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Abstract

For many users, “cookies”—small data files follow them from site to site, have come to sym-
bolise online tracking. However, cookies represent only the most visible trace of tracking
activities. Modern tracking techniques have developed rapidly beyond visible traces, relying
on subtle server signals and deeply embedded resources that often evade defences. As a
result, traditional methods such as detecting cookies or matching domains using blocklists
alone is insulfficient.

In this study, we revisit two emerging detection strategies: one based on protocol-level
HTTP response headers, the other on static page— resource inclusion structures, and eval-
uate their effectiveness under static data collection constraints. We construct four feature
spaces including two baselines and two combinations. These features are used to train and
evaluate ten supervised classifiers under leak-free grouped cross-validation at upper/lower
bound.

Results show that, under the upper bound (in-distribution) split, structure-based graph fea-
tures perform best (OOF F1 ~ 0.925, P ~ 0.98, R =~ 0.88). Enriching protocol features with
header values and simple structural cues narrows the gap: the value space reaches F1
~ 0.915 (P =~ 0.98, R =~ 0.86) and the semantic space F1 ~ 0.900 (P ~ 0.923, R ~ 0.847),
whereas the header presence-only baseline is weakest (F1 ~ 0.565, P ~ 0.40, R =~ 0.98).
In the lower bound split that withholds entire eTLD+1 hosts (open-world proxy), all spaces
degrade mainly through a precision drop; graph features remain strongest (F1 =~ 0.689,
P ~0.544, R = 0.941), the value and semantic spaces trail, and presence-only stays high-
recall/low-precision. These patterns indicate complementary strengths: enriched protocol-
layer information achieves precise recognition in familiar settings, while structural signals
recover more trackers on unseen links but require additional precision control. Future work
will integrate dynamic runtime signals, broaden dataset diversity and temporal coverage,
reduce labelling noise, and explore hybrid two-threshold, human review involved designs.
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1 Introduction

It has become a common experience that cookie banners pop up when we click on a
new website. These are not always the “cookies” we consent to, but traces of our online
activities—activities that once remained private or shared with a few, but now leave digital
trails revealing our interests and intentions [2]. Although cookies have become a visible rep-
resentation in the context of online tracking, they are only one among various user data col-
lecting methods. Other prevalent tracking mechanisms rely on embedded resource requests
(e.g., images, scripts, or iframes) or identification techniques such as fingerprinting [14}25].
These mechanisms are designed to collect device attributes, inject tracking pixels (typi-
cally small, invisible 1x1 images used to signal user presence or behaviour to external
servers [28,,[36]), or initiate cross-site requests involving background data exchanges with
external domains [35].

1.1 Problem Statement

Empirical measurements have demonstrated that even a single webpage visit involves nu-
merous third-party entities. For instance, Libert (2015) found that data-leaking sites contact
an average of 9.47 distinct external domains [28]; Englehardt and Narayanan (2016) re-
ported that a typical page includes 17.7 third-party resource requests [16]. Figure 1| shows
that, a single website visit may expose users to a wide range of external entities includ-
ing advertising networks. These figures are based on the Firefox Lightbeam extension,
which visualises the relationships between visited first-party sites and third-party sites. The
tracking techniques behind these hidden connections are intentionally engineered to evade
detection, resist blocking strategies, and maintain persistent operation across platforms [1].
Consequently, the widespread deployment of tracking techniques introduces significant pri-
vacy concerns, while efforts to assess and quantify web tracking face substantial technical
and methodological difficulties [16].

(a) daraz.pk as a visited site (b) px.dynamicyield.com as a third-party
node

Figure 1: Firefox Lightbeam visualisations showing connections between visited websites (cir-
cles) and third-party sites (triangles) during typical browsing. Multiple types of first-party sites
can serve as hubs, connecting to numerous third parties. Image source: Mozilla Lightbeam

In response to public concerns and increased regulations such as GDPR which carried out
in 2018, major browsers have tightened third-party cookie practices. Instead of cookies,
they are promoting alternatives that claim to enhance privacy protection [38]. Google has
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carried out this transition through new frameworks such as the Privacy Sandbox, which re-
places individual-level tracking with on-device processing schemes. Other used frameworks
are interest-based categorisation (Topics API) and decentralised model training(Federated
Learning) [15,(19}/30]. Figure[2]shows the architecture of the Privacy Sandbox. However, this
transition reflects not a commitment to privacy, but a strategic effort to maintain dominance
in the ad tech ecosystem [15], and also leaves more potential space for first-party tracking.
In fact, tracking technologies are not eliminating but evolving beyond cookies. They are be-
coming more technically sophisticated and less detectable to average users, regulators and
privacy tools.

e— —_—
Auction Bidding

Figure 2: Architecture of the Privacy Sandbox Bidding & Auction (B&A) services for web
advertising. The framework separates client-side (browser) and server-side operations. Image
source: Google Privacy Sandbox Documentation
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1.2 Research Objectives and Questions

Given this context, detecting trackers based solely on cookie presence or static blocklists is
insufficient. There is a growing need to analyse a broader range of signals from resources
embedded in web pages. Furthermore, the task is shifting from merely recognising known
tracking entities to identifying previously unseen links that may serve tracking functions. We
focusing on the page — resource references and all links embedded in those resources.
Therefore, we put forward the following research questions:

RQ: Given an external link, how to determine whether it is a tracker?

To guide our study, we surveyed the literature on web tracking and categorised it into two
broad classes: rule-based defences and machine learning (ML)-based detection. Following
Mayer and Mitchell (2012), we treat opt-out mechanisms, static blocklists, and Do-Not-Track
as representative rule-based approaches; they rely on manual preference review and vol-
untary compliance by service providers, and consequently suffer from structural limitations
in scalability and coverage [29]. By contrast, ML-based detection seeks to address these
gaps through features that transfer across sites. Among recent works, we found two di-
rections: protocol-based approaches that exploit discriminative signals in HTTP response
headers conducted by Rieder et al. (2025) [33], and graph-based models that capture
webpage-resource inclusion topology and related context by Igbal et al. (2020) [23].

1.3 Approach and Contributions

Building on ML-based approaches, we put forward three sub-questions to guide our study:



1. Sub-Question 1 (Performance): How well do protocol-based and graph-based fea-
tures detect trackers in static crawls?

2. Sub-Question 2 (Generalisation): To what extent do these models transfer to un-
seen links, compared with close-world settings?

3. Sub-Question 3 (Complementarity): Do protocol- and graph-level signals provide
distinct or complementary evidence, and does their combination improve detection?

By addressing these questions, this study makes the three contributions:

1. We systematically evaluate protocol-based (HTTP response headers) and structure-
based (inclusion graphs) detection across two grouped cross-validation schemes that
approximate upper-bound and lower-bound deployments.

2. We design and assess heuristic value- and semantic-level encodings beyond presence-
only, and combined with simple structural graph signals for the potential of tracker
detection.

3. We quantify the generalisation gap to unseen links which challenges for open-world
deployment.

1.4 Thesis Outline

The rest of the thesis is organised as follow: Chapter[2] provides an overview of existing def-
initions and related work on web tracking; Chapter 3| describes background concepts align
with practice implementation; Chapter [4] describes our data collection and labelling proce-
dures; Chapter [5] explains our detection methodology; Chapter [6] covers our experimental
setup and presents the results; Chapter7|discusses broader implications of our findings and
acknowledges the study’s limitations; Chapter [8|concludes the thesis.



2 Literature Review

The definition of trackers has been evolving, we reviewed prior research on web track-
ing in this chapter, from the historical evolution of tracker definitions and techniques to
the construction of ground truth labels. From a broader perspective, a “tracker” denotes
mechanisms that enable identification or profiling of user behaviour across digital contexts,
often by aggregating data and drawing inferences about individuals [2]. On the web, such
mechanisms range from traditional identifiers (e.g., cookies, pixels) to advanced analytic
techniques (e.g., fingerprinting), which together allow cross-site linkage and profiling [28].
In this study, we do not focus on defining trackers. Instead, we summarise previous works
based on the papers we have reviewed to guide our understanding of the ground truth.

2.1 Evolution of Trackers

Krishnamurthy and Wills (2006) revealed that a few key third parties could track users
across many unrelated sites. They introduced the “privacy footprint” to quantify aggrega-
tor domains [25]. Roesner et al. (2012) developed a behavioural taxonomy for web trackers
which distinguishes between single-site and cross-site profilling [35]. Lerner et al. (2016)
applied and expanded this framework in a historical study and observed that cross-site
tracking had become increasingly prevalent and complex [26]. Su et al. studied the evo-
lution of tracking in online educational websites and the impact of GDPR and CoVID-19
on that [37]. Englehardt and Narayanan’s (2016) measurement results further illustrates
the complexity of tracking, showing that 45 of the top 50 third-party trackers engaged in
extensive cookie syncing (trackers exchanging identifiers to unify user tracking across web-
sited) [16]. Together, these works underscore how the evolution of third-party tracking has
significantly enhanced the ability to profile users across diverse websites.

While traditional web tracking relies on stateful identifiers such as cookies, researchers
soon realised that browsers can be uniquely identified by their observable configuration—
enabling stateless user tracking [14]. Eckersley (2010) provided the first large-scale em-
pirical demonstration of browser fingerprinting, showing that this approach can uniquely
identify users even in the absence of cookies. Later studies revealed that, by the mid-
2010s, fingerprinting had become widespread, resilient to blocking, and deeply integrated
into commercial tracking infrastructures [1,/31]. Notably, Nikiforakis et al. (2013) and Acar
et al. (2014) showed how advanced fingerprinting methods—such as Flash, font probing,
canvas fingerprinting, and evercookies—were deployed at scale and could circumvent con-
ventional privacy tools.

More recently, the concept of tracking has further evolved beyond stateful and stateless
identifiers through ML-based approaches. For example, Igbal et al. (2020) introduced a
browser-instrumented graph approach, linking HTML structure, JavaScript (JS) behaviour,
and network flows to reveal complex tracking relationships [23]. Rieder et al. (2025) shifted
focus on HTTP response headers, treating any host matching blocklists such as EasyList as
a tracker and emphasising cross-site identification based on third-party request/response
patterns [33]. At the same time, researchers such as Fouad et al. (2020) and Bahrami
et al. (2022) have developed more detailed behavioural classifications, categorising types
such as basic tracking, cookie syncing, analytics, and device fingerprinting, whether or not



explicit identifiers are present [5,/18].

2.2 Ground Truth and Tracker List Usage

A reliable ground truth is fundamental for ML-based detection. In prior work, ground truth is
most often derived from publicly maintained filter/tracker lists as supervision. Four influential
lists are commonly referenced:

» EasyList(EL): A filter list for hiding advertising elements; widely used in academic
studies and real-world ad blockers [17,/28]. EL primarily targets page elements/URLs
for visual ad removal.

» EasyPrivacy (EP): An extension of EL focusing on privacy-intrusive requests, often
used to label tracking-related data flows in rule-based and measurement studies [17].

» Disconnect: A functionally annotated, frequently updated tracker list that explicitly tar-
gets tracker domains and services (e.g., advertising, analytics); widely used for re-
search and benchmarking [28,35].

* Ghostery: A tracker database with ownership and behaviour annotations; often used
to benchmark privacy risks and evaluate blocking solutions [33].

These lists have been used in different roles in prior work: (1) supervised ground truth for
training/evaluating ML models and (2) performance baselines to systematically assess how
well tools identify trackers [13,/18,28]. However, supervision based on these lists have limi-
tations since they face manual curation delays and incomplete coverage and are vulnerable
to evasion through domain rotation or content obfuscation [18,,23,/32], which causes noise
in labelling.

2.3 Detecting Trackers

We further reviewed the literature with categorising them into two rule-based methods and
ML-based models.

2.3.1 Rule-based Methods

Rule-based detection remains the key method of both web and mobile tracking defense
and measurement. On the web, browser extensions and built-in features—such as Ad-
block Plus, Ghostery, Privacy Badger, Firefox Tracking Protection, and Safari ITP—use
static blocklists and URL pattern matching to block or label tracking and advertising re-
quests [16},23,/25,128,,33]. In the mobile context, static rules and SDK or analytics inclusion
lists are used to identify tracking libraries, though these approaches are less standardised
than web-based blocklists [34].

Policy- and signal-based tools such as Do Not Track, opt-out cookies, and AdChoices were
created to give users more control, but in practice, most tracking companies disregard
them [9,/28],29]. Rule-based blocking can substantially reduce known tracker requests and
offers clear logic to users, but it depends on ongoing manual curation, is slow to respond
to new threats, and is easily circumvented through domain changes, code obfuscation, and
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stateless tracking techniques [1,234[39]. On mobile, privacy protection increasingly depends
on app store policies and Software Development Kit (SDK) default settings rather than di-
rect network-level blocking. However, developer compliance and user understanding are
often limited [13,34]. Overall, while rule-based methods remain widely used, they are not
sufficient on their own. Recent studies advocate for more adaptive detection methods that
can keep pace with new and evolving tracking techniques.

2.3.2 ML-based Models and More

Driven by the limitations of rule-based detection, researchers have increasingly adopted
machine learning and automated methods for web and mobile tracker detection. Early
works applied classifiers such as SVM, decision trees, and Naive Bayes to features from
HTTP headers, cookies, and sessions, achieving promising but often dataset specific re-
sults on selected web traffic samples [6}7,21,27,33].

More recent advances used supervised learning (e.g., Random Forests, Gradient Boost-
ing) with richer features including detailed protocol, cookie, response header, and statistical
traffic features to enhance detection accuracy and robustness [18,20,23,32,33]. For ex-
ample, TrackAdvisor (Li et al. 2015) demonstrated that SVM-based cookie analysis could
achieve nearly perfect precision and recall (99.4%/100%) on a manually labelled Alexa Top
10K subset [27].

While supervised learning on various features remains a key aspect of tracker detection,
there are also a broadening range of methodological approaches in recent years. Graph
embedding, label propagation, community detection, and hybrid clustering are used for fin-
gerprinting, APl sequence, and tracking pattern mining [5}/10}24]. Mobile tracking remains
less studied by ML, but initial work applies clustering, signature, and LLM-based policy
analysis to identify SDK-driven privacy leaks [34].

Despite high accuracy and resilience to adversarial change, most ML models still depend
on blocklist labelled ground truth for training and evaluation, and performance may suffer on
truly novel tracking behaviour [18,123,/32,33]. The optimal practice is increasingly seen as a
hybrid strategy, combining static rules, ML detection, and ongoing behavioural analysis to
provide comprehensive and adaptive defense.
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3 Preliminaries

In this chapter, we provide fundamental background on the structure of webpages and the
granularity choices relevant to our study. These concepts align with our practical implemen-
tation.

3.1 Web Tracking Basics

Webpages comprises multiple resources, including HTML markup, cascading style sheets
(CSS), JS programs, media files, and remotely hosted third-party components. The way in
which these resources are included can reveal tracking behaviour. Therefore, it is important
to understand how resources are organised and referenced in a modern browser context
for tracking detection. We summarise the key compositions below:

* The Document Object Model (DOM): The DOM is the tree representation of a page,
where each node represents an object instance that can be queried and modified
through APls. Static HTML parsing reveals a subset of embedded resources present
in the HTML source at crawl time and their immediate context in the DOM hierarchy.

* Embedded resources: The <script> tag embeds inline or external JS. Remote
scripts originating from third-party hosts are a common medium for analytics and ad-
vertising code [3]]. We download and store such scripts when encountered, and extract
any absolute URLs (fully qualified URL) present in their source. Images, stylesheets
and fonts from the visual layer of a web page, but can also be used for tracking. An in-
clusion is considered cross-site when the page and the embedded link have different
registrable domains (eTLD+1).

 Effective top-level domain (eTLD): Browsers conventionally define a “site” by using
the Public Suffix List (PSL) to find the longest effective top-level domain (eTLD) of a
hostname, and then combining the part before it (eTLD+1) [8,/11].

3.2 Research Granularity

In the web tracking context, the unit of analysis can be defined at several levels. The choice
determines what is labelled, what is treated as context, and how generalisation is assessed.
We define all resource referenced in a webpage as a page — resource connection. And we
extracted all the links embedded in these resources. For each link, we record the hostname
component, and the corresponding eTLD+-1 for grouping purposes in evaluation splits.

3.2.1 Labelling Strategy

We construct a merged tracker list from two public maintained sources: Disconnect and
Ghostery, as introduced in chapter From each tracker source we normalise to lower-
case, trim whitespace, de-duplicate within source, and take the union across sources. Let
B = Disconnect U Ghostery denote the merged set of trackers. For each external link, we
extract its host as the URLSs netloc and mark a match by:

_ ) 1 if hostname € B,
YZ 10 otherwise.
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Labelling is therefore global and static at the hostname level. Any occurrence of a host-
name in B is treated as a tracker, regardless of page context. By contrast, context-level
labelling would assign labels per inclusion instance depending on context and blocker be-
haviour [16}22]. While this global host-level labelling ensures consistency, it does not cap-
ture variations in tracker behaviour that depend on page context, resource path, or runtime
execution. We revisit these limitations in Section 7.3l

3.2.2 Contextual Information

The unit of analysis is a (page, external link) pair, where the page refers to the full URL
of the crawled document and the external link is the hosthame component parsed from
an HTML attribute. For feature computation, we derive its eTLD+1 to aggregate statistics
across subdomains. Thus, through the practical pineline we categorie:

1. Signals available at crawl time:

* Page level: HTTP status code of the top-level page load.
» Reference resource level: the stored external link.

2. Signals derived at analysis time:

* URL-level cues: the file-path extension or public suffix of the hostname.

» Domain-level aggregates: counts of how widely each registrable domain is ref-
erenced across pages.

« Site relation: first- vs. third-party, based on whether the page URL and the exter-
nal reference share the same eTLD+1.

Table[1]shows a few examples illustrating different granularities: the full URL from the crawl-
ing; the embedded external link, its extract hostname and registrable domain.

Raw URL external link hostname eTLD+1

https://www.example.com/ cdn.example.net cdn.example.net example.net
https://blog.example.com/ https://pixel.example.org/x.gif pixel.example.org example.org

Table 1: Example of Different Granularity
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4 Data Collection

This chapter describes the static web crawling pipeline and the overview of the resulting
database structure. We also conducted a set of preliminary data analysis for guiding further
feature engineering.

4.1 Opverall Crawling Pipeline

The initial seed list was acquired from the publicly available platform Common Crawl
Index using filters .n1, HTTP 200, HTML and stored in SQLite by another member of
the research team—Daniel Gelencser. The crawl was completed in April 2025, resulting in
approximately 1.85 million raw URLs, with 990,451 . n1 hosts targeted for analysis. Among
these, 989,504 pages were successfully retrieved (=~ 99.9%). The crawling architecture is
shown in Figure[3]

-—
5
Website Seed Collector

3] scripts
Internet API| 5 | Write to uris HTTR dionds —
T 8 - GET request w2 Static DOM @ resources -
Y Parse Matcher
J’ _ A arser
: 2 links

@ matched id

Figure 3: Architecture of Our Data Collection

For each page, we record:
1. HTTP response headers of the page request.

2. External references from static HTML, extracted from <a href>, <script src>,
<img src>,and <iframe src> elements.

3. Embedded resources and their outbound links from retrieved JS and other resource
bodies (resources_test and scripts_test tables, and their associated tables).

A hostname level matching step is then applied against a ground truth tracker list (see
Chapter(3.2.1). Each matched host is assigned a trackers_id and labelled as a tracker
in all occurrences.

4.2 Database Overview

In our static crawl, we observed that approximately 97.1% of all extracted references were
captured by direct HTML parsing (the urls_test_links_test table). This result is ex-
pected given our design choices: we do not execute JS, we only fetch and statically scan
same site . js files. Consequently, links injected at runtime (e.g., through DOM APIs),
protocol-relative URLs, and third-party script payloads are out of scope. We therefore cen-
tre our main experiments on this table of directly embedded links, which dominate un-
der static measurement and are lightweight reproducible. Header-based features for these
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Figure 4: Multi-level Structure of the Static Collection Database

pairs are drawn from headers_test, which contains 45,002 total rows of (urls_id,
header_name, header_value). All records can be linked back to the source page
through urls_id. The relation within stored data is illustrated in Figure [4]

4.3 Preliminary Data Analysis

We performed a preliminary analysis to understand label balance, tracker-frequency distri-
bution, and HTTP header patterns.

4.3.1 Label Distribution and Tracker Domain Frequency

The final distribution of the labelled dataset is listed as follows [2]

Label Records (%)

Tracker 8,457 (38.8%)
Non-tracker 13,336 (61.2%)

Total 21,793 (100%)

Table 2: Label Distribution of the Final Dataset

Tracker prevalence exhibits a long-tail [16], which indicates a small number of high-frequency
domains account for the majority of tracker inclusions. As shown in Table [3, the top 10
tracker domains account for ~65.3% of all tracker-labelled samples.

Known Tracker Domain Count
gstatic.com 1530
parastorage.com 789
googleapis.com 762
facebook.com 565
googletagmanager.com 489
wWp.com 335
instagram.com 310
gmpg.org 267
google.com 262
linkedin.com 212

Table 3: Top 10 Tracker Domains and Their Frequencies

This observations guide us with following insights into practical design:

» Class imbalance handling: The long-tail distribution requires weighting or resam-
pling strategies to prevent bias towards the majority class.
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* Fair evaluation: To avoid overfitting from frequent domains appearing in both training
and validation sets, we consider grouping folds by eTLD + 1, ensuring that all subdo-
mains of a registrable domain appear in only one fold (e.g., www.tracker.comand
analytics.tracker.com share the same eTLD+ 1). This is further detailed in

Chapter[5.2l

* Feature popularity: For each registrable domain, we count the number of distinct
pages in which it appears, as an indicator of how common the domain is. To avoid
information leakage, this statistic is computed within each training fold only, and the
resulting values are applied to the corresponding validation fold.

4.3.2 HTTP Response Header Presence

Since our sample unit is a (page, external link) pair, each sample inherits the HTTP re-
sponse headers of its source page. For each header name, we create a binary presence
indicator and compare occurrence rates between tracker and non-tracker samples using a
chi-square test (x2, p<0.05).

Figure [5] shows headers with statistically significant between-class differences. Effect sizes
are small, we therefore treat them as weak, additive signals rather than hard rules. While
individual gaps are modest (typically ~0.4—1.5 percentage points), the differences are con-
sistent across multiple fields, indicating that headers can serve as complementary, low-cost
features for tracker detection This observation is consistent with findings in prior work. Ac-
cordingly, in later experiments we include enhanced header features to evaluate their further
potential.

Headers with Significant Distribution Difference

0285 Tracker
content-language* Wo.12% mmm  Non-tracker

X . 0.37%
content-security-policy™ w6 37%

t - 0.41%
A AN S o — 0.77%
0.46%
"
PG o 1.07%

e 0.70%
- *
st O e — 1.06%
. 0.96%
- X
e -V o 1.71%
3.45%
| _| *
XD oW e Dy o 2.42%
3.79%
- *
O N O ) 2./57%
" 4.78%
T 5.57%
5.05%

| i *
GO NN C O NG ] /. 04%
i k
O O o ¢.59%
S T ) #.73%

5.37%

5.58%

0.00 0.01 0.02 0.03 0.04 0.05
Occurrence Ratio

Figure 5: HTTP Response Headers with Significant Distribution Difference

4.4 Data Usage Statement

The initial list of Dutch websites was sampled from Common Crawl’s public index (CC-MAIN
series) and used strictly in accordance with Common Crawl’s Terms of Use. We then fetched
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only publicly accessible HTML over HTTP(S) with a standard user-agent; no authentication
or access controls were bypassed, and JavaScript was not executed. The primary dataset
used in this thesis comes from the CC-MAIN-2024-51 snapshot (with crawl identifiers
stored in the database). As Common Crawl is continuously updated, our corpus should be
viewed as a time-bounded snapshot; all findings are interpreted with respect to this crawl
window.

The data collection process, including the development and execution of the web crawler
scripts, was carried out by another member of the research team. The author of this thesis
conducted all subsequent data analysis, feature extraction, model training, and performance
evaluation based on the collected dataset.

To avoid reputational concerns, we do not name specific websites or companies in the

text. lllustrative examples use reserved placeholder domains (e.g., example.com), and
we report only aggregate statistics.
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S Methodology

In this chapter, we detail our pipeline for evaluating protocol-based, structure-based and
combination features for identifying web trackers on a statically collected dataset. The whole
pipeline is semi-automated which separated by data collection part and ML part. We report
all experiments under two mutually exclusive validation schemes: (1) page-group, repre-
senting an upper bound, and (2) link-group, representing a lower bound for strict general-
isation to unseen sites. We construct four distinct feature spaces and evaluate them with
a range of supervised classifiers. Performance is assessed using out-of-fold (OOF) pre-
dictions from grouped cross-validation with multiple metrics. Figure [g] illustrates the whole
pineline.

Page(HTML)
Data l

Collection ]
HTTP Response Headers, External Links

(Normalise external link — eTLD+1 (tldextract))

!

Features

Protocol-based Graph-based

Header Value + Graph Signals

Header Semantic + Graph Signals

LL_I

Model
Machine l
Learning

Tracker?

Figure 6: Semi-automated Tracker Detection Architecture

5.1 Problem Formulation

Let D = {(x;,y;)}Y_, denote the modelling dataset, where each instance corresponds to a
unique pair (p,h). Here, p is the unique page ID of a crawled page, and 4 is the hostname
of a referenced resource in the page’s HTML or embedded resources (¢). From ¢ we derive
its hostname & = host(¢) and its eTLD+1(¢); similarly, from p we derive eTLD+1(p). We
focus on cross-site inclusions, determined by whether the eTLD+-1 of 4 differs from that of p.

Each x; € R? is a feature vector derived from the page’s HTTP response headers or graph-
structural signals, and y; € {0, 1} indicates whether the referenced link is listed as a tracker
in the ground truth traker list. Therefore, our goal is to learn a classifier f: RY — {0, 1} that
minimises the loss:

R(f) :]lng(yi,f(xz')),

where x; can be sparse and high dimensional due to heterogeneous headers.
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5.2 Validation Schemes

In tracker detection, samples from the same registrable domain often share highly simi-
lar patterns such as particular HTTP header values, resource paths, or graph structures.
Random split may lead the model with high predictive ability due to information leakage.
Therefore we chose group split strategy. However, without strict separation, group split can
still lead to overly optimistic performance estimates. As shown in table |4}, even in different
pages, the embedded external links can share the same eTLD+-1.

URLID  Page URL External Link Normalised Link
201 https://www.example.com/ cdn.example.net example.net
201 https://www.example.com/ https://gtm.example.org/gtm.js? example.org
202 https://blog.example.com/ https://pixel.example.org/x.gif example.org

Table 4: Example of Data Inhert relationships

Due to the fact that some prior works point out such overlap can cause over positivity [4,12],
we design two mutually exclusive grouped cross-validation strategies for close-world and
open-world evaluation:

» Page-group (in-distribution): We use k-fold grouped cross-validation where folds are
defined by the unique page ID of the crawled page (no page is split across fold).
This allows the same eTLD+1 link from different pages appear in both training and
validation. We treat this as an upper bound that reflects in-distribution deployment.

* Link-group (open-world deployment): We use k-fold grouped cross-validation split by
the normalised external link This grouping strategy ensures no same eTLD+1 appears
in both training and validation, which represents model’s generalisation to unseen
links.

In both cases, all feature selection and aggregation steps are performed strictly within each
training fold. Although the page-group could achieve over positive performance, it is still
valid according to real-world tracking activities. Page-group evaluation approximates the
steady reality in which a detector runs within the same ecosystem and repeatedly encoun-
ters the same third-party links on different pages. In practice, advertising and analytics
services are reused site-wide; protocol signals (e.g., headers, caching, cookie policies) and
inclusion patterns are relatively stable across pages; and deployed detectors are continually
updated with data from the same environment. Evaluating on different pages that reference
the same links therefore measures in-distribution performance. The upper bound is relevant
for setting thresholds and estimating routinely precision/recall—complementary where the
link-group could test open-world discovery of unseen links.

5.3 Feature Space

With protocol-based (HTTP response header presence signal) and graph-based (page — ex-
ternal link inclusion topology) as baseline, we further designed two combination feature
spaces with protocol-based HTTP response header of enhanced encoding rules together
with simple structural signals. The four feature spaces are described as follows:
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* Protocol-based baseline: Let (p,e) denote an instance, where p is the unique page
ID of a crawled page and e is the registrable domain of a referenced third-party re-
source. From the HTTP response of p, let 7#(p) be the set of distinct header names.
Within each training fold, we retain only those header names whose frequency in the
fold is at least 7 times, denoted as .#eq. The binary feature vector x; € {0, 1}l is
defined by

)1 ifs;j € Fhreq is presentin H(p),
i 0 otherwise.

» Graph-based baseline: Inclusion relationships are modelled as a directed graph G =

(V,E). The graph construction and feature extraction are:

1. Node definition: u is the eTLD+-1 extracted from the page’s URL, treated as the
source node; destination node v is the eTLD+1 of the external link.

2. Edge definition: For each (p,h) pair with eTLD+1(p) = u and eTLD+1(h) = v,
we add a directed edge u — v to the graph. Only cross-site inclusions (« # v) are
considered; self-loops are removed.

3. Feature extraction: PageRank and betweenness centrality are computed on the
directed G, while triangle count and core number are computed on the undi-
rected projection G*". For every sample (u— v) we then join both source-
side metrics and destination-side metrics to the edge. Nodes unseen in the
training fold are imputed with zeros, and feature columns are aligned between
train/validation with missing columns filled by zero to avoid any information leak-
age.

» Header value with graph signals: Let #?(p) be the multiset of (header, value) pairs

from page p. Within training fold f, we select the top-N frequent pairs yp(;a ={(hj,v;) 1}’:1

using only training pages and build a binary vector

D(p) =1[(hvj) € 2(p)], x4 (p) e {0,131l

Validation is reindexed to yp(ﬂ with missing entries set to 0. For each link-level sam-
ple (u—v) where u = eTLD+1(page) and v = eTLD+1(external), we append graph
signals computed within fold f: (1) third-party indicator 7(u,v) = 1[u # v]; (2) file-
extension one-hots of the external URL, with the column set fixed by the training split;
(3) fold-local destination popularity

ref_by_pages) (v) = |{p’ € g4 . eTLD+1(external of p’) =v}|,

train -
joined to (u—v) and zero-imputed when unseen in validation.

* Header semantic with graph signals: From headers on page p, we derive page-
level semantic features using transforms fitted only on the training fold and then
broadcast to links: (1) token cues for a fixed vocabulary (e.g., gzip, nginx, cloudflare),
including per-header token count/density; (2) string statistics (max value length, digit
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presence, HTTP-date detection for date/last-modified/expires); (3) page-
level statistics: distinct header count and header-name entropy

header_entropy(p) = =Y qn(p)logaqs(p), qu(p) = #{(h7| ;)@G(pﬁ(P)};
h

(4) selected header co-occurrence indicators (e.g., [server A set-cookiel); (5)
per-header TF—IDF encoders and k-means clusters (with £ >2 and capped by unique
values), applied to validation via transform-only and reindexing with zeros. The same
graph signals as above—1(u,v), extension one-hots (training-defined column space),
and ref_by_pages'/)(v)—are appended to each (1 —v) sample.

5.4 Model Selection and Training

Model training follows a supervised learning framework on labelled data (X, y) to identify the
best classifier for tracker detection, evaluating the two validation schemes. Class imbalance
is addressed by assigning class weight by approximately 2.5-3 due to trackers being the
majority class in classification task. The weight for class j is computed as:

Nsamples

wW; = s
Nclasses X 1

where n; denotes the number of samples in class ;.

Ten classifiers are evaluated for each feature set: Random Forest (RF), Extra Trees (ET),
Gradient Boosting (GB), LightGBM (LGBM), HistGradientBoosting (HGB), AdaBoost, XG-
Boost (XGB), Decision Tree (DT), Logistic Regression (LR), and Gaussian Naive Bayes
(NB). Hyperparameters are fixed to reasonable values without extensive automated tuning.
Probability calibration is applied to ensure reliable probability outputs for threshold optimi-
sation.

5.5 Evaluation Metrics

Model performance is assessed on the validation folds using accuracy, F1-score, precision,
recall, ROC-AUC, average precision (AUPRC), negative log-loss, and Matthews correlation
coefficient (MCC). Given the imbalanced nature of the task, we prioritise F1-score as the
primary objective during model selection.

Binary decision thresholds are selected through precision—recall analysis. For recall > 0.7,
we select the threshold that maximises the F1-score. In practice, over-flagging non-tracker
links can be problematic. Excessive false positives may lead to the blocking of legitimate
third-party services (e.g., CDNs, fonts, analytics) and reduce user trust in the system’s ac-
curacy. However in our settings, false positives can go into human review. Operating at
higher recall (even with lower precision) is therefore intentional: it minimises missed track-
ers while the review stage filters out benign trackers.
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6 Experiments

In this chapter, we present the experimental setup and main results of our systematic evalu-
ation of tracker detection methods. Our experiments implemented under four feature spaces
of two baselines and two combinations across ten supervised classifiers and eight evalua-
tion metrics.

6.1 Feature Engineering

All features are extracted from the same labelled set of (page, external link) pairs. We
treat header presence-only and inclusion topology as the protocol-based and graph-based
baselines, respectively. The header value and semantic models are combinations with
simple structural signals. We give examples of each feature space with exact parameter
choice.

6.1.1 Protocol-based Baseline: Header Presence-only

We first construct a binary indicator matrix over HTTP response headers. Header names
are lowercased and trimmed. To reduce the sparsity of the feature matrix, we retain only
headers that appear at least 10 times in each training fold. Table (5] shows an example
encoding with header description (not encoded in the experiment).

Feature Description Value

Basic identifiers

urls_id 0

page-url https://example.com
external_link http://tracker.com/script. js
True_Label 0

Protocol-level presence-only features

accept.ranges Accept-Ranges header present 0

cache_control Cache—-Control header present 0

server Server header present 0

content_length Content-Length present 0

Table 5: Example presence-only encoding

6.1.2 Graph-based Baseline: Inclusion Topology

Node metrics PageRank, in/out-degree, triangles, core, betweenness are computed on the
train subgraph. For each sample, we join metrics twice. Table []

urls.iid page_etldl (src)  link_etld1 (dst) pr outdeg pr.dst indeg.dst

201  example.com example.net 0.21 1 0.58 2
202 example.net example.org 0.58 0 0.21 0
203  new.example.xyz  example.org 0.00 0 0.21 0

Table 6: Example inclusion topology encoding
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6.1.3 Header Value combined Graph Signals

The first combination we used heuristic lexical one-hot, header value and simple structural
counts together with header presence. Within each training fold, we keep header pres-
ence and select the top-100 most frequent (header, value) pairs. We then append three
lightweight features: (1) a lexical type cue: file-extension one-hot features (ext _x) inferred
from the referenced URL (e.g., . js, .gif); and two structural cues: (2) a third_party
indicator at the registrable-domain level; and (3) ref _by_pages, the count of distinct train-
ing pages linking to the same external eTLD+1.

Feature Description Value

Basic identifiers

urls_id

page_url https://example.nl
external_link http://tracker.com/script.Jjs
True_Label 1

fold 1

Example value encoding features with hit count 7

server_nginx Response header reports Nginx server 1
content_encoding.gzip Response is compressed with GZIP 1
content_type_application/javascript  MIME type indicates JavaScript file 1

is.third.party Cross-site inclusion 1

ext_js URL ends with “.js” 1

ref_by_pages Linked from 45 distinct pages in training set 45
cache_control_no_store Cache-Control forbids storing response 1

x_powered_by_php Header reveals PHP backend 1

Table 7: Example combination of Enriched Header Value Encoding with Graph Structure

6.1.4 Header Semantic combined Graph Signals

We derive interpretable semantic indicators from header values: presence flags, token
matches (e.g., vendor/CDN/runtime names), digit occurrence, RFC-compliant date detec-
tion, and value-length buckets; plus page-level lexical aggregates such as header_count
and header_entropy. As structural context, we append third party and ref by pages.
We also retain the lexical file-extension one-hots (ext _x). Table |8/ shows an examples.

Feature Description Value

Sample meta-information

urls_id 846

page-_url https://example.nl
external_link https://cloudflare.invalid/1
True_Label 1

fold 1

Example semantic encoding features with hit count 7

report_to_present_y report—to header present 1
report_to__has.digit Value contains at least one digit 1
report_to__token_.cloudflare Contains token “cloudflare” 1

report_to_.strlen String length 28

header_count Total number of response headers 19

header_entropy Shannon entropy of header values =~ 4.25
is_thirdparty Cross-site inclusion 1

Table 8: Example combination of Enriched Header Semantic Encoding with Graph Structure
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6.1.5 Class Weighting

To mitigate class imbalance, we apply per-fold class weights. For sklearn models we set
wo =2.5-(n1/ng) and w; = 1.0, where ny and n; are the numbers of non-tracker and tracker
samples in the training fold. For XGBoost we use the standard scale_pos_weight =
no/ny.

The factor 2.5 was chosen by a small pilot sweep {1.0,1.5,2.0,2.5,3.0} on OOF validation.
Under a recall floor of 0.70, 2.5 achieved the most stable precision—recall trade-off across
models and both validation schemes, with reduced false positives and no loss in recall after
global thresholding.

6.2 Training

We evaluate ten supervised classifiers with fixed hyperparameters (Table [9) selected from
prior tuning runs. All classifiers are wrapped in CalibratedClassifierCV with sigmoid
calibration using a 2-fold stratified split within the training fold.

Model Key Parameters

Logistic Regression class_weight=(wp, w ), max-iter=2000, random_state

Random Forest n_estimators=300, class_weight=(wp, w ), n_jobs=-1, random_state
Extra Trees n_estimators=300, class_weight=(wg, w ), n_jobs=-1, random_state
Gradient Boosting (sklearn)  random_state

HistGradientBoosting random_state

AdaBoost random_state

Decision Tree class_weight=(wg, wy ), random_state

Gaussian Naive Bayes defaults

XGBoost n_estimators=300, learning_rate=0.07, max_depth=6, subsample=0.9,

colsample_bytree=0.9, reg_lambda=1.0, scale_pos_weight= %‘1’ s
eval_metric=1ogloss, n_jobs=-1, random_state

LightGBM n_estimators=400, learning_rate=0.06, num_leaves=31, subsample=0.9,
colsample_bytree=0.9, reg_lambda=1.0, class-weight=(wg,w;),
n_jobs=-1, random_state

Table 9: Key fixed hyperparameters (exactly as used in our code)

Next, we use StratifiedGroupKFold (n =5, shuffle, fixed seed), grouping both by
urls_id (page-level grouping) and by 1ink _et1d1 (link-level grouping). On each vali-
dation fold, we scan thresholds from 0.00 to 1.00 in steps of 0.01. Finally, we select the
threshold that maximises F1-score subject to recall > 0.7.

6.3 Results

Across four feature spaces, we evaluated ten classifiers using leak-free cross-validation
with page-level grouping. Using F1 as the primary selection criterion, the best OOF F1s
are 0.915 (DecisionTree, presence-only), 0.915 (XGBoost, value encoding), 0.900 (Hist-
GradientBoosting, semantic), and 0.910 (XGBoost, graph-based). Under the stricter link
grouping, performance drops (Table [TT), which we treat as a conservative lower bound.
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6.3.1 Protocol-base Baseline Model

Using HTTP header presence signal alone for static detection has weak performance under
both upper and lower bound, with only 0.565 F1 and low precision ~ 0.4 for the top models.
Results are shown in Table 10l

Table 10: Top 3 presence-only model results grouped by page

Model AUPRC  ROC-AUC F1 Precision  Recall MCC  LogLoss
AdaBoost 0.358 0.459 0.565 0.396 0.983  0.086 0.678
LogisticRegression 0.364 0.460 0.562 0.395 0972 0.065 0.686
ExtraTrees 0.365 0.461 0.562 0.393 0.982  0.060 0.685

Table 11: Generalisation check for best model of presence-only

Setup AUPRC F1 Precision  Recall MCC

Grouped by page 0.358 0.565 0.396 0.983  0.086
Grouped by link 0.354 0.569 0.400 0985 0.112

6.3.2 Graph-based Baseline Model

The other baseline, graph signals independently achieve strong performance with F1 =~ 0.9
and high precision in in-distribution evaluation. The lower bound drops to 0.7, reveals the
practical potential of graph-based signals for unseen prediction (12}

Table 12: Top 3 graph-based model results grouped by page

Model AUPRC  ROC-AUC F1 Precision Recall MCC LogLoss
RandomForest 0.970 0.945 0.925 0.979 0.877  0.885 0.169
ExtraTrees 0.968 0.943 0.924 0.960 0.892  0.881 0.177
HistGradientBoosting 0.967 0.948 0.929 0.984 0.880  0.892 0.208

Table 13: Generalisation check for best model of graph features

Setup AUPRC F1 Precision  Recall MCC

Grouped by page 0.970 0.925 0.979 0.877  0.885
Grouped by link 0.741 0.689 0.544 0941  0.456

6.3.3 Protocol- and Graph- based Combination with Header Value

With page-level grouping, XGBoost achieves the highest OOF F1 (0.915) for value encod-
ing. Adding value information, precision increases subtly with similar recall as shown in
Table [{4:

Table 14: Top 3 value encoding model results grouped by page

Model AUPRC  ROC-AUC F1 Precision Recall MCC  LogLoss
XGBoost 0.962 0.938 0.915 0.980 0.858  0.871 0.224
LightGBM 0.960 0.938 0.915 0.985 0.854 0.872 0.220
DecisionTree 0.957 0.936 0.911 0.986 0.848  0.868 0.241
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Table 15: Generalisation check for best model of value encoding

Setup AUPRC F1 Precision  Recall MCC

Grouped by page 0.962 0.915 0.980 0.858  0.871
Grouped by link 0.598 0.626 0.465 0958 0315

6.3.4 Protocol- and Graph- based Combination with Header Semantic

Using F1 as the primary selection criterion, HistGradientBoosting attains the best OOF F1
(0.900) on semantic encoding. This strategy trades a bit of precision for higher recall [T6]:

Table 16: Top 3 semantic encoding model results grouped by page

Model AUPRC ROC-AUC F1 Precision  Recall MCC  LogLoss
HistGradientBoosting 0.961 0.966 0.900 0.923 0.879  0.847 0.200
DecisionTree 0.906 0.938 0.899 0.943 0.859  0.849 0.265
XGBoost 0.959 0.964 0.898 0.931 0.868  0.846 0.231

Table 17: Generalisation check for best model of semantic encoding

Setup AUPRC F1 Precision  Recall MCC

Grouped by page 0.961 0.900 0.923 0.879  0.847
Grouped by link 0.568 0.613 0.483 0.836  0.333

6.3.5 Results Comparison

Through the comparison charts [7], we can clearly see the difference. Protocol-based sig-
nals alone achieve lower performance, whereas feature spaces with structural signals per-
form better. This confirms that HTTP response header signals are comparatively weak—
consistent with the expectation outlined in Chapter [4.3.2—while structural signals emerge
as a more reliable indicator.

Top Performance of Page Group Top Performance of Link Group
F1 M Precision M Recall F1 M Precision M Recall
- 0'9250.9790.877 0.915 0'980.858 09 9% 0 - -, = 0.836
0.689 626
0.565 0.569 0544 0.62 0.613
0.465 0.483
0.396 0.4
presence graph value semantic presence graph value semantic

(a) All Four Feature Spaces In-distribution Per- (b) All Four Feature Spaces Open-world Per-
formance formance

Figure 7: Pie Chart Comparison of Top Results

6.4 ROC Analysis

We report out-of-fold ROC curves for the RandomForest classifier trained with the value-
encoding feature space (Top-N (header,value) pairs plus file-extension one-hot, ref by _pages,
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and the third-party flag) with Platt calibration. Figure [§ contrasts performance between the
page-group (in-distribution) and the link-group (unseen registrable domains) splits.

ROC « header_value_topl00_leakfree * pagegroup * RandomF OC « header_value_top100_leakfree * domaingroup ¢« Random
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(a) Page-group (in-distribution) (b) Link-group (unseen links)

Figure 8: ROC of RandomForest with value-encoding. Ranking quality is high in-distribution
(AUC = 0.960) but drops when withholding registrable domains (AUC = 0.615), indicating a
substantial open-world generalisation gap (AAUC ~ (0.345).

Under the page-group split, the RandomForest with header value Encoding and graph
structure combination exhibits strong OOF ranking quality (AUC = 0.960). The ROC curve
rises steeply near the y—axis, indicating that a large fraction of positives can be recovered
at very low false-positive rates. When entire eTLD+1 links are withheld (link-group), the
curve becomes much flatter near the origin and shifts toward the diagonal, and AUC drops
to 0.615 (AAUC = 0.345). This pattern shows a loss of low-FPR recall on unseen links,
consistent with the precision drop observed in the open-world setting. Overall, value-level
protocol cues are effective in familiar contexts but require additional structural signals or
hybrid designs to sustain precision when generalising to new links.

6.4.1 Error Analysis

In our tracker identification task, a True Positive (TP) refers to a request correctly predicted
as a tracker by the model, True Negative (TN) is a request correctly predicted as a non-
tracker, False Positive (FP) is a non-tracker incorrectly predicted as a tracker, and False
Negative (FN) is a tracker incorrectly predicted as a non-tracker. From the confusion ma-
trix results, we can see that TP and true negatives TN dominate the proportions, while the
share of FP is larger than that of false negatives FN. Due to our threshold choice as de-
scribed in chapter [5.5, more FP instances are included in the predicted results in order to
avoid missed detections and to facilitate manual inspection.
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Figure 9: Confusion Matrix of Graph Topology (in-distribution)

Table [18] shows the most frequent links in FP and FN cases aggregated across models.
These errors reveal that benign services (e.g., postnet.nl) can be misclassified as
trackers, while certain popular trackers (e.g., google—analytics.com) are occasion-
ally missed.

Table 18: Top FN/FP categories aggregated across models (by eTLD+1).

Case link_etldl Count
FN cdninstagram.com 1401
FN wWp . com 1201
FN parastorage.com 1157
FN google-analytics.com 1033
FN jsdelivr.net 986
FP postnet.nl 1060
FP envoto.com 1013
FP wa.me 996
FP tickeswap.nl 921
FP marktplaats.nl 910

Table [19] reports confusion matrix rates for the top-performing models using encoding of
header value and simple structural inclusion. While all models achieve a similar TP rate
(=~ 0.334) and low FP rate (< 0.02), DecisionTree, XGBoost, and LightGBM provide the
most balanced trade-off between false alarms and missed detections.

Table 19: Confusion matrix rates for top models (Feature: presence-only encoding). Rates are
proportions over all samples.

Model TP FP FN N

DecisionTree 0.3349  0.0094 0.0532  0.6025
XGBoost 0.3348 0.0097 0.0532  0.6023
LightGBM 0.3342  0.0095 0.0539  0.6024
HistGradientBoosting ~ 0.3335  0.0105 0.0546 0.6014
GradientBoosting 0.3349  0.0199 0.0531  0.5920

6.5 Key Findings

Under the page-group (in-distribution) split, the graph baseline performs best (OOF F1
~ (0.925 with P ~ 0.98). The header value and semantic encodings with light structural sig-
nals (cross-site and popularity) follow (value: F1 =~ 0.915, P ~ 0.98, R ~ 0.86; semantic: F1
~ 0.900, P ~ 0.92, R =~ 0.85). The header presence-only baseline is weakest (F1 ~ 0.565,
P ~0.40, R =~ 0.98), indicating an over-flagging tebdebct even on seen links.
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Under the link-group (open-world) split, precision drops for all spaces while recall remains
high; graph features remain strongest (F1 ~ 0.689, P ~ 0.544, R ~ 0.941). The value and se-
mantic combinations improve over presence-only (value: F1 = 0.626, P ~ 0.465, R ~ 0.958;
semantic: F1 ~ 0.613, P =~ 0.483, R ~ 0.836) but still trail pure graph inclusion.

Overall, protocol headers used alone are unreliable, whereas value/semantic encoding plus
simple structural context narrows the gap without surpassing graph-based performance.

When evaluated on unseen links, performance drops for all spaces, with precision decreas-
ing much more than recall. The graph baseline remains strongest (F1 ~ 0.689, P ~ 0.544,
R ~ 0.941). The value and semantic combinations fall to F1 ~ 0.626 (P =~ 0.465, R ~ 0.958)
and F1 =~ 0.613 (P~ 0.483, R~ (0.836), respectively. The presence baseline stays the weak-
est (F1 = 0.569, P =~ 0.400, R ~ 0.985). Overall, recall remains high on unseen links, espe-
cially for graph and value at the cost of many false positives; presence header-only shows
the poorest generalisation.

Error analysis shows that false positives often involve benign high-traffic services (e.g.,

CDNs, postal services) that mimic tracker-like inclusion patterns, whereas false negatives
include well-known trackers that appear in less distinctive contexts.
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7 Discussion

In this chapter, we discuss the implications of our results, the natural of false positives and
methodological constraints. These analyses lead us a clear understanding on our approach
limitation.

7.1 Insights of Model Performance under Boundaries

As proposed in we evaluated two grouped cross-validation setups to capture the upper
and lower bounds of realistic deployment: a page-group split that reflects in-distribution
evaluation, and a link-group split that probes open-world generalisation where test links
are unseen. The results reveal several insights.

In page-group, graph topology is the strongest single signal (F1~0.925, P~0.979, R~0.877).
Combining header value with structural cues is close behind (F1~0.915, P~0.980, R~0.858).
Presence-only HTTP header signals are weak (F1=0.565) and mainly buy recall (R=0.983)
at the cost of precision (P= 0.396). When we switch to the link-group split, all methods
drop—mostly because precision falls on unseen links. The best graph model keeps high
recall (R=0.941) but lands at F1~=0.689 (P= 0.544). Value and semantic features show a
similar pattern (F1=0.626/0.613, P=0.465/0.483, R= 0.958/0.836). These results match
practice: models learn many site-specific patterns, so recognising brand-new third-party
links is hard.

Why this happens is intuitive. Structural position signals (PageRank, in/out-degree, k-core,
betweenness) look at how a link sits in the graph, not at its name. They are naturally robust
to renaming tricks and are harder for vendors to bypass. In contrast, HTTP response head-
ers are easy to “decorate’—adding or changing fields without changing behaviour—which
quickly hurts precision on unseen links. In other words, HTTP header response signals
alone are weak, while structural signals behave like strong rules within a site or for well-
represented patterns; in open-world conditions they remain excellent high-recall hints but
need a safety net to control false positives (e.g., benign high-traffic CDNs or font providers
that resemble trackers).

These observations lead to a simple trade-off and deployment plan. Protocol-level fea-
tures are lightweight and fast, so they are well-suited for large-scale, close-world screening.
Graph-based features generalise better to new trackers but are heavier—building and up-
dating large graphs often needs GPU/high-memory resources. A practical pipeline is there-
fore cascaded: use protocol/value features as a first-stage filter for throughput, then esca-
late suspicious cases to the graph model for stronger open-world coverage; finally, send
only high-risk or novel cases to manual review. In production, monitor header-field drift and
refresh rules; maintain incremental graphs and approximate centralities to keep costs down.
Overall, protocol features provide the scalable base, while graph topology provides robust-
ness to naming tricks and the recall needed to surface unseen trackers. Combining them
delivers a detector that aligns with both our measurements and real-world constraints.
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7.2 Further Verification

To further discover the result, we did manual review of FPs under header value combina-
tion feature. We adopted the annotation protocol described in Igbal et al.s (2020) work. A
request was labelled as a tracker if its domain belonged to an advertising or analytics net-
work, engaged in cross-site user tracking, or served behavioral advertisements. Requests
that served purely functional content such as content delivery networks, site-specific static
assets, or messaging endpoints without tracking capability were labelled as non-tracker. Do-
mains exhibiting both functional and tracking behaviours were labelled mixed, while cases
with insufficient evidence were labelled undecidable [23].

Instead of selecting the top N ranked predictions for manual review, we adopted a probability-
threshold approach (> 0.9) to gain insights into more diverse set of -+-s. This decision was
motivated by the observation that top-N sampling can be dominated by repeated instances
of the same external link. For example, among the top 50 false positive predictions by score,
only 18 distinct domains were present, with the remainder belonging to WhatsApp contact
pages.

The threshold (> 0.9) produced 181 false positive instances for manual inspection. Fol-
lowing Igbal et al’s (2020) four-way annotation scheme, each instance was manul labelled
as tracker/, non-tracker, mixed, or undecidable. The majority (91.2%) were confirmed as
genuine false positives, with typical categories including:

* WhatsApp short links used for merchant or customer service contact (wa . me), which
do not involve tracking;

 Third-party static resource CDNs serving common frontend frameworks;
* Main JS files essential for site functionality rather than analytics or advertising;

» Other functional resources matching Igbal et al’s (2020) definition of non-tracking
(e.g., site-specific static assets, first-party utility endpoints).

Only 10 cases (5.5%) were reclassified as true positives, including:

* Domains related to loan advertising (containing “lening”), where such sites often en-
gage in marketing-oriented tracking;

* Embedded social media profiles (TikTok), which in AdGraph’s taxonomy are typically
treated as trackers due to cross-site identification and ad delivery capabilities.

No mixed-purpose cases were observed. The 6 undecidable instances (3.3%) corresponded
to requests returning HTTP 404, where the resource content could not be verified.

The small fraction of reclassified true positives emphasise the value of manual verification
for identifying trackers, which are missed by automated labelling. Examples include loan
advertising domains that follow known cross-site identification and advertising behaviours
described in prior taxonomies. The absence of mixed-purpose cases suggests tracker and
non-tracker roles tend to be contextually consistent in our study.
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These findings collectively indicate that a notable portion of false positives in strict evalua-
tions stems from structural similarity between functional and tracking inclusions, rather than
from random model errors. They also point to the inherent difficulty of third-party tracker
discovery in open-world settings: without content- or behaviour-level validation, even highly
discriminative protocol features risk over-flagging benign services.

7.3 Limitations

Our current labeling relies on exact host-level matching against a mixed-granularity blocklist
(containing both eTLD+1 entries and specific subdomains). This design may miss trackers
when only the registrable domain is listed (e.g., a requestto sub . tracker.com would not
match a blocklist entry t racker . com), and may over-specialise when subdomain-specific
entries are present (other subdomains of the same registrable domain would remain unla-
beled). Furthermore, the ground truth list itself (Disconnect and Ghostery) may not cover
the full tracker ecosystem, potentially omitting long-tail or recently emerged entities.

Also, our approach is based on static crawling and HTML parsing, without dynamic execu-
tion in a real browser. This setup allows us to extract protocol-level features at scale, but
it also means that runtime behaviours such as delayed requests, script-triggered loading,
or user-driven interactions remain out of view. As a result, the dataset reflects only what
is immediately exposed at load time, and does not capture behaviours that unfold during
execution.

In addition, while our labelling is global and static at the host level, context-level labelling
typically requires dynamic crawling with an instrumented browser. This enables observa-
tion of request triggers, DOM placement, timing, and blocking events under real execution,
which are absent in our current setup.

This limitation affects both coverage and feature expressiveness. Domains that perform
tracking and those that do not often appear in similar positions within the graph, and with-
out additional behavioural signals, these patterns offer little separation. Structural features
may thus yield false positives for popular functional CDNs or widely used libraries. Finally,
model generalisation may degrade when moving from familiar-site conditions (page-group)
to unseen-site scenarios (link-group), indicating that certain learned signals are site-specific
rather than universally predictive.
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8 Conclusion

This study asks: given an external link observed in a static crawl, how can we decide
whether it is a tracker? We compared protocol-based HTTP response features with structure-
based inclusion signals and evaluated them under two realistic grouping schemes with
grouped cross-validation.

Under the page-group (in-distribution) split, structure-based graph features perform best,
with out-of-fold F1 around 0.925, precision about 0.98, and recall around 0.88. Enriching
protocol features with header values and simple structural cues (cross-site and referenced-
by-page) narrows the gap: the value space reaches F1 about 0.915 with precision about
0.98 and recall about 0.86, while the semantic space attains F1 about 0.900 with preci-
sion about 0.923 and recall about 0.847. By contrast, the header presence-only baseline
is weakest (F1 about 0.565, precision about 0.396, recall about 0.983), showing an over-
flagging tendency even on seen hosts.

Under the link-group split that withholds registrable domains (our open-world proxy), all
spaces degrade mainly through a drop in precision rather than recall. Graph features re-
main strongest (F1 about 0.689, precision about 0.544, recall about 0.941). The value and
semantic spaces trail (F1 about 0.626 and 0.613; precision about 0.465 and 0.483; recall
about 0.958 and 0.836). Presence-only stays high-recall and low-precision (F1 about 0.569,
precision about 0.400, recall about 0.985).

These patterns indicate complementary strengths. Enriched protocol features enable highly
precise identification in familiar settings and are attractive for conservative blocking in closed-
world deployments. Structure-based features generalise better to unseen hosts by recover-
ing a larger fraction of trackers, but they require additional precision control. Manual checks
of high-confidence false positives also reveal host-level labelling noise (for example, func-
tional CDNs or analytics endpoints), underscoring the need for careful ground-truth han-
dling.

In sum, we provide:

* A systematic, static-data evaluation of protocol- and structure-based detection under
realistic constraints, using grouped cross-validation at both the page and link levels.

» Evidence that enriched protocol features and inclusion-graph features offer comple-
mentary strengths.

* An empirical characterisation of the open-world generalisation gap, driven primarily
by precision loss, and a case for evaluation schemes that simulate open-world condi-
tions.

Summarise our findings and limitasions, we therefore bring the following future work:

* Two-threshold workflow with human-in-the-loop review to stabilise precision while
keeping recall.

» Hybrid designs that fuse protocol value/semantic cues with graph topology (for exam-
ple, stacking with calibrated decision rules).
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* Integrating dynamic instrumentation to capture runtime signals invisible to static crawls
(redirect chains, delayed or script-triggered requests, DNS/CNAME resolution).

* Broadening dataset diversity, accounting for temporal variation, and reducing labelling
noise to obtain stronger supervision and more reliable estimates of generalisation.

Overall, these results advance our understanding of tracker detection in static measurement
settings and lay a foundation for integrating protocol, structural, and future runtime signals

into more robust hybrid detection systems.
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