps to the development and testing process. As a result, while the idea of wireless charging is
appealing in theory, especially for autonomous or long term applications, it was not a viable solution
in this system’s current design and workflow.

These limitations highlight both the technical and practical boundaries of the current system.
While it is usable in controlled environments, improvements in robustness, hardware, and recovery
handling will be necessary for deployment in less predictable settings.

6 Conclusion and Further Research

This thesis explored the Crazyflie system and some of its limitations as well as the development of a
multimodal drone control system that allows users to interact with the Crazyflie 2.1 nano quadrotor
using hand gestures and voice commands. The goal was to replace traditional joystick control
with something more natural. Something that feels closer to how humans actually communicate.
Through tools like MediaPipe for gesture recognition, VOSK for voice transcription, and machine
learning techniques like K-Nearest Neighbors and sentence embeddings, the system was able to
translate real time human input into drone behaviour.

This project also introduced pet like behaviour that made it feel more interactive. Idle animations
and mood states gave the Crazyflie a sense of personality, also being able to teach the drone tricks,
a sequence of commands, making the experience more engaging than a standard drone flight.

Technically, both gesture and voice control worked reliably under good conditions. The modular
structure of the system made it easy to expand and debug. While there were still challenges, such
as gesture sensitivity to lighting and background noise affecting voice recognition, the core idea
was functional to use.

This project also laid the foundation for future work with drones at Leiden University. Since
drone-based research hasn’t been a big focus here yet, this system can serve as a starting point for
new ideas, whether in robotics, HCI or AI. This project also shows the limitations of the system
and useful insights of the expansion decks.
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While there’s still room to improve stability, scalability, and robustness, this thesis shows that it’s
absolutely possible to build a small, expressive drone system.

Future Work

There are several directions for continued development and improvement of the system:

First, the gesture recognition pipeline could be enhanced by replacing the current K-Nearest
Neighbours classifier with a more advanced model, such as a neural network or transformer based
architecture. This would likely improve classification accuracy and generalisation across different
users. Expanding the dataset to include more diverse hand shapes, sizes, and motion styles would
further increase robustness, making the system better suited for real world deployment.

Second, the voice interface could be extended to support custom command training, allowing users
to define their own phrases and associate them with specific behaviours. This would introduce a
layer of personalisation, particularly useful in shared or multi-user environments. Persisting these
custom commands using a local JSON configuration or lightweight database would ensure that
user preferences are retained across sessions.

Third, the current system depends on stable indoor conditions and well lit environments for accurate
gesture recognition. Future iterations could explore the integration of depth sensing hardware or
stereo vision to improve reliability in low light, cluttered, or more dynamic settings. This would allow
for more consistent detection and expand the usability of the system beyond controlled environments.

Another promising direction involves fusing gesture and voice input in real time. For example, the
system could interpret vague instructions such as “go there” by combining the spoken phrase with
a pointing gesture, effectively resolving spatial references. This kind of multimodal fusion would
enable a more natural and context aware interaction model.

In terms of navigation and autonomy, the drone’s obstacle avoidance capabilities could be sig-
nificantly improved. While the MultiRanger deck provides basic proximity sensing, integrating
additional computer vision or SLAM (Simultaneous Localisation and Mapping) techniques would
offer more advanced spatial awareness, enabling autonomous path planning and dynamic avoidance
of moving obstacles.

To improve accessibility, a graphical user interface (GUI) or mobile companion app could be
developed. This would allow users to visualise drone behaviour in real time, calibrate gestures,
define and test new tricks, and manage custom voice commands. All without requiring direct
interaction with code or command line tools.

Finally, Another valuable direction would be the introduction of adaptive learning and long-term
memory within the system. By allowing the drone to incrementally update its gesture and voice
command models based on user feedback or repeated usage, the interaction could become more
personalised over time. For example, the system could learn subtle variations in a user’s gestures
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or preferred phrasing and refine its classification confidence accordingly. Such adaptability would
make the system more resilient to variability and could also reduce the need for explicit retraining.
Incorporating this form of online learning would move the drone closer to a truly interactive
companion, capable of evolving alongside its user.
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