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Abstract

Software vulnerabilities represent a systemic security risk. Each year, tens of thou-
sands of new Common Vulnerabilities and Exposures (CVEs) are published, yet only a
small fraction are widely exploited. Conventional triage signals such as the Common Vul-
nerability Scoring System (CVSS) and the Exploit Prediction Scoring System (EPSS) are
widely adopted for prioritisation, but remain constrained by their reliance on centralised
metadata and delayed enrichment, a fragility exposed by the 2024 National Vulnerability
Database (NVD) backlog.

This thesis explores whether early ecosystem attention on GitHub-hosted proof-of-
concept (GHP) can serve as a forecasting signal for vulnerability prioritisation. Using
gradient-boosted regression (XGBoost) combined with density-based clustering (HDB-
SCAN), the study demonstrates that early engagement trends, capturing both interaction
volume and behavioural archetypes, are effective predictors of long-term GHP attention.
This prediction target, in turn, could function as a real-time indicator of risk signifi-
cance. The proposed framework departs from static scoring by leveraging decentralised
ecosystem engagement, is sensitive to emerging momentum, and is capable of surfacing
high-risk CVEs, positioning early GitHub PoC activity as an effective signal for vulner-
ability triage.
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Chapter 1

Introduction

In our increasingly digital society, software vulnerabilities represent a structural risk.
A single vulnerability in a widely deployed component can send ripples across entire
industries, while others can trigger severe and long-lasting consequences. For exam-
ple, Log4Shell (CVE-2021-44228), a remote code execution (RCE) flaw in the widely
used Java logging library Log4j, exposed numerous organisations ranging from cloud
platforms to enterprise applications. Similarly, the recent Microsoft SharePoint vulner-
ability (CVE-2025-49706 and related chains) was exploited as a zero-day in widespread
campaigns, allowing attackers to achieve RCE, establish persistent access, and extract
cryptographic keys to forge authentication tokens. The deliberate and capable nature of
this campaign forced organisations to take urgent action and mitigate widespread risk
across internal networks.

However, the complexity of modern systems makes vulnerabilities both inevitable,
and rapidly increasing in volume. As of mid-August 2025, over 30,500 CVEs (Common
Vulnerabilities and Exposures) had been published, marking a 43% increase compared
to the same point in 2024E]. Given limited resources and operational constraints, it is
infeasible for organisations to patch every vulnerability. As a result, prioritising remedi-
ation has become an essential part of modern cybersecurity practice, requiring defenders
to determine which vulnerabilities demand immediate attention and which can be safely
deferred.

Historically, vulnerability triage has relied on centralised metadata sources and static
risk scores, most notably the Common Vulnerability Scoring System (CVSS). These sys-
tems offer a structured, theoretically grounded view of severity but often fall short in
capturing which vulnerabilities are likely to be targeted in practice. The ecosystem’s de-
pendency on the National Vulnerability Database (NVD) further introduces a bottleneck:
the 2024 enrichment backlog at NVD, during which over 93% of newly published CVEs re-
mained un-analyzed for months, exposed the systemic fragility of metadata-driven triage
pipelines.

In response, recent research has moved toward more dynamic models. Some ap-
proaches enrich traditional scoring with additional metadata, incorporating features such
as exploit availability, patch timing, and publication delay. Others, such as the Exploit
Prediction Scoring System (EPSS), moves a step further, using probabilistic forecasting
to estimate short-term exploitation likelihood based on a broad and frequently updated
feature set. While these enriched models offer measurable improvements over static base-
lines, they remain fundamentally dependent on structured metadata and post-disclosure

"https://cvefeed.io/vulnerability-cve-metrics/
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artefacts that may be delayed, incomplete, or unavailable in the early stages of a CVE’s
lifecycle.

This thesis proposes a complementary approach: forecasting CVE risk based on early
engagement trends with GitHub-hosted Proof-of-Concept (GHP) repositories. By lever-
aging behavioural signals within the first days following GHP activation, the proposed
model aims to identify high-attention CVEs in real time, independently of static scores
or curated metadata. In contrast to traditional systems, which rely on post-disclosure
scoring and curation before operation, our model focuses on decentralised ecosystem en-
gagement as an early indicator of risk significance.

g 0 g o g 0

Global Model Trend-shape Clustering Cluster-wise Regression

overall prediction early attention behaviour improve
performance archetypes difficult cases

& 4 N\ 4 & 4

Figure 1.1: Overview of the proposed framework.

Figure provides an overview of the approach. It begins with a global prediction
model to set the baseline, proceeds with trend-shape clustering to identify early attention
archetypes, and concludes with cluster-wise models that refine predictions where the
global view falls short. Together, these steps form a triage framework that is robust to
metadata delays, responsive to real-world momentum, and capable of supporting early,
evidence-driven prioritisation.



Chapter 2

Background and Related Work

2.1 NVD and CVSS: Foundations for Data-Driven
Vulnerability Triage

Software vulnerability triage plays a central role in modern cyber defence. Given the
continuous influx of newly disclosed vulnerabilities, many of which are never exploited,
organisations must determine which CVEs warrant urgent attention and which can be
safely deprioritised. Effective triage enables timely and resource-efficient remediation,
reducing potential exposure by focusing on vulnerabilities most likely to be weaponised
or actively targeted.

The National Vulnerability Database (NVD) remains the primary source of curated
vulnerability metadata. Each CVE entry typically includes a natural language descrip-
tion, a CVSS Base score, and structured enrichment such as CWE (Common Weakness
Enumeration) and CPE (Common Platform Enumeration). CVSS, the Common Vul-
nerability Scoring System, provides a standardised measure of technical severity and has
become the default input for triage tools in both enterprise and academic contexts.

Although the CVSS specification includes optional temporal and environmental vec-
tors, these are rarely populated or maintained. In practice, most public CVEs report only
the fixed base score, and this is what most security vendors and researchers rely on for
risk assessment. However, a consistent body of research demonstrates that the CVSS base
score alone is insufficient for predicting real-world exploitation or supporting actionable
prioritisation.

Both [Allodi and Massacci, 2014] and [Younis and Malaiya, [2015] evaluate the effec-
tiveness of CVSS v2 scores as indicators of real-world exploitability, and both arrive at the
same conclusion: CVSS provides poor predictive value. Allodi and Massacci show that
CVSS-based prioritisation performs close to random selection, while incorporating PoC
presence improves accuracy to around 45%. Younis and Malaiya further demonstrate
that converting CVSS scores into a binary exploitability classifier yields extremely low
precision , as low as 7% for Internet Explorer, indicating that high CVSS scores frequently
overestimate exploitation risk.

In later work, [Suciu et al| [2022] offer further critique of CVSS v3 exploitability
metrics, showing that they perform poorly as predictors of real-world exploit development.
In a large-scale evaluation, they demonstrate that CVSS v3 exploitability scores yield
a maximum precision of just 0.19 , meaning over 80% of vulnerabilities flagged as “likely to
be exploited” never are. Through concrete examples, such as CVE-2018-8174 and CVE-



2018-8440, both exploited in the wild yet assigned exploitability scores below the 10th
percentile, the authors show that CVSS systematically misses active threats. They argue
that this imprecision stems from the design of CVSS itself, which relies on pre-disclosure
technical analysis and evaluates vulnerabilities statically and in isolation.

These empirical failures stem from CVSS’s structural limitations. As the CVSS v3.1
user guide itself concedes, “CVSS is designed to measure the severity of a vulnerability
and should not be used alone to assess riskassess risk’[] By design, the base score
omits temporal, environmental, and contextual factors, making it ill-suited for dynamic
risk assessment. While CVSS v3 introduced more granular base metrics, it remains a
snapshot system, lacking mechanisms for updating risk as new exploit artefacts or attack
signals emerge.

While CVSS’s static design limits its ability to reflect evolving threat conditions, an
even broader vulnerability lies in the ecosystem’s dependence on centralised metadata
sources, NVD’s role as the primary enrichment pipeline makes it a single point of failure.
This structural fragility became plainly visible in early 2024, when a severe backlog in
NVD start to take place. Beginning on February 12, NVD drastically slowed its process-
ing of new CVEs. Between February and late May, 12,720 vulnerabilities were published,
but 93.4% remained unanalyzed?, Among them were 50.8% of Known Exploited Vul-
nerabilities (KEVs) and 82% of CVEs with public PoCs, leaving security teams blind to
critical signals of active risk.

The backlog’s roots were structural: limited public-funding, surging CVE volumes
(over 33,000 in 2023), and a centralised, labour-intensive enrichment pipelineﬁ. While
CVSS score coverage shows good recovery in late 2024, aided by external sources like
CISA’s Vulnrichment GitHub feed, a large number of CVEs still lacked full analysig]

This systemic slowdown fractured the long-standing notion of NVD as a “single source
of truth” for vulnerability metadata. Many enterprise systems that depend on NVD
for CVSS scores and CPE tags, including SIEMs, scanners, and risk dashboards, were
left with placeholders, delayed updates, or missing entries altogether. Industry voices,
including IBM and VulnCheck, have since argued for a paradigm shift toward more
decentralised and flexible triage approachef]

2.2 Enriched Vulnerability Triage Models

There has been a growing shift in recent research toward enriching traditional vulner-
ability scoring models with broader lifecycle and ecosystem-aware features. More recent
triage systems attempt to improve upon static scoring by incorporating additional sig-
nals that better reflect real-world risk. These enhancements typically include metadata-
derived features, exploit artefact indicators, and machine learning and heuristic mod-
els that infer exploit likelihood.

An increasingly prominent scoring standard is the Exploit Prediction Scoring System
(EPSS, [Jacobs et al., 2021]). EPSS is explicitly designed to estimate the likelihood of
exploitation in the near term (e.g., 30 days), using a probabilistic model updated daily.
It draws on a large feature set, reportedly over 1,400 attributes, including CVSS vectors,

"https://www.first.org/cvss/
Zhttps://www.vulncheck.com/blog/nvd-backlog-exploitation

3See ReversingLabs blog post on April 2, 2025.
“https://www.vulncheck.com/blog/nvd-backlog-exploitation-lurking

5See IBM Article: CNVD backlog update: Attackers change tactics as analysis slows.
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public exploit availability, and social media mentions. This focus on dynamic threat
signals makes EPSS a more adaptable alternative for short-term triage.

As previously noted, [Suciu et al., 2022] critique the static nature of CVSS v3, ar-
guing that it fails to capture real-world exploitability due to its reliance on isolated,
pre-disclosure technical analysis. In contrast, they emphasise that post-disclosure arte-
facts , such as proof-of-concept code, documentation, and social media discussion, provide
more actionable signals for forecasting exploit development. Building on this observation,
they introduce Expected Exploitability (EE), a supervised learning framework designed
to predict whether a functional exploit will emerge for a given CVE. Their feature set
incorporates PoC artefacts extracted from ExploitDB, BugTraq, and Vulners, including
programming language, code complexity metrics, reserved keyword usage, and textual
n-grams from both code and commentary. When combined with contextual features such
as CVSS scores, CWE types, and vendor/product data, these models outperformed all
baselines, suggesting that PoC artefacts meaningfully enhance exploit prediction beyond
what static metadata alone can offer.

[Zhang and Li, |2020] approach exploit prediction as a temporal classification task,
estimating the probability that a CVE will be exploited on each individual day following
disclosure. Input features include CVSS base metrics, CWE categories, software iden-
tifiers, and tf-idf embeddings of CVE descriptions. Notably, they also extract timeline
features, including the difference between the modified date and the original published
date for the vulnerability, and the difference between the last seen date and the original
publish date. While this design brings useful temporal context to post-disclosure risk
modelling, the inclusion of retrospectively observable features, such as last_seen_date,
raises concerns of data leakage, limiting its applicability for real-time vulnerability pri-
oritisation.

[Costa and Tymburibd, 2022] propose V-REx, a neural network-based system for pre-
dicting vulnerability exploitability. The framework integrates time-aware features such
as vulnerability age, patch-to-exploit delay, and structured risk windows into a super-
vised learning setup. V-REx uses three neural network variants (standard, enhanced,
and interconnected-enhanced) to classify vulnerabilities, drawing on CVE/NVD-derived
metadata, CVSS scores, and NLP-processed textual features, and then incorporates
an enhanced genetic algorithm for hyperparameter tuning. By embedding temporal con-
text directly into the learning architecture, the authors report improved performance
relative to both CVSS and EPSS, suggesting that dynamic modelling yields stronger
predictive signals than static scoring alone.

A more recent study ([Khanmohammadi et al., 2025]) introduces ExploitabilityBirth-
Mark, a static classifier that predicts whether a CVE will eventually be exploited using
only information available at day zero. Unlike EPSS, it bypasses enrichment fields that
are often missing during disclosure backlogs, such as CVSS or CPE, and instead de-
rives NVD report features from summary-level cues, vendor and product mentions, and
lightweight external signals such as vendor size or open-source status. Implemented with
an XGBoost model tuned via grid search, BirthMark markedly outperforms a stripped-
down Day-1 EPSS baseline: prioritising the top 30% of CVEs by its score captures about
70% of those later exploited, compared to only 40% with Day-1 EPSS. While this static
approach sacrifices temporal nuance, it offers a counterpoint to EPSS’s reliance on pro-
gressively accumulated data, pushing towards early-stage prediction tools that are less
dependent on centralised metadata flows.



2.3 Social Media as Emerging Risk Signal Platforms

The vulnerability risk landscape continues to evolve through years. While prior work
has relied on structured sources like CVE metadata, exploit datasets, and Symantec
threat feeds, enriching NVD-based scores and metrics with wider temporal and contex-
tual features, a growing body of research is turning their main focus to social platforms as
alternative signal sources. Platforms like Twitter, GitHub and Reddit are gaining atten-
tion for their ability to reflect early, decentralised indicators of exploit activity, including
researcher interest, PoC publication, and threat actor engagement.

Multiple recent surveys on vulnerability triage studies echo this shift in thinking. [Jiang
et al) 2025]., when discussing on data source for vulnerability prioritisation research,
specifically call for dynamic, time-sensitive indicators, noting that “emerging sources,
such as social media (Twitter, GitHub), offer real-time insights into exploit announce-
ments.” Similarly,[Le et al. 2023] highlight that GitHub remains an underutilised yet
promising source of early vulnerability signals, and advocate for improved integration
of behavioural indicators into triage frameworks.

A line of research has explored the viability of Twitter as an early warning system for
vulnerability exploitation. [Sabottke et al., 2015] (2015) first demonstrated that vulner-
ability discussions on Twitter could be leveraged to predict real-world exploits, using
support vector machines trained on tweet text and metadata to flag CVEs of interest.
Building on this foundation, [Chen et al.,[2019] proposed an ensemble-based approach to
forecast when a CVE would be exploited, linking tweet activity patterns to both PoC and
real-world exploitation timelines. Their graph-based model showed that the velocity and
structure of early tweet dissemination can serve as temporal cues for exploit likelihood.

More recent efforts have advanced both data extraction fidelity and predictive robust-
ness. [Du et al., [2023] developed ExpSeeker, a deep-learning pipeline that automatically
identifies tweets containing public exploit code and extracts relevant metadata such as
CVE identifiers and vulnerability types. Their method often detects exploits ahead of
ExploitDB, highlighting Twitter’s decentralised and real-time signal advantage. In par-
allel, [de Sousa et al., 2020] evaluated multiple classifiers on a five-year Twitter dataset,
and found that Twitter metadata and user statistics (e.g., follower counts, retweet ac-
tivity) generally outperformed tweet content for exploit detection, highlighting the value
of engagement signals in social-media-based triage. Collectively, these studies showcase
Twitter’s potential as a high-tempo signal source for triage, while also reveal noise and
temporal drift challenges that constrain long-term reliability.

Alongside Twitter, GitHub has also become an emerging platform for deriving vul-
nerability triage signals. EPSS v3 has already included GitHub as a source of publicly
available exploit code besides Exploit-DB and MetaSploitf] In addition, several recent
studies have specifically investigated GitHub’s potential as a risk-signalling platform,
recognising its role in reflecting emerging exploit activity and early ecosystem attention.

[Shrestha et al. |2020] presented an in-depth contrastive analysis of discussion spread
about software vulnerabilities in three social platforms,GitHub, Twitter, and Reddit.
They highlight GitHub as a primary surface for vulnerability-related discussion, finding
that in 46% of cases, conversation begins on GitHub, and in over 16% of cases, even before
CVEs are published to the NVD. This positions GitHub not merely as a code-hosting site,
but as a real-time situational awareness platform for developers, security engineers, and
potentially adversaries. Notably, they also find that discussions about CVEs later linked

Shttps://www.first.org/epss/model)
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to state-sponsored APT campaigns, including Russian, Chinese, and Iranian operations,
frequently begin on GitHub.

A recent risk scoring framework, XVRS, proposed by [Seker and Meng;, 2023], directly
incorporates GitHub-derived metrics as part of its dynamic threat intelligence model.
Specifically, they include a composite score based on the number of GitHub repositories,
stars, and forks associated with a vulnerability, aggregated over the most recent three-
month period. While XVRS acknowledges the correlation between GitHub activity and
emerging risk, it uses these features purely as volume-based augmentations.

[Kita et al., [2025] further underscores GitHub’s growing role in the vulnerability life-
cycle, recognising that GitHub has grown into a major repository of exploit code, often
exceeding ExploitDB and Metasploit in coverage and timeliness. They propose a pri-
oritisation framework for exploit codes published on GitHub to support more effective
vulnerability triage. Specifically, they adpoted a graph-based scheme for prioritising
trustworthy exploit codes on GitHub. Their approach constructs a trust graph among
users based on repository stars and follower links, and seeds this graph using authors
referenced in NVD, ExploitDB, or Metasploit. By applying TrustRank, they rank ex-
ploit codes by inferred credibility, framing GitHub as a viable, though noisy, source of
real-world exploitation signal.

These findings reinforce the premise of this thesis: that GitHub PoC activity and
engagement patterns are not merely passive or retrospective, but reflect a decentralised,
actor-diverse form of ecosystem attention that may precede formal recognition by scoring
systems or curated threat databases. It can be a signal platform for emerging vulnerability
risk, and is in need for automated triage mechanisms.

2.4 Positioning and Methodological Framing

Prior research has made significant strides in vulnerability scoring, exploit prediction,
and the use of GitHub data. This section situates the present work within that landscape.
We begin by framing GitHub interactions as meaningful indicators of early interest. We
then compare this thesis’s scope and assumptions with two adjacent studies that also
analyse GitHub-hosted PoC repositories, but from notably different perspectives. Finally,
we outline the method framing and design considerations of this work, particularly around
temporal modelling and interpretability, to distinguish it from existing vulnerability triage
approaches.

2.4.1 GitHub and User Interaction Mining

In practice, GitHub operates as a platform for collaborative software development,
structured around repositories that host source code and related artefacts. User interac-
tions form the basis of observable activity on GitHub. Accounts engage with repositories
in several means: starring is a way to bookmark or endorse a project, signalling attention
and visibility; watching subscribes a user to updates and notifications; and forking creates
a personal copy to experiment or prepare contributions without affecting the upstream
repository. Because these actions are logged with timestamps, they make project activity
directly traceable over time, enabling large-scale, behaviour-centric measurement.

Empirical studies of GitHub interaction factors driving project popularity (|Borges
et al., [2016], [Borges and Tulio Valente, 2018|) show that developers often treat stars as
a decision heuristic: in a survey of 791 developers, roughly 73% reported considering star
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counts when deciding whether to try or contribute to a project. This establishes stars as
a practical proxy for community attention. Stars and forks are also strongly correlated
(p =~ 0.55), with forks reflecting a higher-effort form of engagement. Importantly, star-
ring behaviour exhibits recognisable temporal patterns around release cycles and version
updates, giving rise to distinct growth regimes: slow, moderate, fast, or viral. These
patterns support the modelling of early star/fork trajectories as predictive signals, rather
than relying solely on raw totals.

Prior studies routinely mine user-interaction traces at scale to answer broader soft-
ware engineering questions. For example, [Bissyandé et al., 2013] analyse watchers, forks,
issues, contributors, and team size across 100,000 repositories to study language ecosys-
tems and project outcomes. Similarly, [Parekh) 2024] links GitHub stars with PyPI down-
loads for 3,182 Python libraries, incorporating interaction and maintainership features.
These exemplars demonstrate that stars, forks, and related interactions are established,
queryable signals for empirical analysis, supporting their use here as early attention and
engagement indicators.

2.4.2 Adjacent study on GitHub Proof-of-Concept (PoC) repos-
itories

As discussed in Section [Kita et al., [2025] propose a prioritisation framework
for GitHub-hosted exploit code, focusing on code trustworthiness and social credibil-
ity. Their approach combines clone de-duplication with a graph-based trust scoring scheme,
resulting in a curated set of PoCs presumed to be credible and exploit-worthy, making
the framework post-hoc, trust-filtered, and contributor-centric.

In parallel, [Yadmani et al.| [2022] present a large-scale empirical investigation into the
maliciousness of CVE-linked PoC repositories hosted on GitHub. Their work frames PoCs
as potential threats to analysts and the community, applying static malware heuristics
(e.g., IP addresses, obfuscation patterns, VirusTotal scores) to detect repositories that
embed or disguise harmful content. While their findings confirm that GitHub activity is
not inherently benign, their approach frames PoCs primarily as objects of threat contain-
ment.

In contrast, this thesis adopts a broader and signal-oriented perspective. Rather
than filtering for functionality or intent, we treat all CVE-tagged repositories as poten-
tial sources of behavioural signal. Interaction dynamics, such as star, and fork events,
are used not to validate the correctness of the PoC, but to infer ecosystem attention
patterns, in which actors could be user patching third-party sources [Schiappa et al.,
2019], reputable exploit code contributors [Kita et al., 2025], opportunistic attackers, or
momentary passive observers drawn in by trending vulnerabilities.

Since any form of decentralised coordination or early interest may signal urgency, we
argue that GitHub PoC timelines can offer early, actor-agnostic insight into which vul-
nerabilities are likely to matter. This thesis thus shifts the analytical lens from post-hoc
PoC trustworthiness to early attention trajectories, foregrounding behavioural patterns
over static code attributes.

2.4.3 Design considerations for vulnerability triage models

Temporal Feature Design

12



Many prior models incorporate time as a static input feature. For example, |[Zhang
and Li, 2020 extract attributes such as the difference between a vulnerability’s last seen
date and its original disclosure date, using the Vulners database. Similarly, [Costa and
Tymburiba, 2022] include measures like vulnerability age and patch-to-exploit delay to
define risk windows. EPSS also uses a timeline indicator, the number of days since CVE
publication, which ranks among its top 30 predictive features.

In contrast, this thesis treats time not as a fixed attribute but as a dynamic struc-
ture: it models how engagement unfolds within a defined early observation window. The
model leverages daily interaction signals (e.g. stars, forks) to capture behavioural growth
characteristics over time, offering a more granular and temporally expressive foundation
for forecasting vulnerability risk.

Temporal Prediction Targets

When it comes to the temporal framing of prediction targets, existing models take
varied approaches.

[Suciu et al [2022] define expected exploitability as the probability that a functional
exploit will be developed for a CVE over time. While the prediction itself is static,
the model is evaluated at multiple post-disclosure checkpoints (e.g. Day 0, 10, 30, 365),
demonstrating that the earliest post-disclosure artefacts tend to carry the most predictive
value. Whereas [Zhang and Li, [2020] embed time directly into the prediction target by
training a sequence of neural networks to estimate the likelihood that a CVE will be
exploited by day n after disclosure. Their model learns day-by-day risk progression, with
particular focus on the first 30 days post-disclosure.

Rather than focusing solely on the disclosure-to-exploit interval, this thesis mod-
els ecosystem attention to GitHub-hosted PoCs (GHPs), spanning a broader scale of
the vulnerability lifecycle. The proposed model anchors each CVE at the point of first
GitHub PoC activation and predicting future engagement trajectories over 30, 60, and
90 days. This approach captures a richer behavioural context, aligning actor engagement
whether they occur before, during, or long after formal CVE publication.

Temporal Data Splitting

[Le et all [2023] observe that among their reviewed studies, k-fold cross-validation ,
which allows each data point to appear in both training and validation roles, remains a
dominant evaluation strategy. However, they pointed out that such methods lack a truly
held-out test set and fail to reflect the conditions of real-world deployment.

To address this, the present study adopts a temporally aware data split. The dataset
is divided into a training set, an additional validation set for hyperparameter tuning,
and a strictly time-separated test set, all ordered chronologically based on each CVE’s
publication date. This approach better reflects the evolving nature of the ecosystem,
ensuring that the model learns from past trends and is evaluated on future, previously
unseen CVEs.

In addition, this thesis’s temporal split is designed to align with the 2024 NVD backlog:
the model is trained on CVEs disclosed prior to March 2024, and evaluated on those
published during the backlog period, when NVD enrichment slowed or stalled. This setup
serves as a real-world stress test, allowing us to evaluate whether temporal GitHub PoC
attention trends can provide meaningful risk signals amid broader ecosystem shifts. A
model that performs well under these conditions would demonstrate potential for resilient,
decentralised triage, acting as a buffer for identifying emerging threats before formal
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scores become available.

Interpretability

Beyond calls for time-aware, dynamic, and alternative risk signals, [Le et al., 2023]
and |Jiang et al., [2025] have also identified the lack of model interpretability as a major
barrier to realistic adoption of predictive models. As detailed in later sections, our study
addresses this challenge using a gradient-boosted regression model (XGBoost), paired
with SHAP-based post-hoc analysis to provide interpretability. This approach enables
inspection of why certain CVEs are prioritised, offering deeper diagnostic insight into
model behaviour.

In summary, this thesis propose a behavioural forecasting framework for CVE triage,
grounded in early GitHub Proof-of-Concept (PoC) activity patterns. It contributes to
the literature in the following dimensions:

e Dynamic & Alternative Risk Modelling: Unlike traditional approaches that
rely on static CVE metadata or treat time as a fixed attribute (e.g., delay since dis-
closure), this work adopts a dynamic lens, forecasting CVE popularity based on how
GHP engagement unfolds over time. By treating user interactions (stars, forks, etc.)
as a behavioural time series within defined observation windows, the model captures
temporal momentum rather than just static volume. GitHub attention trends thus
serve as a decentralised and real-time signal source, offering predictive value even
when conventional metadata (e.g., CVSS, EPSS) is incomplete, delayed, or absent.

e Forecastability from Early Attention Shape: By constructing a GitHub PoC
prediction model and conducting comprehensive experiments across multiple input—
output horizons, this thesis demonstrates that short observation windows (5-7 days)
are sufficient to support accurate long-range forecasts of PoC popularity (30-90
days). SHAP-based interpretability analysis further confirm that early GHP inter-
actions, both in volume and in temporal shape, carry strong predictive signal for
downstream engagement.

e Behavioural Clustering & Subpopulation Modelling: Recognising the lim-
itations of global models in the face of attention-pattern heterogeneity, this the-
sis introduces a trend-based clustering pipeline to segment CVEs by early PoC
engagement dynamics. Subsequent cluster-wise analysis and targeted prediction
enhancements, including extended observation windows, shape-based / contextual
feature enrichment, and skew-aware regression models, are conducted to improve
performance across distinct temporal archetypes.

e Alignment with Real-World Exploitation: Beyond numerical accuracy, the
thesis evaluates the model in a ranking scenario and validates its predictions against
external threat signals, including Metasploit modules, KEV listings, and ransomware
leak datasets. The results show that high-risk CVEs often exhibit measurable
GitHub PoC activity before these signals emerge, and the model captures the top-
priority CVEs well, underscoring the its potential for vulnerability triage and early
warning in real-world defence workflows.

Together, these contributions position the present work as a lightweight, transparent,

and temporally grounded alternative to static scoring systems, offering a practical path
toward decentralised vulnerability triage.
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Chapter 3

Database and Feature Foundations

3.1 Dataset Structure

This study draws on a prepared dataset compiled by prior researchers, integrating
NVD CVE metadata with GHP repositories and user-level interaction events. The ob-
servation window extends through 18 March 2025, and no repo creation or interaction
beyond this date is included. For NVD coverage, a CVE is considered in scope if it
was (a)published on or before 18 March 2025 or (b)linked to at least one PoC repository
created on or before that date, thereby preserving cases of pre-disclosure PoCs. All tim-
ing analyses that reference a CVE “publish date” require a non-null NVD publication
timestamp.

The dataset also incorporates external exploitation sources, including CISA & Vul-
nCheck KEV (Know Exploited Vulnerabilities), ExploitDB, Metasploit, and ransomware-
related CVE lists which will be used later in the thesis to provide context and downstream
evaluation. Records from ExploitDB and Metasploit are gathered and maintained by the
present author. All data entries with a timestamp are are truncated at the cut-off date to
preserve temporal consistency. The detailed integration methodology and underlying ra-
tionale will be presented in Section [7.2]

3.1.1 GHP-Specific Data

To capture early GHP activity, the dataset identifies GitHub repositories that ex-
plicitly reference individual CVE identifiers in visible metadata fields, namely repository
titles, descriptions, README files, and topic tags. This ensures that the reference is both
deliberate and publicly documented. In order to maintain analytical clarity, this research
exclude GHP repositories referencing multiple CVEs, enforcing a one-to-one mapping
between each CVE and its associated GHP repository.

Furthermore, the dataset is structured to support time-series analysis of how interest
in a vulnerability emerges and evolves, often within days of initial disclosure or GHP
activation. In addition to repository-level metadata such as repo_created_at, the dataset
records individual user interactions (stars or forks) with timestamp and user ID. These
fine-grained traces allow us to reconstruct per-CVE engagement timelines and behavioural
patterns.

The final portion of Table [3.1| outlines CVE-level aggregates derived from user inter-
action traces. These metrics form the foundation for feature engineering introduced in

Section [4.1.3]
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Table 3.1: Database schema of the prepared dataset, including CVE metadata, PoC repositories, User
interactions and CVE-level aggregates.

Object / Table Field Type Description / Semantics
NVD CVE id text CVE identifier.
status text CVE status code (e.g., P, PU, R, U.
D-rejected entries are excluded).
date_published date NVD publication date (may be
NULL for R/U or incomplete en-
tries).
CVSS_score, ver- int, text CVSS version, base score, severity,
sion, base_severity, and CVSS vector.

vector_string

GHP Reposi- id int Internal GHP repository identifier.
tory
name, repo_link, text Repository metadata and URL.
github_id
about, readme text Snapshot textual metadata used in
PoC discovery.
repo_created_at timestamptz GitHub repository creation time
(GHP “publication”).
cve_count int Number of CVEs referenced by this
repository.
stars, forks int Repo-level counters used for sum-

maries. (Watches not recorded—see
limitation.)

CVE-PoC cve_id, poc_id text, int Many-to-many mapping from CVEs
Mapping to PoC repositories.
User Interac- cve.id text CVE receiving the event.
tion Events
user_id text GitHub user id; -1 denotes reposi-
tory creation (sentinel, not a user).
interacted_time timestamptz Event timestamp (repo creation,
star, or fork).
CVE-level Ag- cve.id text CVE key.
gregates
total_interactions int Count of user events (stars/forks)
aggregated across that CVE’s repos-
itories.
active_days int Distinct days with >1 interaction.
first_interaction_time, timestamptz Earliest and latest user interaction
last_interaction_time times.

first_repo_creation timestamptz The earliest repo_created_at times-
tamp among mapped GHP reposi-
tories (GHP ”publication” time).

days_to_1, 3, 5, int Days from GHP publication to first
10, 15, 20, 50, 100 time cumulative interactions reach
k.

Formally, let R(c) denote the set of GHP repositories linked to CVE ¢, and let E(r)
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represent the set of user interactions (stars or forks) on repository r, where each event
satisfies the time constraint interacted_time < 18 March 2025. The total interaction
count for CVE c is defined as:

total_interactions(c) = Z |E(r)]
reR(c)

The quantity days_to_k(c) is defined as the smallest integer d such that the cumulative
number of interactions across all € R(c), within the interval [0, d] days from the earliest
GHP publication, reaches or exceeds a threshold k£ € {1,3,5,10,15,20,50,100}. By
selecting different values of the activation threshold k, the model can adaptively filter
out dormant vulnerabilities that fail to gain sufficient early traction. These offset dates
are later used to define the anchor point day_0 for each CVE during downstream feature
engineering and trend clustering. This will be further discussed in Section [4.1]

Limitation (Watch events): the interaction event log in this dataset records only
stars and forks. Due to restrictions in the GitHub API, watch/subscribe events cannot
be captured in a reliable, timestamped form. As watch events are generally considered
less indicative of engagement compared to stars or forks, their omission is unlikely to
materially affect the analysis. Accordingly, watch-related columns are set to zero in
repository-level summaries and excluded from all per-event analytics. Throughout this
thesis, we therefore define user-level interaction strictly as stars or forks.

3.2 Dataset Analysis

Up until 18 March 2025, the dataset covers 285,849 NVD CVEs, of which 7,081
(2.48%) are linked to at least one mapped GHP repository. Out of all CVEs, 3,803
(1.33%) received recorded GitHub user interactions such as stars or forks. Year-stratified
metrics for the 3,803 CVEs reveal that the latency from CVE publication to GHP cre-
ation has fallen steadily: average days-to-GHP drop from 491 (2018) to 11 (2025), indi-
cating faster GHP availability and dissemination over time.

The GHPs for the 3803 CVEs are distributed across 14,710 repositories, with pub-
lication volume exhibiting clear phases of growth (Figure , left). This momentum
culminated in a peak between 2022 and 2024, during which more than 2,500 repositories
were created annually, reaching 3,385 in 2024 alone. In the first months of 2025, before
the dataset cutoff, a further 709 repositories had already been published.

GHP Repository Creation Over Time
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Figure 3.1: Temporal evolution of the GHP ecosystem. Left: annual volume of new GHP repositories.
Right: decreasing delay between GHP publication and initial user interactions.

17



The GHP-CVE relationship is predominantly one-to-one. Of 14,710 GHP repositories
in the dataset, 14,240 (96.80%) target a single CVE, while 470 (3.20%) reference multiple
CVEs. As mentioned in Section this research exclude GHP repositories referencing
multiple CVEs, enforcing a one-to-one mapping for analytical clarity. From the CVE’s
perspective, most vulnerabilities are associated with few GHPs: 74.18% have exactly one
GHP, 15.80% have 2-3, and only 0.38% have 50+ GHPs (max 478), indicating an extreme
long-tail of ecosystem attention.

Total interaction threshold and response speed analysis: within the CVE subset that
received at least one user interaction (n=3,803), 67.34% of CVEs reach a total of 3
interactions, 55.35% reach 5, and 42.15% reach 10. In contrast, only 19.88% and 12.96%
of CVEs cross the higher thresholds of 50 and 100 interactions, respectively. Figure |3.1
(right) shows that the time required to reach early attention thresholds has accelerated
notably in recent years. In 2018, the average delays from PoC repository creation to the
first, third, and fifth interaction were 168, 236, and 267 days. By 2024, these delays had
dropped sharply to 24, 36, and 37 days. This shift reflects both faster discovery and
increased social engagement within the ecosystem.

3.2.1 90-Day Window Analysis

In a fixed 90-day observation window, anchored at the day each CVE reaches its first
interaction (days_to_1), GHP attention is strongly front-loaded yet highly unequal. Let
I3 and Iy denote the cumulative number of user interactions (stars or forks) a CVE
receives within the first 3 and 90 days, respectively. We define the early-share ratio as
s = I3/1g, which captures the concentration of attention in the early phase. All 90-day
totals are right-censored at 18 March 2025 to preserve temporal integrity.

At the CVE level, the median early-share is s = 0.67, with 70.8% of CVEs receiving at
least half of their 90-day interactions within the first three days, and 43.3% receiving at
least 80%. At the dataset level, however, only 31% of all recorded interactions occur in the
first three days, indicating that a small subset of CVEs continues to attract substantial
attention well beyond the initial burst.

Share of CVEs Crossing Interaction Thresholds
31.4%
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Figure 3.2: Share of CVEs crossing interaction thresholds (3-day vs 90-day): Percent of CVEs with
totals >{10, 50, 100, 200, 500}. Same cohort used for both windows.

Consistent with this skew, Figure shows that 3.3% of CVEs surpass 100 inter-
actions within the first three days, compared to 9.3% by day 90. This gap widens at
higher thresholds: only 0.2% of CVEs reach 500 interactions within 3 days, while 1.7%
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do so within 90 days. This further indicates that while early surges are more common,
sustained attention is rarer and concentrated in a small subset of highly engaging CVEs.

In summary, the 90-day GHP interaction window captures a spectrum of behavioural
trajectories, from CVEs that attract no meaningful engagement, to those that trigger
intense early bursts, and rarer cases that accumulate attention gradually over time. These
patterns underscore both the steep inequality and the temporal diversity of GHP user
engagement, reinforcing the need for predictive models that account for variation in
shape and timing. This motivates the adoption of trend-based clustering and shape-
aware modelling, presented in Chapter |5 and Section 6.2 respectively.

3.2.2 Relative Disclosure Timing

Beyond analysing GHP interaction timelines, we also want to understand where GHP
activation falls within the broader lifecycle of each CVE. To capture the temporal relation-
ship between PoC emergence and official disclosure, we introduce a categorical variable
called activation timing type. For each CVE, we compare the GHP activation date (the
day it first received user interaction) with its official publica- tion date in the NVD. Based
on this comparison, CVEs are grouped into three mutually exclusive categories:

e Pre-published: activation occurred before NVD disclosure (suggesting insider ac-
cess, leaks, or early PoC emergence);

e Same-day: activation occurred on the same day as NVD publication;

e Post-published: activation occurred after disclosure (representing common release
trajectory).

Because some repositories may have been created for unrelated purposes and only
later adapted to host PoCs, we exclude any repository whose creation date precedes the
associated CVE’s publication by more than 270 days. This conservative threshold helps
reduce false early signals. In total, 40 such repositories were excluded from the analysis.

CVE Activation Timing Type Distribution by Published Year Groups Interaction Intensity vs. Relative Disclosure Timing
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Figure 3.3: Left: Distribution of activation timing types by CVE publication year. Right: Average
total interactions over 90 days since GHP activation, stratified by the delay between CVE publication
and first user interaction.

Figure (left) shows the distribution of these activation types over time, grouped
by CVE publication year. From 2018 onward, the majority of CVEs activated after NVD
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disclosure, but a persistent subset (between 15% and 25% in recent years) activated be-
fore or on the disclosure day. This observation is operationally significant: pre-published
and same-day cases may indicate limited patching windows or attacker pre-positioning.

Figure (right) shows how interaction intensity varies with the disclosure timing.
GHPs released within a day of disclosure received by far the most attention (approx. 175
interactions on average), nearly 50x higher than those emerging a year or more later
(approx. 3). Pre-disclosure GHPs also drew substantially higher engagement (approx.
92 interactions) than GHPs appearing weeks or months after disclosure, underscoring
that earlier visibility strongly amplifies downstream traction. Together, these results
confirm that disclosure tempo is not only a structural marker of ecosystem shifts but also
a determinant of GHP relevance.

In later sections (see Section , we incorporate relative disclosure timing as a con-
textual feature, encoding both the CVE’s publish year and its relative position on the
GitHub timeline. These features capture disclosure tempo, ecosystem shifts, and poten-
tial attacker anticipation, extending beyond GHP interaction volumes.
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Chapter 4

Global Prediction

4.1 Global Prediction Methodology

This section introduces our framework for forecasting CVE popularity using early
GHP interaction patterns. The methodology is structured around five core components:
(1) input—output window design; (2) modelling approach; (3) feature engineering; (4)
multi-metric evaluation protocol; and (5) post-hoc model interpretation using SHAP
(SHapley Additive exPlanations).

4.1.1 Activation Threshold and Input—Output Window Design

To filter out completely dormant CVEs that never gain meaningful engagement, we
introduce an activation threshold: a CVE is considered activated once its cumulative
GHP interaction count reaches a threshold value k (e.g., 3, 5, 10). As described in Sec-
tion [3.1.1] for all CVEs that meet this threshold, the corresponding day_to_k timestamp
is designated as the anchor point (day_0). This timestamp serves as the temporal starting
point for downstream tasks, including feature engineering, time series construction, and
early-trend clustering. Model performance is tested on various activation thresholds.

We formulate the forecasting task as a regression problem over temporally aligned
windows. For each CVE, the input window captures early GHP interaction activity,
anchored at the point of initial repository activation. The output window corresponds
to a fixed forecast horizon, specifically 30, 60, or 90 days, representing the cumulative
future interaction volume the model aims to predict.

To systematically evaluate early signal quality and long-range forecastability, we con-
sider a grid of input—output (I/O) window combinations. Specifically, we use input
lengths of 3, 5, 7, 14 days and output lengths of 30, 60, 90 days. This design reflects
the real-world tempo of security operations. A 3-day input window represents an early
forecast opportunity, while the 5- and 7-day inputs align with weekly patch review cycles,
making them particularly relevant for operational integration. We also include a 14-day
input window as a safety-net reference, enabling us to explore how predictive performance
improves when more early signals are available, even at the cost of reduced lead time.

This design ensures that our evaluation framework not only provides fine-grained
technical comparison across window lengths, but also captures realistic trade-offs be-
tween forecast window length and prediction accuracy.
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4.1.2 Modelling Approach

Prediction objective Our goal is to estimate future GHP popularity, as expressed by
the repository interaction count, based on early interaction signals. For each retained
input—output (I/O) pair, we predict the total GHP interaction count at day 30, 60, or
90. The learning target is defined as:

Yi+n = log(1 + GHP(t + h)),

where ¢ denotes the activation day and h € {30,60,90} corresponds to the forecast
horizon. This log-transformed target stabilises variance and supports comparison across
CVEs with vastly different popularity scales.

Time-aware train—test split To preserve temporal causality, we apply a chronological
split between training and test data:

Table 4.1: Chronological train—test split for global CVE forecasting.

Phase Date range # CVEs
Train 2018-01-01 — 2024-03-17 2,833
Test 2024-03-18 — 2025-03-18 823 (30-day), 767 (60-day),

705 (90-day)

CVEs are included in the test set only if their lifespan, starting from the activation
date, fully covers the selected output window. For example, a CVE activated on 2025-
01-15 is eligible for the 30-day task but excluded from the 90-day task. This filtering step
ensures evaluation consistency across forecast horizons.

Modelling choice We adopt XGBoost(gradient-boosted decision trees, |Chen and
Guestrin|, 2016]) as our primary modelling method due to the following reasons:

1. Effective with modest sample sizes. XGBoost is well suited for our dataset
scale (approx. 3,400 CVEs), its tree-based models maintain strong performance
even with small-to-medium tabular data. This property is especially valuable in
our cluster-wise analysis (Section 6-7), where some CVE clusters contain less than
100 examples. In these settings, XGBoost provides stable learning dynamics, avoids
overfitting through early stopping and regularisation.

2. Robustness to skewed targets. GHP popularity is highly skewed, with in-
teraction counts spanning several orders of magnitude. While we apply a loglp
transformation to reduce this extreme variance, the resulting target distribution
remains asymmetric,dominated by low-activity CVEs with a long right tail. XG-
Boost can this residual skew robustly: its tree-based loss functions remain stable
and performant even under such conditions, in contrast to linear models which often
misrepresent high-variance targets and are vulnerable to outlier distortion.

3. Built-in feature selection. When giving a rich set of features, there will naturally
be correlated and overlapping signals. XGBoost’s greedy splitting and regularisa-
tion (e.g., via n, A, and ) naturally filter out spurious or low-utility features. This
reduces overfitting risk and enables fast, low-maintenance iteration across multiple
feature sets.
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4. Scalability and interpretability. XGBoost offers efficient training, making it
suitable for repeated runs across multiple input—output configurations and ablation
scenarios. Moreover, its compatibility with SHAP (SHapley Additive exPlanations,
[Lundberg and Lee|, |2017]) allows us to decompose predictions into per-feature con-
tributions, enabling detailed interpretability at both global and CVE-specific levels.

This combination of robustness, automation, and transparency makes XGBoost a suit-
able choice for our forecasting framework, particularly when paired with our temporally
aligned feature engineering and risk-aware evaluation protocol. To provide a comparison
benchmark, we include Linear Regression as a baseline estimator. Although limited in
its ability to capture non-linear growth patterns or delayed bursts, Linear Regression
provides a transparent and interpretable point of reference.

4.1.3 Feature Space

To predict the future popularity of each CVE, we constructed features directly from
early GitHub Proof-of-Concept (GHP) interaction timelines. These features fall into three
main groups: raw count features, which capture the absolute volume of attention; shape-
based features, which describe how that attention evolved during the input window;
and contextual features, which incorporate high-level timing information such as disclo-
sure year and delay between CVE publication and PoC activity. Together, these features
provide the model with a comprehensive representation of both what happened, how it
unfolded, and when it occurred in the vulnerability lifecycle.

Raw Count Features. This feature group captures the early volume of user engage-
ment and accompanying repository-level metadata. The calculation follows a similar
methodology to the aggregate attributes introduced in Sectionf3.1.1]and listed in Table[3.1
(e.g., total interactions, active days), but is restricted to a fixed early-engagement
window (e.g., the first 7 days after activation).

Formally, let R(c) denote the set of GHP repositories linked to CVE ¢, and let E(r)
represent the set of user interaction events (stars or forks) associated with repository r.
For a fixed offset ¢, measured in days since GHP activation, the cumulative interaction
count up to day t (where t = 1, 3, 5, 7, 30, 60, 90) is defined as:

total_interactions;(c) = Z |{e € E(r) : 0 < days_since_GHP_activation(e) < t}|
reR(c)
This expression yields feature values such as total _interactions 3, total interactions_5,
etc., which capture the cumulative number of user interactions received by CVE ¢ within
the first ¢ days after PoC publication.
We also compute:

e Active days within the input window, defined as the number of distinct days with
at least one recorded interaction (e.g., active_days_5, active days._7).

¢ Repository metadata aggregates, including total number of linked GHP repos-
itories to each CVE, and the cumulative fork and star counts within fixed time
slices (e.g., repo_count_day_3, stars_day_3, forks day_5).

Together, these features form the foundational signal for capturing early interest vol-
ume and initial popularity growth.
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Shape-based Features. Based on raw count features, we engineered shape features
that describe how the GHP activity evolved over time. These include:

Table 4.2: Overview of shape-based features derived from early GitHub PoC interaction timelines.

Feature Type Feature Name Computation

Log-scaled Volume log_count_{k} log(1 + total_interactions_{k})

Interaction Gain delta {i}_{j} total_interactions_{j} —total_interactions_{i}
Slope (Growth Rate) slope {1} {J} total_interactions_{j}—total_interactions_{i}

J—1
Burstiness Ratio burstiness_{k} active.days.{k}

Early Share Ratio early share {i} {j} total.interactions.{i}

total_interactions_{j}

e Log-scaled volumes (e.g., log_count_3): stabilise variance and reduce scale dis-
tortion;

e Deltas and slopes across time spans (e.g., delta 3.5, slope_3_7): capture accel-
eration or decay in attention;

e Burstiness ratios (e.g., burstiness_7): quantify how unevenly activity is dis-
tributed within the input window;

e Early share ratios (e.g., early share 3.7): express what proportion of the total
attention occurred in the first few days within the input window.

Table shows how shape-based features are computed, based on the raw count
features. Shape-based features allow the model to distinguish among different types of
early engagement patterns, such as slow-burn CVEs that accumulate attention gradually
over time, versus early-burst CVEs that peak rapidly at the start of the input window.

For each input—output (I/O) configuration, the feature set is pruned to align with the
length of the input window. Features that require more temporal context than the input
window provides (e.g., delta 5 14 for a 3-day input) will be excluded. This enforces
temporal consistency and avoids information leakage from future observations.

Contextual Features. In addition to GHP popularity dynamics captured by raw and
shape-based features, this next group of features provide a broader temporal context for
each CVE in its vulnerability lifecycle.

Table 4.3: Contextual feature definitions.

Variable Definition

cve_year NVD publish calendar year (2018-2025)

publish delay Days between CVE publication and GHP activation
delay_type Categorical: pre-published, same-day, post-published

To prevent future data leakage, we masked CVEs with GHP activation date preceding
their NVD publish date: during preprocessing, publish _delay is filled with zero; whereas
cve_year and delay_type are one-hot encoded as category "Unknown", which explicitly
represent masked cases.
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4.1.4 Evaluation Protocol

We assess model performance using a combination of standard regression metrics, log-
transformed variants, and residual skewness. This protocol is designed not only to mea-
sure predictive accuracy, but also to reflect the real-world interpretability and operational
relevance of each score,particularly in the context of early risk triage and vulnerability
prioritisation.

For each input-output (I/O) configuration, we evaluate models using both absolute-
scale and log-transformed variants of common regression metrics:

R? score (coefficient of determination), computed on:

— the raw target (untransformed counts) to measure real-world prediction usefulness,
and

— the log target (loglp(total_interaction)), to evaluate the model’s ability to cap-
ture order-of-magnitude patterns across CVEs, particularly important in ranking
and prioritisation contexts;

Mean Absolute Error (MAE), for both log-scaled target and in absolute value, to
quantify the average of prediction errors;

Root Mean Squared Error (RMSE), which penalises large errors more heavily than
MAE, making it useful for stress-testing predictions on high-variance or outlier CVEs;
Residual skewness (log-scale) of prediction errors, used to diagnose systematic bias.

Table 4.4: Error metric formulas used in model evaluation. Here, y; denotes the true value and ; the
predicted value for sample i.

Metric Formula

MAE (Mean Absolute Error) MAE = 15" 9 — yil

R? (Coefficient of R?=1- M
. . 2ie1 (Wi—y)
Determination)
Log-MAE / Log-R? Same formulas applied to log(1 + y;) and log(1 + ;)
Residual Skewness Skew = 1 37% | (rigf)3, where r; = §; — v;

RMSE (Root Mean Squared RMSE = \/% Yo (G — vi)?
Error)

All metrics are computed on the fixed test set (from 2024-03-18 to 2025-03-18) us-
ing only CVEs whose lifespan fully covers the output window. This ensures that all
predictions are evaluated against a fully observed ground truth.

4.1.5 Post-hoc Model Interpretation (SHAP Analysis)

To interpret the internal logic of the fitted XGBoost models, we apply SHAP (SHapley
Additive exPlanations, [Lundberg and Lee| [2017]). SHAP assigns a local contribution
score to each feature for every CVE, by decomposing the model’s prediction into a sum
of feature attributions plus a base value (the expected output). Grounded in cooperative
game theory, this method quantifies how much each feature increases or decreases the
forecasted popularity for a given CVE, relative to the baseline. For example, features
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such as early fork volume or the time between NVD publish date and GHP activation
date may have strong positive or negative influence depending on their specific values.

SHAP also supports global analysis in addition to per-sample explanation. This
enables three key diagnostic capabilities: (1) identifying globally influential features; (2)
comparing feature impact distributions across input windows, feature sets, and PoC trend
shape clusters; and (3) diagnosing systematic prediction errors by analysing the SHAP
profiles of high-residual CVEs. SHAP thus serves not only as a transparency mechanism,
but also as a practical diagnostic tool, offering a principled way to interpret and evaluate
model behaviour.

4.2 Global Prediction Results

4.2.1 Baseline Model vs. XGBoost Regression

To provide a benchmark for model performance, we conducted a comparative exper-
iment between Linear Regression and XGBoost Regression, using a minimal feature set
composed of the total interaction count and number of active days within the early obser-
vation window. This experiment focuses on two input configurations: 5-day and 7-day.
The task is to predict the cumulative number GHP interactions at day 30. Each model was
trained on a dataset of 2,833 CVEs published before 2024-03-18 with full input—output
coverage, and evaluated on a held-out test set of 823 CVEs (post-2024-03-18) that sat-
isfy the 30-day output horizon constraint. All models were trained in log-transformed
space, using logip() on the target variable. This transformation improves learning sta-
bility and emphasises order-of-magnitude differences, ensuring fairer comparison between
models, particularly for Linear Regression, which is otherwise highly sensitive to outliers.
XGBoost models were trained with default regularisation; Linear models were fitted via
ordinary least squares.

R? (Log Scale) Comparison: Linear vs XGBoost MAE (Log Scale) Comparison: Linear vs XGBoost
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Figure 4.1: Performance comparison between Linear Regression and XGBoost using only raw count
features (interaction count and active days) for 5-day and 7-day input windows. Left: R2 score (log
scale); Right: MAE (log scale). Bars show model fit and forecast accuracy over the 30-day output
horizon.

As shown in Table [4.5] and Figure [£.1, XGBoost consistently outperforms Linear
Regression across all metrics. On the log-scale R? axis (left subplot), XGBoost improves
performance by 40.094 for 5-day inputs and +0.078 for 7-day inputs, indicating a stronger
fit to CVE popularity growth. On the log-scale MAE axis (right subplot), error reductions
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Table 4.5: Baseline Model Performance Comparison (Updated)

Experiment Model R? (Log) MAE (Raw) MAE (Log)

5d—30d Linear 0.823 18.4 0.416
5d—30d XGBoost 0.917 11.8 0.258
7d—30d Linear 0.868 23.0 0.364
7d—30d XGBoost  0.946 6.7 0.205

are substantial: MAE decreases by 38% (from 0.416 to 0.258) for 5-day inputs and 44%
(from 0.364 to 0.205) for 7-day inputs. These results demonstrate the predictive benefit
of non-linear decision boundaries, even when the input feature set is minimal.

4.2.2 Activation Threshold, Input—Output Window and Raw
Count vs. Shape-based Feature

To assess the global prediction model on a broad scale, we first evaluate the per-
formance across 96 experiment groups defined by activation thresholds (1, 3, 5, 10 in-
teraction counts), input window lengths (3, 5, 7, 14 days), output windows (30, 60, 90
days), and two feature sets (raw count only; raw count + shape-based features). Rather
than enumerating all results, we highlight representative cases that capture the main
findings. The discussion is structured along three dimensions: (i) feature set comparison,
(ii) input—output window trade-offs, and (iii) activation threshold effects. This analysis
leads to the identification of a focused subset of configurations that serve as the basis for
subsequent model tuning.

Feature Set Comparison

Section [4.2.1] shows that even with raw count features alone, the XGBoost model
achieves solid performance on the log-scale metrics (R? and MAE). In contrast, perfor-
mance on the absolute scale is markedly weaker across the full set of 96 experiments:
R?*(Abs) values are frequently low or negative for short input windows (3, 5, 7 days).
The only exception is the 14-day input, where R?(Abs) remains above 0.7, indicating
that longer observation periods can partially offset the limitations of raw count features.

Adding shape-based features alongside raw counts yields prominent gains on absolute-
scale R?, while also delivering consistent improvements across other metrics, including
log-scale R?, MAE, and RMSE. Representative cases with activation TH5 and input
windows of 5 or 7 days illustrate this effect.

Table shows how the raw-only feature set struggles on the absolute scale: R*(Abs)
values are often negative, and MAE ranges between 35-51 for 5-day inputs and 27-45
for 7-day inputs. When shape-based features are added, R?(Abs) improves dramatically,
reaching values as high as 0.820 for the 7d—90d configuration, while MAE decreases by
9-20 points across horizons. RMSE also drops substantially, with reductions of 55-63%
relative to the raw-only baseline, reflecting a markedly lower influence from large errors.
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Table 4.6: Performance comparison between raw-only and raw+shape feature sets (TH5).

Input Output Feature Set R?(Abs) MAE RMSE ARZ?(Abs) AMAE ARMSE
5d 30d Raw -0.003 35.11  257.34
Both 0.783 22.17 119.67 +0.786 -12.94 -137.67
7d 30d Raw 0.425 26.82  194.92
Both 0.763 18.18 124.99 +40.338 -8.64 -69.93
5d 60d Raw -0.336 43.08 317.78
Both 0.650 30.11  162.57 +0.986 -12.97  -155.21
7d 60d Raw 0.126 34.91 257.04
Both 0.777 23.38 129.94 +0.651 -11.53 —127.10
5d 90d Raw -0.623 50.99 376.54
Both 0.595 35.32 187.98 +1.218 -15.67  —188.56
7d 90d Raw -0.294 44.76  336.17
Both 0.820 24.36 125.34 +1.114 -20.40 -210.83
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Figure 4.2: Impact of adding shape-based features to raw-only models for 5-day and 7-day inputs across
all output horizons. Top left: R2 (Abs) comparison. Top right: MAE comparison (dashed lines show
raw-only models, solid lines show raw+shape). Secondary Y-axis shows MAE as a percentage of the
target mean. Bottom left: AR2 (Abs) from shape feature inclusion. Bottom right: Corresponding
reduction in MAE.

Figure [4.2] illustrates these effects. The top row shows how raw-only models fail to
generalise on the absolute scale (dashed lines), while the shape-augmented models (solid
lines) consistently stabilise performance. The lower row highlights the deltas explicitly:
gains of +0.7 to +1.2 on R*(Abs) on 5-day input windows, and MAE reductions of up to
20 points, with improvements becoming more pronounced as the output horizon extends.
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The same improvement pattern can be observed across 1/O windows and for activa-
tion thresholds. This comparison results indicate that encoding temporal shape patterns
in early attention curves provides complementary information beyond raw engagement
volume. The benefit is most visible on the absolute scale, where raw-only models exhibit
unstable or even negative fit, whereas shape-augmented models achieve consistently im-
proved R? and reduced error. Incorporating early engagement trajectory features into
GHP popularity forecasting therefore provides a persistent and meaningful performance
advantage. Based on these findings, we retain the raw count + shape-based feature
set as the standard configuration for the following analyses.

Input-Output Window Trade-offs

Continuing with activation TH5 configurations, Table [4.7] reports detailed test-set
results across all I/O window combinations. Reported metrics include log- and absolute-
scale R?, log- and absolute MAE, RMSE, and log-scale residual skewness. Figure il-
lustrates the performance trade-off across I/O windows more directly, comparing R?(Abs)
and MAE as input window lengthens.

Table 4.7: Performance across I/O window configurations (activation TH5).

Input Output R?(Log) R?*(Abs) Log MAE MAE RMSE Residual Skew

3d 30d 0.853 —0.055 0.393 36.78 264.00 -2.19
5d 30d 0.910 0.783 0.320 22.17 119.67 -1.63
7d 30d 0.929 0.763 0.269 18.18 124.99 —-0.37
14d 30d 0.972 0.784 0.163 13.57 119.31 -2.49
3d 60d 0.833 -0.064 0.452 43.35 283.57 -1.77
5d 60d 0.897 0.650 0.368 30.11 162.57 -1.66
7d 60d 0.918 0.777 0.328 23.38 12994 -0.44
14d 60d 0.957 0.832 0.239 15.82 112.67 -1.04
3d 90d 0.812 -0.130 0.486 49.30 314.17 -1.40
5d 90d 0.875 0.595 0.415 35.32 18798 —-1.32
7d 90d 0.899 0.820 0.370 24.36  125.34 —0.22
14d 90d 0.944 0.843 0.280 18.47 117.06 —0.89
R? (Abs) across Input-Output Windows MAE vs Output Horizon by Input Window
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Figure 4.3: Evaluation across I/O windows using raw+shape features. Left: R? (Abs) heatmap; Right:
MAE vs. forecast horizon. Solid lines show absolute error; dashed lines show MAE as a % of the target
mean.

29



We observed from the I/O window performance that:

(1) 3-day input windows are insufficiently informative. Across all output hori-
zons, models trained on 3-day input windows consistently underperform relative to longer
inputs. For example, R%(Abs) remains negative across the board (-0.055, —0.064, —0.130),
with MAE as high as 36.8-49.3. These results indicate that, for the current model, GHP
activity within the first 72 hours is generally too sparse or weakly differentiated to support
robust forecasting on a global scale.

(2) 5-day and 7-day inputs offer the best trade-off. In contrast, 5-day and 7-day
input windows achieve the best balance between predictive accuracy and usable lead time.
At the short horizon, the 5—30d configuration attains R*(Abs) = 0.783 with MAE = 22.2
a relatively strong performance while still preserving 83% of the forecast horizon. The
7—30d configuration further improves accuracy (R*(Abs) = 0.763, MAE = 18.2) while
maintaining stable error behaviour. At longer forecast horizons, 7—90d configuration
reaches R*(Abs) = 0.820 with MAE = 24.4, demonstrating strong predictive capacity.
Notably, 7-day inputs also yield the most balanced residual skewness (—0.22 at 90 days),
indicating a more symmetric error distribution and reduced systematic bias.

Taken together, 5- and 7-day input windows emerge as strong candidates for model
integration, with 5-day windows offering a favourable accuracy-to-lead-time ratio, and
7-day windows providing relatively higher predictive accuracy and error stability.

(3) Fourteen-day inputs maximise accuracy but sacrifice lead time. Models
with 14-day input windows achieve the highest absolute accuracy (e.g., R%(Abs) = 0.843,
MAE = 18.5 for 14—90). However, the gains over 7-day inputs are modest (e.g., only
+0.023 R*(Abs) at 90d). Figure |4.3| further shows that relative MAE (scaled to the tar-
get mean) is not substantially improved despite the longer observation period. Moreover,
with a 14-day input, lead-time utility is severely reduced; in the 14—30d case, predictions
are generated halfway through the forecast horizon. Overall, these factors indicate that
14-day input models are less practical for proactive vulnerability triage.

Based on these findings, we retain the 5- and 7-day input window configurations
for subsequent analyses. These settings (i) deliver consistent performance across both
log- and absolute-scale metrics, (ii) strike a practical balance between forecast range and
lead time, and (iii) exhibit relatively balanced residual skewness. Within this set, the
5—60, 5—90, and 7—90 configurations combines extended forecast horizons with short
observation periods, and are therefore selected as the focused subset for evaluation and
diagnostic analysis in later sections.

Activation Threshold Effects

As the activation threshold increases, more CVEs are filtered out, which could theo-
retically improve model performance by reducing noise from low-activity cases. To assess
this effect, we compare model performance across thresholds of 1, 3, 5, and 10 interac-
tions, with the aim of identifying the setting that best balances dataset coverage and
predictive accuracy.
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Table 4.8: Model performance across activation thresholds and output horizons (5-day input, raw-+shape
features).

Threshold Output Samples R? (Log) R? (Abs) Log MAE MAE Residual Skew

1 30d 823 0.902 0.451 0.282 16.55 -2.17
3 30d 528 0.914 0.481 0.299 22.59 —-1.92
) 30d 414 0.910 0.783 0.320 22.17 -1.63
10 30d 306 0.906 0.314 0.352 38.17 -1.81
1 60d 767 0.865 0.421 0.345 19.62 —-2.80
3 60d 485 0.894 0.439 0.362 27.14 -1.71
5 60d 386 0.897 0.650 0.368 30.11 —-1.66
10 60d 286 0.873 0.292 0.408 43.75 -1.34
1 90d 705 0.843 0.241 0.388 23.10 -2.51
3 90d 446 0.876 0.365 0.398 31.35 —-1.49
5) 90d 354 0.875 0.595 0.415 35.32 -1.32
10 90d 261 0.833 -0.035 0.468 55.37 -1.00

Within each activation threshold, the results exhibit the same feature-set and I/O
window patterns observed in earlier sections. Comparing across them, Table reports
performance for 5-day inputs across the four thresholds.

The pattern is consistent across all horizons: TH5 provides the best overall perfor-
mance, with the highest R*(Abs) values (e.g., 0.783 at 30d, 0.595 at 90d) and relatively
low error. TH3 ranks second, producing slightly higher errors but still competitive re-
sults. Threshold = 1 suffers from the inclusion of noisy, low-activity CVEs, yielding
weaker absolute fit despite solid log-scale scores. In contrast, threshold = 10 shows
clear degradation, most evident at the 90-day horizon where R*(Abs) drops below zero
(—0.035).

In terms of dataset coverage, for the 514 CVEs in the test set, TH5 retains 414
samples at 30 days (approx. 81%), 386 at 60 days (approx. 75%), and 354 at 90 days
(approx. 69%), which is sufficient for stable evaluation. By contrast, threshold = 10
reduces coverage to 306 samples at 30 days (approx. 60%), with further drops at longer
horizons.

From a practical perspective, thresholds 3 and 5 retain 67.3% and 55.4% of all CVEs
with observed user interaction in the full dataset (n = 3,803), respectively, compared
to that of 42.2% for threshold 10. Overly strict thresholds risk excluding a substantial
portion of GHP interaction trajectories and reducing the diversity of patterns available
for modelling.

Overall, TH5 offers the best balance, filtering out noise while retaining sufficient
coverage for stable prediction. TH3 remains a viable alternative, albeit with slightly
more noise. For subsequent model tuning, we therefore focus on datasets with activation
threshold 3 and 5.

4.2.3 Hyperparameter Tuning

Based on the results of the previous section, our final model configuration adopts
the raw count + shape-based feature set, with activation thresholds of 3 and
5 and input windows of 5 or 7 days. To evaluate the robustness of this modelling
setup and assess the potential for further performance gains, we conducted a series of
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follow-up experiments incorporating lightweight hyperparameter tuning on these selected
configurations.

The hyperparameter tuning focused on three strategic dimensions: (i) depth-learning
rate trade-offs, (ii) regularisation, and (iii) subsampling sensitivity. To ensure time-
consistent evaluation, the training data were partitioned chronologically: models were
trained on CVEs disclosed between January 2018 and September 2023, and validated on
those disclosed between October 2023 and March 2024. This nine-month holdout was
selected to reflect recent vulnerability trends while maintaining a sufficient validation
sample (=~ 10%).

A curated sweep of 21 parameter configurations was conducted, complemented
with a few extreme baselines for robustness checks. The combinations were designed to
systematically cover representative regions of the hyperparameter space:

e Group A (Depth—Learning Rate Trade-off): Depth € {3,6,9}, learning rate
€ {0.1,0.05,0.01}, estimators = 300-1000.

e Group B (Regularisation Sensitivity): Depth=6, learning rate=0.1, estima-
tors=300, with (a, A) € {(0,1),(0.1,1.5),(0.5,2)}.

e Group C (Subsampling Effects): Depth=6, learning rate=0.1, estimators=300,
with subsample, colsample_bytree € {(1.0,1.0),(0.8,0.8), (0.7,0.7)}.

e Group D (Extreme Configurations): Includes deliberately shallow or heavily
regularised models to probe failure modes and serve as baselines for robustness.

e Group E (Gap Fillers): Adds edge cases such as deep but slow learners or
conservative “patience” configurations (e.g., 1500 estimators with a low learning
rate) to ensure coverage of intermediate possibilities not spanned by Groups A—C.

The complete set of parameter configurations is reported in Appendix Table [T This
setup makes the sweep appropriate as a lightweight robustness check, sufficient to validate
that performance gains arise from the chosen feature and data configurations rather than
arbitrary parameter choices. At the same time, it also probes the headroom for further
improvement under more extensive tuning.

Tuning on THS5 dataset. We first conducted hyperparameter tuning on the THbH
dataset, since it provided the strongest baseline performance in earlier sections.

Across the 21 candidate configurations, results revealed a consistent trade-off between
predictive accuracy and bias symmetry. Shallow models with conservative learning sched-
ules (e.g., md2_1r0.03_ne800) achieved high log-scale performance (R*(Log) = 0.908),
but suffered from relatively strong negative skew (—1.81), systematically underpredicting
high-attention CVEs. In contrast, deeper and faster learners (e.g., md6_1r0.1 ne1000)
produced more balanced residuals (skew = —0.26) but only moderate absolute perfor-
mance (R*(Abs) = 0.883). Regularisation and subsampling delivered modest improve-
ments in fit, particularly for medium-depth models with controlled estimator counts. A
complete result is provided in Appendix, see Table 2]

From the sweep result, we selected four representative configurations for evaluation
on post-2024 test set CVEs: a default baseline, a best log-scale performer, a subsampling
variant for noice robustness, and a contrast model with balanced skew. Table presents
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the performance comparison among these four top candidate configurations for the 5—90
input-output window.

Table 4.9: Hyperparameter tuning results for selected configurations (5—90, TH5, test set).

Model R%*(Log) R?(Abs) Log MAE MAE RMSE Residual Skew
default_md6_1r0.1_nel000 0.875 0.595 0.415 35.32  187.98 -1.32
md2_1r0.03_ne800 0.904 0.467 0.360 35.11  215.82 -1.96
md4_1r0.03_ne500_ss0.6 0.904 0.604 0.358 30.33  185.92 -2.15
md6_1r0.01_nel000 0.889 0.458 0.387 35.86  217.50 -1.76

All models retained robust log-scale accuracy (R*(Log) > 0.875), confirming the sta-
bility of early-attention trend modelling. Absolute accuracy, however, varied more sharply
than in the training set, with R*(Abs) ranging from 0.458 to 0.604 across configurations.
This degradation in R?(Abs) also reflects the ecosystem shift that has occurred since
the start of 2024. The strongest absolute performer (md4 1r0.03 ne500_ss0.6) reduced
MAE by approx. 14% relative to baseline, but incurred the most negative skew (—2.15),
reinforcing the trade-off between error reduction and bias symmetry. Given this trade-
off, we elected to retain the default model configuration for threshold 5, since this setting
offered an over-all balance between prediction accuracy and bias symmetry.

Tuning on TH3 dataset. A similar tuning process was applied to the TH3 dataset
using the same parameter sweep. Among all configurations, md6é_1r0.05 ne500 provided
the clearest improvement over the default baseline (md6_1r0.1 ne1000). Absolute-scale
fit increased from R3%,, = 0.365 to 0.566 (+55%), while MAE decreased from 31.35 to
27.54 (-12.2%). This configuration narrows the gap and even brings TH3 performance to
a level comparable with TH5. Although similar to TH5, this configuration comes with
the trade-off of a slightly more skewed residual (—1.73 compared to baseline —1.49), it
remains within an acceptable range. We therefore adopt md6_1r0.05 ne500 as the model
parameter setting for TH3 in subsequent experiments.

Table 4.10: Performance of tuned TH3 models.

Input—Output Samples R2?(Log) R?(Abs) Log MAE MAE Residual Skew

5—30 528 0.916 0.576 0.294 21.08 -2.10
7—30 528 0.940 0.843 0.236 12.48 -2.51
5—60 485 0.897 0.592 0.351 24.50 -1.94
7—60 485 0.919 0.826 0.302 1594 -1.71
5—90 446 0.881 0.566 0.389 27.54 -1.73
7—90 446 0.903 0.822 0.342 17.42 -1.53

Table[4.10/shows the result for the tuned TH3 model. Comparing with the TH5 model,
with a 7-day input window, TH3 outperforms TH5 across all horizons on absolute-scale
accuracy, for example, R3,. = 0.843 vs. 0.763 at 7—30. Log-space metrics also favour
THS3, with higher Riog and lower Log-MAE. In contrast, TH5 remains advantageous when
(i) residual symmetry is prioritised (e.g., 7—90 achieves skew —0.22 with essentially iden-

tical R2,, to TH3: 0.820 vs 0.822), or (ii) the task emphasises short-horizon prediction

abs
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with minimal evidence (e.g., 5—30).

This tuning study highlights a fundamental challenge of global regression: the diffi-
culty of simultaneously optimising for both accuracy and fairness. These tensions likely
stem from the underlying heterogeneity in GHP growth dynamics, which a single global
model struggles to capture. Rather than relying on increasingly fine-grained hyperparam-
eter tuning to compensate, a more principled approach may lie in partitioning the CVE
population into behavioural archetypes (Section , allowing the model to specialise in
distinct growth patterns rather than forcing uniform generalisation.

With a competitive performance while retaining 2,561 CVEs compared to 2,105 for
THb5 (approx. 22% more coverage), combined with its consistently stronger log-scale fit,
TH3 better satisfies the requirements of coverage + trajectory diversity, and is there-
fore adopted for clustering and cluster-wise prediction experiments in Section and

Section [6.21

4.2.4 Contextual-Feature Ablation

To test marginal gains from contextual metadata, we added three high-level variables:
CVE publish year, activation delay, and timing type (see Section to the feature set.
Results differed across thresholds.

Threshold = 5. With a 7-day input window, contextual variables improved short-
and medium-horizon accuracy. For example, R? _ increased from 0.763 to 0.798 at 7—30
(MAE 18.18 — 17.27) and from 0.777 to 0.784 at 7—60 (MAE 23.38 — 23.12). Log-scale
fit also improved. However, residual skew worsened (e.g., —0.37 — —1.28 at 7—30), in-
dicating stronger underprediction of high-attention CVEs. At 7—90, contextual features
degraded overall fit (R?, 0.820 — 0.775; RMSE 111.8 — 140.2).

By contrast, at 5-day inputs, contextual variables consistently improved residual sym-
metry, for example, absolute skew dropped from 1.66 to 0.87 (-47.6%) at 5—60 window.
But accuracy deteriorated (5—30: R2, 0.783 — 0.558; MAE 22.17 — 27.18). Overall,
contextual variables are beneficial when sufficient early evidence is available (> 7 days)
and horizons are short to medium (< 60 days), but counterproductive for 5-day inputs

or long horizons.

Table 4.11: Impact of adding contextual features (TH5).

Window AR AMAE ARMSE ASkew
530 0225 4501  451.28  +0.09
730  +0.035 091 948 091
5560  0.025 4+0.28  45.88  +0.79
760  +0.007 026 217  -0.54
5590 0192 4350  +40.34  +0.49
790 0045 037  +14.89  0.23

Threshold = 3. For TH3, contextual features consistently reduced absolute accuracy.
For instance, R, fell from 0.592 — 0.403 (MAE 24.50 — 26.78) at 5—60, and from 0.843

abs

— 0.790 (MAE 12.48 — 13.71) at 7—30. Improvements in residual skew were minor, and
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Table 4.12: Impact of adding contextual features (TH3).

Window AR2 . AMAE ARMSE ASkew
5-30  -0.098 4+1.27  +16.28  —0.11
7—30  -0.053 +1.23 41419  40.18
5-60  -0.189 4+2.28  +32.93  —0.04
760  -0.042 4045  4+11.72  40.03
5-90  -0.189 4256  +34.55  40.20

7—90 -0.009  -0.03 +2.80 +0.20

log-metric gains negligible. Given this inconsistency, contextual variables are excluded
from the global TH3 models. Instead, residual asymmetry is addressed via cluster-specific
modelling with enhanced regression (see Section [6.2.2)).

4.2.5 Global SHAP Analysis

To better understand why our models make specific predictions, we adopt TreeSHAP,
a feature attribution method tailored for tree-based models such as XGBoost. This
analysis helps identify which input variables drive prediction outcomes across different
feature sets, and reveals structural limitations in the global forecasting model.

SHAP analysis for TH3 dataset is reported in this section. We focus on the two long-
range configurations, 5—90 and 7—90, as these represent the most practically valuable
forecasting scenarios. These configurations also exhibit consistent SHAP behaviour across
shorter output horizons. As such, they offer a representative and interpretable view into
the model’s decision-making process.

For each input window, we analyse three progressively enriched feature sets: raw
counts only, raw + shape features, and raw + shape + contextual feature set. All SHAP
values were computed only on the held-out test set. Figure presents the SHAP swarm
plot, visualising both the importance and the effect of the features for each configuration.
Each point represents a single CVE, with the x-axis showing the SHAP value (effect on
prediction). The colour indicates the raw feature value, with red representing high values
and blue representing low values.

Raw Count Feature Set

In the raw-count only configuration, the model remains dominated by volume-based
interaction features. For both the 5-day and 7-day input settings, the total interaction
count across the input window is by far the strongest predictor (top-ranked in both plots).
This confirms that aggregate user engagement is the single most influential early indicator
of GHP trajectory.

The star count features consistently rank in the top three, underscoring the role of
GitHub stars as high-signal endorsements. Meanwhile, active days also appear among
the top contributors, reflecting the importance of sustained rather than one-off bursts
of attention. Fork counts follow closely, generally reinforcing the signal of substantive
user engagement. The SHAP colour patterns confirm this interpretation: high feature
values (red) correspond to positive SHAP effects, particularly for total interactions and
stars, meaning that more concentrated and sustained early attention pushes predictions
of long-range popularity upward.
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Figure 4.4: Global SHAP feature impact across feature configurations and input windows. (a, b) raw
counts only; (¢, d) with shape-based features; (e, f) full feature set with contextual variables.

A notable contrast arises in repo count features. In both models, repo_count_3 and
repo_count_5 tend to exert weaker or even negative influence when values are high,
whereas repo_count_7 begins to reflect a more positive signal. This suggests that very
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early repository proliferation (within 3-5 days) might be linked to redundant forks, tem-
plate reuse, or noisy activity that the model learns to discount. By contrast, a sustained
repository number increase over a full 7-day window is interpreted as evidence of genuine
community adoption.

Taken together, the raw-count only SHAP analysis highlights the model’s preference
for strong, authentic engagement trends: high interaction volume, accumulating stars,
and distributed activity across days. Interaction intensity and persistence are the key
drivers of predictive power in the absence of engineered shape features.

Raw + Shape Feature Set

With the addition of shape-based features, the model’s reliance shifts from raw counts
to temporal dynamics. Across both the 5-day and 7-day input windows, log-transformed
interaction counts (log_count_5, log_count_7) consistently surpass total interactions in
importance, highlighting the stronger explanatory power of scale-normalised growth pat-
terns over raw volumes.

Temporal gradient features such as delta_ 1.5 (5-day model) and delta 5.7 (7-day
model) emerge among the top contributors, indicating that early acceleration or decel-
eration trends carry predictive weight for long-term attention. Similarly, proportional
indicators like early share 3.5 and early share 5 7 consistently show negative SHAP
values at high magnitudes, suggesting that CVEs with front-loaded bursts but lacking
sustained activity are penalised by the model as weak long-term signals.

Overall, the SHAP distributions confirm that not only the magnitude but also the tra-
jectory of early attention meaningfully informs predictive performance. This evidence
support our subsequent decision to explicitly cluster CVEs by trend shape (Chapter [5),
allowing models to specialise on distinct behavioural archetypes of GHP attention growth.

Raw + Shape + Context Feature Set

For TH3 dataset, adding contextual features (activ_delay, cve_publish year,
delay_type) systematically degraded model performance.

The SHAP profiles explain this outcome: activ_delay, although ranked among the
top predictors, shows highly dispersed contributions with no consistent monotonic effect.
This volatility indicates that delays in GHP activation do not provide stable predictive
signal once early interaction dynamics are already accounted for. Year-based variables
(pub_2023, pub_2024) contribute weakly, acting as noisy priors rather than meaningful
differentiators. In short, with activation threshold = 3, the contextual features introduce
instability without improving bias symmetry or over-all fit.

Conclusion

In conclusion, the SHAP analysis confirms that early GHP activity, both in terms
of interaction volume and temporal shape, is the dominant driver of long-range CVE
popularity forecasts. Temporal shape features, in particular, allow the model to differen-
tiate between CVEs with comparable early interaction counts but divergent momentum
patterns. This observation motivates our subsequent use of unsupervised clustering (Sec-
tion to group CVEs by trajectory shape, enabling more targeted modelling of distinct
behavioural archetypes.
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Chapter 5

Trend Clustering

The preceding evaluation of global models highlighted a persistent limitation: pop-
ulation heterogeneity. Despite strong aggregate performance, even finely tuned models
struggled to balance accuracy and residual symmetry across all GHP types. Meanwhile,
our SHAP-based feature attribution confirmed that early interaction shape, beyond raw-
count volume, enabled the model to better distinguish between GHPs with similar early
counts but differing momentum.

We therefore adopt a more principled strategy: explicitly partitioning the GHP pop-
ulation by early growth dynamics. This section introduces our clustering framework,
extracting these temporal shape signals directly from interaction time-series, which aims
to isolate distinctive attention trend trajectories, such as flat cold-starters, front-loaded
bursts, and jittery or irregular growth patterns.

We choose TH3 dataset for its better coverage of early GHP interaction trajectories
(see Section . We conduct clustering on two early input windows (5 and 7 days),
consistent with prior model configurations. A z-score normalisation on the interaction
time-series ensures that clustering is shape-based, not size-based.

5.1 Clustering Method

To capture meaningful early-shape subgroups, we adopt HDBSCAN ([Malzer and
Baum), 2020]) as our primary clustering method. HDBSCAN is a density-based algo-
rithm that identifies clusters as dense regions of similar points in the embedding space.
This property is particularly well suited to our dataset, where CVEs exhibit heteroge-
neous and often noisy early interaction patterns. HDBSCAN can flexibly capture local
structure in this space, for example, dense pockets of bursty growth, without relying on
uniformity assumptions.

Traditional clustering methods such as KMeans require the number of clusters to be
specified in advance and typically perform best when clusters are roughly spherical and
equally sized. By contrast, HDBSCAN infers the number of clusters directly from the
data. Its behaviour is controlled by a small set of interpretable parameters:

e min cluster_size: the minimum number of CVEs required to form a dense region;
e min samples: controls the level of strictness when separating core from border
points, influencing noise tolerance.

This design eliminates the need for prior assumptions about the number of trend
types, allowing behavioural archetypes to emerge naturally from the data. In addition,
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HDBSCAN’s built-in noise detection automatically excludes ambiguous or weakly clus-
tered CVEs, resulting in cleaner, more interpretable clusters that better reflect coherent
early-growth dynamics.
For comparison, we also include KShape clustering using Shape-Based Distance (SBD) as

a baseline method (see Section[5.2.3)). KShape is specifically designed for time-series data:

it aligns input sequences via phase-invariant cross-correlation and computes centroids that
preserve temporal shape. This allows us to evaluate how well density-based methods like
HDBSCAN perform relative to fixed-partition, shape-aware alternatives.

5.1.1 Grid Search and Clustering Evaluation

To ensure robust discovery of trend-based CVE archetypes, we conduct a multi-stage
grid search over key HDBSCAN parameters, in conjunction with UMAP projection to
reduce the dimensionality of z-normalised interaction timelines.

Our search explores the following parameter space:

UMAP dimensions: {3, 5, 7};

Minimum cluster size (min_cluster_size): [25,50];

Minimum samples (min_samples): [20,35], tuned to correspond proportionally to
the selected min_cluster_size;

Distance metric: {Euclidean, Manhattan, Correlation};

Cluster selection method: {EOM (excess of mass), Leaf}.

We first conduct the grid search using z-normalised interaction time-series for both 5-
day and 7-day input windows. This initial phase focuses on exploring combinations
of UMAP dimensions, min _cluster size, and min samples. Based on the strongest
candidates from this stage we perform a second, finer-grained search across distance
metrics and cluster selection methods (eom, leaf) to optimise the final cluster structure.

Each configuration is evaluated using a combination of quantitative metrics and qual-
itative diagnostics, designed to assess internal coherence, separability, and downstream
utility for time-series modelling.

5.1.2 Evaluation Metrics

To evaluate the quality and interpretability of each clustering configuration, we apply
a combination of quantitative and visual metrics. These are designed to assess not only
statistical structure, but also the operational relevance of emerging behavioural groups.

Silhouette Score

We compute the mean silhouette score across all non-noise CVEs, capturing how well
each CVE aligns with its assigned cluster compared to others. Higher values indicate
stronger intra-cluster cohesion and inter-cluster separation, suggesting that early inter-
action shapes are consistently grouped.

Noise Percentage

We monitor the proportion of CVEs labelled as noise. While moderate noise levels
are expected, excessively high noise rates (e.g., above 20%) may signal overly aggressive
filtering or an embedding space that fails to support cluster-able structure.

Cluster Count and Size Distribution

For downstream analysis and forecasting, we favour configurations that yield a mod-
erate number of clusters (typically 3-8), each with a sufficient number of samples (ideally
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>30 CVEs). Clusterings that fragment the data into many small groups are penalised,
as they reduce generalisability and complicate interpretability.

Cluster UMAP Visualisation

We project cluster assignments onto the 2D UMAP space to visually assess regional co-
herence and spatial separation. Effective clusterings display well-defined, non-overlapping
regions with minimal noise bleed or overlap between trend types.

Trend Shapes

For each candidate configuration, we compute cluster-wise median interaction curves,
based on z-score normalised 5-day or 7-day timelines anchored to the activation day.
Preferred clusters should exhibit distinct and interpretable temporal shapes, as these
trend archetypes form the behavioural foundation for subsequent forecasting analysis
and cluster-specific modelling.

5.2 Clustering Trend Result and Evaluation

In this section, we evaluate candidate clustering configurations based on both quan-
titative metrics and the trend shape quality. Our goal is to identify a configuration
that strikes a balance between statistical cohesion, shape interpretability, and prediction
utility.

5.2.1 Imitial Grid Search Setup

As previously mentioned, we begin with a broad grid search using:

UMAP dimensions: 3D and 5D,

HDBSCAN parameters: min_cluster_size € [25,50], min_samples € [20, 35],
Distance metric: Euclidean,

Selection method: EOM (Excess of Mass).

Each configuration is applied to z-score normalised 5-day interaction timelines, an-
chored to the day of GitHub PoC activation.

5.2.2 Evaluation

Table summarises key metrics from representative configurations:

Table 5.1: Summary of Clustering Configurations and Evaluation Metrics (5-Day Input).

mcs ms UMAP Dim #Clusters Noise % Silhouette Largest Cluster

30 20 3D 11 1.5% 0.495 986

30 20 5D 9 0.0% 0.556 1076
35 25 3D 10 1.8% 0.512 986

35 25 5D 9 0.0% 0.556 1076
40 30 3D ) 1.5% 0.499 1212
40 30 5D 6 1.5% 0.589 1111
45 35 3D 6 6.4% 0.660 986

45 35 5D 5 4.7% 0.594 1079
50 40 3D 3 3.2% 0.658 1263
50 40 5D 4 3.9% 0.632 1183
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Lower min_cluster_size values tend to produce a larger number of clusters and min-
imal noise rates, but often at the cost of trend redundancy. Upon closer inspection of
the resulting median trend shapes, these configurations frequently yield clusters that

are scattered, overly similar, or behaviourally indistinct.

Conversely, the more coarse-grained configurations show the opposite failure mode:
they collapse diverse temporal trajectories into oversized general-purpose clusters, under-
mining interpretability and learnability. These contrasting effects are illustrated in Fig-
ure 5.1}, which visualises both trend redundancy under over-fragmentation and the shape
dilution associated with excessive aggregation.

5-Day Early Trends: mcs=30, ms=20, UMAP3D
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Figure 5.1: Comparison of two clustering configurations, visualised as median interaction curves for the

5-day input setting.

Overall, the clustering behaviour is highly sensitive to the trade-off between cluster
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granularity and shape distinctiveness. As highlighted in Table [5.1] we select
H5day_mes40_ms30_umapbd as our final clustering configuration. This setup offers a mod-
erate number of clusters (6), low noise rate (1.5%), balanced silhouette score (0.589), and
clearly differentiated and interpretable trend shapes.

Distance Metric and Selection Method Tuning

To refine our final clustering configuration, we conduct a focused grid search over dis-
tance metrics (euclidean, manhattan, correlation) and cluster selection methods (eom, leaf)
while holding other parameters fixed (mcs=40, ms=30, UMAP=5D, 5-day input window).

Table 5.2: Evaluation of Distance Metrics and Cluster Selection Methods (5-Day Input).

Metric Selection # Noise % Silhouette Largest
Method Clus- Score Cluster
ters
euclidean eom 6 1.511 0.589 1111
euclidean leaf 13 51.238 0.556 235
manhattan  eom 4 1.511 0.626 1260
manhattan  leaf 14 45.531 0.575 195
correlation  eom 12 24.759 0.702 986
correlation  leaf 13 49.895 0.225 257

As shown in Table[5.2] 1eaf selection consistently yields high noise rates, often exceed-
ing 30%, and generates scattered clusters with low cohesion. This instability is observed
across all distance metrics. We therefore prioritise eom (Excess of Mass) as the selection
method for all further experiments.

Among distance metrics, correlation-based clustering consistently produces more frag-
mented results, yielding finer clusters at the cost of increased noise (e.g., 24.76% for
correlation—eom). By contrast, Euclidean and Manhattan metrics yield similar outcomes
under eom, with Manhattan achieving a slightly higher silhouette score (0.589 vs. 0.626),
but producing only four clusters compared to Euclidean’s six.

We therefore kept Euclidean—-EOM as the final metric—selection pair for 5-day clus-
tering. The final clustering results are visualised in Figure [5.2]

For the 7-day input window, we apply the same two-stage grid search and selection
logic. The configuration with mcs = 32, ms = 22 and umap 5d demonstrates the best
clustering result, while maintaining smooth continuity with the clusters identified in the
5-day window. The result trend shapes are shown in Figure [5.2] Further analysis of the
7-day cluster behaviours is presented in Section

5.2.3 K-shape + SBD Method Comparison

To assess the value of our HDBSCAN-based clustering strategy, we compare it against
a traditional time-series clustering method: KShape with Shape-Based Distance (SBD).
Both methods operate over z-normalised 5-day GHP interaction timelines. For consis-
tency, we set the number of clusters in KShape to 6, mirroring the best-performing
HDBSCAN configuration (5day mcs40 ms30_umap5d).
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5-Day Early Trends: mcs=40, ms=30, UMAP5D
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(a) Interaction curves for the 5-day input setting.

7-Day Early Trends: mcs=32, ms=22, UMAP5D
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(b) Interaction curves for the 7-day input setting.

Figure 5.2: Final clustering results visualised as interaction curves for the 5-day and 7-day input windows.
The dotted red lines highlight examples of individual CVE trends.

While the interaction trajectories of HDBSCAN clusters (Figure reveal distinct
and explainable archetypes, KShape’s centroid curves (Figure show significantly
less temporal differentiation. Multiple clusters converge toward similar trend shapes,
with wider IQRs, indicating lower intra-cluster consistency. This lack of distinctiveness
reduces the interpretability and modelling value of the clustering output. We observe
this most clearly in cold-start CVEs: while HDBSCAN’ cluster 0 cleanly isolates this
population, KShape’s Cluster 1 is internally more noisy and heterogeneous, resulting in
a diffuse grouping.



KShape Cluster Patterns: 5-Day Early Trends
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Figure 5.3: KShape Clustering result as median trend. The dotted grey lines highlight examples of
individual CVE trends.

Furthermore, as shown in Figure the HDBSCAN cluster projection in UMAP
space forms well-separated, compact regions. Each cluster occupies a distinct subspace,
reflecting meaningful divisions in early interaction behaviour. By contrast, the UMAP
projection of KShape clustering reveals substantial overlap among flat or weak-signal
trajectories. Cluster 1, in particular, disperses across multiple regions, diluting inter-
pretability and reducing its diagnostic value. The method’s silhouette score of only
0.318, consistent with its weak spatial distinction, underscores KShape’s limitations in
capturing subtle, low-momentum trend patterns in this research setting.
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(a) UMAP projection with HDBSCAN clustering. (b) UMAP projection with KShape clustering.

Figure 5.4: UMAP 2D clustering projections for CVE interaction shapes.

Taken together, while KShape succeeds at aligning raw time series, it fails to gen-
erate actionable, shape-coherent clusters in the short 5-day setting. In this case, HDB-
SCAN offers better cluster separation and clearer archetypes, thus is more effective for
early GHP trend detection.
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5.3 Cluster Profiling

To better understand the behavioural archetypes uncovered by our trend clustering
framework, we analyse the final clustering results for both the 5-day and 7-day input win-
dows. As shown in Figure 5.2] cluster boundaries evolve between the two time windows.
From the 5-day to the 7-day input, some trends persist, while others are merged, restruc-
tured, or refined. Despite these boundary shifts, the underlying behavioural archetypes
remain stable, preserving their explanatory power and interpretability across time.

5.3.1 Trend Archetypes

Cluster 0 (5-day vs 7-day) — Cold Starters

Both clusterings robustly isolate the same archetype: CVEs with near-zero activity
beyond Day 1. These cold-starters exhibit flat, dormant trajectories across the early win-
dow and demonstrate perfect shape consistency (correlation = 1.00). While the cluster
size drops from 986 CVEs in the 5-day configuration to 924 in the 7-day, this reduction
reflects a cleaner and more conservative grouping, filtering out CVEs that begin to show
late interaction signals on Day 6 or 7. The persistence of this cluster across window
lengths confirms its status as a foundational behavioural group, especially relevant for
modelling low-signal, hard-to-predict GHPs.

Cluster 5 (5-day vs. 7-day) — Long-tail Tapers

These clusters are the largest in both input windows, reaching 1111 CVEs in the
5-day configuration and 1206 in the 7-day. They exhibit strong early activity, typically
peaking at Day 0 or Day 1, followed by a smooth, gradual decline, though attention
persists throughout the window. The modest increase in cluster size under the 7-day
input suggests better absorption of borderline cases, especially short-term bursts that
were ambiguous under the 5-day model.

While the intra-cluster correlation scores indicate looser alignment in precise tem-
poral shape, subsequent prediction analysis (see Section confirms that this cluster
yields strong predictive performance, reinforcing its relevance as a coherent and opera-
tionally meaningful group.

Among the smaller clusters, trend shapes also evolve distinctly when extending the
observation window from 5 to 7 days:

e Early Plateauers (C2 — C2): modest activation followed by a quick flattening;
smaller in size at 7 days (45 vs. 57), indicating improved separation from dormant
and late-rising CVEs.

e Oscillators (C1 — C4): rebound-like bursts that consolidate more clearly under
7 days, confirming oscillatory behaviour as genuine rather than noise.

e Refined Rebounders (C3 — C1): initial rebounds become sharper at 7 days,
with flatter variants redistributed into neighbouring clusters.

e Refined Decliners (C4 — C3): early peak and steady decline re-emerge as a
smaller, purer trajectory, with ambiguous cases absorbed elsewhere.
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All four pair of clusters show a shared pattern: extending the observation horizon
consistently reduces cluster sizes while sharpening their internal coherence, leaving behind
cleaner and more interpretable behavioural shapes. Ambiguous members that blurred
boundaries at Day 5 are redistributed into neighbouring archetypes by Day 7, most likely
into Cluster 5, the long-tail taper group.

Table |5.3|summarises the recurring patterns observed across both the 5-day and 7-day
input windows.

Table 5.3: Behavioural Archetypes Across 5-Day and 7-Day Clusters

Behaviour Type 5d Cluster(s) 7d Cluster(s) Description

Cold-starters Cluster 0 Cluster 0 Highly consistent flat trend after
Day 1

Noisy oscillators Cluster 1, 3 Cluster 1, 4 Rebound bursts or fluctuating oscil-
lations after initial drop

Early plateauers Cluster 2 Cluster 2 Modest initial signal, then quickly
dormant

Refined decliners ~ Cluster 4 Cluster 3 Early spike followed by steady de-
cline

Long-tail tapers Cluster 5 Cluster 5 Gradual and extended decline with

high intra-cluster variance

In conclusion, while the 7-day window provides clearer disambiguation of shape am-
biguity, particularly in non-monotonic or low-signal CVEs, both the 5-day and 7-day
configurations consistently capture the same four core behavioural archetypes: cold-
starters, front-loaded tapers, early-plateauers/decliners, and rebound-oscillators.

5.3.2 Plateau Timing Analysis Across 5-Day Clusters

To test our interpretation of trend archetypes, we conduct a small-scale plateau timing
analysis across the 5-day clustering result. We define a plateau point as the moment when
public engagement meaningfully tapers off after a CVE’s initial burst of attention.

Operationally, a CVE is considered to have plateaued if its daily interaction count
remains below 3% of its peak value for at least 15 consecutive days. This thresholding
heuristic offers a consistent and interpretable marker of GHP attention deceleration, and
reflects realistic disengagement patterns in public PoC interest.

As shown in Figure 5.5 Cluster 2 (early plateauers)exhibits both the highest plateau
detection rate (87.7%) and the earliest median plateau onset across clusters. This con-
firms its profile as one defined by short-lived but genuine early engagement, followed by
rapid dormancy.

At the opposite end, Cluster 0 (cold starters) shows the lowest plateauing rate (33.4%),
aligning with its defining flat trajectory and negligible early activation. These CVEs
rarely accumulate enough signal to register a plateau event, gathering ecosystem attention
well past the observation window.

Clusters 1 and 3 (oscillatory groups) both plateau at high rates (70.5% and 82.8%
respectively), but with somewhat earlier onsets than tapering groups. This suggests
that despite their rebound behaviour, these CVEs still decelerate into stability relatively
quickly once secondary bursts subside.
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Figure 5.5: Plateau analysis across PoC trend clusters.

Clusters 4 and 5 (tapering groups) plateau at intermediate frequencies (65.9% and
59.4%) and show broader distributions of plateau onset days. This reflects their longer-
lived decline trajectories, where interaction levels diminish more gradually over extended

periods.

Together, these findings reinforce the validity of the clustering scheme: the alignment
between early shape-based groups and long-term engagement dynamics underscores both
the interpretive and predictive value of the identified trend archetypes.
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Chapter 6

Cluster-wise Prediction

6.1 Cluster-wise Model Performance Evaluation

In this chapter, we evaluate the global prediction model’s performance at the cluster
level, examining how different early-shape trend archetypes impact forecasting accuracy.
Here, we recalculate the global prediction results within each cluster, using the CVEs’
assigned cluster IDs to derive performance metrics specific to that group. This analysis
allows us to isolate where the model generalises well and where it consistently fails,
offering practical guidance for cluster-wise prediction model refinement.

We focus our evaluation on three long-range 1/O configurations: 5—60, 5—90, and
7—90, which offer the most promising balance between forecastability and operational
lead time (see Section . For comparison, we also include the 7—30 configuration
as a performance reference, since it achieved the strongest results in the TH3 model,
with the lowest log-scale MAE (0.236) and highest Log R? (0.940), serving as a best-
performance benchmark.

Figure presents four diagnostic scatter plots for these configurations. In each plot,
the y-axis is fixed to Log MAE, allowing for consistent comparison of prediction error
across clusters. The x-axes vary across key evaluation dimensions: Log R2, Absolute R2,
Log Residual Skewness, and SHAP Volatility (defined as the average interquartile range
(IQR) across all SHAP features within a cluster, capturing the diversity of learned feature
attributions).Each point in the plot represents a cluster under a specific I/O configuration.
Marker size reflects the number of CVEs in the cluster, while colour intensity corresponds
to Outlier Density, the percentage of CVEs within the cluster whose absolute prediction
error exceeds a threshold of 100.

A complete heatmap of cluster-wise evaluation metric scores across the 5—60, 5—90,
7—30, and 7—90 configurations is provided in Appendix Figure [I}

Cluster 0 (5-day & 7-day) — Cold-starters

As described in Section [5.3] Cluster 0 represents a highly consistent trend archetype
across both the 5-day and 7-day configurations, namely, the cold-starters. CVEs in this
group exhibit flat, dormant interaction trajectories, with little to no signal during the
early input window. Consequently, the global model performs poorly: residual skewness
is strongly negative (approx. -5.0), Log R? hovers near zero or negative values, and
SHAP volatility is extremely low (approx. 0.02). This indicates the model is relying
on a narrow, low-variance feature set which offers limited explanatory value due to the
uniform flatness of the input signals.
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Figure 6.1: Cluster Performance Analysis Grid. Four diagnostic scatter plots visualising cluster-level
prediction results for selected I/O configurations (5—60, 5—90, 7—30, 7—90). Each subplot uses Log
MAE as the y-axis and varies the x-axis as follows: (1) Log R2, (2) Absolute R2, (3) Log Residual
Skewness, (4) SHAP Volatility. Point colour encodes outlier density (percentage of CVEs with large
prediction errors), and point size reflects cluster size. Labels denote cluster identity (e.g., CO = Cluster
0).

Cluster 0 represents a structural blind spot. These CVEs simply lack informative
early-stage GHP activity, rendering them effectively invisible to models trained on short
input windows. To improve learnability for this group, two complementary strategies may
be required: (1) extending the input window to capture delayed activation patterns, and
(2) incorporating non-GHP contextual features, such as vulnerability type, exploitability
heuristics, or disclosure metadata.

Since 7-day Cluster 0 is a cleaner, more homogeneous cold-start cohort, we adopt Clus-

ter 0 from the 7-day input window as the basis for cluster-wise prediction, detailed in
Section [6.2.1]

Cluster 5 (5-day & 7-day) — Long-tail Tapers

This cluster pair captures the trend shape with an immediate spike in interactions
around Day 0 and Day 1, followed by a gradual and consistent taper in engagement.
This trend is where the model performs most consistently well, achieving Log R? scores
in the range of approx. 0.80-0.89 and Log MAE between approx. 0.30 and 0.43 across
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all long-range 1/O configurations. Performance gains are underpinned by high SHAP
volatility (= 0.07-0.12), indicating that the model leverages a diverse set of interacting
features to explain the variation within this group.

However, as shown in the third plot (residual skewness & Log MAE), the consistently
negative residual skew and elevated outlier density means this archetype holds most high-
attention GHPs and exhibits systematic under-prediction. To address this limitation, we
select 5 day Cluster 5 for further cluster-wise enhancement, for this setting offers a shorter
input window with practical lead time. Its combination of high learnability and persis-
tent residual skewness makes it an ideal testbed for targeted refinement. In particular,
we explore whether techniques such as asymmetric loss functions, quantile regression,
or feature augmentation can improve model bias in skewness, without sacrificing overall
fit. These enhancement strategies are detailed in Section [6.2.2]

For the remaining smaller size clusters, the sample size for test set gets highly limited
(around 10-20), which constrains the reliability of absolute error metrics. Nonetheless,
their relative R? scores and SHAP volatility values provide useful insight into which
temporal archetypes are learnable and which reflect intrinsic unpredictability.

Cluster 2 (5-day & 7-day) — Early Plateauers

These clusters consist almost entirely of dormant CVEs, with modest activation fol-
lowed by stagnation. Their log- R? scores are modest (0.15-0.20 in 5-day), while absolute
R? remains relatively high (0.53-0.75). This discrepancy arises because absolute scale
tends to overstate predictive performance for consistently flat shapes. The accompa-
nying zero outlier density and minimal SHAP volatility indicate that the model is not
uncovering genuine structure, but merely reproducing the lack of variation in the data.

Cluster 1 (5-day) — Cluster 4 (7-day) — Oscillators

Oscillatory CVEs achieve consistently high predictive fit, with log- R? ~ 0.83-0.87 and
absolute R? ~ 0.95-0.98. The model clearly aligns with their non-monotonic rebound
patterns. However, SHAP volatility remains near zero, which suggests overfitting to a
stereotyped surge pattern: the model recognises the “rebound template” but gains little
diagnostic insight into feature variation.

Cluster 3 (5-day) — Cluster 1 (7-day) — Refined Rebounders

In the 5-day view, Cluster 3 achieved moderate fit (log-R? ~ 0.76, absolute R? ~ 0.51),
coupled with higher SHAP volatility, reflecting heterogeneous rebound shapes. At 7-day,
these re-emerge as Clusterl, with log-R? of 0.82 and absolute R? near 0.95, but with
reduced volatility, reflecting a more uniform rebound pattern.

Cluster 4 (5-day) — Cluster 3 (7-day) — Refined Decliners

5-day Cluster 4 showed moderate log-R? (0.56) but weak absolute fit (R? ~ —0.16).
By 7-day, the restructured Cluster 3 is smaller and more homogeneous, yet its absolute
R? remains negative, signalling that these declining trends are learnable in relative terms
but harder to capture on the raw scale.

From Figure [6.1] it is evident that trend archetypes with similar shapes generally
appear close to each other across evaluation metric spaces. This alignment suggests
that trend clusters not only reflect coherent temporal behaviours, but also exhibit similar
prediction performance. In the subsequent cluster-wise prediction experiments, we further
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examine how these behavioural distinctions translate into predictive utility.

6.2 Cluster-wise Prediction

6.2.1 Cluster 0 - 7day

We begin our cluster-specific refinement with Cluster 0 from the 7-day input window,
comprising cold-start CVEs with flat early interaction patterns and minimal signal within
the first few days.

We first conduct a cluster-specific prediction within Cluster 0, using the same 7—90
configuration as the global model, to assess whether localisation alone, without extending
the input window, can improve model performance by isolating a more behaviourally
coherent subgroup.

Table 6.1: Cluster 0 (7-day): Global vs Local Model Performance (7—90 configuration)

Model IO window Log R? R? (Abs) Log MAE Residual Skew

Global 7-90 -0.109  0.095 0.718 -1.718
Local  7-90 0.306 0.083 0.345 -2.47

Under the global model with a 7-day input window, Cluster 0 achieves a log R?
of —0.109 and Log MAE of 0.718, reflect the model’s inability to capture meaningful
variance for CVEs whose growth occurs well beyond the input horizon. Naturally, the
improvement in Log R? (from —0.109 to 0.306) and a corresponding drop in Log MAE
(from 0.718 to 0.345) indicate improved shape learning. However, the residual skewness
becomes more negative (—2.47), suggesting that the model still fails to predict the late
risers.

These results confirm that while localisation improves learnability, the short input
horizon remains a bottleneck. The next step involves evaluating whether extending input
window length to 14-day or 30-day inputs could allow the model to better detect emerging
growth trends.

Extended Input Windows

Table 6.2: Cluster 0: Local Model Performance Across IO Configurations

I0 Window Log R? R? (Abs) Log MAE MAE Residual Skew

7 — 30 0.363 0.059 0.214 0.87 -3.72
14 — 30 0.601 0.173 0.135 0.60 -5.34
7 — 60 0.326 0.097 0.300 1.25 -2.82
14 — 60 0.535 0.366 0.231 0.94 -3.61
30 — 60 0.843 0.906 0.132 0.49 -2.56
77— 90 0.306 0.083 0.345 1.55 -2.47
14 — 90 0.497 0.440 0.287 1.20 -2.81
30 — 90 0.712 0.782 0.218 0.92 -1.90

To evaluate whether longer early observation periods can improve learnability in Clus-
ter 0, we extend the input window from 7 to 14 and 30 days while keeping the output
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window fixed (30, 60, or 90 days). The feature set is held constant in form, consisting of
raw interaction counts and derived shape-based metrics; it is extended only in temporal
coverage, incorporating additional days of observations as the input window lengthens.

Across all output horizons, we observe consistent performance gains with input ex-
tension:

e Log R? improves systematically, from only 0.31 in the 7—90 setting to 0.84 in the
30—60 configuration. Absolute R? also shows marked improvements, rising from
near-zero levels in the short 7-day settings (0.06-0.10) to as high as 0.91 in the
30—60 configuration.

e Log MAE and MAE both decline steadily, reaching as low as 0.13 (log scale) and
0.49 (absolute) in the 30—60 configuration. Similarly, RMSE contracts from values
above 3.5 at 7—90 to below 1.0 at 30—60, confirming that outlier cases are better
accommodated once more early signals are captured.

e Residual skewness remains negative across all settings, reflecting systematic under-
prediction of late-rising CVEs. However, the relatively low MAE and RMSE values
across all configurations suggest that the majority of CVEs in this cluster attract
modest attention. As a result, the residual skew is unlikely to distort real-world
triage, since most underpredicted cases remain within a low-risk range.

These results confirm the hypothesis that Cluster 0’s poor early predictability stems
from input truncation. An extended observation window unlocks the model’s true learn-
ability, where the 30-day input window emerges as sufficient, resulting in reliable predic-
tion performance across 60 and 90 output horizons.

Raw + Shape + Contextual Feature Set

Next, we introduce contextual features to the cluster-specific model to see if external
temporal and ecosystem context could improve performance.

Table 6.3: Cluster 0: Performance Delta (Raw+Shape+Contextual minus Raw+Shape)

I0 Window ALog R? AR? (Abs) ALog MAE AMAE ASkew

7 — 30 -0.055 +0.056 +0.027  +0.06  +0.77
14 — 30 -0.078 +0.053 +0.010  +0.05 +1.34
7 — 60 -0.084 -0.022 +0.007  +0.04  +0.77
14 — 60 -0.118 -0.032 +0.008  +0.04  +0.89
30 — 60 -0.022 -0.022 +0.004  +0.06  +1.25
7 — 90 -0.068 -0.003 +0.002  +0.04  +0.73
14 — 90 -0.117 -0.046 +0.001 +0.03  +0.51
30 — 90 +0.015 +0.014 -0.025 -0.08 -0.36

Table [6.3| shows the performance difference between the Raw+Shape baseline and the
Raw+Shape+Contextual feature sets. The inclusion of contextual features has mixed
effects.

On the positive side, residual skewness decreases in almost all configurations, moving
closer to zero and indicating reduced systematic underprediction of late-rising CVEs.
This effect is most pronounced at 30—60, where skew improves by +1.25 (from —2.56 to
—1.31). The only exception is at 30—90, where skew worsens slightly (—0.36).
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On the other hand, explanatory performance generally declines. Across 7- and 14-
day inputs, both Log R? and Absolute R? drop substantially (e.g. ALog R? = —0.118
and AR3, = —0.032 at 14—60). Similarly, error metrics (Log MAE and MAE) mostly
increase, suggesting that contextual features introduce noise rather than improving pre-
dictive power. The only configuration where both fit and error improve is 30—90, though
gains remain marginal.

Overall, for Cluster 0, the current contextual feature set acts primarily as a calibration
aid: it reduces underprediction bias but does not enhance, and often degrades, explana-
tory performance. In practical terms, contextual metadata helps to balance systematic
skew, but raw and shape-based features remain the dominant drivers of accuracy.

Raw + Shape (Extended) Feature Set

As a further enhancement step, we investigate whether extended trend-based feature
engineering can improve prediction performance for Cluster 0. Specifically, we examine
the GHP interaction patterns from Day 7 to Day 30, using sub-cluster trend analy-
sis and raster histograms to isolate common late-rising attention behaviours. For each
input window (14-day and 30-day), we design an extended feature set, to capture patterns
such as near-Day 14 growth, rebound dynamics, entropy of tail behaviour, and post-peak
decay patterns.

To further explore trade-offs in feature capacity, we conducted a two-stage ablation
study:

1. First, we removed low-SHAP-contribution features and de-correlated redundant
variables.

2. Next, we reintroduced only features that consistently appeared in the top 20 SHAP
contributors across validation folds.

Both ablated variants underperformed relative to the full extended feature set, con-
firming that no smaller or cleaner subset yielded superior predictive value. (Full ablation
results are provided in Appendix Table 3] and [4])

These results suggest that we have reached a diminishing return point for feature
engineering based solely on GHP signals. While extended shape features offer marginal
gains in residual calibration, they are not sufficient on their own to significantly improve
broader model performance. This finding reinforces the need for alternative or extensive
contextual signals to improve prediction for cold-start CVEs.

6.2.2 Cluster 5 - 5day

Cluster 5 represents a long-tail taper archetype, characterised by a sharp early spike in
attention followed by a smooth decline. This group remains one of the most predictable
trend shapes: global models achieve log R? between 0.81-0.82 and absolute R? between
0.54-0.56 across the 5—60 and 5—90 horizons, with errors (MAE 55-58) well aligned to
the cluster’s growth scale.

As with Cluster 0, we retrained local models using only raw + shape features. Results
(Table and Table confirm that localisation yields no performance benefit. While
log-scale metrics remain strong, absolute R? falls slightly at 5—60 (0.521 vs. 0.563) and
improves only marginally at 5—90 (0.550 vs. 0.541). MAE values remain effectively
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Table 6.4: Cluster 5 (5-day): Model Performance Across Feature Sets and Output Horizons

Model I0 Window R? (Log) R? (Abs) Log MAE Residual Skew MAE
Global 5 — 60 0.823 0.563 0.400 -1.524 54.64
5 — 90 0.808 0.541 0.429 -1.318 58.32
Local 5 — 60 0.815 0.521 0.390 -1.510 54.82
5 — 90 0.795 0.550 0.413 -1.330 56.96
Local-Subcluster 5 — 60 0.826 0.414 0.383 -1.480 61.48
5 — 90 0.813 0.302 0.406 -1.160 67.40

Table 6.5: Cluster 5 (5-day): Delta Performance Relative to Global Model (5—60 and 5—90)

I0 Window  Model A Log R2 A R? (Abs) A Log MAE A Residual Skew A MAE
5 — 60 Local —-0.008 —0.042 -0.010 +0.014 +0.18
Local-Subcluster +0.003 -0.149 -0.017 +0.044 +6.84
5 — 90 Local -0.013 +0.009 -0.016 -0.012 -1.36
Local-Subcluster +0.005 -0.239 -0.023 +0.158 +9.08

unchanged. These outcomes indicate that the global model already generalises well over
the taper archetype without overfitting to other shapes.

In addition, we experimented with adding a sub-cluster ID feature, motivated by
the relatively large size and internal heterogeneity of Cluster 5. Using HDBSCAN, we
performed sub-clustering within Cluster 5 and included the resulting cluster IDs as one-
hot encoded inputs alongside raw and shape-based metrics. However, this configuration
also failed to surpass the global model’s performance, suggesting that the primary trend
archetype is already sufficiently representative and predictive, and therefore does not
benefit from further structural segmentation.

Enhanced Regression Models

While cluster-local prediction confirms the global model’s already strong performance
on Cluster 5 (long-tail tapers), residual skewness persists, indicating systematic under-
prediction of high-impact CVEs. To address this, we explore enhanced regression formu-
lations aimed at reducing skewness and improving sensitivity to high-impact CVEs.

Asymmetric Loss with Sample Weighting. First, we developed a custom regression
strategy that combines asymmetric loss weighting with sample-level importance weight-
ing to better address underprediction in high-impact CVEs. The combined training
objective is passed to XGBoost via a custom DMatrix.

The asymmetric loss function increases the penalty for underpredicted cases by scal-
ing the gradient when the residual (prediction minus target) is negative. After test-
ing multiple configurations, we selected the setting that best balanced error minimisa-
tion and residual skewness reduction: o = 2.0 and $ = 1.0. This produces a piecewise
linear loss function with an asymmetric slope, where underpredictions are penalised more
strongly than overpredictions. To ensure compatibility with XGBoost’s second-order op-
timiser, the loss includes a scaled Hessian term, preserving numerical stability during
training.

In parallel, we apply a sample weighting scheme to reflect the varying importance of
GHPs based on their interaction volume. Two weighting strategies were explored:

1. Scaled weighting: Each CVE is assigned a weight based on a power-scaled normal-
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isation of its target value:

Ymax

where o = 0.7 controls the curvature. This design smoothly emphasises larger-
target CVEs while maintaining continuity across the dataset, ensuring that high-
impact cases receive proportionally greater influence without overly diminishing
smaller ones.

2. Thresholded weighting: To more aggressively prioritise tail CVEs, we implement
a stepwise weighting scheme informed by the empirical distribution of total inter-
actions at Day 90:

e CVEs with target > 150 receive a weight of 3.0
e CVEs with target > 500 receive a weight of 20.0
e CVEs with target > 850 receive a weight of 50.0

All other samples retain a default weight of 1.0.

The threshold-based sample weighting strategy, combined with the asymmetric loss
configuration described above, constitutes the final setup reported as the best-performing
one for this model.

Quantile Regression Models. Secondly, we train quantile regression models to com-
plement the asymmetric loss formulation. Unlike standard regressors that estimate the
conditional mean, quantile models are designed to predict specified upper percentiles of
the target distribution. In our case, we evaluate models trained to estimate the 75th, 90th,
and 95th percentiles. This approach intentionally biases predictions upward, providing
a conservative estimate that better captures tail risk.

For both asymmetric-loss and quantile regression models, we adopt refined hyperpa-
rameter settings to improve convergence and model stability. This includes adjustments
to tree depth (e.g. max_depth = 8), learning rates (eta = 0.03-0.05), subsampling ra-
tios(subsample = 0.9, colsample bytree = 0.8), and objective-specific optimisers.

Table 6.6: Cluster 5 (5-day input): Comparison of Enhanced Regression Strategies Across Output
Horizons

Model Output Days R? (Log) R? (Abs) Log MAE Residual Skew MAE
Baseline 30 0.841 0.561 0.353 -1.88 49.73
60 0.815 0.521 0.390 -1.51 54.82
90 0.795 0.550 0.413 -1.33 56.96
Asym. Loss 30 0.841 0.304 0.365 -1.51 58.86
60 0.801 0.322 0.409 -1.24 64.39
90 0.783 0.363 0.431 -1.13 65.52
Quantile 95 30 0.803 0.584 0.464 -1.53 60.11
60 0.704 0.646 0.573 -0.75 65.71
90 0.674 0.651 0.619 -0.94 71.81

Table shows model performance across enhanced regression strategies, comparing
baseline, asymmetric loss with sample weighting (asym_loss_sw), and quantile regression
models at the 95th percentiles.
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Among the enhanced regression strategies, the asymmetric loss with sample weighting
(asym_loss_sw) does not provide the intended gains. While Log R? values remain close to
the baseline, the absolute R? scores deteriorate sharply (e.g., 0.304 at 5—30 versus 0.561
for the baseline), and both MAE and RMSE increase. This suggests that reweighting
the loss fails to improve calibration, and may even amplify noise in the already limited
feature space.

By contrast, quantile regression models introduce a clearer trade-off. The 95th-
percentile model shows a strongest bias toward the upper tail: while log R? notably
declines (to 0.674 at 5—90), absolute R? surpasses the baseline (0.651 versus 0.550), and
residual skewness improves materially, approaching symmetry (-0.75 at 60 days). This
indicates that the model is better calibrated for high-volume CVEs, though at the cost
of systematic overprediction on the majority class.
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Figure 6.2: Residual distributions for baseline & Quantile 95 (Q95) models. Left: All CVEs in Cluster
5. Right: High-profile CVEs in Cluster 5 with over 150 total interactions at day-90.

Figure presents violin and KDE plots comparing residual (defined as predicted
- true) distributions between the baseline and Q95 quantile models. For all CVEs in
cluster 5, the Q95 model exhibits slightly wider dispersion and a clear rightward shift,
reflecting its intentional upward bias. On the other hand, within the high-profile sub-
set (CVEs with total 90-day interactions >150), the Q95 model clearly shifts the residual
distribution closer to zero and reduces the negative skewness observed in the baseline.
The KDE plots reinforce this: while the baseline density peaks just left of zero (indicative
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of systematic underprediction), the Q95 curve is more symmetric and better centered,
suggesting improved calibration for impactful CVEs.

In conclusion, quantile-based models, specifically Q95, best aligns with our risk-
sensitive objective. Its tendency to favour balance, or even mild overprediction, over
systematic underestimation makes it a practical high-reference estimate for downstream
prioritisation.

6.2.3 Small Cluster Prediction: Learnability and Limitations

This chapter investigates whether local prediction in small-sample clusters (with CVE
counts around 50) offers any improvement over global models, or whether the prediction
outcomes themselves help reinforce prior insights about cluster structure, learnability,
and trend signal quality.

We tested two model configurations tailored to low-data scenarios:

e A conservative setup with n_estimators = 300 and learning rate = 0.05
e A slightly more aggressive variant with n_estimators = 200 and learning rate
= 0.1

The conservative configuration consistently outperformed the alternative in log-space
metrics and residual stability, and is therefore adopted for all small-cluster evaluations
reported below. We also experimented with early stopping, but found that it degraded
performance on these small clusters, likely due to premature convergence, so it is excluded
from final results.

Table 6.7: 5-day Cluster 1: Global vs Local Model Performance (60 and 90-day outputs)

I0 Window Model R? (Log) R? (Abs) Log MAE Residual Skew MAE

5 — 60 Global  0.874 0.955 0.559 -1.47 15.46
Local  0.739 0.175 0.571 -1.08 60.99
5 — 90 Global  0.831 0.967 0.634 -1.19 15.24
Local  0.755 0.195 0.592 -1.12 65.53

A representative case is 5-day Cluster 1 (oscillators), a small group associated with
high R? but low SHAP volatility, suggesting superficially predictable behaviour with
limited generalisability.

Local retraining on this group leads to a striking divergence: while log R? remains
moderate (0.739 at 5—60, 0.755 at 5—90), absolute R? collapses (0.175 / 0.195), and
MAE increases fourfold (from ~15 to ~61-66). In other words, the local model locks
onto early oscillations but fails to accommodate the heavier tail, thereby generalising
poorly.

This limitation becomes especially evident in the case of CVE-2024-4577, a high-
impact outlier within Cluster 1. The local model underpredicts its 90-day interaction
count by over 84%, whereas the global model slightly overestimates, successfully reflecting
its overall risk magnitude. (True: 664; Global prediction: 775.5; Local prediction: 107.1).

The SHAP contribution plots in Figure [6.3] offer clear insight into this discrepancy:

e Global model (left): The top features, log_count_5, delta_1.5, and
total _interactions 5, reflect overall GitHub activity volume and early growth.
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(a) Global model. (b) Local Cluster 1 model.

Figure 6.3: Feature impact for CVE-2024-4577 within global and local models.

Because the global model is trained across diverse trend archetypes, these features
retain strong discriminative power even for atypical rebound cases.

e Cluster 1 local model (right): The local model, constrained by a narrow and homo-
geneous training set, relies most heavily on delta 1 5, which captures the rebound
between Day 1 and Day 5, a defining characteristic of Cluster 1’s trend shape. In
contrast, features that should matter most for late-rising CVEs, such as total aggre-
gates (log_count 5, total interactions_5) and tail-growth signals (delta_3.5),
receive dampened contributions overall. This imbalance leads the model to under-
value the sustained growth phase, resulting in significantly lower predictions for
high-impact, late-activating cases.

Together, these results illustrate the risk of small-cluster overfitting: when raw-count
features collapse due to local homogeneity, the model over-relies on shape-based secondary
metrics that, while representative of the trend archetype, can mischaracterise high-impact
outliers, ultimately reducing both accuracy and robustness, compared to the global model.
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Chapter 7

Model Performance on High-Impact
CVEs and Real-World Risk
Alignment

This section evaluates the model’s effectiveness in prioritising CVEs that matter most
in practice: those that draw significant ecosystem attention, exhibit signs of in-the-wild
exploitation, or represent high systemic risk.

7.1 Ranking Quality Evaluation

Since vulnerability triage is often a matter of prioritisation rather than precision, we
evaluate our model not only on absolute prediction accuracy, but also on ranking fidelity,
assessing whether the most critical CVEs are correctly surfaced at the top of the queue,
and how different temporal trend archetypes perform in this ranking context.

We first use Spearman’s rank correlation coefficient (p) to measure the ordinal agree-
ment between the model’s predicted ranking of CVEs and their actual ranking based on
90-day GHP interaction totals. Using the 5—90 prediction window with the raw-+shape
feature set on the full test set of 446 CVEs, we obtain a Spearman p of 0.9219, indicating
a high degree of consistency in the ranking produced by the model.

To further validate this result, we conduct a comparative inspection of the top 15
CVEs by both predicted and observed GHP popularity. The top three CVEs by ac-
tual 90-day interaction volume, CVE-2024-3094, CVE-2024-1086, and CVE-2024-6387,
are all ranked within the model’s top three predictions, albeit in a different order. This
alignment suggests that the model is effectively capturing high-priority cases that re-
flect large-scale ecosystem interest and are indicative of subsequent widespread impact.
However, several notable under-predictions remain, most notably CVE-2024-38063, which
was significantly underestimated despite ranking among the top-5 most interacted-with
CVEs in the dataset. This case is examined in further detail in Section [7.3|

In addition to global ranking, we further assess how well the model surfaces the
high-attention CVEs, specifically those behaved as giants (top 10% by total 90-day inter-
actions) or early-bursts (top 10% by day-3 activity). The union of these two groups forms
a reference priority set of 61 CVEs. For evaluation, we select the top 15% of the test set
(66 CVEs in total), based on their predicted rankings, and compute Precision@K and Re-
call@K with respect to the high-attention priority set. The model achieves a precision of
0.8182 and a recall of 0.8852. Given that this performance is achieved using only early
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GHP signals without access to external contextual metadata, and under the most chal-
lenging I/O window configuration (5—90), this performance demonstrates meaningful
operational value for early-stage triage.

Ranking Consistency (Spearman p = 0.922)
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Figure 7.1: Ranking Counsistency Between Model and Ground Truth (Spearman p = 0.917)

Figure |7.1] provides a direct visualisation of ranking consistency across the full test
set, based on the 5—90 prediction window and the raw+shape feature set configuration.
In the true vs. predicted scatter plot, most points cluster tightly around the diagonal,
confirming that the model’s predicted ranking closely aligns with the ground truth CVE
popularity. Ranking misalignments appear as points that lie far from the diagonal line
of perfect agreement. Among the top 10 CVEs with the largest rank discrepancies (la-
belled by CVE ID in the plot), all are under-predicted cases, with the majority belonging
to Cluster 0. This pattern reinforces earlier findings that Cluster 0’s cold-start archetype,
characterised by weak early signals, introduces greater ambiguity and poses significant
challenges for accurate prediction.

Figure further contextualises model ranking performance by comparing actual
GHP popularity (y-axis) against true and predicted rank (x-axis), with cluster labelling
shown via colour coding. In the left panel, the rank-to-popularity curve follows a clear
power-law distribution. In the right panel, the model’s predicted rankings largely preserve
this shape, especially among the most popular CVEs. However, distortions emerge in the
lower and mid-rank regions, most notably among Cluster 0 CVEs.
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Figure 7.2: Comparison of CVE popularity rankings based on GitHub PoC (GHP) activity.

Together, these plots highlight both the model’s robust prioritisation at the top
end and the systematic errors that emerge across different temporal trend types, re-
inforcing the need for the cluster-specific enhancements introduced in Section [6.2]

7.2 Comparison with External Exploitation Signals

In this section, we link our dataset to other exploit signal sources to evaluate two
key questions: (1) whether GHP activity provides a lead time relative to downstream
exploitation events, and (2) how the model’s predictions align with confirmed in-the-wild
exploitation, as captured by external sources such as KEV, Metasploit, and ransomware
datasets.

7.2.1 Lead Time of GHP Signals

To assess whether our model predictions provides genuine foresight rather than a
reflection of already-established risk, we compare the appearance time of downstream
exploitation signals, specifically ExploitDB, Metasploit, and KEV, to the model’s input
window cutoff (Day 5 in the 5-90 configuration). For each CVE with a valid signal
timestamp, we identify the first observed occurrence of each exploitation source and
compare it to the sixth calendar day following the CVE’s GHP activation date.

We include ExploitDB (EDB) in our analysis as a commonly used repository of exploit
code, often referenced in vulnerability triage studies. However, it is worth noting that
like GHP, EDB is more accurately characterised as a proof-of-concept aggregator, reflect-
ing researcher publication activity rather than confirmed exploitation in the wild. Accord-
ingly, we treat EDB as a comparative timing signal, useful for mapping the chronology of
exploit code emergence, but different from real-world risk indicators such as Metasploit
(tooling integration) and KEV (confirmed exploitation). As such, in the following evalua-
tion (Section[7.2.2)), we exclude EDB from the in-the-wild exploitation scoring framework
to ensure conceptual clarity and avoid conflating different classes of signals.

For CVEs that eventually received each exploitation signal, we calculate the propor-
tion for which the signal appeared after the model’s input window cutoff. Figure [7.3
(left) presents these percentages for both the full dataset (covering CVEs from January
2018 to March 2025) and a focused subset of the 61 high-attention CVEs in the test set.
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Figure 7.3: Comparison of exploitation signal timing relative to GHP activation. Top: All CVEs.
Bottom: 61 High-attention CVEs.

Across the full dataset, we observe that 81.2% of Metasploit entries and 54.5% of
KEV inclusions occur after Day 5, indicating that these signals are not yet visible to
the model at prediction time. ExploitDB, by contrast, appears earlier, with only 31.8%
of entries emerging after the cutoff. This consistent with its similar role as a PoC ag-
gregator. Among the 61 high-attention CVEs in test set, this trend becomes even more
pronounced. Nearly 89.5% of Metasploit and 87.5% of ExploitDB signals occur after Day
5. Even for KEV, which often benefits from pre-coordinated disclosure, vendor reporting,
or retroactive tagging — nearly half of the entries (48.5%) emerge post-input window.

The box plots further illustrate the temporal lag between GHP activation and the
appearance of downstream exploitation signals. In the full dataset, the median lead time
from GHP to Metasploit is 370.5 days, while KEV trails by a median of 210.0 days.
ExploitDB exhibits a much shorter median lead time of 74.0 days, again highlighting its
alignment with early publication cycles rather than downstream risk validation.

For the high-attention CVE subset, we observe a compressed but still distinct delay
across all exploitation signal types. Median lead times remain substantial: 290.0 days
for ExploitDB, 38.0 days for Metasploit, and 48.5 days for KEV. Notably, given that
our test set consists exclusively of CVEs published in 2024, the long delay associated
with ExploitDB may reflect a broader ecosystem shift, wherein GitHub has increasingly
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become the primary platform for PoC code disclosure, displacing EDB’s historical role
as a first-stop publication hub.

The consistency of these lead times reinforces the conclusion that GHP trends pro-
vide a meaningful predictive advantage. They enable the identification of high-attention
CVEs well before attacker tooling, curated advisories, or institutional databases register
the risk, offering an early look at which vulnerabilities are likely to enter the exploitation
pipeline. This pattern holds especially true in the post-2024 ecosystem, where traditional
signalling mechanisms lagged.

7.2.2 Alignment with Real-World Exploitation

To further evaluate our model’s prediction for real-world exploitation, we introduce
a Exploitation Signal Score based on confirmed in-the-wild exploitation signals, aggre-
gating presence in Metasploit exploitation modules, VulnCheck KEVs and ransomware
leak reports (from EI and E[) This scoring system helps surface CVEs with varying levels
of real-world risk, based on observed offensive activity.

The Vulners KEV database is an open-source resource that provides transparent,
timestamped evidence of in-the-wild exploitation. In this study, we chose VulCheck KEV
over CISA’s canonical list for two primary reasons: broader coverage and faster sig-
nal availability. A cross-validation conducted on our dataset confirmed that VulnCheck
includes all CVEs present in CISA’s KEV, with matching or earlier exploitation times-
tamps for every entry. This further supports the use of VulnCheck as not only a superset
of the CISA KEV list, but also as a more representative real-world signal source for
linking our test set to in-the-wild exploitations.

The composite Exploitation Signal Score reflect observed in-the-wild exploitation sig-
nals. For each CVE, the score is computed as follows:

(3 x ransomware_association)
(2 x KEV_presence)
(1 x metasploit_exploit_module_presence)

exploitation_signal_score

+ +

Where:

KEV_presence = 1

if the CVE appears in the Vulners KEV database, else 0O
ransomware_association = 1

if the CVE is linked to known ransomware campaigns, else 0O
metasploit_module_presence = 1

if a Metasploit exploit module exists for the CVE, else O

The resulting Exploitation Signal Score is then mapped to a qualitative risk label using
the following rule set:

if exploitation_signal_score >= 5: risk_label "ultra-high"
elif exploitation_signal_score >= 3: risk_label = "high"
elif exploitation_signal_score >= 2: risk_label = "medium"

thttps://github.com/BushidoUK /Ransomware-Vulnerability-Matrix.git
Zhttps://blog.qualys.com/vulnerabilities-threat-research /2025 /05 /08 /inside-lockbit-defense-lessons-
from-the-leaked-lockbit-negotiations
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elif exploitation_signal_score >= 1: risk_label = "low"
else: risk_label "none"

Figure presents the cluster-wise breakdown of real-world risk levels within the test
set. As expected, Cluster 5, characterised by front-loaded burst dynamics, dominates
in high and ultra-high risk CVEs. Notably, Cluster 0, which largely comprises cold-
start and low-to-moderate interaction CVEs, also contains several high-risk cases (3 high,
34 medium). This reinforces the importance of cluster-specific enhancements aimed at
recovering underpredicted but potentially critical CVEs. In contrast, Clusters 1 ,3 and
4 show minimal presence, mostly due to small sample sizes. Cluster 2 displays no overlap
with in-the-wild exploitation signals, further confirming its association with low-risk,
early-tapering trajectories.

50 CVE Distribution: Risk Level by Cluster
48

Risk Level
mm low
B medium
B high
Bl ultra-high

Number of CVEs

Cluster Label

Figure 7.4: Risk labels derived from the Exploitation Signal Score, visualised by trend cluster (excluding
noise cluster —1).

Furthermore, we evaluate how well the model predicts the actual eventual interaction
volume of the 61 high-attention CVEs in the test set, in relation to their real-world
threat relevance.

Figure presents a scatter plot comparing predicted versus actual log-transformed
interaction counts, with each point coloured according to its corresponding exploitation
signal tier. Most high-attention CVEs, including those with confirmed real-world ex-
ploitation, fall close to the diagonal or within the £0.5 log error band. Notably, all
ultra-high risk CVEs, and 8 out of 11 high-risk CVEs, lie within this margin. These
results suggest that the model captures more than just surface-level popularity: GHP
activity serves as a meaningful proxy for latent signals of emerging threat relevance, and
the model’s predictions reflect substantive real-world risk.
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Figure 7.5: Prediction Accuracy for High-Exploitation-Signal CVEs

7.3 High-Attention CVEs - Case Study

In this subsection, we examine three representative CVEs drawn from the 61 high-
attention cases in our test set: CVE-2024-4577, CVE-2024-38063 and CVE-2024-3094.
Each illustrates a distinct prediction scenario: a well-predicted CVE with ultra-high ex-
ploitation signals, a severely underpredicted case, and a case of anticipatory attention:
lacking confirmed exploitation, yet triggering an exceptional community response. To-
gether, these examples highlight the model’s strengths, expose its current limitations,
and demonstrate its potential to surface latent ecosystem risk.

CVE-2024-4577

Among all CVEs with ultra-high exploitation signals: CVE-2024-4577 is the one
with the highest 90 day total GHP attention. CVE-2024-4577 is a remote argument
injection vulnerability in PHP for Windows, affecting versions up to 8.1.28 / 8.2.19 /
8.3.7. Exploitation relies on Windows “Best-Fit” character substitution, which can allow
attackers to pass unintended command-line options to the PHP-CGI binary, leading to
arbitrary code execution or source code disclosure. The vulnerability was officially listed
in KEV in June 2024, has a Metasploit module, and is linked to ransomware activity.
This vulnerability belongs to the oscillator trend archetype, landing in 5-day Cluster 1
and 7-day Cluster 3.

Figure (top) shows the cumulative interaction timelines of CVE-2024-4577. De-
spite the lacking of a clear plateau in the 90 day forecast horizon, it is accurately pre-
dicted by the model, received a strong and accurate prediction (775 vs. 664 actual). This
accurate output can be attributed to CVE-2024-4577’s immediate and sustained early
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Figure 7.6: Cumulative GitHub PoC interaction timelines for two high-profile CVEs.

activity: the CVE attracted significant attention on Day 1, followed by steady growth
and a resurgence that peaked around Day 5, well within the model’s early observation
window. It then continued to accumulate interactions throughout the full 90-day period.
The model’s feature space effectively captures this early burst profile, enabling it to as-
sign high predictive confidence despite continued strong and sustained growth over the
full 90-day window.

CVE-2024-38063

On the other hand, CVE-2024-38063, a Windows TCP/IP Remote Code Execution
vulnerability, reached 927 interactions within 90 days, yet was the most severely under-
predicted by the global model (predicted: 52; log residual: —1.815). The performance
is clearly shown and annotated in Figure . In Figure (bottom), the interaction
trajectory of CVE-2024-38063 helps explain the model’s underestimation: although early
indicators remained flat, the CVE experienced a sharp rise in attention starting around
Day 10, peaking at Day 12, and plateauing by Day 41. This delayed burst pattern fell
just outside the model’s input window, causing early features to miss the signal entirely.

As methods for addressing this limitation, the Cluster 5 Q95 regression as detailed in
Section demonstrate marked improvement: the predicted value increased to 115.1,
representing a 106% improvement over the raw+shape baseline.

CVEs like CVE-2024-38063, which exhibit delayed but intense engagement, challenge
the base model that rely solely on early raw interaction features. By using enhanced
regression strategies, shifting the predictive target to better accommodate high-attention
CVEs, the model is proved to provide more accurate estimates for the cases that demand
urgent prioritisation.
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CVE-2024-3094

Finally, CVE-2024-3094 presents a distinct case: it received the highest 90-day GHP
attention in our test set, yet has no confirmed in-the-wild exploitation. The activation
date of this GHP is the same as the CVE’s publication date in the NVD, indicating imme-
diate community mobilisation upon disclosure. This vulnerability is a supply-chain back-
door inserted into xz Utils, a widely used Linux compression library, and was designed
to intercept SSH authentication during build time via obfuscated tarballs. Although it
was never deployed in production versions of major distributions, it caused widespread
alarm due to its sophistication, stealth, and potential for catastrophic compromise.

In the prediction accuracy scatter plot under the 7-90 day configuration (Figure ,
CVE-2024-3094 appears annotated in the top-right corner, falling within the 0.5 log
error band. It also ranks as the third-highest predicted CVE, reflecting both its promi-
nence and the model’s strong alignment with observed GHP activity. This case illustrates
GHP-based signal’s ability to surface vulnerabilities attracting urgent and widespread at-
tention at early stages, anticipating systematic urgency and ecosystem-level risk before
confirmed exploitation or public tooling becomes available.
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Chapter 8

Discussion and Limitations

8.1 Discussion

8.1.1 GHP Dynamics as Early Risk Signals

Over the years, GitHub have increasingly become the primary platform for PoC code
disclosure, and GHP repositories have grown not only in number but also in responsive-
ness and social visibility over time. In aggregate, GHP attention exhibits a front-loaded
and long-tailed nature: for a majority of cases, the bulk of interaction occur within
the first few days of ecosystem exposure, followed by a slower and more diffuse residual
phase. Yet a subset of GHP do sustain or regain user engagement over time, often a
distinguishing feature of high-risk CVEs that warrant early prioritisation in vulnerability
triage workflows.

For our model using XGBoost, a short early observation window, such as 5 or 7 days
of GHP activity, is sufficient to support robust long-range forecasts. Using only features
derived from user interaction patterns (raw count and temporal shape), the global model
achieves strong predictive performance across 90-day horizons. Spearman rank correla-
tions exceed 0.91, and the model demonstrates high precision and recall in identifying
high-attention vulnerabilities, those that exhibit intense early burst of engagement or
accumulate extensive traction over time.

Early GHP trends encode distinct attention archetypes, with trend showing cold
starts, early plateaus, oscillators or steady tapers. These archetypes are not only inter-
pretable but also operationally relevant: they align with plateau timing, cluster-specific
prediction performance, and downstream exploitation signals. Notably, high-impact vul-
nerabilities that are later weaponised or linked to ransomware campaigns, often attract
sustained attention within the first few days of GHP publication. In such cases, early
GHP activity provides a latent signal of emerging risk, often surfacing well before formal
evidence of exploitation becomes available.

Accordingly, we argue that GHP engagement reflects more than surface-level popular-
ity. It serves as an emergent triage signal that complements static scores like CVSS, and
fills the gaps left by delayed scoring or incomplete metadata. In particular, GitHub trends
are capable of surfacing both technically severe CVEs and those that capture commu-
nity attention due to tooling potential, stealth characteristics, or symbolic urgency (e.g.,
supply chain backdoors).
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8.1.2 Prediction Challenges and Modelling Trade-offs

Prediction fidelity is not uniform across all CVE types. When early GHP trend ex-
hibit strong user engagement and match clear behavioural archetypes, the model tend
to deliver accurate prediction result. However, cold-start CVEs with flat or weak early
activity, and late-breaking attention well beyond the observation window, remain the
greatest challenge for early-stage forcasting. For these CVEs, improved accuracy may
require cluster-specific extension of the observation window (e.g., to 30 days) or the in-
clusion of external contextual features such as vulnerability metadata.

On the other hand, cluster-wise quantile regression, particularly at the 95th percentile,
improves the model’s ability to account for upper-bound risk, offering more conservative
predictions when early signals are ambiguous. This is especially valuable in triage con-
texts, where systematic under-prediction is more harmful than cautious overestimation.

For smaller trend groups, however, cluster-wise modelling shows diminishing returns.
In such cases, the global model retains better generalisability, benefiting from shared
feature variance across the dataset. While cluster membership may still serve as a valuable
interpretive lens, training independent regressors per cluster introduces risk of overfitting,
particularly in settings with limited data availability.

8.2 Limitations

Several limitations constrain the scope and generalisability of this study:

Coverage Bias. The dataset is restricted to CVEs with publicly available PoCs on
GitHub—a small and non-random subset of the total CVE population. This introduces
selection bias toward vulnerabilities that attract research or community interest. Many
real-world exploited CVEs lack a public PoC altogether, or circulate privately in closed
groups and underground forums.

API Constraints. Due to GitHub API limitations, watcher counts could not be re-
liably retrieved, and were therefore excluded from the user interaction dataset. While
stars and forks are generally stronger indicators of active interest, the absence of watcher
data slightly reduces feature dimensionality and may obscure weaker signals of passive
engagement.

Activation Threshold Sensitivity. The operational definition of “activation” is based
on a fixed user interaction threshold (e.g., k = 3 or 5). Varying this threshold alters the
assigned activation date and the resulting CVE cohort, potentially affecting both model
training and evaluation outcomes. Although & = 3 and 5 were selected empirically to
balance early signal against noise, this design choice introduces latent sensitivity into the
modelling pipeline.

One-to-One PoC-CVE Mapping. To preserve interpretability, the dataset excludes
multi-CVE repositories from prediction tasks. This design choice avoids conflated activa-
tion timelines and ambiguous mappings, but also omits attacker-relevant artefacts such
as exploit frameworks and vulnerability chains—both of which are common in real-world
exploitation workflows and could impact the model’s relevance in practice.
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External Validity and Temporal Scope. This study focuses on GitHub-hosted PoCs
published between 2018 and early 2025. Shifts in disclosure practices, platform usage,
or attacker behaviour could reduce the generalisability of the findings. For operational
deployment, models would require ongoing retraining to remain effective under evolving
ecosystem conditions.

Temporal Split and Variance. While the model adopts a time-aware train—test split
to preserve causal ordering and reflect deployment conditions, future work could incorpo-
rate multiple temporal splits or cross-validation within constrained windows. This would
reduce sensitivity to test-set artefacts and improve generalisability across time.

Metadata Noise and Platform Manipulation. Repository creation timestamps
(repo_created_at) do not reliably indicate the true GHP publication date. Some repos-
itories may accumulate engagement for unrelated purposes before being repurposed as
PoC hosts, introducing temporal ambiguity. To mitigate this, we filter out repositories
whose creation date precedes the associated CVE’s publication by more than 270 days
and anchor activation to the first observed user interaction. However, this approach does
not fully resolve timing uncertainties. Additionally, platform-level manipulation, such as
the emergence of fake-star campaigns in 2024 (|[He et al., [2024]), further complicates en-
gagement signals. While these campaigns primarily targeted phishing or malware repos-
itories, not legitimate PoCs, their presence during the 2024 evaluation period introduces
potential noise in the test set and may confound time-sensitive popularity modelling.
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Chapter 9

Conclusion and Future Work

In this study, we explored an alternative approach to vulnerability triage that bypasses
centralised scoring systems like NVD, in favour of real-time, decentralised signals. GitHub
PoC activity reflects behavioural engagement from a diverse set of actors: researchers,
defenders, opportunistic observers, and potential attackers. These signals capture early
interest, collaborative response, and the construction of exploit pathways, all emerging
independently of formal metadata pipelines. As such, they offer an actor-diverse and time-
coded proxy for assessing vulnerability risk in its earliest stages. This thesis demonstrates
that early GHP attention is not a downstream echo of CVSS, but a stand-alone indicator,
capable of forecasting risk trajectories even before structured metadata becomes available.

Specifically, using a time-aligned GHP user interaction dataset, we defined a fore-
casting framework that models early GHP attention as a temporal prediction task, and
uncover behavioural trend archetypes through unsupervised clustering of early engage-
ment trajectories. We then evaluate both global and cluster-specific models across these
trend types, identifying cases where early signals are learnable, and where extended input
windows or enhanced regressions are required to overcome model limitations. Finally, we
assess the model’s ability to surface high-risk CVEs in real-world scenarios, showing the
alignment between early GHP-driven predictions and confirmed exploitation signals such
as KEV inclusion, Metasploit modules, and ransomware records.

Together, these results demonstrate the viability of GHP activity as a forecastable
early signal of vulnerability risk, and highlight the importance of temporal modelling and
decentralised signal sources in building more responsive triage systems.

One approach for future extensions is contextual enrichment. A promising direction
lies in extracting further coarse-grained signals from GitHub repository metadata, such
as declared programming languages, topic tags, or README content, to approximate
vulnerability type or technological domain. These features can be observed in real-time
and align with the decentralised, behaviour-first ethos of this work.

Structured fields such as CPE (Common Platform Enumeration) and CWE (Common
Weakness Enumeration) may also offer auxiliary value, particularly for cold-start CVEs
or delayed-activation cases. However, to preserve the model’s temporal integrity, such
features should be included only if they are available at or before the end of the GHP
activation observation window. This constraint would ensure compatibility with early-
stage triage, where enrichment delays are common. In all cases, these contextual features
should be treated as optional complements, not prerequisites.

Another possible extension of this work is to explore sequence-to-sequence architec-
tures, such as LSTMs or transformer-based models, to better capture temporal depen-
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dencies and fine-grained progression in GHP engagement trends. Given the structured,
timestamped nature of GHP interaction data, these models may uncover latent dynamics
that are less accessible to tree-based regressors. However, the relatively modest dataset
size and strong skew in interaction patterns pose challenges for effective training. Simple
oversampling is unlikely to address this imbalance. As a more promising avenue, future
work could explore generative approaches, for instance, using GANs to simulate realistic
GHP interaction trajectories. These synthetic series could serve both as data augmenta-
tion and as a tool for stress-testing model generalisability under rare or extreme attention
scenarios.
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Appendix

List of Abbreviations

Abbreviation Definition

CVE
PoC
GHP
IQR
TH3
THbH
MAE
R2
UMAP
SHAP
CVSS
EPSS
NVD
KEV
EDB
GAN

Common Vulnerabilities and Exposures

Proof of Concept

GitHub-hosted PoC (repository linked to a CVE)
Interquartile Range

Activation threshold = 3 interactions

Activation threshold = 5 interactions

Mean Absolute Error

Coefficient of Determination

Uniform Manifold Approximation and Projection
SHapley Additive exPlanations

Common Vulnerability Scoring System

Exploit Prediction Scoring System

National Vulnerability Database

Known Exploited Vulnerability

ExploitDB

Generative Adversarial Network
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Hyperparameter Tuning Configuration

Table 1: Curated hyperparameter configurations used in the lightweight tuning sweep (21 total).

Group Max Depth  Learning Rate  Estimators Subsample / Colsample Reg. (a, A)
Depth-Rate 3 0.10 300 1.0 /1.0 0.0, 1.0

6 0.10 300 1.0 /1.0 0.0, 1.0

9 0.10 300 1.0/ 1.0 0.0, 1.0

6 0.05 500 1.0 /1.0 0.0, 1.0

6 0.10 1000 1.0/ 1.0 0.0, 1.0

6 0.01 1000 1.0 /1.0 0.0, 1.0

3 0.05 500 1.0/ 1.0 0.0, 1.0
Regularisation 6 0.10 300 1.0 /1.0 0.0, 1.0

6 0.10 300 1.0/ 1.0 0.1, 1.5

6 0.10 300 1.0/ 1.0 0.5, 2.0
Subsampling 6 0.10 300 1.0 /1.0 0.0, 1.0

6 0.10 300 0.8 /0.8 0.0, 1.0

6 0.10 300 0.7 /0.7 0.0, 1.0
Extremes 2 0.03 800 1.0/ 1.0 0.0, 1.0

4 0.05 500 1.0 /1.0 10.0, 10.0

4 0.05 500 0.5/ 0.5 0.0, 1.0
Gap Fillers 9 0.01 1000 1.0 /1.0 0.0, 1.0

2 0.10 300 1.0/ 1.0 0.0, 1.0

3 0.01 1500 1.0/ 1.0 0.0, 1.0

6 0.03 1000 1.0/ 1.0 10.0, 10.0

4 0.03 500 0.6 /0.6 5.0, 5.0

Hyperparameter Tuning Results (Train Set)

Table 2: Full train-set evaluation results for 21 hyperparameter configurations (5—90 input—output
window, activation threshold = 5). All models trained on CVEs disclosed Jan 2018-Sep 2023; validated

on Oct 2023-Mar 2024 (n=182).

Model R?*(Log) R?(Abs) Log MAE MAE RMSE Skew Notes
cfg_md3_1r0.1_ne300 0.897 0.871 0.398 18.67 51.47 -1.45  depth=3, Ir=0.1, ne=300
cfg_md6_1r0.1_ne300 0.867 0.884 0.432 19.14 48.79  -0.48  depth=6, Ir=0.1, ne=300
cfg_md9_1r0.1_ne300 0.863 0.875 0.442 20.20 50.54  -0.29  depth=9, Ir=0.1, ne=300
cfg-md6_1r0.05_ne500 0.870 0.865 0.433 20.27 52.58 -0.58 depth=6, Ir=0.05, ne=500
cfg-md6_1r0.1-nel1000 0.857 0.883 0.448 19.66 49.03  -0.26 default baseline
cfg_-md6_1r0.01_nel000 0.890 0.876 0.411 18.95 50.40 -1.15 conservative learner
cfg_-md3_1r0.05_ne500 0.900 0.867 0.395 19.13 52.24 —1.56 medium depth
cfg_md6_1r0.1_ne300_ra0.0_rl1.0 0.867 0.884 0.432 19.14 48.79  -0.48 no reg
cfg_-md6_1r0.1_ne300_ra0.1rl1.5 0.870 0.873 0.434 19.51 50.90 —0.55 light reg
cfg_md6_1r0.1_ne300_ra0.5_r12.0 0.875 0.878 0.424 19.46 49.89 -0.69 stronger reg
cfg_md6_1r0.1_ne300_ss1.0_cs1.0 0.871 0.878 0.431 20.05 49.94 —0.46 no subsampling
cfg_md6_1r0.1_ne300_ss0.8_cs0.8 0.867 0.884 0.432 19.14 48.79 -0.48 subsample 0.8
cfg_md6_1r0.1_ne300_ss0.7_cs0.7 0.867 0.850 0.435 20.43 55.37 —0.49 subsample 0.7
cfg_md2_1r0.03_ne800 0.908 0.857 0.378 19.28 54.18 -1.81 shallow, slow learner
cfg_md4_1r0.05_ne500_ral0_rl10 0.909 0.866 0.375 18.74 52.37 —2.01 heavy reg
cfg_md4_1r0.05_ne500_ss0.5_cs0.5 0.891 0.889 0.409 18.50 47.76 -1.20 subsample 0.5
cfg_-md9_1r0.01_nel000 0.872 0.873 0.430 19.85 51.06  —0.51 deep, slow learner
cfg-md2_1r0.1-ne300 0.905 0.866 0.384 18.96 52.44  -1.72 shallow, aggressive
cfg_-md3_1r0.01_nel500 0.907 0.876 0.381 18.39 50.38  -1.72 patience config
cfg_-md6_1r0.03_.ne1000-ral0-rl110 0.908 0.873 0.377 18.66 50.99 -1.98 reg + deeper learner
cfg_md4_1r0.03_ne500_ss0.6 _ra5_rl5 0.906 0.887 0.382 18.08 48.15 -1.94 reg + subsample combo
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Cluster-Wise Evaluation Metrics Heatmap
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Metrics

Figure 1: Heatmap of cluster-wise evaluation metrics across four I/O configurations (5—60, 5—90, 7—30,
and 7—90).

Cluster 0 Extended Shape Features Ablation Analysis

(included in ablation try 2)
(included in ablation try 2)



30-Day Features

post_peak_flat_days
rolling std_15_30
burst_span_days
tail_growth_15_30
tail_peak_day
peak_drop_ratio

activation_shape_code

tail_delta_ratio

Ablation Results

(included in ablation try 2)
(included in ablation try 2)
(included in ablation try 2)
(included in ablation try 2)

Table 3: Ablation 1 results for Cluster 0 local model

Input Days Output Days Samples Log R?2 R? (Abs) Log MAE Residual Skew MAE RMSE
7 30 188 0.363 0.059 0.214 -3.72 0.87 2.46
14 30 188 0.567 0.171 0.146 -4.59 0.66 2.31
7 60 188 0.326 0.097 0.300 -2.82 1.25 2.95
14 60 188 0.492 0.307 0.244 -3.10 1.03 2.58
30 60 188 0.839 0.902 0.134 -2.26 0.52 0.97
7 90 188 0.306 0.083 0.345 -2.47 1.55 3.55
14 90 188 0.454 0.385 0.299 -2.47 1.29 2.91
30 90 188 0.680 0.632 0.228 -1.62 1.08 2.25

Table 4: Ablation 2 results for Cluster 0 local model

Input Days Output Days Samples Log R2 R? (Abs) Log MAE Residual Skew MAE RMSE
7 30 188 0.363 0.059 0.214 -3.72 0.87 2.46
14 30 188 0.576 0.331 0.144 -4.79 0.60 2.08
7 60 188 0.326 0.097 0.300 -2.82 1.25 2.95
14 60 188 0.486 0.255 0.246 -3.03 1.07 2.68
30 60 188 0.838 0.898 0.134 -2.19 0.53 0.99
7 90 188 0.306 0.083 0.345 -2.47 1.55 3.55
14 90 188 0.456 0.369 0.299 -2.48 1.31 2.94
30 90 188 0.696 0.627 0.223 -1.90 1.06 2.27
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