
Master Computer Science

Analysis of the relation between bitdepth and timesteps in
ANN to SNN conversion

Name: Christian Steennis
Student ID: 2636727

Date: August 29, 2025

Specialisation: Artificial Intelligence

1st supervisor: Joost Broekens
2nd supervisor: Qinyu Chen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Neural network quantization and conversion of artificial neural networks (ANN) to spiking
neural networks (SNN) are both methods of lowering the energy consumption of neural net-
works. Where quantization lowers the precision of a network in the spatial dimension, SNN
conversion does the same in the temporal dimension. This similarity in methodology implies
there is a relation between the two. By converting ANN to SNN and measuring the accuracy
drop relative to the conversion point of the SNN and comparing it to the accuracy drop of
the quantized ANN relative to unquantized performance, we get the relation. Resulting in an
empirical study showing the known bound T = 2b − 1 is a huge overestimation and determin-
ing an empirical relation between bit depth and time steps. The experiments are conducted
on varying convolutional models, confining the conclusions to this type of model. It is found
that the relation follows a general logistic curve where the function parameters depend on the
complexity of the data and models, although more research is needed to determine the right
parameter values.

1 Introduction

Artificial Neural Networks (ANN), and Large Language Models (LLMs) in particular, can perform
complicated tasks increasingly well. These tasks include audio-visual generation tasks like speech
synthesis and image creation. A general drawback of these models is that they perform better when
they are larger. This leads to huge models with billions of parameters. Training all of these param-
eters comes with a large energy consumption. Therefore, energy-efficient training and inference of
machine learning models is an active field of research [36, 16].

Spiking Neural Networks (SNN) [27] have been around for a while and are proven to be very
energy efficient at inference. This type of neural network has an event-driven nature and brain-
like synaptic structures. These special properties enable them to be implemented on neuromorphic
hardware chips like Intel’s Loihi [6, 30], IBM’s TrueNorth [1] and SpiNNaker [14, 28]. Chips like these
are developed specifically for hosting SNNs. Additionally, because of their low energy consumption,
they can be embedded in systems where energy is a limited resource, e.g., in robotics.

The energy-efficient nature of SNNs makes them a compelling alternative to classic deep learning
techniques. Since SNNs are functionally different from classic Artificial Neural Networks (ANN) a
conversion is needed. There are two ways to go about doing this, by converting a pre-trained model
[11, 33, 4, 31] or by training from scratch [38, 9, 13, 25]. Conversion copies over the ANN’s weights
and will approximate the original ANN output values. The other method of training an SNN works
by constructing a structurally equivalent SNN and training it from scratch on the same data. Both
methods are suitable for different situations. There already exist a lot of (large) powerful models
for various tasks. For these, converting to energy-efficient counterparts is more useful than training
from scratch. For new tasks it might be more economical to design them as an SNN and train
them as such. This assumes there are efficient training methods available. That being said, training
an SNN is often complicated and time-consuming because computing gradients through time is
not trivial. Therefore, since the training costs have already been incurred for existing models, it is
often more efficient to transfer the trained weights and activations directly to an SNN. This also
eliminates the need for gradient calculation in hardware, keeping the hardware small and efficient.

Not all components of an ANN can be converted easily. Most methods focus on converting the
activation values to spike rates by copying the weights [11, 4, 33]. However, this will not work for
all components and activation functions. Only the ReLU is well-suited for the conversion, as stated

1

by [4]. Other common ANN components like LSTM and attention layers are not trivial to convert.
Even a commonly converted architecture like a Convolutional Neural Network (CNN) has difficult
components like MaxPooling. Therefore, it is common practice to first tailor the original ANN to
a version where easily convertible components replace the original components. This method needs
retraining in the ANN domain to work effectively.

When lowering the bit precision of an ANN, a drop in accuracy is expected. The same holds
when not enough timesteps are used for spiketrains inference in an SNN. Since ANN-to-SNN con-
version is analogous to ANN quantization [23, 17], converting a low precision ANN to SNN is a
logical step. Quantization is a method for lowering the precision of high-precision data. This tech-
nique from signal processing is frequently used in ANNs to decrease memory usage and increase
interference times. There are two main methods for ANN quantization, post-training quantization
and quantization-aware training. The first method works well for quantization to mid-range bit
lengths, however struggles with accuracy for extremely low bit precisions like 1 or 2 bits. These
extreme quantization methods need quantization-aware training to achieve usable results. There
are frameworks provided for extreme bit quantization like DoReFa-Net [40] and FINN [37]. They
have the ability to convert an ANN as far as to a Binarized Neural Network [18]. Converting these
extreme quantized neural networks to SNNs leads to a very low number of time steps needed for
correct inference.

The number of timesteps an SNN needs to achieve the same accuracy as the ANN does not only
depend on the ANN’s bit depth but also depends on the task and type of model. There is little to
no research on the exact number of timesteps one should use and the relation between quantization
and SNN conversion, other than empirical results showing lower inference times [17, 23, 5]. The
aim of this research is to investigate the relation between the degradation in performance after (a)
quantization and (b) an insufficient number of time steps after conversion. This to give insight into
the effect of different models and data on this relation.

2 Background and Related Work

2.1 Spiking Neural Networks

Spiking Neural Networks (SNN) [27] are neural networks that are designed with the biological
workings of the brain in mind. They communicate through spikes instead of floating-point decimals.
The neurons in an SNN are connected through synapses, which convey electrical spikes. Over time
these spikes form a sequence called a spiketrain. In most simulations the spiketrain is an array
of ones and zeros, where one is a spike and zero is no spike. The neurons of an SNN implement
an Integrate-and-Fire (IF) neuron, optionally leaky (LIF) [21]. These neurons have an internal
membrane potential that is increased when a spike arrives. When the potential V l

i (t) meets a
certain threshold Vth the neuron emits a spike. When this occurs, the potential is reset to zero or
subtracted by the threshold [33]. In the leaky variant, the membrane potential is decreased over
time. This allows for SNNs to adopt temporal dependencies in data. vli(t) increases with the sum
of the input spikes coming from the previous layer. The membrane potential vli(t) is updated as
follows

vli(t) = vli(t− 1) + zli(t)− Vthθ
l
i(t)

2

where zli(t) is the input current to the i-th neuron in the l-th layer. zli(t) is calculated using the
following equation, where al−1

j is the input from the j-th neuron in the previous layer

zli(t) =

M l−1∑
j=1

W l
ija

l−1
j (t) + bli

θli(t) controls whether a neuron fires a spike, which only happens when the threshold is met or
exceeded. When this happens, the neuron’s membrane potential is reset by subtraction of the
threshold, as in [33].

θli(t) =

{
1 if vli(t− 1) + zli(t) ≥ Vth

0 else

Hardware Typical hardware suitable for deep learning is a large cluster of power-consuming
GPUs constantly doing calculations and in need of cooling. And even when they are idle they
consume energy. Spiking Neural Networks only consume energy when a spike is fired due to their
event-driven nature. Running an SNN on traditional hardware would not make optimal use of
its power-efficient properties, therefore neuromorphic chips have been invented. These chips have
several neurons on their board connected by many synapses. The design of these neurons is such
that energy is only consumed when a spike fires. Examples of these chips are Loihi [6, 30] and
SpiNNaker [14, 28]. A drawback of SNNs is that neuromorphic hardware is not yet easily available
so most of the time we have to do with simulations. There are some nice simulators like Nengo1 and
Brian2, however, these will not lead to the same power efficiency as running on dedicated hardware.

2.2 Conversion

Obtaining trained SNNs can be done in two ways, either by training a model with backpropagation
through surrogate gradients [38, 9, 13, 25] or by using a pre-trained model and converting it to an
SNN using an ANN-to-SNN [31, 3, 8, 4, 33, 11] conversion method. The first method of training an
SNN directly with surrogate gradients is still in early development and takes up time and memory
that we are trying to save. The other method of converting ANN to SNN means encoding the
activations into spiketrains such that the spiketrains activate the same neurons in the output layer
of the SNN as in the ANN. To do this, the weights in the ANN model need to be copied to the
weights in the SNN to be used in the IF neurons.

Supported components The first efforts to convert ANN to SNN were done by Perez et al. [31].
Following this research, Cao et al. [4] stated that the conversion of the ReLU activation function
to the IF neuron is trivial because of similar functionality. The difficulty is in converting other
activation functions like softmax or hyperbolic tangent. In most cases these are ignored in SNN
conversion, and the spike rates of the outputs are interpreted as is. Another difficulty is the pooling
layer in convolutional neural networks. The properties of max-pooling are not compatible with
the spiking properties and therefore mostly avoided by existing research. This is noted by [33],
who propose using gates that only let spikes of the maximally spiking neurons pass through. In
early works [31, 4] the membrane potential is reset to zero when a spike fires. Rueckauer et al. [33]

1https://www.nengo.ai/
2https://briansimulator.org/

3

introduce a soft reset by subtracting the threshold from the membrane potential, therefore retaining
the information gained from the last input spike before reaching the threshold.

Research into converting different ANN components is still very active with more recent re-
search showing conversion from ResNet to SNN [34]. Designing spiking-specific variants of popular
components like LSTM [26, 2] and transformers [41, 24, 39] is also still an evolving field. So much
even that for these last two components no suitable conversion method exists at the moment of
writing.

Conversion error In the conversion from ANN to SNN an error is introduced since the SNN
can only approximate activations with its spikerates. Rueckauer et al. also give a conversion error
per neuron per layer of

εli =
V l
i (t)

TVth
. (1)

Where V l
i (t) is the membrane potential of the i-th neuron in the l-th layer. T the number of

timesteps and Vth the neurons threshold. This shows that the conversion error depends on the
threshold and the number of time steps. Lowering the time steps leads to higher error, and raising
them leads to lower error, the membrane threshold has the same effect. This error is per layer and
is propagated through all the layers of the network. This formula shows the error emerging from
the remaining membrane potential not turned into spikes. This way this specific error is mitigated
by raising the threshold Vth. However, this also means more time steps since the neurons need more
time to spike with a higher threshold.

2.3 Quantization

Quantization is a method from the field of signal processing where an analog signal is discretized.
For analog numbers the same technique can be used. A number is typically represented by b-bits.
These b-bits can represent 2b different values. This means that quantizing a vector by lowering
the number of bits reduces the precision of the vector, but at the same time lowers the memory
usage and computational complexity. Quantization can also reduce the bit depth of a trained ANN.
The extreme case is a Binary Neural Network (BNN) [18, 37] where the values of the weights and
activations are constrained to +1 and −1 or 0 and 1 depending on the use of a signed representation.
When converting this kind of network to SNN it is executed with a 21 = 2 or 21−1 = 1 long spiketrain
for signed and unsigned values respectively. A generalization on quantization of neural networks
is formulated by Zhou et al. [40] with DoReFa-Net. They innovate by also quantizing gradients,
something where earlier research lacked, needing still at least 10-bit numbers for the gradients.
DoReFa-Net works with a simple quantization function

quantizek(x) =
1

2k − 1
round((2k − 1)x) (2)

Where k is the desired number of bits and x is the input. The above equation assumes input to be
in the range [0,1]. To achieve this they make sure that the weights are in a range of [−1, 1] with a
hyperbolic tangent and then normalized to a range of [0,1] before using the quantization function
in Equation 2. For the activations, they do not force the range of the values to be between [0,1].
They assume that the values have passed through an activation function, binding the values to a
range of [0,1].

4

2.4 Quantization in conversion

The length of a spiketrain is, in most cases, determined empirically during testing as a tradeoff
between latency and accuracy. Related research, however, describes an upper bound of 2b − 1
[15, 32, 17, 23]. This bound is derived by linking the different values a b-bit number can represent
to the different spike rates a spike train length T can represent. A spike train without spikes does
not give any information. Therefore, it is not counted as a state, which explains the −1 in the bound.
As noted by [8] every layer carries over approximation errors from previous layers, each layer should
thus have a spiketrain length of 2b−1 to accurately approximate its activation values and not cause
any carry-over errors when executed sequentially. This leads to a total latency of 2b − 1 ∗ L for
sequential execution of the layers [17]. Guo et al. [15] perform very similar work establishing an
equivalence of TSNN ≃ 2nANN per layer for quantization. This upper bound of approximation leads
to the SNN being increasingly less accurate than the ANN when fewer timesteps are used, following
this theory. As mentioned before the number of levels a b-bit deep number can represent is the same
as for a spiketrain with T = 2b − 1. For unsigned numbers there are 2b levels, the upper bound for
T becomes 2b − 1. So lowering T is similar to quantization to a lower b. This similarity between
quantization and SNN spiketrain length can be a good measure of how long the spiketrain should
be after conversion.

Short spiketrains are essential for short inference times and low memory usage. As shown in
the upper bound a lower bit depth of ANN leads to a shorter spiketrain. To decrease latency there
has been work on first quantizing pre-trained models, Post Training Quantization(PTQ), before
conversion or training using Quantization-Aware-Training(QAT) to achieve better conversion results
with low inference latency. QAT works by simulating quantization during training using clipping
operations. Recent research [3, 23] for example shows that QAT leads to very low inference times
with the same accuracy as with non-quantized conversion. A large downside of this method is that
it requires training a network from scratch using the QAT technique. PTQ is in that regard more
effective at saving resources by only quantizing already trained ANNs.

3 Research Question

Conversion from ANN to SNN and quantization are similar in the way they alter the precision of a
model’s floating-point variables. A quantization algorithm converts a higher bit precision to a lower
bit precision, i.e., from a long sequence of ones and zeros to a shorter sequence of ones and zeros.
The same happens when an ANN-to-SNN conversion algorithm maps floating-point activations to
spike trains. Similar to a floating-point value, the spike train is filled with spikes, denoted as ones
and zeros, where the length of the spike train determines the precision of the SNN. The general
rule in SNN is that longer spike trains translate to more precise models. However, to save energy
and time, it is desirable to have the least number of time steps you can afford. Theory gives us an
upper bound on the latency [17] for deep neural networks,

Latency = 2b − 1× L

where b is the bit depth of the ANN and L is the number of layers. The bound gives a number
of timesteps where the model should perform the same as the unconverted variant. Because this
bound is dependent on the number of bits and the number of layers of the ANN, it is good practice
to lower the bit depth of the ANN to also lower the latency of the SNN.

5

Because the number of timesteps is given by an upper bound, the optimal number of timesteps
is still a guess after conversion. This motivates the search for an average case where the number
of bits can be directly translated to timesteps. Such that this number is a more accurate estimate
of the minimum number of time steps needed for the desired accuracy. This will avoid choosing a
value for timesteps that is too low, where the accuracy is not high enough, and at the same time
not too high, where the latency is unnecessarily large for the problem. The length of the spike train
does typically not depend only on the bit depth of the ANN, since some problems might be able
to be solved with less bit precision. In addition some components need more granularity in their
activation values than others making some components perform better or worse for low bit depths.
This makes determining the length of a spike train based solely on the bit depth of an ANN a very
complex problem. To approach this problem the relation between standard quantization methods
and the number of timesteps is investigated in this work. This can be formulated as the following
research question: What is the relation between the bit depth of an artificial neural network and the
number of time steps of the spiking neural network when converted? The expectation is that the
accuracy drop of quantization and of having too few timesteps will be related to each other in such
a way that the SNN needs more timesteps when the bit depth is higher. The relation entails that
each bit depth can be matched to a number or range of timesteps.

4 Method

Quantization and SNN conversion are in principle both forms of quantization. Where normal quan-
tization is a form of spatial quantization and SNN conversion temporal quantization. Since both
are forms of quantization they also introduce error with respect to the original data. For quantiza-
tion the original data is in a vector of values to be quantized. In SNN conversion the original data
consists of the activation values of each layer in the ANN. For uniform quantization with a uniform
error distribution of ε ∼ uniform(−∆

2 ,
∆
2), the variance of the quantization error is defined in the

field of signal processing [29] as

∆ =
xmax − xmin

2b − 1
(3)

εquantization =
∆2

12
. (4)

ANN to SNN conversion has the following per neuron conversion error as defined by Rueckauer et
al. [33]

εli =
V l
i (t)

T · Vth
(5)

These formulas both describe the error of a quantization process. Intuition dictates that there
should be a relation between these two errors. Because there is no uniform distribution in the SNN
conversion error, these two equations can not be compared to determine T . This can also be traced
back to Equation 5, where the error depends on the threshold and the membrane potential of the
neurons. These, in turn, depend on the task, model structure and conversion algorithm used. This
leads to many variables with complex effects on final results.

As stated in the previous section, the theoretical value for T may be a huge overestimation. The
lack of a realistic theoretical basis thus motivates an empirical study.

6

4.1 Materials

4.1.1 Framework

To test the hypothesis, a framework has been developed. The framework consists of a set of different
components.

Quantization, conversion, testing, and accuracy matching have all been split into different com-
ponents. The quantization component quantizes both weights and activation values, however both
are optional. When neither is selected the component just returns a copy of the original model.

The part of the framework that defines a converter uses the quantization component and the
SNN conversion library from SpikingJelly3. Using these it converts a (quantized) Artificial Neural
Network to a Spiking Neural Network. The converter is designed to quantize the ANN layer by
layer to investigate the impact of quantization of different layers on the conversion. Although the
framework offers this conversion method, this research limits itself to a complete quantization, thus
leaving layer-by-layer analysis a subject for further research.

To test the performance of both the quantized networks and the SNNs a test function has been
designed. This test function reports on the chosen accuracy metrics for a given test set. The main
part of the framework takes a pre-trained ANN as input and converts this model to a spiking version
and multiple quantized versions with each a different bit depth. The goal of the framework is to
analyze the relation between a model’s bit depth and the length of the spiketrain of a converted SNN
of this model. To analyse the relationship the framework has a part which matches the accuracy
curve resulting from quantization to the accuracy curve of the SNN. This method of measuring is
explained in more detail in subsection 4.3.

Quantization For quantization in the framework inspiration is taken from DoReFa-Net [40].
They however assume that the input lies in the range of [0,1]. Using scaling to make their method
usable for arbitrary input results in the following formula used in the quantization part of the
framework:

s =
max |x|
2k−1 − 1

(6)

quantizek(x) = round(
1

s
x) · s (7)

In this formula s is the scale to which the output should be scaled. Since the input models are
pre-trained the output of the quantization should have the same scale as the input only with
fewer levels, simulating the possibilities of lower bit numbers. The scaling is necessary for proper
inference of the quantized model. Which is mathematically equivalent to DoReFa-Net quantization
from Equation 2 for signed, arbitrary-range input. In DoReFa-Net the entire model is quantized,
which includes the weights and gradients. The framework does not train quantized models. Therefore
gradient quantization is omitted. Also when converting to SNN, the weights of the ANN are copied
over without any adjustments. This makes quantizing weights unnecessary and would create an
unfair comparison between quantized ANN and SNN.

SNN conversion SpikingJelly is used for SNN conversion, they have built the conversion frame-
work set up by Rueckauer et al. [33]. This work utilizes data-based weight normalization from [10]

3https://spikingjelly.readthedocs.io/zh-cn/latest/index.html

7

and improves it by extending to biases. W l → W l λl−1

λl and bl → bl/λl. With weights W l biases

bl and maximum activation λl. Furthermore, they improve by taking into account outliers in the
activations by using only the 99th percentile of activations for normalization. They also combine
batch-normalization with the preceding convolutional layers by scaling the weights accordingly. This
way, the same happens numerically, but there is no need for conversion of the Batch-Normalization
layer. In the following equations (8), (9), (10), the batch normalization is fused into the weights of
the previous layer.

BN(x) =
γ

σ
(x− µ) + β (8)

W̃ l
ij =

γl
i

σl
i

W l
ij (9)

b̃li =
γl
i

σl
i

(bli − µl
i) + βl

i (10)

Where x is the input to be transformed. µ is the mean, σ the variance. γ and β are learned during
training.

The input data to the framework is analog input, the same as in [33]. The alternative used in
previous work of generating a Poisson distribution leads to stochasticity in the input. Following the
principles of SNN this makes sense but it also makes model performance more random. To fairly
compare the performance of different models there should be no randomness in how the data is
presented to the models.

4.1.2 Limitations of the framework

Since the framework builds on the conversion library of SpikingJelly it also suffers from the same
limitations. This means the framework is only able to convert CNN or feed-forward networks to SNN.
There is, however, the possibility of passing your preferred converter to the framework. Quantization
does not suffer from these limitations. Therefore inserting a conversion algorithm compatible with
more components will also increase the compatibility of the framework. For now this means the
framework will only successfully convert ANNs to SNNs that consist only of convolutional and linear
components. As activation function only the ReLU unit is accepted. Also models with MaxPooling,
AveragePooling and Batch Normalization will convert properly.

Due to the scaling needed in the quantization function in equation 6 the quantized models will
not perform with low bit quantization without retraining or fine-tuning.

4.1.3 Models and data

The framework supports models defined using PyTorch and data using the dataloader class from
PyTorch. For the experiments three models are used, a 3-layer CNN, AlexNet [20], and VGG16
[35]. These are all convolutional models of varying depth and size. The 3-layer CNN, depicted
schematically in Figure 1, further on also referred to as CNN, is a self-defined convolutional neural
network with three 2D convolutional layers with ReLU activation followed by MaxPooling. The
last layer of the model is a single fully connected feedforward layer for the classification output.
The convolutional layer has a 3x3 kernel. AlexNet and VGG16, in Figure 2 and 3 respectively, are
left standard except for the output layer, this layer is adjusted for all the models to the number of
classes of the task. AlexNet has a total of 8 layers, of which 5 are convolutional layers with kernels

8

Input

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

F
ee
d
F
or
w
ar
d

Output

Figure 1: CNN

Input

C
on

v
11
x
11

R
eL

u
+
M
ax

P
o
ol

C
on

v
5x

5

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

F
ee
d
F
or
w
ar
d

R
eL

u

F
ee
d
F
or
w
ar
d

R
eL

u

F
ee
d
F
or
w
ar
d

Output

Figure 2: AlexNet

of 11x11 and 5x5. Followed by 3 fully connected feedforward layers. VGG16 has 16 layers in total,
of which 13 are convolutional layers with 3x3 kernels. This model also ends with 3 fully connected
feedforward layers. Both AlexNet and VGG16 use ReLU activation and MaxPooling, just as in the
3-layer CNN.

MNIST [22], CIFAR-10/100 [19] and ImageNet [7] are the datasets that are used for analysis.
MNIST is a handwritten digits dataset containing 60,000 training and 10,000 test grayscale images
of 28x28 pixels with 10 classes. CIFAR-10 and CIFAR-100 both consist of 50,000 training and 10,000
test images of 32x32 pixels, where CIFAR-10 has 10 classes and CIFAR-100 has 100 classes. The
training images are evenly distributed over the classes. CIFAR-100 is considered harder to learn
because it has more classes that are divided into subclasses of similar items. ImageNet, also known
as ImageNet (ILSVRC) 2012, has 1000 classes, 1,281,167 training images and 50,000 validation
images. The test images are not labelled, so the validation set of ImageNet is used and referred to
as the test set from now on. Both the CIFAR datasets and the ImageNet dataset are considered
more difficult to learn for a neural network compared to MNIST. MNIST only consists of greyscale
images which simplifies the classification process, whereas the other datasets use an RGB color
scheme.

For compatibility with all of the models, all images are scaled to 224x224 3-channel RGB images.

4.2 Experimental Setup / Approach

With the use of the quantization-conversion framework described in Section 4.1.1, an analysis is set
up. The goal is to analyze the relation between bit depth and time steps. For this to have meaning,
first the effect of quantization on different datasets and models has to be examined. Using Equation

Input

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u

C
on

v
3x

3

R
eL

u
+
M
ax

P
o
ol

F
ee
d
F
or
w
ar
d

R
eL

u

F
ee
d
F
or
w
ar
d

R
eL

u

F
ee
d
F
or
w
ar
d

Output

Figure 3: VGG16

9

2, all of the models are quantized from 32-bit to 16, 8, 7, 6, 5, 4, 3, 2 and 1 bits. This assumes
that the significant changes in accuracy happen between bit depths 8 and 1. The accuracy is then
measured for all of these bit depths.

As stated before, the theoretical upper bound of the spiketrain length is 2b−1. Previous research
has shown that this is a huge overestimation, with spike trains ranging from a few 10s to a few
thousand timesteps. This is far of the 4 million timesteps theoretically needed for 32-bit ANN
conversion. To investigate how this bound holds in practice, the relation between timesteps and
accuracy is analyzed next. For this analysis the conversion framework from [33] implemented in
SpikingJelly [12] is used. For each timestep, two accuracies are measured, the accumulated accuracy
of the entire spike train integrated over time and the accuracy at the actual timestep. The latter
gives insight into the point where the SNN starts to converge on the batch. While the first is the
traditional way of interpreting the output of an SNN. If the theoretical bound is indeed a huge
overestimation, it would be more useful to have a known average that one could aim for when
running a converted SNN. To investigate whether such an average exists and whether or not this
can be linked to quantization the following experiment is set up.

To find a relation between bit depth and timesteps, the accuracy for each bit depth of the
quantized ANN is compared to the accuracy of the SNN at different timesteps. The idea of this
comparison is to see if there is a relation between the number of bits and the number of time steps.
The original unquantized model is converted to a spiking neural network. This SNN is then run
for 500 timesteps in which the accuracy converges. Each bit depth can then be matched to the
timestep with a corresponding drop in accuracy with respect to the maximum achieved accuracy.
Performing this comparison for different tasks and different models, the goal is to determine an
average estimate of the latency of an arbitrary model on an arbitrary task.

For each model, pre-trained weights from Hugging Face or torchvision will be used if available,
if not, then the model is first pre-trained. For testing, a batch size of 32 is used. The results are
averaged over all batches.

After reporting on both the accuracy of quantization and SNN timesteps, the equivalence be-
tween the accuracy drop of these two models will be measured to investigate the relation between
quantization and timesteps. For the tested levels of quantization, the theoretical bounds in Table 1
exist.

Bit depth Theoretical length
32 4294967296
16 65536
8 256
7 128
6 64
5 32
4 16
3 8
2 4
1 2

Table 1: Theoretical length of a spiketrain

10

4.3 Measures

The relation between bit depth and time steps is measured in terms of a performance metric de-
pending on the problem. The ANN and SNN are both measured using the same performance metric.
In experimentation only classification tasks are used. The metric used is thus the classification ac-
curacy denoted by the percentage of correctly classified samples. For converted SNNs, both the
accuracy of the single timestep and the accuracy of the output of all the previous timesteps com-
bined are plotted. This is also known as the accuracy of the spike train and the most common
measure for SNNs. To measure the relation between bit depth and spike train length, a relative
accuracy measure is used.

Relative accuracyANN =
Accbitdepth
max(Acc)

(11)

Relative accuracySNN =
Acctimesteps

max(Acc)
(12)

5 Experimental Results

5.1 Quantization

To analyze the effect of quantization on the three models, the accuracy is plotted against the bit
depth in Figure 4. This is the result of quantization of pre-trained CNNs without any fine-tuning
before or after quantization.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bitdepth

A
cc
u
ra
cy

Bitdepth/Accuracy

(a) CNN

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bitdepth

A
cc
u
ra
cy

Bitdepth/Accuracy

(b) AlexNet

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bitdepth

A
cc
u
ra
cy

Bitdepth/Accuracy

(c) VGG16
MNIST

CIFAR10

CIFAR100

IMAGENET

Figure 4: Comparison of the effect of quantization on different datasets. The graphs show absolute
accuracy at each bitdepth.

The results show an increase in accuracy when the bit depth increases. For the 3-layer CNN in
Figure 4a there is a dip in accuracy at 6 bits for the MNIST dataset. This differs from all other
results of the other models and datasets, where the accuracy drops constantly with each bit drop.
In general the accuracy drops faster for more complicated models. The exceptions are with 3-layer
CNN on MNIST and for AlexNet and VGG16 on CIFAR-100.

Overall the models show better performance for low bits when the dataset is less complicated.
Also the accuracy drop seems steeper when the performance of the model is better. Only AlexNet

11

shows a drop in accuracy when quantizing to 8 bits on CIFAR-100, the rest of the models maintain
their accuracy to 8 bits or even lower.

5.2 SNN

When a spiking neural network is presented with data, the membrane potential starts at 0. Then
it takes some time before neurons start firing. This process is made visible with the stepwise accu-
racy lines in Figure 5. We observe that this line is a lot less stable than the accumulated accuracy,
representing the accuracy of the class predicted by the accumulated timesteps. Also the maxi-
mum accuracy achieved by the accumulated accuracy is higher. For CNN on MNIST, the stepwise
accuracy is especially unstable.

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

CNN

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

CNN

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

CNN

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

CNN

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

AlexNet

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

AlexNet

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

AlexNet

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

AlexNet

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

VGG16

(a) MNIST

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

VGG16

(b) CIFAR10

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

VGG16

(c) CIFAR100

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

VGG16

(d) IMAGENET

Accumulated accuracy

Stepwise accuracy

Target accuracy

Figure 5: Absolute SNN accuracy for CNN, AlexNet and VGG on MNIST, CIFAR-10, CIFAR-100
and ImageNet. The graphs show a comparison between the absolute stepwise and absolute accu-
mulated accuracy for each combination of model and dataset. See section 6 for further explanation.

For all models the accuracy starts at random and increases over time to reach a peak. After
the peak, performance drops a little and converges at a lower point. For AlexNet the peak for top
accuracy is not as different as for the other models. For the CNN on MNIST there is also a dip in
performance just before reaching its peak accuracy. The shape is somewhat the same as for the dip
in accuracy noticed with quantization.

For most of the model-dataset combinations, the performance of the SNN is not level with the
performance of the ANN. Only for the deeper models is this target reached, although this is limited

12

to the MNIST dataset. VGG16’s SNN remains close to the targeted accuracy for all of the datasets,
staying within a 10% error margin.

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

Timesteps/Accuracy

(a) CNN

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps
A
cc
u
ra
cy

Timesteps/Accuracy

(b) AlexNet

0 20 40 60 80100120 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timesteps

A
cc
u
ra
cy

Timesteps/Accuracy

(c) VGG16
MNIST

CIFAR10

CIFAR100

IMAGENET

Figure 6: Absolute accumulated SNN accuracy at different timesteps for CNN, AlexNet and VGG16
on MNIST, CIFAR-10, CIFAR-100 and ImageNet.

In Figure 6 the accumulated accuracy of the different SNNs is shown. Here the four datasets
are compared to each other in terms of their performance. For CNN, the performance is shown to
decrease with the complexity of the data. AlexNet and VGG16 seem to struggle with CIFAR-100
compared to ImageNet. Both show lower accuracy on CIFAR-100 than on ImageNet. The gap to
CIFAR-10 is significant for the smaller models, but for VGG16 this gap is relatively small. VGG16
does need more time to have accurate predictions as opposed to CNN, which has reasonable results
almost from the start. AlexNet fits in between. For all the models, it can be seen that the peak
shifts to the right when the dataset gets more difficult.

5.3 Relation

For the relationship between bit depth and spike train length, the relative accuracy to the previous
peaks is measured following the measurements in Equation 11 and 12. The SNN’s accuracy is
also measured relative to the target accuracy. Where the target accuracy is the accuracy of the
unquantized 32-bit ANN. The results of this comparison are shown in Table 3, 4 and 5.

In Figure 7 the bit depth is linked to the number of timesteps for every dataset for each model.
It shows the number of time steps needed for approximately the same accuracy drop as with
quantization, the tables in the Appendix show which accuracy drops are matched. This gives insight
into how the different datasets impact the relationship between bits and timesteps. Also the impact
of different models on the same datasets is shown in Figure 8. This gives a comparison of the impact
of using different models.

In Figure 7 is shown that for AlexNet and VGG16, the models need more timesteps for the
more complex datasets and fewer for the easier datasets. CNN shows deviant behavior, needing
more timesteps for MNIST than the more complex CIFAR datasets. When the timesteps do not
increase anymore with higher bit depths, it means the model does not need more timesteps to
achieve the same accuracy drop as quantization.

13

In Figure 8 Alexnet needs the most timesteps for all datasets except for MNIST where it needs
the least. Also for CIFAR-100 AlexNet shows a lower timestep to have the same accuracy drop as
with 8 bits. VGG16 is for almost all of the models in between in terms of needed timesteps. Only
for ImageNet does VGG need the fewest timesteps.

012345678 16 32
0

5

10

15

20

25

30

35

40

45

50

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(a) CNN

012345678 16 32
0

20

40

60

80

100

120

140

160

180

200

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(b) AlexNet

012345678 16 32
0

5

10

15

20

25

30

35

40

45

50

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(c) VGG16

MNIST

CIFAR-10

CIFAR-100

ImageNet

Figure 7: Relation between quantization bit depth and SNN time steps for different models

012345678 16 32
0

5

10

15

20

25

30

35

40

45

50

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(a) MNIST

012345678 16 32
0

5

10

15

20

25

30

35

40

45

50

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(b) CIFAR-10

012345678 16 32
0

10

20

30

40

50

60

70

80

90

100

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(c) CIFAR-100

012345678 16 32
0

20

40

60

80

100

120

140

160

180

200

Bitdepth

T
im

es
te
p
s

Bitdepth/Timesteps

(d) ImageNet

CNN

AlexNet

VGG16

Figure 8: Relation between quantization bit depth and SNN time steps for different datasets

6 Discussion

6.1 Quantization

The quantization results in Figure 4 show an increase in performance when the dataset gets easier.
Only for AlexNet and VGG the hardest dataset does not have the lowest accuracy. This might
be because for AlexNet and VGG networks pretrained on ImageNet are used. These parameters

14

available in the PyTorch torchvision library are known for their state-of-the-art performance. For
CIFAR-100, CIFAR-10 and MNIST, such pretrained parameters are not readily available. Probably
because not all tricks for state-of-the-art performance were used while training AlexNet and VGG
on CIFAR-10, CIFAR-100 and MNIST the performance of CIFAR-100 will not go beyond that of
ImageNet. In theory this should not be the case and CIFAR-100 should outperform ImageNet. For
VGG it can be seen that the bit depth where the accuracy starts to drop is shifted more to the
left for CIFAR-100, indicating that VGG needs less information for CIFAR-100 images to correctly
classify them. AlexNet being a smaller network does need more information from the bits even
though the problem is easier. For the custom build CNN no pretrained parameters were available
of course. Therefore all of the datasets have been trained on in the same manner, resulting in the
expected placement of the curves. Only for MNIST there is a weird kink visible in Figure 6 where
the model improves for a lower bit depth. This probably has to do with the nature of the MNIST
dataset which consists of simple grayscale images. The rounding that happens in quantization might
round a grey pixel on an edge the right way making the image less noisy after the first layer. The
simplicity of MNIST provides space for this, more complex datasets would have more complex
pixels where this effect would not appear. The other models also do not show this effect due to
their higher complexity which makes them more robust to this kind of rounding anomalies.

6.2 SNN accuracy

Following the results of the previous section it is observed that the spiking neural networks peak in
performance before plateauing at a lower level than the peak. This might be explained by the firing
rates of the internal neurons. The membrane potential V l

i (t) is set to 0 at the start of execution.
The first neurons to fire are those with high frequencies. After them the lower frequency nodes
start firing. There are probably more low-frequency neurons than high-frequency ones. Due to their
lower frequency, their spikes contribute less often to the output. When the low frequencies are
also diverse in their frequencies, the low-frequency neurons all start to fire at different moments.
Each neuron has information encoded in its firing rate, although some nodes might have suffered a
conversion error and produce some noise. So in the first timesteps, only the high-frequency nodes
fire their output, leading to the lower starting accuracy, and then more and more neurons will start
to fire until the most frequent frequency. This explains why the stepwise accuracy does not exceed
a certain value and the accumulated accuracy converges to a point lower than the peak as seen in
Figure 5. As to why the accuracy dips after the peak and stabilizes at a lower accuracy, this also
has to do with oversaturation of the spike trains. When the low-frequency output nodes also start
to fire, too many spikes fire at the same time for the wrong classes, making the SNN less certain
about its prediction in the long run. This has the consequence that the accuracy stabilizes at a
lower level.

6.2.1 Stepwise accuracy

For CNN on MNIST again an anomaly is observed. The single-timestep accuracy is very variable
compared to the single-timestep accuracy of the other datasets and models. This means that the
CNN on MNIST is very susceptible to noise. Since the low accuracy timesteps only occur after more
than 20 timesteps it is probably caused by the low frequency neurons causing noise when they start
to fire after 20 timesteps. With MNIST some classes are quite similar. In cases where the CNN is in
doubt which of the two classes is the correct where it under normal circumstances it would choose
the right one it can be easily misled when looking at the single timestep accuracy.

15

What is curious to see is that the performance taken at a single timestep reaches almost the
same height as the accumulated performance, which uses all information from the earlier timesteps.
This could mean that the SNN does not necessarily need the information gained from the earlier
time steps to make accurate predictions. Meaning that for inference on an SNN, the first couple of
timesteps should not be measured since the internal state of the nodes is not yet adapted to the
input they are given. This could also mean that a single timestep is enough to make a reasonably
accurate prediction after discarding the first few timesteps. Following this, one could argue that the
usual method of integrating over timesteps is not per se needed, especially when looking for fast
inference. This insight is one of the more important observations of this work.

6.2.2 Overestimation in theory

All of the models have been trained using 32-bit floating-point decimals. During the inference it
is shown that 16 bits and in most cases even 8 bits are enough for level performance with the
unquantized 32-bit ANN. In Figure 7, it is clear that the upper bound of 2b − 1 timesteps is an
overestimate. Given that the models need at least 8-bit floats, all of the SNN models reach their
limit in terms of accuracy before the theoretical time step limit of 28 = 265 is reached. Some of the
models even show a significant increase in accuracy before 20 timesteps. This is possible because a
spiking model might not need all timesteps to work accurately for a dataset. This means the theory
of T = 2b − 1 dictates that the model can be quantized to b = log2(T + 1) bits where T is the
number of timesteps needed for the desired accuracy. This value for T can be read from the tables
in the appendix or Figure 7. This is a useful finding when wanting to know to how far the bit depth
of a model can be theoretically reduced before losing accuracy.

6.3 Relation

Looking at the relational graph in Figure 7 AlexNet needs the most timesteps to approximate the
bit depths accuracy for most of the datasets. This means that for these datasets AlexNet is less
efficient in conversion. AlexNet has 5 convolutional layers where the first layer has a 11x11 kernel
and the second a 5x5 kernel. This makes AlexNet aware of more surrounding pixels compared to
CNN and VGG, which use only 3x3 kernels. Because of this AlexNet needs more time before the
SNN converges. This also explains why the curves for AlexNet in Figure 6 are more gradual and
have less of a peak than the other two models have.

6.3.1 Formalization of the relation

Judging from the relationship curves in Figure 7 and 8 the best fit for the relation is a logistic
function.

L

1 + e−k(x−x0)
(13)

Where L determines the height of the curve, k the steepness and x0 determines the midpoint of
the curve. A higher value for L means that the SNN needs a lot of timesteps to achieve the best
performance it can. The midpoint of the curve in combination with the steepness tells how well the
SNN can keep up with the quantized ANN in terms of relative error. The curve depicts where the
relative quantization error is equal to the relative conversion error. When the curve has plateaued
it means that increasing the number of bits no longer needs more timesteps to have equal relative
error. At this point the ANN and SNN do not improve anymore. On the steep part of the curve

16

the SNN needs more timesteps to reach the same relative performance as the quantized ANN. This
means that at this point the ANN improves its performance fast. When the curve is steep it means
that the SNN is less capable of keeping up with the quantized ANN. However the SNN can still
reach the same relative error as the quantized ANN. Intuitively more difficult datasets will result
in higher values for L. This is not necessarily seen in the results in Table 2. Therefore it is hard to
make conclusions about the appropriate parameters for each dataset and model.

Fitting the logistic curve to the data in Figure 8 and 7 results in the parameter values in Table 2.

Dataset Model L x0 k

MNIST
Conv 29.2060 4.7283 1.6950
AlexNet 6.0645 2.7580 2.9648
VGG 15.7468 3.0697 1.5017

CIFAR-10
Conv 11.1355 4.2891 1.1386
AlexNet 35.5318 6.0122 0.8231
VGG 17.1081 3.0278 1.8934

CIFAR-100
Conv 13.5143 4.9928 1.3899
AlexNet 74.7281 8.1436 1.2214
VGG 41.6989 5.1216 0.8059

ImageNet
Conv 40.9026 6.4469 1.2321
AlexNet 155.3011 6.9809 1.1463
VGG 30.3218 5.6700 0.7426

Table 2: Estimated parameters (L, x0, and k) for each dataset and model.

If we analyze the relation between bit depth and time steps from a dataset point of view the
time steps corresponding to bit depths can be read in Figure 8. This gives for MNIST for 3-layer
CNN 23 steps for 5 bits for reasonable performance AlexNet is still reasonable with 3 bits and this
corresponds to 5 steps. This already shows how different the results are for different models on the
same dataset. AlexNet is almost twice as large as the CNN but the needed timesteps at the same
bit depth are not nearly twice as large. This rules out a linear relation between bit depth, time
steps, and the number of layers. Looking at the size of the datasets there is a doubling in timesteps
for AlexNet and VGG16 going from CIFAR-10 to CIFAR-100. These datasets are comparable since
they come from the same set of data and only differ in the number of classes. AlexNet also needs
twice as many bits to reach the peak performance in quantization. This corresponds to the doubling
of the time steps. Suggesting a linear relation between the number of classes of a dataset of the same
complexity. This means that increasing the classes by a 10 fold the number of timesteps to reach
maximum performance is approximately doubled. This is translated in the relation in Equation 13
with L. For AlexNet this trend continues to ImageNet where the number of timesteps double again
when moving to 1000 classes. Formalizing this trend into the equation would not result in correct
results for the other models.

The equation thus gives a formalization of the relation seen in the relational curves. However,
ideally, one would want to use the formula to determine the number of timesteps needed for the same
relative error as a quantized ANN, given the bit depth. With this formula the function parameters
need to be filled in but the current results do not give the needed information to fill in all of these
values correctly for any unseen convolutional model and dataset.

17

7 Conclusion and Further Research

In conclusion, the relation between bit depth and SNN timesteps found in theory is more or less
correct. However the actual relation rises not as steep as described by the theoretical relation.
Also the lowest possible bit depth needs to be used. Meaning the bit depth at which there is no
or negligible loss in performance. Furthermore we found that the first timesteps do not give more
information but rather slow down the inference and should therefore be discarded until descent
performance is reported in a single timestep.

There is not enough information to determine an exact relation between quantization and SNN
timesteps. Although we found that the bit depth of an ANN can be used as a heuristic for the
number of timesteps when the lowest performing bit depth is taken into account. In addition, more
insight into what has an influence on the relation is gained. For quantization there are no dynamic
properties, and the accuracy drop is based on the model, dataset and initial accuracy. SNN accuracy
depends on the same variables and more. The method of conversion for ANN-to-SNN probably has
a large impact on the resulting SNN performance. For this, more in-depth research into different
conversion methods is needed.

The aim of this research was to investigate the relation between bit depth and time steps. It has
been made clear that both quantization and SNN inference roughly follow the same shape regarding
accuracy. The steepness and plateauing level of the curve depend, for both, on the depth of the
model and the complexity of the dataset.

This research is limited to convolutional models at the moment. Due to the difference in archi-
tecture of recent models, it is interesting to expand on the research of ANN to SNN conversion to
other components frequently used in artificial neural networks, like transformers and recurrent neu-
ral networks. Seeing the difference in conversion performance and relation for the different models
on the same datasets leads us to believe that the components used in an ANN have a significant
impact. Therefore, when there are more conversion possibilities, it is also good to reproduce this
research on these converted models to prevent overestimating the number of time steps needed.

References

[1] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Naka-
mura, P. Datta, G.-J. Nam, et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE transactions on computer-aided design of integrated
circuits and systems, 34(10):1537–1557, 2015.

[2] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory
and learning-to-learn in networks of spiking neurons. Advances in neural information processing
systems, 31, 2018.

[3] T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang. Optimal ann-snn conversion for high-
accuracy and ultra-low-latency spiking neural networks. arXiv preprint arXiv:2303.04347,
2023.

[4] Y. Cao, Y. Chen, and D. Khosla. Spiking deep convolutional neural networks for energy-efficient
object recognition. International Journal of Computer Vision, 113:54–66, 2015.

[5] G. Datta, Z. Liu, J. Diffenderfer, B. Kailkhura, and P. A. Beerel. Timesteps meet bits: Low-
latency, accurate, & energy-efficient spiking neural networks with ann-to-snn conversion. 2024.

18

[6] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, et al. Loihi: A neuromorphic manycore processor with on-chip learning. Ieee
Micro, 38(1):82–99, 2018.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[8] S. Deng and S. Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. arXiv preprint arXiv:2103.00476, 2021.

[9] S. Deng, Y. Li, S. Zhang, and S. Gu. Temporal efficient training of spiking neural network via
gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

[10] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer. Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing. In 2015 International
joint conference on neural networks (IJCNN), pages 1–8. ieee, 2015.

[11] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci. Conversion of artificial
recurrent neural networks to spiking neural networks for low-power neuromorphic hardware.
In 2016 IEEE International Conference on Rebooting Computing (ICRC), pages 1–8. IEEE,
2016.

[12] W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and
Y. Tian. Spikingjelly: An open-source machine learning infrastructure platform for spike-based
intelligence. Science Advances, 9(40):eadi1480, 2023.

[13] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian. Deep residual learning in
spiking neural networks. Advances in Neural Information Processing Systems, 34:21056–21069,
2021.

[14] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The spinnaker project. Proceedings of
the IEEE, 102(5):652–665, 2014.

[15] M. Guo, Q. Li, J. Cheng, L. Chen, et al. Qac: Quantization-aware conversion for mixed-timestep
spiking neural networks. International Conference on Learning Representations, 2025.

[16] S. Hisaharo, Y. Nishimura, and A. Takahashi. Optimizing llm inference clusters for enhanced
performance and energy efficiency. Authorea Preprints, 2024.

[17] Y. Hu, Q. Zheng, X. Jiang, and G. Pan. Fast-snn: Fast spiking neural network by con-
verting quantized ann. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(12):14546–14562, 2023.

[18] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks.
Advances in neural information processing systems, 29, 2016.

[19] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

19

[21] L. Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une
polarisation. Journal de Physiologie et de Pathologie Générale, 9:620–635, 1907.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

[23] C. Li, L. Ma, and S. Furber. Quantization framework for fast spiking neural networks. Frontiers
in Neuroscience, 16:918793, 2022.

[24] Y. Li, Y. Lei, and X. Yang. Spikeformer: a novel architecture for training high-performance
low-latency spiking neural network. arXiv preprint arXiv:2211.10686, 2022.

[25] S. Lian, J. Shen, Q. Liu, Z. Wang, R. Yan, and H. Tang. Learnable surrogate gradient for
direct training spiking neural networks. In IJCAI, pages 3002–3010, 2023.

[26] A. Lotfi Rezaabad and S. Vishwanath. Long short-term memory spiking networks and their
applications. In International Conference on Neuromorphic Systems 2020, pages 1–9, 2020.

[27] W. Maass. Networks of spiking neurons: the third generation of neural network models. Neural
networks, 10(9):1659–1671, 1997.

[28] C. Mayr, S. Hoeppner, and S. Furber. Spinnaker 2: A 10 million core processor system for
brain simulation and machine learning-keynote presentation. In Communicating Process Ar-
chitectures 2017 & 2018, pages 277–280. IOS Press, 2019.

[29] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Pearson, Upper Saddle
River, NJ, 3rd edition, 2010. See Section 3.8, ”Quantization and Quantization Noise”, pp. 216–
224.

[30] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T. Sommer, and
M. Davies. Efficient neuromorphic signal processing with loihi 2. In 2021 IEEE Workshop on
Signal Processing Systems (SiPS), pages 254–259. IEEE, 2021.

[31] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen, and
B. Linares-Barranco. Mapping from frame-driven to frame-free event-driven vision systems by
low-rate rate coding and coincidence processing–application to feedforward convnets. IEEE
transactions on pattern analysis and machine intelligence, 35(11):2706–2719, 2013.

[32] P. Ramesh and G. Srinivasan. Pascal: Precise and efficient ann-snn conversion using spike
accumulation and adaptive layerwise activation. arXiv preprint arXiv:2505.01730, 2025.

[33] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu. Conversion of continuous-
valued deep networks to efficient event-driven networks for image classification. Frontiers in
neuroscience, 11:682, 2017.

[34] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy. Going deeper in spiking neural networks:
Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

[35] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

20

[36] J. Stojkovic, E. Choukse, C. Zhang, I. Goiri, and J. Torrellas. Towards greener llms: Bringing
energy-efficiency to the forefront of llm inference. arXiv preprint arXiv:2403.20306, 2024.

[37] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers.
Finn: A framework for fast, scalable binarized neural network inference. In Proceedings of the
2017 ACM/SIGDA international symposium on field-programmable gate arrays, pages 65–74,
2017.

[38] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi. Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

[39] M. Yao, J. Hu, Z. Zhou, L. Yuan, Y. Tian, B. Xu, and G. Li. Spike-driven transformer.
Advances in neural information processing systems, 36, 2024.

[40] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[41] Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan. Spikformer: When spiking
neural network meets transformer. arXiv preprint arXiv:2209.15425, 2022.

21

8 Appendix

Convolutional model Bitdepth Rel. Acc. Accumulated Rel. Acc. Rel. Acc. to actual Timestep Rel. Acc. Rel. Acc. to actual

MNIST

32 1.000 30 1.000 0.792 21 1.000 0.732
16 1.000 30 1.000 0.792 21 1.000 0.732
8 1.000 30 1.000 0.792 21 1.000 0.732
7 0.997 27 0.997 0.790 21 1.000 0.732
6 0.956 23 0.951 0.753 19 0.972 0.711
5 0.967 23 0.951 0.753 19 0.972 0.711
4 0.709 2 0.750 0.594 2 0.807 0.590
3 0.683 2 0.750 0.594 2 0.807 0.590
2 0.177 0 0.119 0.095 0 0.129 0.095
1 0.104 0 0.119 0.095 0 0.129 0.095

CIFAR-10

32 0.999 11 0.999 0.877 17 0.999 0.791
16 0.999 11 0.999 0.877 17 0.999 0.791
8 1.000 12 1.000 0.877 21 1.000 0.792
7 0.997 10 0.997 0.874 17 0.999 0.791
6 0.994 9 0.992 0.870 16 0.994 0.788
5 0.975 8 0.980 0.860 9 0.979 0.776
4 0.867 5 0.852 0.747 4 0.829 0.656
3 0.444 2 0.460 0.403 2 0.506 0.401
2 0.152 0 0.173 0.152 0 0.192 0.152
1 0.152 0 0.173 0.152 0 0.192 0.152

CIFAR-100

32 0.999 10 0.998 0.735 13 1.000 0.655
16 1.000 14 1.000 0.737 13 1.000 0.655
8 0.997 13 0.997 0.734 13 1.000 0.655
7 0.994 12 0.993 0.732 13 1.000 0.655
6 0.993 12 0.993 0.732 13 1.000 0.655
5 0.937 6 0.923 0.680 6 0.931 0.610
4 0.681 3 0.717 0.529 3 0.764 0.500
3 0.250 1 0.169 0.125 1 0.188 0.123
2 0.031 0 0.044 0.033 0 0.050 0.033
1 0.031 0 0.044 0.033 0 0.050 0.033

ImageNet

32 1.000 40 1.000 0.804 27 1.000 0.646
16 1.000 40 1.000 0.804 27 1.000 0.646
8 0.996 38 0.996 0.801 23 0.995 0.643
7 0.943 25 0.943 0.759 18 0.954 0.616
6 0.739 15 0.752 0.605 12 0.764 0.494
5 0.386 7 0.395 0.318 6 0.371 0.240
4 0.113 2 0.111 0.089 2 0.129 0.083
3 0.016 0 0.020 0.016 0 0.024 0.016
2 0.009 0 0.020 0.016 0 0.024 0.016
1 0.009 0 0.020 0.016 0 0.024 0.016

Table 3: The relation between bitdepth and timesteps in VGG16 for ImageNet-1k, CIFAR-10 and
CIFAR-100

22

AlexNet Bitdepth Rel. Acc. Accumulated Rel. Acc. Rel. Acc. to actual Timestep Rel. Acc. Rel. Acc. to actual

MNIST

32 1.000 6 1.000 0.997 6 1.000 0.997
16 1.000 6 1.000 0.997 6 1.000 0.997
8 1.000 6 1.000 0.997 6 1.000 0.997
7 1.000 6 1.000 0.997 6 1.000 0.997
6 0.999 6 1.000 0.997 6 1.000 0.997
5 0.999 6 1.000 0.997 6 1.000 0.997
4 0.992 6 1.000 0.997 6 1.000 0.997
3 0.924 5 0.966 0.963 5 0.980 0.977
2 0.114 0 0.115 0.114 0 0.115 0.114
1 0.099 0 0.115 0.114 0 0.115 0.114

CIFAR-10

32 1.000 34 1.000 0.969 16 1.000 0.918
16 1.000 34 1.000 0.969 16 1.000 0.918
8 1.000 34 1.000 0.969 16 1.000 0.918
7 0.993 22 0.993 0.962 15 0.991 0.909
6 0.973 16 0.973 0.943 12 0.974 0.894
5 0.875 11 0.872 0.844 9 0.858 0.787
4 0.517 7 0.483 0.468 7 0.607 0.557
3 0.172 5 0.203 0.197 4 0.152 0.139
2 0.127 0 0.127 0.123 0 0.134 0.123
1 0.123 0 0.127 0.123 0 0.134 0.123

CIFAR-100

32 0.999 65 0.998 0.556 30 1.000 0.415
16 1.000 75 1.000 0.557 30 1.000 0.415
8 0.880 33 0.883 0.492 18 0.875 0.363
7 0.575 16 0.573 0.319 10 0.595 0.247
6 0.180 6 0.197 0.109 4 0.157 0.065
5 0.029 0 0.043 0.024 0 0.058 0.024
4 0.021 0 0.043 0.024 0 0.058 0.024
3 0.025 0 0.043 0.024 0 0.058 0.024
2 0.024 0 0.043 0.024 0 0.058 0.024
1 0.024 0 0.043 0.024 0 0.058 0.024

ImageNet

32 1.000 157 1.000 0.519 76 1.000 0.410
16 1.000 157 1.000 0.519 76 1.000 0.410
8 0.992 113 0.992 0.515 75 0.992 0.407
7 0.975 83 0.975 0.506 45 0.976 0.400
6 0.895 43 0.894 0.464 25 0.894 0.366
5 0.625 8 0.626 0.325 6 0.629 0.258
4 0.135 4 0.012 0.006 4 0.017 0.007
3 0.003 0 0.003 0.002 0 0.004 0.002
2 0.002 0 0.003 0.002 0 0.004 0.002
1 0.002 0 0.003 0.002 0 0.004 0.002

Table 4: The relation between bitdepth and timesteps in AlexNet for ImageNet-1k, CIFAR-10 and
CIFAR-100

23

VGG16 Bitdepth Rel. Acc. Accumulated Rel. Acc. Rel. Acc. to actual Timestep Rel. Acc. Rel. Acc. to actual

MNIST

32 1.000 18 1.000 0.997 14 1.000 0.996
16 1.000 18 1.000 0.997 14 1.000 0.996
8 1.000 18 1.000 0.997 14 1.000 0.996
7 0.999 14 0.999 0.997 13 0.999 0.995
6 0.999 14 0.999 0.997 13 0.999 0.995
5 0.998 13 0.998 0.996 13 0.999 0.995
4 0.991 12 0.994 0.992 12 0.995 0.991
3 0.878 11 0.932 0.930 11 0.938 0.934
2 0.101 0 0.115 0.115 0 0.115 0.115
1 0.099 0 0.115 0.115 0 0.115 0.115

CIFAR-10

32 1.000 19 1.000 0.919 18 1.000 0.900
16 1.000 19 1.000 0.919 18 1.000 0.900
8 0.999 18 0.998 0.917 18 1.000 0.900
7 0.994 17 0.994 0.914 15 0.994 0.895
6 0.988 16 0.991 0.911 15 0.994 0.895
5 0.961 15 0.974 0.896 14 0.979 0.881
4 0.867 14 0.930 0.855 13 0.909 0.818
3 0.197 11 0.162 0.149 11 0.242 0.218
2 0.121 0 0.131 0.120 0 0.134 0.120
1 0.120 0 0.131 0.120 0 0.134 0.120

CIFAR-100

32 0.999 40 1.000 0.850 23 1.000 0.782
16 0.999 40 1.000 0.850 23 1.000 0.782
8 1.000 40 1.000 0.850 23 1.000 0.782
7 0.996 37 0.996 0.846 23 1.000 0.782
6 0.974 24 0.975 0.829 19 0.973 0.760
5 0.900 19 0.909 0.772 17 0.907 0.709
4 0.512 13 0.537 0.456 13 0.581 0.454
3 0.049 11 0.066 0.056 10 0.024 0.019
2 0.016 0 0.020 0.017 0 0.022 0.017
1 0.017 0 0.020 0.017 0 0.022 0.017

ImageNet

32 1.000 30 1.000 0.881 20 1.000 0.832
16 1.000 30 1.000 0.881 20 1.000 0.832
8 0.999 28 0.999 0.880 18 0.998 0.830
7 0.990 20 0.990 0.872 16 0.990 0.823
6 0.936 15 0.944 0.832 14 0.945 0.786
5 0.700 13 0.770 0.678 13 0.830 0.690
4 0.079 11 0.055 0.048 11 0.075 0.062
3 0.002 0 0.002 0.001 0 0.002 0.001
2 0.001 0 0.002 0.001 0 0.002 0.001
1 0.001 0 0.002 0.001 0 0.002 0.001

Table 5: The relation between bitdepth and timesteps in VGG16 for ImageNet-1k, CIFAR-10 and
CIFAR-100

24

	Introduction
	Background and Related Work
	Spiking Neural Networks
	Conversion
	Quantization
	Quantization in conversion

	Research Question
	Method
	Materials
	Framework
	Limitations of the framework
	Models and data

	Experimental Setup / Approach
	Measures

	Experimental Results
	Quantization
	SNN
	Relation

	Discussion
	Quantization
	SNN accuracy
	Stepwise accuracy
	Overestimation in theory

	Relation
	Formalization of the relation

	Conclusion and Further Research
	Appendix

