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Chapter 1

Introduction

1.1 Abstract

Wildfires have become one of most frequent and destructive environmental problem caused by abnormal
weather conditions and predicting such events remains a major challenge, particularly in regions with
very limited labeled wildfire data. This study explores the use of unsupervised learning techniques
mainly LSTM autoencoders, Fourier regression model, and ARIMA models to detect anomalous
patterns in weather data that may lead to wildfire occurrences. Instead of relying on past fire labels,
these models are trained fully on normal weather behavior by training non wildfire data, allowing
the models to flag unusual deviations across multiple climate features. The performance of each
approach is evaluated using historical wildfire dates, revealing the importance of seasonal information
and strengths and weakness of each models. The findings in the study highlights the potential of
unsupervised methods in finding the anomalies in weather data that can lead to wildfire

Keywords: Wildfire Detection, Unsupervised Learning, Anomaly Detection, LSTM Autoencoder,
Fourier Regression, ARIMA, Weather Forecast Data, Time Series Analysis, Climate Anomalies, Early
Warning System, Latent Space Representation, Reconstruction Error, Seasonal Decomposition, Residual
Modeling, Transfer learning

1.2 Introduction

In the recent years, wildfire events have become one of the most destructive and rapidly growing natural
disaster in many countries with hot and dry climates. The recent wildfires in Northern California in
2024 caused over 50,000 acres of fire within a matter of days which had led to mass evacuations and
confused local firefighting situations [3]. The extreme heatwaves and dry winds made the situation
worser, this incident shows the strength in the need for an early wildfire detection and response
because of the rapidly changing environmental conditions now a days. This increase in intensity and
frequency can be attributed to a variety of causes, including climate change, drought problems and
other environmental causes. Most of the time the exact triggers for these wildfires are not identified
properly. These wildfires not only harm the human lives and human made infrastructures but also have
a very bad effect on biodiversity, habitats and life in general. This has become a big issue, highlighting
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the need to address these climate related challenges. Since these environmental issues are growing,
the need for smarter and more data oriented methods to support early detection also increases. As
we look traditional wildfire detection systems mostly rely on heavy satellite imagery and field reports.
While these techniques have been valuable but they are often reactive and mostly reporting fire events
after they have already begun spreading [10]. This delay can cause evacuation time or prevention
measures and by that time we have lost lot of life and habitat. Moreover, traditional systems struggle
to offer early warnings especially in fast changing weather conditions. The weather forecast data is
rich and continuous set of features like temperature, humidity, wind, solar radiation, and soil moisture
that are often very correlated with fire behavior[1]. So these time series signals can be used to detect
unusual environmental patterns before a fire breaks out and can stop from a big destruction to life
and habitat. Many recent studies have explored the use of machine learning in wildfire detection.
However, most of these approaches are supervised learning, which requires labeled historical wildfire
data showing either the wildfire happened or not. While these supervised methods such as random
forests, support vector machines, and other deep learning classifiers have been shown to be effective
but they come with certain limitations like inability in transfer learning from one region to another,
incomplete wildfire labels, delayed data labeling which takes lot of time for new wildfire labeled data
to publish. This often makes the model struggle while training because we can’t add labels when its
missing [8]. For example, A model trained on labeled wildfire data from New South Wales in Australia
may perform poorly when applied to data from Western Australia, due to environmental and behavioral
differences in the regions, here we can aim to train a model to check whether the unsupervised model
can learn a general threshold or general residual for transfer learning at least in that same country.
Moreover, many wildfires occur in unpredictable ways, caused by abnormal environmental conditions
that the traditional classification models may not have learned while training which makes it harder
to classify wildfires. These shows need for more flexible approaches ones that can detect abnormal
weather behavior without a need to know in advance[7]. Some research has begun to investigate
unsupervised learning methods for wildfire detection. One such Unsupervised models developed to
dynamically assess wildfire risk by learning contextual weather patterns over time was the (Context-
Based Fire Risk) CBFR model to detect abnormal environmental conditions without requiring labeled
fire data [9] Still, there is a lack of comparative studies that evaluate multiple unsupervised approaches
with different strength and different behaviors and test their practical applicability in transfer learning
without the help of labeled wildfire data and finding the limitations of univariate and multivariate
models to see how well they can be used for wildfire detections or as an early detection system.
This thesis proposes an unsupervised approach where we explore the capability of unsupervised learning
[13] methods to detect anomalous weather conditions that can lead to wildfires without relying on
labeled wildfire data during training. In supervised models, both input data and labels are required
during training. As a result a model trained in one region may not perform well elsewhere unless it is
again trained with the labels of that specific region. So here we use unsupervised models which learn
from normal weather data. If a model is trained to understand that normal weather patterns, it can
potentially identify anomalies when weather variables with larger reconstruction errors shows and it
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can apply to any region with similar weather inputs [11]. This design choice is intentional because our
goal is to test how far one can go using unsupervised detection methods alone, especially in situations
where labels are unavailable or inconsistent. By learning the structure of normal weather data, we aim
to detect deviations from normal weather that might correspond to dangerous or fire risk conditions
without explicitly showing the model.

1.3 Research Question

The central research question guiding this thesis is:

Can unsupervised learning methods applied to weather related time-series data effectively
detect anomalous weather conditions like wildfires ?

To explore this, the following sub-questions are considered:

• Can autoencoders trained on multivariate time series learn normal weather patterns and identify
sequences that deviate from them?

• How effective are uni-variate models in capturing anomalies across individual weather features?

• How do these unsupervised methods compare in their ability to flag wildfire-relevant anomalies
across time and geographic regions?

1.4 Method Overview

To address these questions, this study explores and compares three unsupervised anomaly detection
methods:

• LSTM Autoencoder: A neural network designed to reconstruct sequences of weather forecast
features. High reconstruction errors are treated as anomalies since the model can’t reconstruct
which may indicate wildfire risk conditions[4].

• ARIMA-based Anomaly Detection: Each weather feature is modeled using classical time-
series analysis. If forecasted values deviate beyond a pre-defined threshold, these are flagged as
anomalies.

• Fourier Series Regression: A seasonal regression framework using Fourier series terms to
model expected seasonal variation in features. High residuals between predicted and actual
values indicate unusual weather behavior.

All three models are tested using real-world Australian weather datasets. Known wildfire dates are
used for evaluation only not during model training to determine how well each method aligns with real
fire events. This allows us to assess the performance of unsupervised anomaly detectors in capturing
wildfire related weather deviations.
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Chapter 2

Data

2.1 Data Description

For this research we are using using three datasets: a historical record of wildfire activities happend
across seven regions of Australia namely New South Wales (NSW), Northern, Territory (NT), Queensland
(QL), South Australia (SA), Tasmania (TA), Victoria (VI) and Western Australia (WA) and their
corresponding weather information and Vegetation information. All these dataset have information
about all the seven regions of Australia. These dataset can help in our research to explore the unusual
behavior of weather pattern causing these destructive wildfires since it has wildfire information and its
corresponding weather information. This approach allows us to assess how well unsupervised models
are since the models are trained entirely without labeled wildfire data

2.1.1 Historical Weather Dataset

Table 2.1: Details of Weather Features

Feature Category Feature Description Range and Unit
Date Time span of daily weather

records
2005-01-01 to 2021-01-23

Region Australian states covered in the
dataset

NSW, NT, QL, SA, VI, WA,
TA

Precipitation Min, max, mean, and variance
of daily precipitation

0 – 509.83 mm/day

Relative Humidity Min, max, mean, and variance
of daily relative humidity

0 – 509.83 mm/day

Soil Water Content Min, max, mean, and variance
of soil moisture content

0 – 0.52 m3/m3

Solar Radiation Min, max, mean, and variance
of solar radiation

0.41 – 35.69 MJ/m2/day

Temperature Min, max, mean, and variance
of daily air temperature

-5.05 – 41.73 °C

Wind Speed Min, max, mean, and variance
of daily wind speed

0.25 – 24.27 m/s
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The Weather Dataset used in this study is a daily weather data which is derived from the ERA5
reanalysis product. ERA5 is developed by the European Center for Medium-Range Weather Forecasts
(ECMWF) [5]. It is widely used in climate research and weather analysis due to its consistency
and completeness, particularly in regions where direct measurements are often sparse. The weather
information is aggregated to a daily frequency where each data point or row in the dataset represents
the average weather conditions for one region in Australia among the seven regions over a single day,
starting from 01:00 UTC of that given day to 00:00 UTC of the next day. The weather variables in this
data include lot of key factors known to cause fire, such as temperature, precipitation, humidity, wind
speed, solar radiation, and soil moisture content. Temperature values in the dataset have provided
with minimum, mean, and maximum for each day. Precipitation is calculated from the total rainfall
and then converted from meters per hour to millimeters per day. Relative humidity is calculated
from temperature and dew point readings. Wind speed is calculated from easterly and northerly wind
components at a height of 10 meters. Solar radiation is the total energy from the sun and the soil
moisture is estimated for the top 0 to 7 centimeters of soil which is an important layer of the soil which
can show the speed of fire ignition and its spread, all values of all features in weather data that we
used in the study are mentioned in table2.1. All these variables in the dataset are continuous and are
present throughout the dataset which makes the dataset ideal for our wildfire anomaly detection[17].

Figure 2.1: Seasonal trends in raw temperature and precipitation values for selected regions
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2.1.2 Historical Wildfire Dataset

The wildfire data used in this study originates from IBM’s PAIRS Geo scope platform [6]. This
dataset covers wildfire activity from 2005 to 2021. While the dataset offers detailed information such
as fire area, brightness, radiative power, and other variables [18] but we are not directly using any of
these variables in our modeling process. We do not use any fire labels or any of the features of this
dataset to train or tune our models. Instead, we only extract the dates and regions where wildfires
were recorded, and then we use those dates and regions to check the corresponding dates and regions
in the weather dataset to separate wildfire and non-wildfire weather data.

2.1.3 Normalized Difference Vegetation Index

Table 2.2: Details of Normalized Difference Vegetation Index Features

Feature Category Feature Description Range and Unit
Date Time span of daily

weather records
2005-01-01 to 2021-01-23

Region Australian states covered
in the dataset

NSW, NT, QL, SA, VI,
WA, TA

Vegetation Index Min, max, mean, and
variance of NDVI

0 ≤ NDV I ≤ 1

Figure 2.2: Distribution of NDVI values by all seven regions in Australia from 2005 to 2021

The Normalized Difference Vegetation Index (NDVI) is a satellite measure that indicates the greenness
and the density of the overall vegetation of a specific area. The image below shows the NDVI average
of Australia from 1 Dec 2012 to 31 May 2013[12].
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Figure 2.3: NDVI Average of all seven regions in Australia

It is calculated based on the reflection of near infrared light where healthy vegetation means it
reflects more strongly, The values of this NDVI ranges from 0 to 1 with higher values showing dense
vegetation 2.2. Vegetation can act as a strong variable for wildfires like areas with low NDVI are more
probable to catch fire under high temperatures and high NDVI suggest vegetation is still moist which
is less probable to catch or spread fire.
The NDVI data originally were monthly values in the dataset [16] but for this research we aggregated
those values into daily values to merge with the corresponding weather data. This allows our training
data more diverse where we are not just training with atmospheric and soil conditions of each day
but also including the landscape details like vegetation. By Integrating this we aim to provide a more
complete environment behavior to our unsupervised models. This additional information can enhance
the ability for the model to find anomalies better. Larger the information means better the model can
learn.

2.2 Data Preprocessing

For our research we want all the dataset to be aligned for merging and for separating wildfire and non
wildfire weather data for training the model with proper normal weather data. The preprocessing for
weather data included handling missing values and converting the data into proper clean structure
for better usage because the original format contains multiple nested measurements across several
weather parameters. These includes statistical aggregations such as minimum, mean, maximum and
variance but it was in a long format structure that was not ideal for our data modeling. So the first
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objective of preprocessing was to restructure and standardize the dataset.

2.2.1 Wildfire and Weather dataset

The first step in this included renaming and simplifying column headers to proper labeling like
mean() and variance() which were replaced with Mean and Variance, and the area-related column
count()[unit:kmˆ2] to Area. This renaming of dataset made the work more reliable. Then we
restructured the weather data using a pivot operation. A pivot operation is a way of rearranging
the dataset so that in our case, instead of having many row values for one measurement which
was the original format, pivoting will make all the relevant values for a given day and region into a
single row, making the dataset more structured and easier to analyze and work with. The pivoted
structure is known to be more compatible with time-series modeling, which allows the models to learn
across all the weather variables at the same time. Once the structuring was done, the next step was
handling missing values, which are often common in weather datasets due to the satellite data gaps
in transmission and sensor issues. Each features were treated individually since these features have
different characteristics, so we can’t use one method for all the features. This was a challenging part
because we can’t simply add values for weather data, which will then affect the pattern of the weather
forecast data.
For precipitation variables, the missing values were filled using forward fill which means it carries the last
known value from the previous row forward. This was done based on the assumption that the rainfall
patterns will sustain over short periods and these short gaps can then be filled from the previous day
without a big change in the feature pattern. For relative humidity and temperature variables, we have
used the linear interpolation method to fill missing values. Since these are atmospheric conditions that
generally change gradually from day to day, applying linear interpolation might be a good approach.
Linear interpolation is a method that works by filling in missing value by considering a straight line
between the nearest known values before and after the long gap, which means it connects these two
points to form a smooth, proper transition. For example, if the temperature value on Monday was 28°C
and on Wednesday it was 30°C, but the value of Tuesday was missing, then the linear interpolation
method will fill Tuesday’s temperature as 29°C showing a steady increase between the two points. For
solar radiation and wind speed, we used a 3-day rolling average to smooth the data. This method
works by replacing each value with the average of its value and the two days around it. For example,
if the wind speed on Monday was 12 km/hr and Tuesday was 18 km/hr and on Wednesday 15 km/hr
then it is calculated the average of these three days which is 15 km/hr. This will create more stable
trend without removing the original time-based pattern and if any values were still missing, we used
linear interpolation like we used before for Humidity and temperature. However, some missing values
may appear at the front or end where interpolation is not possible. In such cases, we used median
values of that region to fill the gaps. All these handling of missing values are done for individual
regions. For example, missing values in the Temperature variable of Western Australia (WA) was
interpolated only using values from Western Australia, avoiding cross regional inputs. After all the
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missing variables were properly handled, the next step was to align with the wildfire dataset. Since
our approach was based on unsupervised modeling, we do not use wildfire data for training the model,
but we do need wildfire occurrence dates for evaluating the model to see how extent unsupervised
models can go. For this we took the date and region combination in the wildfire dataset with those in
the weather dataset and then separated into yeswildfire_df, which contains all the wildfire records and
nowildfire_df with all the non-wildfire records as you see in the figure 2.4. This separation ensures
that our model is only learning from normal weather data without being exposed to wildfire weather
data.

Figure 2.4: Density distribution of main features comparing wildfire and non-wildfire days

2.2.2 Vegetation dataset

For better weather information, we also wanted to include the vegetation data for each region. Since
NDVI data is a satellite-derived data it can have data gaps due to cloud cover or image loss. The
NDVI data was originally available as monthly data for each region, which means only one NDVI value
per month for one region but for our modeling, we need daily values to align with the weather dataset
for merging. To achieve this, we first created a complete daily date set which covers the entire time
of the NDVI dataset and then paired each day with every region using a MultiIndex. This allowed us
to re-index the NDVI dataset to daily data so that each Date-Region combination is there even if the
original monthly data had no value for that day. From this process most of the newly created rows
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were initially filled with missing values (NaN) and then we addressed this through linear interpolation
to fill the missing values by joining the first two know values which is the value from first month and
the value from second month per region with a gradual increase or decrease in the new values based on
the two points. Thus, we are able to generate continuous daily values for NDVI, which then will help
with the merging process. After preprocessing NDVI data our next step was to merge the NDVI data
with the weather data, For this we have to ensure that all the Date-Region combinations were perfectly
aligned. To do this we checked the common date range shared by both NDVI and weather data using
the earliest start date and latest end dates from each. Then we created a complete Multiindex which
consists of all date region combinations available from both of the datasets. To generate a full index,
we used

pd.MultiIndex.from_product([date_range, regions], names=["Date", "Region"])

and then applied reindex() to both of our datasets. Then we checked again for missing values, this
step was crucial because for our approach as a time-series model, the models expect complete data
across all the features so making sure everything is cleaned and structured was very important. After
checking this we applied a left merge using Date-Region index as the key. The result of this was a
single data frame that contains both the weather and vegetation daily data for all the region. This is
the final input data we are using for our modeling pipeline which provides a rich combination of both
atmospheric and vegetation data for the detection of anomalies in weather data that leads to wildfire.

2.2.3 Deseasonalization

The weather dataset with features like temperature, precipitation and soil moisture all follow strong
and predictable seasonal patterns and these natural cycles can be a problem in our analysis where the
model can see this as anomalies. For example, sudden spikes in temperature in summer is normal
and a part of the cycle but having an unusual temperature spike in spring has to be considered. So,
for addressing these issues, we applied a decomposition process called Seasonal-Trend decomposition
using Loess (STL). STL is a widely used decomposition method to break down time-series data.
This method will decompose into three components as seasonal, trend, and residual. The seasonal
component will have the regular repeating patterns like annual cycle and the trend component will have
longer patterns over time such as gradual warming toward summer and finally, the residual component
will have the short-term fluctuations which does not have the trend or seasonal information. In our
case, this residual was the exact signal we needed. It was very valuable because unusual spikes or
anomalies in this component can train the model to learn properly without any noise from the seasonal
up spikes and down spikes.
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Figure 2.5: Decomposition of Temperature Mean

Figure 2.6: Decomposed Temperature Mean vs original Temperature Mean of the region NSW

We applied the STL decomposition separately for each region as each region has different climate
conditions and therefore it can have different seasonal patterns. So for each region we extracted each
feature of those respective region and then applied STL decomposition with a period of 365 for each
features separately and stored their residual results in a new data frame as new input for our models,
the figure 2.5 and figure 2.6 shows the decomposition of feature temperature mean. By removing
seasonality, we enabled the model to focus more on true unusual weather and vegetation patterns,
which we thought would improve the reliability and precision of our unsupervised approach.
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Chapter 3

Methodology

Since labeled data are sparse, delayed, and sometimes geographically limited for supervised learning,
exploring unsupervised learning can be another solution which do not need any label for training
and can learn to find anomalies by training the models with normal weather data. To explore the
effectiveness of our unsupervised learning for identifying weather anomalies that cause wildfires, we are
here using three different models: a deep learning based LSTM Autoencoder, an ARIMA time series
model, and a seasonal Fourier regression model, which is inspired by the Prophet model by Facebook.
All models are only trained on non-wildfire weather data and then evaluated on both wildfire and
unseen non-wildfire data.

3.0.1 Input data

All the models in this study are trained with daily, region-specific data that has been carefully
preprocessed, which includes weather information and vegetation information. To prepare for our
models, we used two datasets, non-wildfire data and wildfire data, which we had separated earlier.
Since our focus was on unsupervised learning, we only trained our models with non-wildfire data,
which allows our models to learn normal weather. The wildfire information has been placed out and
only used during the evaluation process to check how well the models detect deviations related to
wildfire events which will provide what all models performed well. We have also applied seasonal
decomposition to analyze whether the model can learn better without the seasonal cycles or not.
Since we are using different models with different abilities, we used different representations of data:
For LSTM Autoencoder, we used data into a fixed-length sequence like a 10-day window, where 10
rows at a time will be used for the model. In this way the model can learn temporal patterns across all
days. The ARIMA and Fourier-based regression models were applied with each features individually.
In Univariate models like this, Each feature has to be trained for each models thus the model can learn
properly for that specific feature. This input foundation will allow us to explore how different modeling
strategies responds to the same data, and then we can evaluate which method is more effective for
finding anomalies in which all conditions.
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3.0.2 LSTM Autoencoder

The first model we explored for this study is a Long Short-Term Memory (LSTM) Autoencoder,
which is a type of recurrent neural network architecture model which is designed for sequential data
reconstruction. An autoencoder is simply a neural network that learns a compressed representation
of input data called an encoding and then reconstructs the original input from this compressed form.
It mainly has two parts: an encoder which compresses the input data into lower lower-dimensional
latent space, and a decoder which tries to reconstruct this lower-dimensional compressed data back
to normal representation. We chose this model in our approach because it can learn the temporal
patterns in the historical time-series data by training the model with normal weather which is the
weather data that did not lead to wildfire in our case and we will find if the model can reconstruct
this data or not by checking the reconstruction error[15].
Since our input data is time series which had ordered daily measurements, we thought of using LSTM
layers instead of standard dense layers because LSTM recurrent neural network (RNN) are good at
capturing temporal dependencies because they can retain information over time using a memory cell
and its gates like input, forget, and output and this allows the model to focus on what to remember
and what to forget across time steps.

Input data preparation
Our input data for the LSTM model consists of daily weather and vegetation information for seven
regions in Australia. In order to capture short-term information efficiently, the model has a 10-day
sequence window, which means that at a time 10 days will be given as input to the model. That is
each training sample is a matrix of shape (10, n), where 10 is the number of days and n is the number
of input features. Here we have 29 features including both weather and vegetation information. Before
giving these features to the model, we have also applied MinMax scaling. This scaling will convert
all the feature values into the range [0, 1]. This is done by subtracting the minimum value from the
feature and dividing by the feature range. This way we will get a normalized input data, which is
essential in neural networks as it ensures that the model can learn patterns more effectively without
being biased toward features with larger numerical values.

Model Architecture
The goal of our LSTM Autoencoder is to learn what normal weather looks like over short time windows
as of 10-day period, and then detect when future data significantly deviates from that pattern it learned
to be normal.
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Figure 3.1: Long Short-Term Memory Autoencoder Architecture

Encoder layer LSTM (256 units, return sequences = True): This layer has 256 units
means it has 256 memory cells, also known as neurons. Each unit can learn patterns over time, like
what to remember through input gates, what to forget through forget gates, and what to output
through the output gates, and this information is stored. The first layer processes the input 10-day
sequence and then learns the short-term patterns across all time steps, and then it returns the entire
sequence so that the next layer can continue learning from it.
LSTM (128 units, return sequences = True): This layer is built by the patterns learned from the
previous layer, but compresses them by reducing the number of units from 256 to 128. LSTM (64
units, return sequences = False): This is the final layer of encoder. This layer only outputs the last
hidden state, which is the information of that entire 10-day sequence from all the above layers.Decoder

layer RepeatVector (length = 10): This layer represents the 64-dimensional latent vector 10 times,
this way it can match the original sequence length which is 10 in our case. LSTM (64 units, return
sequences = True): This layer starts the process of decoding. Each of the 10 time steps is processed
here to learn how to reconstruct the original feature values from the compressed vector. LSTM (128
units, return sequences = True): This layer expands the learned reconstruction into 128 units. LSTM
(256 units, return sequences = True): The final decoder LSTM layer is the same as the encoder’s
starting size. It then tries to restore the details of the original sequence. Time Distributed (Dense
layer): This layer applies a fully connected network to each of the 10 time steps separately, which
then produces a vector of predicted features for each day. This outputs the reconstructed version of
the original 10-day input. We chose this architecture after a lot of experiments with many simpler
versions and adjusting layer sizes to find a good balance between model complexity, reconstruction
accuracy, and its anomaly detection sensitivity.
In this model, we have compiled using the Mean Squared Logarithmic Error (MSLE) as the loss
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function. We used MSLE because it won’t underestimates more than overestimates, means it focuses
more on relative errors, making it better at detecting small yet meaningful deviations in weather
patterns especially when values are small and vary across different scales, as it often happens before
a wildfire, this is effective that it won’t miss many potential dangers when we are working with
normalized time-series data.

Reconstruction
Once the model is properly trained, the model receives new 10-day sequences and attempts to
reconstruct them with the learning it had from the previous training. For each sequence X, the
model produces a predicted sequence X̂. The reconstruction error is then calculated as the mean
absolute difference between the original and reconstructed sequence over all time steps and features:

Reconstruction Error = 1
T × N

T∑
t=1

N∑
i=1

∣∣∣Xt,i − X̂t,i

∣∣∣ (3.1)

Where:

• T is the sequence length (10 days),

• N is the number of features,

• Xt,i is the value of feature i on day t,

• X̂t,i is the reconstructed value for the same feature and day.

So when the model sees patterns similar to what it has seen during training, that is meant to be
normal weather, Now the model tries to reconstructs it with error percentages and when the model
sees unfamiliar pattern or inputs such as those related with wildfire conditions or unusual spike then
the reconstruction becomes poor which then leads to higher reconstruction error.

Finding Anomalies
To find what is normal and anomalous from the data, we compute reconstruction errors on the training
set as discussed above and now we select a threshold at the 95th percentile of the reconstruction error
from training which means only the top 5% of highest reconstruction errors among the normal (non-
wildfire) training sequences are considered abnormal and all the remaining are considered normal.

Threshold = Percentile95(Reconstruction ErrorsTraining Set) (3.2)

Any new sequence with a reconstruction error above this threshold is flagged as an anomaly, which
potentially indicates a high-risk wildfire day or unusual weather pattern. This threshold is calculated
without using any wildfire labels, maintaining the unsupervised nature of our study approach.
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Performance Evaluation
Once anomaly scores are calculated for the test set, which also includes known wildfire days, we then
compare the model’s predictions with the ground truth labels, keeping in mind that the model never
saw these labels during training. This comparison helps us evaluate how well the LSTM Autoencoder
can actually find the real wildfire events.
For this analysis, we used the following metrics:

• Mean Absolute Error (MAE) and R2 Score between reconstructed and true sequences to
measure internal reconstruction quality in the training.

• Symmetric Mean Absolute Percentage Error (SMAPE) to see the magnitude of deviation,

• Standard classification metrics including Precision, Recall, F1-score, and a Confusion matrix
to assess the anomaly detection performance of the model.

3.0.3 ARIMA

The second method we used for our unsupervised wildfire detection approach was to build upon the
classical statistical model known as ARIMA, which stands for Auto Regressive Integrated Moving
Average. This is very different from deep learning models. Unlike LSTM, ARIMA gives a fully
interpretable and computationally efficient approach that is learning individual feature patterns over
time instead of a multivariate learning. We choose ARIMA because it explicitly models the dependencies
between previous observations which is called the autoregression and also it adjusts for trends and
seasonality through differencing, which is integration, and it can smooth short-term fluctuations based
on the past forecast errors called moving average[14]. This method is highly effective when the time-
series data with mean and variance remain stable over time, thus making it a good approach for
forecasting normal patterns in our data and then for flagging if it deviates.

Model Setup and Feature Selection
We focused the ARIMA analysis on the New South Wales (NSW) region for further transfer learning
exploration and applied this to all the features, and each feature was treated as a separate univariate
time series. This approach assumes that even an unusual pattern in a single feature may lead to
wildfire conditions.

ARIMA Model Specification
We used a fixed model configuration with the order (p, d, q), which means:

• p = 2: the model looks at the previous two values (autoregression),
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• d = 0: no differencing is applied, assuming the data is stationary after deseasonalization,

• q = 2: it considers the last two error terms (moving average component).

Although the model order was not tuned separately for each feature, this configuration can still
provide a reasonable balance between learning temporal structure and avoiding overfitting. Once the
model was fit on the historical data for a feature like Temperature_Mean, it was then used to generate
forecasts for the full duration of the evaluation period, including wildfire and non-wildfire days.

Detecting Anomalies from Residuals
For each feature, the residuals were calculated as:

Residualt = |Actualt − Forecastt| (3.3)

We then took the absolute value of residuals and computed the 95th percentile of residuals from the
training data. The value we get from this is used as our anomaly threshold, which is a boundary
beyond which the model is considered to have seen something that is unexpected. If the residual for
a day exceeded this threshold, that data point is then flagged as an anomaly for that feature. This
process was repeated for all features, resulting in a binary anomaly flag for each feature per day, and
then with this we can compare with the actual wildfire occurrences and can find how well the model
performs.

Aggregating Risk from Multiple Features
For a given day, we aggregated the anomaly flags from all features by summing them into a Risk Score
as given below :

RiskScoret =
29∑

i=1
Anomalyt,i (3.4)

If the Risk Score was greater than or equal to 1, the day was flagged as a potential wildfire day
(FireRiskFlag = 1). This way it assumes that even one highly abnormal feature could signal the
risk of wildfire conditions.

Evaluation and Results
To assess the model’s effectiveness, we compared the predicted FireRiskFlag values against the
actual wildfire labels (known values but not used while training). Using these predictions, we computed
several evaluation metrics as give below:

• Precision: how many of the days flagged by the model actually had wildfires.

• Recall: how many of the actual wildfire days were successfully identified.
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• F1-score: a balanced measure of precision and recall.

• Confusion Matrix: to show the count of true positives, false positives, etc.

This evaluation allowed us to assess how well the ARIMA model could detect wildfire related
deviations in weather patterns by only modeling each feature independently.

3.0.4 Fourier Series-Based Regression Model

The third method we used for our study was inspired by Facebook’s Prophet model, which uses a
Fourier series for modeling seasonality. We built a linear regression framework that has Fourier terms
in it to capture the seasonality in the data [2]. So by using the Fourier series to capture the repeating
patterns in individual features, we can find any deviations from these expected patterns, which is
considered as seasonal behavior. This represents a periodic function as a sum of sine and cosine
waves. These waves are used as seasonal functions in our regression model.

Model working
The core idea is to train a separate univariate linear regression model for each weather feature using
only non-wildfire data. Each regression learns how that feature changes over time using a combination
of:

• A time variable t (representing days since the start),

• Multiple Fourier terms: sine and cosine functions that represent different seasonal frequencies.

For each feature, we created a dataset with:

• Target y: the value of the weather feature (e.g., Temperature_Mean),

• Inputs X:

– A time index t,
– Fourier terms of the form sin

(
2πkt
365

)
and cos

(
2πkt
365

)
for orders k = 1 to 3.

The regression equation for a feature like Temperature_Mean is expressed as:

Temperaturet = β0 + β1t +
3∑

k=1

[
αk · sin

(2πkt

365

)
+ γk · cos

(2πkt

365

)]
+ ϵt (3.5)

Where:

• β0 is the intercept,

• β1 models any slow linear drift over time,

• αk and γk are the learned weights for the sinusoidal seasonal components,

• ϵt is the residual error — which we later use to flag anomalies.



20 Chapter 3. Methodology

Training and Prediction

The model was trained using ordinary least squares linear regression, with the training data restricted
to non-wildfire days. Once trained, the same Fourier-based model was used to generate predictions
for unseen data, including wildfire days.

Anomaly Detection Using Residuals

After generating predictions, we computed the residuals as the difference between the actual observed
value and the model’s predicted value for each day:

Residualt = |Observedt − Predictedt| (3.6)

Anomalies are identified when the magnitude of residuals exceeds the 95th percentile threshold
computed from the training residuals as in the equation 3.6. This threshold helps distinguish typical
seasonal variability from genuinely unusual deviations. If on a particular day, the temperature was
much higher or lower than what the seasonal model expects, that day would be flagged as anomalous
for that feature.

Aggregating Anomalies into Risk Scores

Since we repeat this process independently for each of the 29 weather features, a single day might show
anomalies in multiple variables (e.g., high radiation and low humidity). To combine this information,
we assigned each day a Risk Score, defined as the sum of anomaly flags across all features. A higher
risk score indicates that more features exhibited unusual behavior on that day. We then applied a final
rule: if the Risk Score was greater than or equal to 2, the day was classified as a potential wildfire
risk day.

This aggregation logic assumes that real wildfire conditions typically do not stem from one isolated
weather anomaly, but from a convergence of multiple abnormal indicators (such as hot, dry, windy,
and low vegetation moisture).

Model Evaluation

To evaluate how well this method could detect wildfire-prone conditions, we compared the model’s
predictions with actual wildfire event dates (known but not used during training). We computed
standard classification metrics give below:

• Precision: how many of the flagged days were actual fire days,

• Recall: how many of the actual fire days were correctly flagged,

• F1-score: the harmonic mean of precision and recall,

• Confusion Matrix: to visualize true/false positives and negatives.



21

Chapter 4

Results and Discussion

In this section, we are going to discuss the results and performance of all Unsupervised models that we
used for this study. We start with LSTM, which is trained with seasonal and non-seasonal data. Then
Fourier series model, which is trained with seasonal data and finally ARIMA, which is trained with
non-seasonal data and we also performed how well this model works with transfer learning, whether
the model is able to detect anomalies of other regions even though its only trained for one specific
region.

4.1 LSTM

Here we are checking the performance of the LSTM model with both seasonal and non-seasonal data,
considering its reconstruction errors, ROC curve, training and validation loss, Performance matrices
and Latent space visualization.

4.1.1 LSTM model with seasonal data

Figure 4.1: ROC curve for LSTM
autoencoder (seasonal) showing the
model’s capability to distinguish
wildfire and non-wildfire days using

reconstruction error

Figure 4.2: Training and validation loss curve for the
LSTM autoencoder trained on seasonal weather data
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The loss curve of the LSTM model shows how the model’s reconstruction loss evolved during training
as in the figure 4.2. This is used to check whether the model is able to learn anything, or is it
overfitting, or is it generalizing well to unseen data. Training loss in the graph shows how well the
model reconstructed the data it was trained on, and the Validation loss shows how well the model
have reconstructed new data it had never seen. The x-axis of the graph is the number of training
epochs or iterations it had, and the y-axis is the reconstruction error. As we look at the graph, we can
see both the training and validation loss decrease sharply in the beginning of the iterations and then
finally converge and flatten, which means it reached a point where there is not much left to learn.
The ROC curve in the figure 4.1 is a graph that shows the trade-offs between true positive rates
and false positive rates. In our case we want to separate wildfire and non-wildfire days based on its
reconstruction errors. The x-axis of the ROC curve is the False Positive Rate which means it shows
how often the model falsely thinks there is a wildfire when there is not any and the y-axis is the
True Positive Rate means it shows how often the model correctly identifies the actual wildfires. So
the curve we see in the graph is drawn by sliding the threshold across the reconstruction errors and
recalculating its True Positive Rate(TPR) and False Positive Rate (FPR) at every point. We got
an AUC curve of 0.78,indicating that the model is generally able to assign higher anomaly scores to
wildfire days compared to non-wildfire days across various thresholds. This suggests that the model
is not simply making random predictions, but is also learning meaningful temporal patterns from the
seasonal weather data through its unsupervised training.

Figure 4.3: Histogram of reconstruction errors from LSTM (seasonal), comparing distribution for
wildfire (red) and non-wildfire (blue) sequences

This is the histogram of reconstruction error, it shows how often reconstruction error occurred.
Since the LSTM is trained only on non-wildfire data, the expectation is the normal data will be
reconstructed well and the wildfire which are considered anomalies will confuse the model which



4.1. LSTM 23

causes high errors. The x-axis of this graph shows the reconstruction error, showing how far the
model’s predictions were from the true values and the y-axis shows the number of counts that had
that much amount of error. There are two color groups blue bars for non-wildfire data and red bars
for wildfire data. As we look close in the figure 4.3 we can see the blue bars are concentrated on left
side which has lower errors, there are more counts of non wildfire data with error 0.04-0.06 and the
red bard are shifted more towards right side which have higher error and most of its count has an error
of 0.07-0.09 as per our expectation but there are also lot of counts with some overlap in the middle
but the two groups are clearly not identical. This is a promising result that the model is doing what
it was supposed to do, but still it does not have a complete separated reconstruction error for wildfire
and non wildfire data.

Figure 4.4: Classification report for LSTM model trained on seasonal data,
indicating precision, recall, and F1-score for both classes

Figure 4.5: Confusion matrix for LSTM (seasonal), showing true/false positive
and negative predictions of wildfire vs non-wildfire

The classification report mainly shows four main key matrices: Precision, Recall, F1-score and
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Support for both Wildfire and Non-Wildfire classes. Precision means how many wildfires the model
said were actual wildfires. Recall means from all the wildfire cases, how many we were able to find.
F1-score is a balance between precision and recall. Support is the count of how many actual data
points were in each class. As we see the results figure 4.4 and figure4.5 , For Non-wildfire, the model
was very precise 80% of the time for predicting normal weather with no wildfire. For Wildfire, the
precision was lower which is 66% meaning it sometimes flags a normal day as a wildfire. For Non-
wildfire, recall was only 55% meaning some days are being flagged as wildfire and for Wildfire, recall
was high with 86%, meaning the model was able to detect the majority of wildfire cases, which is
what we needed for a strong wildfire detection system. Wildfire F1-score was 0.75 means the model
have a quite good balance with precision and recall. The overall accuracy for the LSTM model with
seasonal data was 71% which is impressive with an unsupervised approach.

We analyzed the performance of the model which has the anomaly threshold from its reconstruction
error. We used a Confusion matrix which is a 2x2 table that shows how many time our model was
correct with true positives(TP) and true negatives (TN) and was wrong with false positives (FP) and
false negatives (FN). In our case TP=2282, FP=1847, FN=562 and TN=3567. The model was able
to correctly detect 3567 wildfires showing it’s not missing too many critical events but also it falsely
labels 1847 normal days as wildfires and it actually missed 562 real wildfire cases which are more
serious in safety applications.

Figure 4.6: t-SNE latent space visualization of LSTM autoencoder trained on seasonal data. Blue
points represent non-wildfire sequences, red points indicate wildfire sequences

The figure 4.6 above is the representation of a high-dimensional latent space using t-SNE(t-
distributed stochastic neighbor embedding), It is a powerful technique that is used for visualizing
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complex patterns and relationships between data points. This graph will show how the data points are
structured in the model’s latent space. So normal sequences, which are the non-wildfire data points,
should get mapped into consistent, repeatable patterns by considering that it follow a regular seasonal
trend and the anomalous sequences which are wildfire points should get mapped differently because
they should deviate from the learned pattern from normal weather data.
So the LSTM autoencoder learns a compressed representation of the input data called a latent vector
which captures the main information of the input data for reconstructing it, and for each input
sequence both wildfire and non-wildfire, we will extract this latent vector from the encoder part of
our autoencoder. As you can see in the image red points are wildfire sequences and blue are non
wildfire and if we closely look we can see the seperation of datat points in the latent space some blue
clusters are packed tightly in few areas towards upper left and the formed cluster will have similar
patterns showing the learning from normal weather conditions and the red points are also separated
from the blue points not much overlapping but still some data points are plotted in similar spaces.
These partial groupings are similar in normal weather patterns, indicating their seasonal behaviour and
most of the wildfire sequences do not belong to these clusters, showing separations between wildfire
and non-wildfire data points.

4.1.2 LSTM model With no seasonal data

Figure 4.7: ROC curve for
LSTM autoencoder trained on
deseasonalized weather data,
indicating worse performance even

while random guessing

Figure 4.8: Training and validation loss for non-seasonal
LSTM, showing convergence but lack of meaningful

anomaly detection capability

The ROC curve for the LSTM model trained on non-seasonal data shows a significant decline in
performance with an AUC of 0.41 compared to the seasonal model with 0.78. This value is below the
0.5 threshold of random classification, which indicates that the model performs worse than guessing
the chances of wildfire events based on reconstruction error. This result suggests that the model
has not learned that much meaningful features that correlate with the occurrence of wildfires and it
is in fact, not classifying the majority of sequences properly. This poor separation is likely due to
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the absence of seasonality in the input data, which removes much of the natural structure and other
repeating weather patterns that would otherwise help define what normal weather looked like.
After the low predictive performance, when we look at the loss curve for both training and validation
sets, it shows a smooth and consistent decrease across epochs, eventually converging without signs
of overfitting. This indicates that the model has successfully minimized reconstruction error in a
general sense but these learning patterns do not contribute to anomaly detection, which means the
model is stable and capable of reproducing input sequences but the information it learns is not enough
to separate wildfire-related behavior from regular weather patterns. This shows the importance of
seasonal structure in the data when using sequence-based unsupervised models for anomaly detection
with LSTM based autoencoders.

Figure 4.9: Histogram of reconstruction errors for the LSTM model trained on non-seasonal data.
Overlap between wildfire and non-wildfire points shows poor separation

From the reconstruction error distribution for the non-seasonal model, it shows a substantial overlap
between wildfire and non-wildfire sequences with both classes concentrated around similar error ranges
from 0.04-0.06. The separation here is very minimal or absent compared to the reconstruction error
from the seasonal LSTM. This indicates that the model struggles to differentiate between normal
and anomalous weather patterns when seasonality is removed from the input data. This clear lack of
divergence in this error distributions suggests that the model perceives both wildfire and non-wildfire
sequences as equally reconstructable showing that the input features lack the necessary information
for distinguishing anomalous behavior. From this result we can say without periodicity or consistent
climatic trends, the model is struggling to find what a normal weather looks like.
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Figure 4.10: Classification report for LSTM trained on non-seasonal
data, showing lower precision and overprediction of wildfire cases

Figure 4.11: Confusion matrix for non-seasonal LSTM indicating
high false positive rate and poor non-wildfire recognition

As you look at the classification report and confusion matrix for the non-seasonal LSTM model, it
indicates a strong imbalance in the model’s predictions, with more tendency to classify the majority of
sequences as wildfires regardless of their true label. The confusion matrix also shows a high number
of false positives, where non-wildfire sequences are incorrectly flagged as wildfire and a significantly
low true negative count. We can see this reflected in the performance metrics: the recall for the
wildfire class is very high (0.96), but its precision drops to 0.51, indicating that a large proportion
of the predicted wildfire cases are incorrect. Conversely, the non-wildfire class exhibits extremely low
recall (0.06) and an F1-score of only 0.11, showing that the model fails to recognize normal sequences
accurately.
From these results it shows the model fails to recognize normal weather. The overall accuracy and
F1-scores are very low than in the seasonal model, suggesting that the absence of seasonal information
has decreased the model’s ability to form a reliable baseline for anomaly detection, the model appears
to treat nearly all input sequences as anomalous, resulting in widespread misclassification as you see
in the report.
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Figure 4.12: t-SNE visualization of latent space from non-seasonal LSTM model, showing quite
good seperation with strange dense points

The latent space visualization of the LSTM autoencoder trained without seasonal data shows
separation between wildfire and non-wildfire points but as you see in the figure 4.12 there are strange
dense point of non-wildfire data near the wildfire regions and also we can see some wildfire points
overlapped in the non-wildfire region which can confuse the model to predict which is non-wildfire and
which is wildfire. Even though we can see visible separation, the model still produces poor classification
performance 4.11. This can be related to the latent space which doesn’t directly convert into clean
reconstruction behavior, and since the model was trained on deseasonalized data, it likely struggled
to learn the periodic structure that helps distinguish small weather signals preceding wildfires. As a
result, the reconstruction errors for both wildfire and non-wildfire inputs begin to overlap, making it
difficult for the thresholding to confidently identify anomalies even if the latent space representations
appear separated visually. This result indicates that the autoencoder’s decoder network failed to
reconstruct non-seasonal data which resulted in very poor classification performance and overlapping
reconstruction errors observed earlier 4.9.

As we look at both the LSTM autoencoders trained on seasonal and non-seasonal weather data,
it clearly highlights the importance of temporal seasonal structure in anomaly detection. With the
seasonal data, the LSTM model learns effectively, showing converging loss curves and an AUC of
0.78 and a meaningful separation in reconstruction errors even though there were slight overlapping.
The model was able to achieve high recall of 86% for wildfire events and its structured separate
latent representations forming clusters and learning similar patterns for both wildfire and non-wildfire
data points. On the other hand, the LSTM with a non-seasonal data showed proper learning graphs
but its AUC drops below 0.41 and the reconstruction errors had lot of overlapping 4.9 and the
latent representations had strange dense points near wildfire data point regions even though it looks
like separable data point the model struggled to generate causing high reconstruction errors and
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overlapping and thus poor classification results.
These results show that seasonality is very important for LSTM autoencoders to build a reliable
baseline of normal weather. Without it, the model fails to recognize anomalies, thus making seasonal
structure a very important component for unsupervised wildfire detection for LSTM models.

4.2 Fourier Series-Based Regression Model

In this section, we evaluate Fourier series-based regression model to detect anomaly with seasonal
weather features. Each weather variable are treated individually which means each features have its
own models. In this section we discuss the results and performance of the model using a detailed view
of model fitting for one feature Temperature Mean for NSW, a combined multi-feature view across
all 29 weather variables used in the model and the classification report.

Figure 4.13: Fourier series model forecast on all features for Region NSW (with season) showing
strong alignment with actual values for features exhibiting smooth seasonal patterns, but performs less
accurately on more irregular variables, highlighting its strength in modeling periodicity and limitations

with non-cyclic trends
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The above large figure shows Fourier regression fits for all 29 different weather variables, X-axis in
all figures shows the date and Y-axis show the value ranges of that respective feature. Blue line in the
figure is the actual value and the red dashed line is the fourier models prediction. When you closely
look 4.13 you can see that feature like Temperature, Solar Radiation, and Humidity shows strong and
regular seasonal patterns, and thus the model fits them quite well but other features like percipitation
or windspeed, the actual values shows lot of irregular spikes which makes the model harder to capture
using periodic functions but still the model was able to capture the broad seasonal structure across
all features.

Figure 4.14: Fourier series model forecast on temperature mean for Region NSW (with season)
showing how well the model predicts the smooth feature

In this figure for temperature mean you can see that the model was able to predict it quite well
because it follows strong seasonal pattern.

Figure 4.15: Classification report and confusion matrix of the Fourier model which performs
moderately better in detecting wildfire days with a precision of 0.68, compared to non-wildfire days
with a low precision of 0.38, indicating a tendency to over-predict wildfire events. The overall accuracy
is 54%, and the imbalance in false positives suggests that while the model captures periodic wildfire-
related anomalies but it struggles to generalize over irregular patterns, particularly for non-wildfire

sequences.
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The Fourier model achieves a moderate F1-score of 0.61 for wildfire detection. The recall for
wildfire is 55%, indicating that slightly more than half of actual wildfire cases are detected. However,
the false positive rate remains high as shown by 6,791 normal days were incorrectly flagged as wildfire
risk. Also the non-wildfire class suffers from both low precision and F1-score with many of its data
points misclassified as wildfires. Overall accuracy is 54%, which is not that great.
In conclusion, the Fourier model successfully captured some seasonal trends in weather data, allowing
it to flag deviations as potential wildfire risks but even though the model detected many wildfire days
through these anomalies, it also misclassified many normal days as wildfires. Overall, it can be seen
as a simple but effective baseline for identifying weather irregularities but not a great way to approach
features with very irregular spikes without strong seasonal information or patterns.

4.3 ARIMA

In this section, we evaluate the ARIMA (AutoRegressive Integrated Moving Average) model’s ability
to capture anomalies that may indicate wildfire risk. The data we used for this model is without any
seasonal information and its a univariate model, each features are treated individually. For performance
analysis we provided one large figure showing the model’s prediction across all weather features as
we did for the Fourier model and another figure zoomed into a single variable Temperature Mean of
NSW. We also review its classification performance using anomaly-based fire risk labeling.

Figure 4.16: Residual-based anomaly detection across all features using ARIMA model for
deseasonalized data in NSW showing how well the model predict features even without any smooth

seasonal features but struggles with other features like percipitation and windspeed
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In this figure the X-axis shows date and y-axis are the value ranges of the variables. Here red line
shows the actual values and the blue dashed line is the forecasted values by ARIMA. As you can see
the model closely follows the actual values even without the seasonal trends. But in certain variables
like windspeed due to its sudden drops and high, the model struggles to predict the values because
the residuals here still behaves more like a noise or random ups and downs.

Figure 4.17: ARIMA forecast on temperature mean for Region NSW (without season) shows the
ability of the model to predict the irregular spikes of the feature

If you look at the temperature mean, without any seasonal trend the model really worked well with
its prediction even though the signal was irregular, this shows the models ability to learn non periodic
structures properly.

Figure 4.18: Classification report for ARIMA model. Model trained on deseasonalized data, tested
against wildfire labels with high precision for wildfire and descent recall for both classes

When you look at the classification report, For wildfire the precision is 0.86 which is high that
means the model can predict the actual wildfire correctly. Recall is 0.59 which is moderate, this
indicate that even though the model is predicting a good amount of wildfire still it misses a significant
portion of it. For Non-wildfire precision is quite where many of the cases flagged as non-wildfire which
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was not true, this suggest that the model tends to over predict wildfires and the recall is 0.63 which
is good that it captures a good amount of actual non-wildfire cases even with limited precision.

4.3.1 Transfer learning

Here we have checked the transfer learning abilities of ARIMA to assess whether a model trained on
a specific region like NSW could effectively generalise to other regions. We used deseasonalised data
here as well.

Figure 4.19: Transfer evaluation performance
of ARIMA model trained on NSW and applied

to NT, SA and QL

Figure 4.20: Transfer evaluation performance
of ARIMA model trained on NSW and applied

to TA, VI and WA

NT (Northern Territory): The model completely failed to recognise non-wildfire days by classifying
all days as wildfire. This shows the residual pattern in NT, probably due to its high monsoonal weather,
it differed a lot from NSW. The ARIMA model trained on NSW interprets that even the normal NT
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variations as anomalies.
SA (South Australia): The model shows moderate balance between both classes with precision 0.67
for non-wildfire, 0.36 for wildfire, but still lacks strong performance with overall accuracy 52%. SA
shares more weather structure to NSW than NT but many false positives and false negatives were
there.
QL (Queensland): We can see extremely biased predictions here where the model thinks everything
is non-wildfire recall is 1.00 for non-wildfire. This reversal in behavior compared to NT suggests the
NSW-trained model underestimates anomalies in QL. Probably the noise in QL might be lower or
smoother, so the model sees deviations as normal instead of anomalies.
TA (Tasmania): Opposite trend from QL, Here most wildfire days are correctly flagged, but non-
wildfires are not, it had a lot of false positives with a recall of 0.11 for non-wildfires. In this region,
even slight irregularities are flagged which caused the model to overreact.
VI (Victoria): Here we have balanced but underperforming results. Both classes have a poor predicted
accuracy with 41% with lot of confusions between wildfire and non-wildfire days.
WA (Western Australia): High performance on wildfire detection with recall is 0.66, but it completely
ignores non-wildfire days, recall is 1.00 for non-wildfire, but sample size is very small. The small
number of non-wildfire sample with only 156. The model performs relatively well on wildfires but the
confidence is very low, probably due to sample size imbalance. Here matrix looks good due to the
data imbalance but for proper results we need more balanced support.

Overall, the residual-based threshold from NSW was not generalizable across other regions with
very different weather profiles, especially when seasonal patterns were removed. Climatic diversity
is important, as even though we removed the seasonal trend still the noise and residuals change
with locations. From this, it’s clear that ARIMA residuals are highly region-sensitive, and a single
region-based threshold is not enough to generalize to other regions.
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Conclusion

In this thesis, we have explored whether unsupervised learning techniques can be effectively used for
wildfire risk detection by using weather forecast time-series data without relying on labeled wildfire
events. This study needs to be explored because of many real-world problems, especially across diverse
geographic regions where reliable labeled wildfire data may be sparse, delayed, or even unavailable,
and since this natural disaster is very dangerous to our environment and habitat finding a solution was
necessary. To address this challenge we explored and compared three distinct unsupervised anomaly
detection strategies: LSTM Autoencoders, Fourier Series Regression and ARIMA-based model each
offering a different way of modeling normal environmental behavior and identifying these models
deviations as anomalies which can be used for wildfire risk.

From all our evaluations of all models, we end up with some meaningful conclusions. First, the
LSTM Autoencoder showed clear evidence that deep sequence-based models trained fully on seasonal
non-wildfire data was able to learn meaningful representations of normal weather and also the model
demonstrated a strong ability to detect wildfire-related anomalies when seasonality was retained by
achieving an AUC of 0.78 and an 86% recall on wildfire days. Also the latent space visualization and
reconstruction error distributions confirmed the model’s ability to separate anomalous sequences from
regular ones. However, when we removed seasonal structure,we saw that the model’s performance
dropped very bad, with poor reconstruction error showing the importance of temporal seasonal
patterns. Without seasonality, the LSTM essentially lost its ability to define what "normal" weather
looks like which then resulted in high false positives. This confirms that the autoencoders can
identify anomalies but only when the data preserves meaningful seasonal patterns, also showing we can
approach with unsupervised learning to find wildfire events quite well with descent overall performance.

The second approach was the Fourier Series Regression, which was focused on modeling individual
weather features using periodic functions by retaining the seasonality of weather variables. The
model produced smooth and cyclic predictions that aligned with features that have similar strong
annual trends like temperature and solar radiation. However, it struggled to read sharp ups and
downs, particularly in irregular features like wind speed and precipitation. These limitations are
not bad but are limited to its design where the Fourier model assumes that any sharp deviation
from the expected seasonal cycle is anomalous which makes it function well as a baseline seasonal



36 Chapter 5. Conclusion

anomaly detector but lacks the sensitivity to pick up small but meaningful nonlinear interactions
across features. But other than that the model helped validate our hypothesis that univariate models
can still flag useful deviations, although there are limitations in a multi-dimensional situation. These
specific univariate approaches are functional but less robust than multivariate alternatives for real-
world anomaly detection when we focus on applying smooth and periodic approximations.

Finally, the ARIMA-based anomaly detection model which was fully trained on deseasonalized data
which revealed strong insights when we tested its transferability across regions and its ability to
find deviations as a univariate model with no seasonal information. We can see that while using
this univariate model we got an overall accuracy of 60% compared to overall accuracy of 54% from
Fourier model and also pretty good f1-score of 70% for wildfire. ALso from the figure it was clear that
ARIMA model forecasting was way better than Fourier regressive model which was able to forecast
even quick ups and downs but there were still features which ARIMA was also struggling. And when
we attempted to try the transfer learning with its residual-based anomaly, it was clear that the model
trained on NSW which applied to other regions like NT, WA, and SA showed poor performance, often
overpredicting or underpredicting wildfires depending on local weather information. For instance, in
NT, it predicted nearly all days as wildfire due to unfamiliar residual distributions, while in QL, it
failed to flag enough wildfire days. These patterns shows high limitation of residual based anomaly
detection, meaning that the models are highly region sensitive and thresholds learned from one area
may not generalize across other diverse weather conditions of other regions. Therefore, this method is
computationally light and easy to interpret but it lacks robustness for broad deployment unless localized
changes is done. This shows transferability of unsupervised models is possible in certain conditions
like the regions with similar residuals like NSW, but can’t be considered as a general residual threshold.

Bringing these findings together, We can conclude that Unsupervised learning methods can detect
wildfire-relevant anomalies using weather forecast data even without access to labeled fire events
but their effectiveness is highly dependent on data characteristics. Multivariate models that capture
sequential dependencies like LSTM autoencoders require seasonality to learn effective baselines and
Univariate methods like Fourier and ARIMA offer simplicity and interpretability but struggle in local
variance or structural shifts across regions in general.

While this study has shown the potential of unsupervised learning methods to detect weather anomalies
that can cause wildfires, there are several meaningful directions in which this research can be extended
for more effective results. One of the most important observations from our results is that seasonal
patterns were very important in anomaly detection, particularly with deep learning models like LSTM
autoencoders. Future work could explore hybrid models that preserve seasonal structure while learning
residual patterns more robustly and also combine both seasonal and non-seasonal components explicitly
during training and also if we manage to combine ARIMA and Fourier models for selective features
where taking features with irregular spikes which lacks smooth trends for ARIMA models and fourier
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model which is good for smooth features when combined can give better prediction and good results.
Wildfire behavior is often influenced by regional climate trends, So future studies could incorporate
spatial relationships using graph-based models or spatiotemporal architectures, which may improve
the robustness and generalization of anomaly detection across multiple regions. These enhancements
altogether can offer a practical path forward for building promising hybrid models into reliable tools
for detecting wildfire risks in the future.
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