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Abstract

Background: Type 2 diabetes (T2D) is a significant public health issue with multifactorial influences,
including personal and environmental factors. Understanding these risk and protective factors is crucial
for effective prevention and intervention strategies.
Objective: This study investigates what the correlations and polarities are of an individual’s social net-
work, personal lifestyle, socioeconomic status, and living environment (specifically in terms of food and
physical activity opportunities) with the prevalence of T2D among adults in the Netherlands.
Methods: Using a random forest and a logistic regression model as binary classifiers, this research
predicts diabetes medication use based on various variables derived from government registration data,
national health registers, and the national health monitor survey, while also examining the relative con-
tributions of these variables. The study sample consists of over 290,000 individuals aged 40 and older
who participated in the Dutch health monitor survey in 2016. Both models are optimized for the aver-
age precision on the diabetes medication group. Shapley values are employed to assess the impact
of various factors.
Results: Both models demonstrate similar performance in terms of average precision on unseen data,
namely an average precision of 0.29 for the random forest model and 0.28 for the logistic regression
model. The analysis examined four categories of risk factors to assess their association with T2D.
For the first, social networks, the findings reveal that T2D is more prevalent among individuals whose
social networks have a high prevalence of T2D and lower education level. Family networks have the
highest correlation followed by workplace and neighborhood same-gender networks. Remarkably, the
exposure within family networks is highly predictive, even more than the amount of time someone exer-
cises. Regarding the second group of risk factors, namely socioeconomic status, individuals with lower
socioeconomic status are more likely to have T2D. In terms of the third about lifestyle, BMI and exer-
cise engagement are as expected very predictive for the prevalence of T2D. For the fourth, the living
environment, it appears that having exercise environments, for example parks and public green space,
very close by (approximately 1 km) reduces the risk of T2D, while further away has no effect. However,
no clear association was found between T2D prevalence and (limited) access to healthy food.
Conclusion: While existing research indicates that lifestyle behavior is a major determinant of T2D, our
research shows that also an individual’s social network greatly associates with T2D. This research pro-
vides quantitative evidence for the importance of identifying and understanding social networks where
T2D is either very prevalent or almost absent. The existence of those healthy and unhealthy social
networks seems to go hand in hand with high- and low-educated social networks. Those findings imply
that prevention and intervention strategies in the Netherlands should focus not only on individuals, but
could be more effective by implementing group interventions tailored to specific risk groups. The ran-
dom forest model and logistic regression model turn out to have similar performance on unseen data,
so although the expectation was that the random forest perform better because of its ability to capture
non-linear relationships, this was not clearly the case.
Limitations & Future Research: It is crucial to recognize the limitations of the data used in this study.
For example, there is noise from individuals with T1D and of those with T2D not on medication. Addi-
tionally, the sample population may lack representativeness and bias may be introduced through the
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handling of missing values. Also, the study reflects correlations, not causality, and predicts current,
not future, T2D cases. Future research could focus on the development of a robust prognostic model,
alongside an in-depth evaluation of its performance across different minority and demographic groups,
allowing for a more nuanced understanding of the factors influencing T2D within specific at-risk groups.
Additionally, the methodologies and approaches used in this research could be applied to investigate
other health outcomes, such as depression.
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1
Introduction

In this chapter an introduction to the problem context and literature studies about the research topic
will be given followed by the research questions and unique characteristics of this research.

1.1. The Growing Burden of Type 2 Diabetes

Type 2 Diabetes (T2D) is a chronic disease with lots of personal and societal burden and is currently
on the rise worldwide [1–4] In the Netherlands currently more than 1 million people are diagnosed with
T2D [5, 6]. There is an even bigger group of people in the Netherlands, namely 1.4 million, who have
prediabetes [7] , which is a preliminary stage of T2D. Additionally, there are also people with T2D who
are undiagnosed, it is unclear how big this group is [6, 7]. As prognosis for the coming years, it is
expected that the number of people with T2D in the Netherlands will increase to over 1.3 million based
on the expected demographic development of the Dutch population [5]. When looking to the current
adult Dutch population aged 45 and older, 1 in 3 is expected to develop T2D in the future [7].

When looking at the societal level, the burden of diabetes also translates into high costs. In the Nether-
lands diabetes (type 1 and 2) and its complications are on number 7 of the list of most expensive
diseases [8]. This comes down to 1.3 billion euros in 2019, which is 1.4% of the health expenses which
is only the lower limit as many costs for diabetes complications are not included due to limitations in
administration [8, 9]. These costs thus include type 1 diabetes (T1D) and T2D, however T1D is not
preventable and much less common; of the people with diabetes in the Netherlands, 9 out of 10 have
T2D [7].

T2D is more prevalent among men than women [10] and is more common in individuals with a mi-
gration background [7]. Additionally, as T2D is age-related, the likelihood of developing the disease
increases with age [11].

T2D is caused by impaired insulin secretion and insulin resistance in tissues, leading to elevated blood
sugar levels [12]. Unlike T1D, which results from an autoimmune response, T2D develops gradually
due to dysfunctions in insulin regulation [13]. This persistent high blood sugar damages blood vessels,
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1.2. Type 2 Diabetes Prevention Efforts Have Fallen Short 2

affecting organs like the heart, kidneys, and eyes, and can lead to serious complications such as coro-
nary heart disease, stroke, and nerve damage [2, 14–16]. T2D rarely occurs alone, often coexisting
with other conditions such as cardiovascular disease, hypertension, and kidney disease [12, 16, 17].
In the Netherlands the people with T2D have heart disease (12.1%) as most common comorbidity [16].

1.2. Type 2 Diabetes Prevention Efforts Have Fallen Short

It has long been recognized that T2D is a growing public health issue in the Netherlands. In the 2006
prevention report ’Kiezen voor gezond leven’ (Choosing for a Healthy Life), T2D was already identified
as an emerging challenge [18]. The number of people diagnosed with diabetes (both T1D and T2D) in
2007 was around 750,000 [18]. In the reports it is also predicted that without significant policy changes,
the number of people diagnosed with diabetes would double to over 1.3 million by 2025, with half of
the cases being preventable [18]. This preventable portion was attributed to the growing number of
people with obesity and other risk factors for T2D [18], which could and should be addressed through
national prevention efforts according to the report. The remaining growth was expected to result from
population aging and improved diagnostic capabilities [18], which is thus not preventable.

By 2024, these projections have largely proven accurate. The number of diabetes patients (T1D and
T2D) has reached 1.2 million, with an additional 52,000 new cases each year [7]. Furthermore, the
number of individuals with prediabetes has increased significantly, from approximately 1.1 million in
2018 to 1.4 million in 2024 [7, 19]. These trends show that efforts such as the 2018 National Preven-
tion Agreement, aimed at reducing obesity and preventing T2D, have not been sufficient to curb the
growth [20].

Thus, while T2D prevention is firmly on the national agenda, tangible effects remain elusive. The cur-
rent approach falls short in mitigating the rise of T2D, with the disease burden continuing to increase
alongside unsustainable healthcare costs [20]. The Diabetes Fund has called for stronger government
intervention [19], advocating for earlier identification of people at high risk of T2D and supporting them
with personalized lifestyle advice [19].

1.3. Lifestyle plays a major role in the development of T2D, but can
not be viewed in isolation

Lifestyle factors play a major role in the development of T2D [12, 21–27]. It appears however that
lifestyle factors, which can lead to T2D, can not just be viewed in isolation but rather as part of inter-
connected social, economic, and environmental factors in a population or community [28]. There thus
seems to be clustering of pre-existing health, social network (see section 1.3.3), socioeconomic status
and environmental conditions and the onset of T2D. This clustering can come forth of persistent so-
cial and economic inequalities [29]. It is therefore important to shift the focus from individual lifestyles
(micro-level) to the wider social and environmental context (macro-level) in which people live [30]. The
influence of lifestyle and the associations between T2D and socioeconomic status, social network and
living environment are discussed below.
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1.3.1. Lifestyle

T2D arises from a complex interplay of genetic, metabolic and environmental factors [12]. While fac-
tors like ethnicity and family history contribute due to genetic predisposition, epidemiological evidence
highlights that many T2D cases can be prevented by addressing the main modifiable risk factors, which
include obesity, low physical activity, and unhealthy diet [12, 21, 25–27]. Dietary patterns high in pro-
cessed foods, saturated fats, and sugars, coupled with low intake of fruits, vegetables, and whole grains,
correlate strongly with increased T2D risk [12, 22–24]. Besides those main risk factors, other lifestyle
factors like smoking habits [31, 32], alcohol drinking [33, 34] and sleep patterns [35, 36] also play a
critical role in T2D development. Furthermore, sedentary behavior and inadequate sleep duration dis-
rupt metabolic homeostasis, exacerbating insulin resistance and glucose intolerance. Concurrently,
tobacco smoking amplifies systemic inflammation and oxidative stress, accelerating pancreatic β-cell
dysfunction and insulin resistance [31, 32, 37, 38].

1.3.2. Socioeconomic Status

Socioeconomic status (SES), including education and income, is strongly linked to health outcomes,
including the prevalence of T2D. In the Netherlands, individuals with only primary education are signifi-
cantly more affected by T2D (11%) compared to those with university degrees (2.3%) [39]. Additionally,
people with lower levels of education and income experience significant disparities in life expectancy
and health. For example, men in the highest wealth groups live 25 years longer in good health than
those in the lowest wealth groups, while for women, this difference is 23 years [40].

Lower SES groups are more likely to face lifestyle-related risk factors, such as poor diet, lack of exer-
cise, and higher stress levels, which contribute to these disparities [41]. Poverty and low literacy further
restrict access to healthy food and health information, worsening health outcomes [40]. These differ-
ences are also influenced by factors such as financial stress, poor working and living conditions, and
limited health literacy, all of which increase the risk on poor health outcomes, including T2D [42–44].

1.3.3. Social Network

Studies investigating social network characteristics related to T2D are relatively scarce [45], but the
research that does exist reveals several key factors. Additionally literature about obesity and social
network characteristics is also considered as this could also be relevant to understanding T2D, given
that both conditions are closely related metabolic diseases, sharing common disease pathways [46],
and given the fact that obesity serves as a common risk factor for T2D [47].

There is Clustering of Obesity in Social Networks
There is evidence of clustering in social networks among people with obesity [48–50]. Clusteringmeans
that a person with obesity has more contacts with obesity within their social network than would be ex-
pected by chance. We hypothesize that T2D will also cluster as T2D and obesity are closely related
metabolic diseases [46].

The literature and logic reasoning offers multiple explanations why there can be clustering of obesity
and hypothetically also clustering of T2D in social networks:

• Social Contagion Hypothesis
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The first explanation is the social contagion hypothesis that posits that individuals tend to adopt
behaviors and norms observed within their social circles [45, 51]. These social circles can exert
both positive and negative influences on health behavior through shared norms and behavioral
observations.

• Shared Background Characteristics
The second explanation is that obesity and potentially T2D cluster in social networks due to shared
background characteristics, which can be either observed (such as socioeconomic status and liv-
ing environment) or unobserved (such as genetics, sharedmeals, norms, values, and unobserved
life events).

Socioeconomic Status & Living Environment
The associations between socioeconomic status and living environment with the prevalence of
T2D is discussed in sections 1.3.2 and 1.3.4, respectively. Given those associations, it is note-
worthy that education level, a measure of SES, tends to cluster within work, neighborhood, family,
and household networks [52, 53], which implies that T2D, which also associates with education
level, might cluster in those networks. Additionally, when T2D is linked to the living environment,
it implies that T2D automatically clusters within neighborhood and household networks.

Genetic Predisposition
There is a genetic predisposition to T2D, though it is typically not the deciding factor [12]. Never-
theless, genetic predisposition can contribute to the clustering of T2D within family networks, as
members share similar genetic backgrounds.

Shared Meals within households
Dietary habits significantly impact T2D risk, and families or households often share meals, leading
to clustering due to common dietary practices rather than social contagion [12, 21, 25–27].

Norms, Values, Life Events
Clustering may also be influenced by unaccounted variables, such as shared norms, life events,
or experiences within social networks. These factors can act as confounders, creating the appear-
ance that social ties drive T2D development, when other unobserved factors may be responsible.

The Type of Social Network Connection Matters for Clustering of Obesity
Earlier research on obesity indicates that clustering varies depending on the type of social network
connection, which refers to the nature of the relationships between individuals. Friends have a stronger
influence on the risk of obesity than family or spouses [49]. The research of Christakis & Fowler [49]
hypothesized that your social norm regarding the acceptance of obesity is adjusted when you have
contact with an obese friend. Additionally, in the same research, neighbors appeared to not increase
chances of becoming obese [49].

There Seem to Be Gender Effects in Clustering of Obesity
The research of Christakis & Fowler [49] highlights the role of gender in social networks. In same-sex
friendships, particularly male-male, the risk of developing obesity is associated with a friend’s obesity
status, whereas no significant effect is observed in opposite-sex friendships. Similarly, same-sex sibling
pairs are more likely to have correlated weight changes compared to opposite-sex siblings. Spouses
(of opposite gender) also show associations in their weight status, although friends and siblings exhibit
stronger correlations with obesity risk [49].



1.3. Lifestyle plays a major role in the development of T2D, but can not be viewed in isolation 5

Living Alone is a Risk Factor for T2D
There is evidence in the literature indicating that living alone is associated with a higher risk of develop-
ing T2D, comparable to the risk posed by obesity or high blood pressure [45, 54]. There is a difference
between genders here as living alone increases the likelihood of T2D more for men than for women
[54].

Loneliness is a Risk Factor for T2D
Research has consistently shown that individuals who experience loneliness have a significantly higher
likelihood of developing T2D—nearly double the risk compared to those who do not feel lonely [55–57].

A possible explanation that living alone as well as loneliness are a risk factor for T2D is given by
the stress-buffering or stress-exacerbating hypothesis which suggests that one’s social network or the
lack thereof can either mitigate or intensify stress, which in turn affects biological processes [58]. This
means that according to the stress-buffering or stress exacerbating hypothesis, living alone as well as
loneliness can give stress, which can lead to unhealthy lifestyle behaviors and physiological effects of
chronic stress [55–57].

1.3.4. Living Environment

Food Environment
There is substantial scientific evidence suggesting that the food supply in an environment is linked to
the health of those who live or work there [59, 60].

From a public health perspective, the food environment encompasses the accessibility, affordability,
promotion, quality, and sustainability of food and beverages [61]. Food consumption is influenced by
more than personal choice; the environment plays a significant role. More than half of the food choice-
son a day are being impulsive or unconscious [62]. In an obesogenic environment, unhealthy choices
are often the default, making it harder for individuals to opt for healthier alternatives [63].

In the Netherlands, Government-commissioned research indicated that nearly 79% of products in major
supermarket chains fell outside the Dutch dietary guideline [64]. Furthermore, 91% of products offered
at 21 examined out-of-home food service chains were not conducive to healthy eating [65].

Epidemiological studies in the Netherlands provide insight into how the Dutch food environment impacts
health. It was found for a study involving more than 100.000 residents in the Northern Netherlands that
those living within 1 km of a fast-food outlet had higher Body Mass Index (BMI) scores [66]. National
surveys also indicated that greater exposure to fast-food outlets correlated with higher incidences of
T2D and cardiovascular disease [67, 68]. However, smaller studies have shown more nuanced results.
For example, a Dutch study involving more than 8000 participants revealed no significant link between
the number of nearby fast-food outlets and unhealthy dietary habits or obesity [69]. Similarly, research
with more than 4000 Amsterdam residents found no significant association between the healthiness of
the food environment and diet quality [70]. Also it is found by Hoenink et al. [71] that people often buy
food outside their residential neighborhoods, complicating measurement.
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Exercise Environment
When considering the living environment in relation to physical activity, evidence suggests that the
structure of the built environment can influence energy balance and levels of physical activity [72].
Neighborhoods with a higher degree of ’walkability,’ including features such as sidewalks and good
connectivity, are thought to promote active transportation like walking and cycling, which may help re-
duce the risk of obesity [73–75]. Access to recreational facilities is another crucial factor. Studies have
shown that proximity to parks and sports facilities is associated with meeting recommended levels of
physical activity, contributing to a more active lifestyle and lowering the likelihood of obesity [75, 76].

In the Netherlands, it has been found that the presence of green spaces in and around cities positively
influences physical activity and health outcomes [77]. Statistical analyses reveal that neighborhoods
with sufficient green space have significantly lower rates of childhood overweight compared to similar
neighborhoods without such greenery. The research suggests that green spaces encourage children
to engage in more physical activity, which helps reduce overweight. Although factors such as ethnic-
ity and socioeconomic status also play a role in overweight prevalence, green space was found to
independently contribute to promoting physical activity and overall health [77].

1.4. Research Questions

T2D imposes a significant disease burden due to its numerous side effects and the substantial health-
care costs associated with it, all while its prevalence continues to rise. Addressing T2D is complex,
as it cannot be seen merely as an individual lifestyle issue. Instead, T2D is linked to socioeconomic
factors, social networks, and the living environment. Therefore, it is essential to look beyond the in-
dividual (micro-level) and their lifestyle, and instead focus on the broader context in which individuals
live (macro-level). Current policies have proven insufficient in curbing the rise of T2D, indicating that
stronger, more comprehensive interventions are necessary. It is crucial for policymakers to better un-
derstand the factors associated with an increased risk of T2D in order to design more effective and
innovative policies. Therefore, this research will explore the associations between micro- and macro-
level factors and the prevalence of T2D, aiming to identify key leverage points for effective intervention.
Therefore the first research question guiding this study is:

1. How do social networks, lifestyle, socioeconomic status, and living environment contribute
to the prediction of Type 2 Diabetes prevalence among adults in the Netherlands?

In order to address this research question statistical models will be used to predict the prevalence of
T2D using social network, lifestyle, socioeconomic status and living environment factors. The models
that will be used are a random forest and logistic regression model. It will be examined how the models
predict, so which variables are important for the prediction and what the polarities of those variables are.

In addition to investigating the substantive aspects that can inform policy recommendations, the study
also undertakes a methodological comparison between the two statistical models. The random forest
model is expected to be particularly useful, as the onset of diseases, like T2D, often occurs due to
a culmination of factors, leading to a sudden tipping point. While logistic regression may struggle to
capture such complexity due to its linear assumptions, random forest is capable of identifying both lin-
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ear and non-linear patterns [78]. This dual capability is assumed to enhance the understanding of the
relationships between the independent variables and T2D prevalence. Therefore the second research
question guiding this study is:

2. How does the performance of a random forest model compare to that of a logistic regres-
sion model in the prediction of Type 2 Diabetes prevalence among adults in the Netherlands
based on variables about an individual’s social network, lifestyle, socioeconomic status, and
living environment?

In addressing this research question, there will be an examination of which of the two statistical models
is more effective in predicting the prevalence of T2D.

1.5. Hypotheses Regarding the Research Questions

Associations with T2D and Social Network
• H1 As there is clustering of obesity in social networks [48, 49] and T2D is a closely related
metabolic disease [46], it is hypothesized that more T2D in someone’s network is positively asso-
ciated with one’s own T2D status.

• H2 Since the association between social networks and obesity varies by network type [49], and
obesity and T2D are closely relatedmetabolic diseases [46], it is hypothesized that the association
of social networks and T2D also differs depending on the type of network.

• H3 As there is a stronger association between same-gender social contacts and the risks of obe-
sity compared to opposite-gender contacts [49] and obesity and T2D are closely related metabolic
diseases [46], it is hypothesized for T2D that especially the prevalence of T2D among same-
gender contacts within someone’s network is associated with one’s own T2D status.

• H4 A low education level of an individual is associated with a higher risk of T2D [39, 40]. It is
hypothesized that besides someone’s own education level, the education level of someone’s net-
work also associated with someone’s T2D status. Where a higher education level of someone’s
network is negatively associated with T2D prevalence.

• H5 As living alone is found to be a risk factor for T2D by Schram et al. [45] and Brinkhues et al.
[54], it is hypothesized that living alone will be positively associated with T2D prevalence.

• H6 As loneliness is found to be a risk factor for T2D [55–57], it is expected that loneliness is
positively associated with T2D prevalence.

Associations with T2D and Living Environment
• H7 As an unhealthy food environment increases the likelihood of higher BMI and the risk of T2D
among residents [66–68], it is hypothesized that an unhealthy food environment is positively as-
sociated with T2D prevalence.

• H8 As proximity to parks, recreational facilities and green spaces promotes physical activity and
decreases the likelihood of obesity [75, 76], therefore it is hypothesized that proximity to those
places is negatively associated with T2D prevalence.

Random Forest Model vs. Logistic Regression Model
• H9 We hypothesize that a random forest algorithm, requiring fewer assumptions and capable of
capturing not only linear but also non-linear patterns [78], will outperform regression methods in
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predicting relations between independent variables and T2D.

1.6. Main Contributions of this Study

This research distinguishes itself from prior studies mainly in two ways, which will be discussed below.

1.6.1. Innovative Dataset

This research utilizes multiple datasets, namely data on diabetes medication use, population network,
lifestyle, living environment information and social-demographic information. All these datasets are
linked on an individual-level.

This research is very innovative as it utilizes an unprecedented and comprehensive population net-
work dataset to investigate the relationship between individual-level health outcomes, specifically T2D,
and network-level health. The population network dataset is constructed by ’Centraal Bureau voor de
Statistiek’ (CBS) and is a unique dataset. It encompasses the entire population of the Netherlands
using administrative data, providing a person-level of detail [79]. This dataset, sourced from official
governmental registers, includes includes family relationships, addresses, employment details, and
educational enrollment. The administrative data enables the mapping of connections between family
members, neighbors, coworkers, household members, and classmates. While analyzing administra-
tive data and employing network science techniques in sociology have been done before, the creation
of a complete nation-wide integral population network is completely new. Only Denmark has also re-
cently (following the work of the CBS) built a similar network for their country [80]. Having nation-wide
population networks enables social scientists to use network science methods to analyze detailed,
individually-linked administrative data on a completely new and much larger scale [79].

The study by de Zoete [81] is at the best of my knowledge the only published study where the Dutch
population network data is linked to health data. In that research the data is linked at the community
level and utilized as measure for a social capital outcome.

1.6.2. Model Complexity

This research employs a random forest model to capture non-linear relationships between T2D and
the independent variables. This while previous research using the population network dataset [81–83]
and previous research about the relationship between social network characteristics and T2D [49, 54,
84] uses regression techniques.

In the remainder of this thesis we will focus on developing a framework of social network factors and
other factors that may be related to the prevalence of T2D (chapter 2). Following an explanation of the
methods used and a description of the dataset, we will evaluate the performance of both the random
forest and logistic regression models, examine the associations between factors and T2D and discuss
the findings (chapter 3). The implications of these results will be explored, with a focus on informing
future research and providing recommendations for policy changes (chapter 4).



2
Methods

This chapter provides a detailed overview of the study design and data preparation process. It covers
the study population and sample, data sources, operationalization of T2D, and summary statistics of
the dataset. Additionally, the creation and pre-processing of variables, the exclusion of certain vari-
ables, the handling of missing values and the training and interpretation of the models using Shapley
are explained.

2.1. Research Flow

The two research questions are:

1. How do social networks, lifestyle, socioeconomic status, and living environment contribute to the
prediction of Type 2 Diabetes prevalence among adults in the Netherlands?

2. How does the performance of a random forest model compare to that of a logistic regression
model in the prediction of Type 2 Diabetes prevalence among adults in the Netherlands based
on social network, lifestyle, socioeconomic status, and living environment?

In order to answer the two research questions, we will:

• Select a study sample and data
• Create social network variables (exposure scores for T2D)
• Pre-process data (exclusion of variables, handlingmissing data, handle categorical and numerical
data)

• Train a random forest and a logistic regression model.
• Evaluate the performance of those models.
• Examine the influence (magnitude and polarity) of each variable on the model outputs using
Shapley values.

• Compare the influence of variables between the random forest and logistic regression model.

9
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2.2. Study Population

The study population are individuals living in the Netherlands aged 40 and older. This age group was
selected because T2D is very rare for people under 40 [11].

2.3. Data Sources

The input data for this research was sourced from multiple datasets, primarily provided by the Centraal
Bureau voor de Statistiek (CBS). These datasets include government registration data on social net-
works, socioeconomic characteristics, and living environment factors, along with health-related data
from the Gezondheidsmonitor [85]. The data and its sources are:

• Background variables: demographic variables, socioeconomic status and statistics about the
living environment from the CBS.

• Dutch Health Monitor [85] of 2016 from the RIVM on a person level.
• Person network data of the CBS for family, work, colleague and neighbor networks.
• Diabetesmedication use for 2016 and 2022 on a person level from health insurance data retrieved
by the CBS.

• Exposure values for the education level in one’s network for 2016 from the CBS on a person level.
• Exposure values to the use of diabetes medication in one’s network for 2016 from the CBS on a
person level.

2.4. Operationalization of Type 2 Diabetes

To determine if an individual has T2D, health insurance data on diabetes medication use is utilized. An
individual is classified as having T2D if they use insulin and analogs (ATC code A101A), blood glucose-
lowering agents excluding insulin (ATC code A10B), or other diabetes medications (ATC code A10X).
However, this method does not differentiate between T1D and T2D, meaning that the data includes
noise from T1D cases (approximately 10% of individuals with diabetes are estimated to have T1D [7]).
Additionally, this approach fails to capture individuals with T2D who do not use medication.

2.5. Study Sample

The study sample is the group of individuals aged 40 and older who participated in the Dutch Health
Monitor [85] of 2016. In figure 2.1 the age distribution and diabetes medication use per age group of
the study sample is shown. It can be seen that there is a marked increase in diabetes medication use
starting at age 40, indicating that within the Health Monitor [85] study population the onset of T2D for
the first persons is likely starting around 40, thereby reinforcing the choice of the age group of 40+.
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Figure 2.1: The Age Distribution of the GEMON dataset and the percentage of diabetes medication use. (Except for anyone
over 100, due to privacy rules)

2.6. Dataset

All variables used to train the model, except for certain demographic variables, are categorized into four
main groups: social network, lifestyle, socioeconomic status, and living environment. These variables
serve as independent variables in the model. The dependent variable is ’diabetes medication use,’
which indicates whether an individual uses diabetes medication or not. Below, we discuss all variable
groups and present their summary statistics for all individuals included in the training of the models.
The summary statistics are expressed either as the mean of the variable (e.g., the average age) or as
the percentage of individuals belonging to a specific group (e.g., 51.04% belong to the ’women’ group).
These statistics are shown for two categories:

• TheOverall group, which includes all individuals—both those who do not use diabetesmedication
and those who do.

• The Using Diabetes Medication group, which is about the individuals using diabetes medication.
So for example in table 2.1 it can be seen that the average age of peole using diabetes medication
is 69.57. Additionally it can be seen that 10.76% of men are using diabetes medication, while
only 7.62% of women are.

All those individuals in the summary statistics are 40+ and participated in the Health Monitor of 2016
(see the description of the study sample in section 2.5. There are also left out individuals because they
have missing data (which is discussed in section 2.13), however those are not included in the summary
statistics and have their own summary statistics shown in appendix B.

For the study sample 90.85% (263,802 people) do not use diabetes medication and 9.15% (26,576
people) do use diabetes medication.
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2.7. Demographic Variables

The summary statistics about the demographics variables are shown in table 2.1. Those variables are:
age, gender and origin. The age variable can be any (discrete) number. The gender variable is either
man or woman. For origin there is a division in 10 categories, namely: Dutch, Other European, Turkish,
Moroccan, Surinamese, Dutch Caribbean, Indonesian, Other African, Other Asian and Other American
and Oceanian.

Category Overall Using Diabetes Medication
Average age 64.20 ± 11.56 years 69.57 ± 9.36 years
Men 48.78% (141638) 10.76% (15240)
Women 51.22% (148740) 7.62% (11336)
Dutch 87.82% (255000) 8.76% (22348)
Other European 6.20% (17994) 9.93% (1786)
Turkish 0.39% (1123) 19.15% (215)
Moroccan 0.28% (824) 24.03% (198)
Surinamese 0.78% (2264) 23.76% (538)
Dutch Caribbean 0.29% (839) 15.26% (128)
Indonesian 2.80% (8128) 11.17% (908)
Other African 0.32% (935) 13.58% (127)
Other Asian 0.71% (2052) 12.72% (261)
Other American & Oceanian 0.42% (1219) 5.50% (67)

Table 2.1: Demographic summary statistics of the study sample with a comparison between the overall study sample and
individuals using diabetes medication. Either the average of the variable value or the percentage of people that comply with
that variable is shown. Besides the percentages, also the total number of people that belong to the percentage are shown.

2.8. Social Network Variables

The summary statistics about the social network variables are shown in table 2.3. These variables
can be grouped into four subcategories: household, loneliness, exposure to education and exposure
to diabetes medication use. The household subcategory addresses the type of household in which
an individual lives, such as living alone, with a partner, with children, etc. The loneliness variable is a
variable from the Dutch health monitor [85] of 2016, the higher the more lonely someone is.The subcat-
egory, exposure to education levels, measures the direct and indirect exposure to different education
levels within an individual’s network across all layers, including master’s, bachelor’s, secondary, and
low education and is a pre-calculated variable by the CBS (see section 2.8.2). The exposure to dia-
betes subcategory quantifies the proportion of people in an individual’s social network who use diabetes
medication. Those diabetes exposure scores are calculated during this research using social network
data from the CBS, see below for the definitions of the networks and see section 2.8.2 for the creation
of those scores.

2.8.1. Definitions of the Social Network Layers

The definitions of the network layers are outlined in files provided by CBS [86, 87]. For this research,
the updated version of the definitions from [86] was used. Details of these updates are documented in
[87], which is used to construct the network layers. For understanding the definitions it is good to know
that an ego denotes the person of interest and its associated network.
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Family Network Layer
The family network consists of the following relationships:

• Core family: Individuals who share a biological or adoptive familial bond. The core family
includes the following relationships: parents, grandparents, grandchildren, (half-)siblings, co-
parents (individuals who share a child but may not cohabitate, as the cohabitation relationship is
captured by the ’partner’ relation), aunts/uncles, nieces/nephews, and cousins.

• Partners: Individuals residing at the same address who are married, in a registered partnership,
or in a cohabiting relationship.

• Stepfamily: The partner of an ego’s parent (who is not themselves the ego’s parent) with whom
the parent cohabits, as well as any children of this partner, regardless of their place of residence.

• In-laws: The family members of an ego’s partner.

Household Network Layer
• The household network layer consists of individuals residing at the same address as the ego.

Colleague Network Layer
• The work network includes individuals who worked at the same company as the ego for at least
one month during the reference year. If the ego had more than 100 colleagues during the year,
only the 100 colleagues residing closest to the ego’s home address are selected.

Neighbor Network Layer
• All residents of the ten closest addresses to the ego.
• Up to 20 randomly selected neighbors. A neighbor is defined as an individual residing within a
200-meter radius of the ego’s address. For additional details, refer to [82, 86, 87].

Deduplication and removal of relationships
It is important to note several aspects of relationship overlap and to note deduplication in the construc-
tion of network layers: First, it is possible for individuals to appear in multiple network layers of an ego.
For example, a married couple with children who cohabitate would share three distinct relationships:
partner (married), co-parent, and household member. Second, for the calculation of exposure scores
(see section 2.8.2), relationships are deduplicated within each network layer. Each individual can only
have one relationship per layer. Additionally, deduplication occurs across network layers, where only
one type of relationship between an ego and another individual is retained. For instance, pairs of in-
dividuals with a relationship in the household layer are removed from the family layer. In the example
above, the three relationships would be consolidated, retaining only the relationship in the household
layer. Finally, it is important to understand the implications of changes in relationship status. For exam-
ple, when an ego divorces their partner, the partner relationship ceases. However, other relationships
may persist, such as the co-parent relationship if they share a child. This relationship remains even
after divorce and regardless of cohabitation status.

2.8.2. Creation of Exposure Scores

Creation of Indirect Exposure Scores for Education Level (by the CBS)
The creation of the indirect exposure scores was done by Van der Laan et al. [79] of the CBS and
the methods are described in the paper [79]. Exposure scores are between 0 and 1 and quantify how
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much a person is exposed to a certain education level. A score of 0 means no exposure, while a score
of 1 is maximum exposure (for example: everyone in one’s network has a master). These scores are
calculated by aggregating the characteristics of a person’s network contacts and adjusting by the size
of the network. In smaller networks, each person’s traits have a larger impact on the exposure score,
while in larger networks, the influence is spread out. For first-degree connections, network layers such
as family, work, neighbors, household members and classmates are considered separately, with each
layer contributing equally to the exposure score. This ensures that no one layer is overly dominant,
and each social context is weighted the same. Additionally, those closer in the network (e.g., direct
family, colleagues, neighbors, household members and classmates) contribute more to the score than
those farther away. This score is called indirect exposure score as it also takes into account more than
one degree of separation, so not only direct, but also indirect contacts. In the final exposure score, no
distinction can be made between the different network layers or between the influence of direct and
indirect contacts. This means that all layers and contacts are combined and weighted together, without
separately identifying their individual contributions.

Creation of Direct Exposure Scores for T2D
The creation of direct exposure scores was done specifically for this research using the population net-
work data [79] of the CBS and the diabetes medication data. For the creation of direct exposure scores
only one degree of separation is considered and only one network layer per time is considered and
only people in someone’s network who are 40+ are considered (for the same reasons as described
in section 2.2). This makes it possible to distinguish between the influence of different network layers.
Besides creating a direct exposure score to T2D per network layer, there are also two additional direct
exposure scores per network layer, namely exposure to people with the same gender and exposure
to people with the opposite gender, this as from previous studies it becomes evident that gender can
matter in the spread of obesity within a network [49] and it is then possible to test if it plays a role for
T2D as well.

For those not represented in a particular network layer, the variables associated with that layer are
filled with a default value of ’0’. For example, if a person is not employed and therefore not included
in the colleague network layer, all variables pertaining to this layer will be assigned a value of ’0’ for
that individual. In table 2.2 it can be seen how many (of the in total 290,378 individuals) lack a certain
network type. Filling those missings with zeros is not ideal especially for the colleague layer as this
applies to 67.9% of the individuals. However, post hoc analyses are done for only the working people
(see section 3.3 in chapter 3). Also this is further discussed in the discussion, see chapter 4.

Network layer Number of individuals percentage of total population
Family 7,295 2.51%
Household 70,536 24.3%
Colleague 197,074 67.9%
Neighbor 36 0.01%

Table 2.2: The number and percentages of individuals relative to the total included population (290,378) that are lacking a
network type.
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Category Overall (N) Using Diabetes Medication
Living at parents home 0.36% (1053) 5.41% (57)
Living alone 20.89% (60651) 12.16% (7376)
Partner in unmarried couple without children living at home 4.42% (12845) 7.33% (941)
Partner in married couple without children living at home 50.62% (146987) 10.20% (14987)
Partner in unmarried couple with children living at home 2.53% (7336) 2.70% (198)
Partner in married couple with children living at home 17.72% (51469) 4.20% (2161)
Parent in single-parent household 2.51% (7280) 7.24% (527)
Reference person in other household 0.12% (349) 11.75% (41)
Other household member 0.76% (2193) 11.99% (263)
Member of institutional household 0.07% (215) 11.63% (25)
Not lonely 56.69% (164627) 7.71% (12693)
Slightly lonely 34.88% (101282) 10.53% (10666)
Lonely 5.47% (15892) 12.72% (2022)
Very lonely 2.95% (8577) 13.93% (1195)
Average loneliness ** 0.55 ± 0.73 0.69 ± 0.80
Indirect exposure to people * across all network layers 0.05 ± 0.06 0.07 ± 0.07
Exposure to family members * 0.06 ± 0.11 0.10 ± 0.14
Exposure to family members of the same gender * 0.06 ± 0.13 0.08 ± 0.16
Exposure to family members of a different gender * 0.07 ± 0.14 0.10 ± 0.18
Exposure to household members * 0.06 ± 0.24 0.11 ± 0.32
Exposure to household members of the same gender * 0.00 ± 0.05 0.00 ± 0.06
Exposure to household members of a different gender * 0.06 ± 0.24 0.11 ± 0.31
Exposure to neighbors * 0.08 ± 0.07 0.10 ± 0.08
Exposure to neighbors of the same gender * 0.08 ± 0.09 0.10 ± 0.10
Exposure to neighbors of a different gender * 0.08 ± 0.09 0.10 ± 0.10
Exposure to colleagues * 0.01 ± 0.04 0.01 ± 0.05
Exposure to colleagues of the same gender * 0.01 ± 0.04 0.01 ± 0.06
Exposure to colleagues of a different gender * 0.01 ± 0.05 0.01 ± 0.04
Exposure to colleagues * (***) 0.03 ± 0.05 0.05 ± 0.09
Exposure to colleagues * of the same gender (***) 0.03 ± 0.06 0.06 ± 0.11
Exposure to colleagues * of a different gender (***) 0.03 ± 0.08 0.03 ± 0.08
Exposure to people with master education 0.14 ± 0.12 0.11 ± 0.11
Exposure to people with bachelor education 0.24 ± 0.12 0.22 ± 0.12
Exposure to people with middle education 0.45 ± 0.16 0.46 ± 0.15
Exposure to people with low education 0.17 ± 0.13 0.20 ± 0.15

Table 2.3: Social Network summary statistics of the study sample with a comparison between the overall study sample and individuals using
diabetes medication. Either the average of the variable value or the percentage of people that comply with that variable is shown. Besides the
percentages, also the absolute number of people (N) is shown. The ’*’ in the table stands for: using diabetes medication. **: The average

loneliness ranges from 0 (not lonely) to 3 (very lonely). ***: Only the working population is included for those variables as only that group can
have colleagues.
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2.9. Lifestyle Variables

The summary statistics about the lifestyle variables are shown in table 2.4. The lifestyle variables are
divided into the subcategories of exercise, smoking, alcohol, body mass index (BMI), and experienced
health. The exercise subcategory includes variables related to the weekly minutes spent on low, mod-
erate, and high-intensity activities and whether individuals meet the Dutch exercise guideline of the
Dutch Health Council [88]. The smoking variable indicates whether a person has never smoked, is a
former smoker, or is a current smoker. The alcohol subcategory covers whether someone is a drinker,
a former drinker or a current drinker and the total number of drinks consumed during the week. Addi-
tionally, BMI is categorized into five distinct groups, and experienced health is also classified into five
categories.

Category Overall (N) Using Diabetes Medication
Minutes of light intensity exercise * 1407.19 ± 1069.38 1042.65 ± 974.71
Minutes of middle intensity exercise * 851.57 ± 865.06 667.77 ± 819.39
Minutes of high intensity exercise * 36.50 ± 111.85 15.67 ± 77.83
Adherence to exercise guidelines 46.60% (135306) 5.99% (8110)
Never smoked 37.23% (108103) 7.45% (8054)
Ex-smoker 48.08% (139618) 10.55% (14734)
Smoker 14.69% (42657) 8.88% (3788)
Never drank alcohol 10.31% (29938) 15.45% (4626)
Alcohol drinker 83.06% (241184) 7.62% (18369)
Ex-alcohol drinker 6.63% (19256) 18.60% (3581)
Number of alcoholic drinks * 7.08 ± 9.12 5.40 ± 8.89
Under weight (BMI: 18.5-) 0.94% (2720) 3.27% (89)
Normal weight (BMI: 18.5-20) 2.60% (7555) 3.27% (247)
Normal weight (20-25) 39.16% (113717) 4.82% (5483)
Overweight (BMI: 25-30) 41.27% (119852) 9.51% (11397)
Obese (BMI: 30+) 16.03% (46534) 20.11% (9360)
Very good experienced health 13.15% (38175) 1.25% (478)
Good experienced health 57.87% (168044) 6.47% (10876)
Moderate experienced health 24.35% (70715) 17.07% (12070)
Bad experienced health 4.11% (11929) 23.34% (2784)
Very bad experienced health 0.52% (1515) 24.29% (368)

Table 2.4: Lifestyle summary statistics of the study sample with a comparison between the overall study sample and individuals
using diabetes medication. Either the average of the variable value or the percentage of people that comply with that variable is

shown. Besides the percentages, also the absolute number of people (N) is shown. The * stands for: ’per week’.

2.10. Socioeconomic Variables

The summary statistics about the socioeconomic variables are shown in table 2.5. These variables
are categorized into three subcategories: education level, socioeconomic category, and household
income.
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Category Overall (N) Using Diabetes Medication
Low education (primary education) 6.73% (19549) 18.98% (3711)
Middle 1 education (Dutch: MAVO, LBO) 35.71% (103702) 11.08% (11495)
Middle 2 education (Dutch: HAVO, VWO, MBO) 29.20% (84789) 8.00% (6784)
High education (HBO, WO) 28.36% (82338) 5.57% (4586)
Unfit for work (Dutch: arbeidsongeschikt) 2.74% (7953) 12.86% (1023)
Social benefits (Dutch: bijstand) 0.99% (2870) 13.52% (388)
No income 4.20% (12193) 5.82% (710)
Retired 55.84% (162154) 12.42% (20140)
Social benefits (Dutch: sociale voorzieningen) 0.44% (1264) 11.95% (151)
Working 34.20% (99304) 3.88% (3850)
Using unemployment benefits (*) 1.60% (4640) 6.77% (314)
Average household income percentile 58.77 ± 25.80 48.84 ± 24.79

Table 2.5: Socioeconomic summary statistics of the study sample with a comparison between the overall study sample and
individuals using diabetes medication. Either the average of the variable value or the percentage of people that comply with that
variable is shown. Besides the percentages, also the absolute number of people (N) is shown. *: Dutch: werkloosheidsuitkering

2.11. Living Environment Variables

The living environment variables are divided into three subcategories: urbanity, food environment and
exercise environment. The urbanity level reflects the density of addresses within a neighborhood. The
summary statistics about the urbanity levels and diabetes medication use are shown in table 2.6. The
food environment measures the availability of food-related locations within a 3 km radius, including su-
permarkets, other daily grocery stores, cafés, cafeterias, and restaurants. The exercise environment
captures the distance to the nearest areas suitable for physical activity, such as public green spaces,
parks, day recreation areas, forests, open dry natural lands, semi-public green spaces, sports grounds,
and swimming pools. In appendix A the distribution plots of the food environment and exercise envi-
ronment variables are shown.

Category Overall (N) Using Diabetes Medication
Very strong urbanity (≥ 2500 surrounding addresses/km²) 12.94% (37587) 11.85% (4455)
Strong urbanity (1500-2500) 21.91% (63630) 10.06% (6398)
Moderate urbanity (1000-1500) 19.27% (55946) 8.90% (4977)
Little urbanity (500-1000) 21.16% (61436) 8.43% (5178)
Not urban (<500) 24.72% (71779) 7.76% (5568)

Table 2.6: Living Environment summary statistics of the study sample with a comparison between the overall study sample and
individuals using diabetes medication. The percentage of people that comply with that variable is shown. Besides the

percentages, also the absolute number of people (N) is shown.

2.12. Excluded Variables

Several variables were excluded because the variables were either very highly correlated with other
variables or because another overlapping variable was more informative.

In appendix in figure C.1 the heatmap with all the correlations between variables is shown. Additionally
the Pearson correlation coefficient [89] between variables that have a correlation of 0.45 (as absolute
number) or higher are shown in the appendix C. It can be seen that there are certain groups of variables
highly correlated.
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All variables about the food environment are very highly correlated with each other. To avoid multi-
collinearity problems, we chose to include only the variables about the number of supermarkets and
grocery stores within 3 km about the food environment. Regarding the exercise environment, only the
variable about semi-public green space is left out, as it correlates too much with public green space.

Regarding the variables about the exposure to people with diabetes medication it was chosen for the
family, colleague and neighbor network layers to include only the variables for the same gender and
different gender. The values for the overall exposure for those layers are thus left out. This decision
was made to prevent multicollinearity issues, as these overall exposure variables overlap with the data
on gender-specific and non-gender-specific exposure.

For the exposure to people using diabetes medication in the household-related, only the variable about
the overall household network layer was included, without distinguishing by gender. This choice was
made because, for exposure to diabetes medication of the same gender, the exposure value is zero
for almost everyone (except for around 100 individuals, which is 0.04% of the dataset). As a result,
differentiating between same-gender and different-gender exposure would provide little meaningful in-
formation.

An oversight of all the included variables (65 in total) can be found in table 3.6 in chapter 3.

2.13. Handling Missing Data

The dataset contains a total of 385,073 individuals, of whom 94,695 have missing values in one or
more variables. Both the random forest model and the logistic regression model from Scikit-Learn [90]
cannot handle missing values. In this section, we will discuss the types of missing values present in
the dataset, the options we considered for handling them, and the final approach we selected, along
with the rationale behind our choice.

Table 2.7 presents the number of missing values for each variable with missing data. Relatively few
missing values are observed in the living environment variables, while a substantial number of missing
values are present in variables related to loneliness, exercise behavior, smoking behavior, drinking
behavior, BMI and education level.

The missing values in the living environment variables are due to data not being available for certain
individuals in the dataset obtained from CBS. The exact cause of this absence is unclear, but it might
be that these individuals do not have a (registered) address in the Netherlands. These missing values
are categorized as structural missing values, meaning their absence is not random but inherent to the
dataset. Since the reasons for these missing values are unknown, there is little that can be said about
their potential impact on the dataset’s representativeness and bias when excluding them.

The second group of missing values all (except for the one missing in the ’place in the household’
variable) arise from respondents not answering one or more questions in the health monitor survey.
These missing values are classified as ’Item Non-response’. Determining the type of these missing
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values within the categories of ’missing completely at random’ (MCAR), ’missing at random’ (MAR),
or ’missing not at random’ (MNAR) is important. This classification helps in selecting appropriate han-
dling strategies and, in the case of exclusion, helps understand the potential impact on the dataset’s
representativeness and bias. Below, we briefly describe each type:

• MCAR: The probability of missing data is entirely random and independent of both observed and
unobserved values. This could occur if respondents skipped questions accidentally.

• MAR: The probability of missing data depends on observed data but not on the values of the
missing data itself. For example, if older respondents are less likely to answer questions about
lifestyle, the missing data could be classified as MAR because it relates to observable character-
istics such as age.

• MNAR: The probability of missing data depends on the values of the missing data itself. For
instance, respondents might avoid answering questions about exercise behaviour, alcohol con-
sumption or loneliness due to embarrassment.

Examining the summary statistics for individuals with missing values (see appendix B), it is evident that
they differ significantly from those included in the analysis (refer to summary statistics in Tables 2.1,
2.3, 2.4, 2.5, and 2.6). Specifically, excluded individuals exhibit a higher prevalence of diabetes med-
ication use (12.44% compared to 9.15%), are generally older (68.6 years versus 64.2 years), have a
greater representation of different origins, and include a larger proportion of retirees. Additionally, they
show slightly higher exposure to diabetes medication use and slightly lower exposure to high education
levels in their networks. Furthermore, while it is more challenging to assess due to the high level of
missing data for those variables, it appears that these individuals, on average, exercise less, smoke
less, drink less alcohol, have poorer experienced health and a lower education. Given these observed
differences, the missing values cannot be classified as entirely random (MCAR). The group deviates
on both the observed data and the values of the missing variables themselves, suggesting that this
second group of missing values likely represents a mix of MAR and MNAR patterns.

While imputation is the preferred method for addressing missing values that are classified as MAR
[91], additional data collection for affected individuals—though not feasible for this research—or direct
modeling of the missing data (which is highly complex, given that the missingness depends on the
values of the missing data itself) is recommended for handling MNAR data [91].

In this study, we opted to exclude all individuals with missing values for several reasons. First, the
missing data is likely a combination of MAR and MNAR, making it challenging to address appropriately.
Second, we aimed to avoid imputation-induced bias, which can arise from the imputation process itself.
Imputation can introduce uncertainty and potentially distort the data, leading to inaccurate associations.
Furthermore, imputing missing values would have impacted approximately one in four individuals, cre-
ating substantial uncertainty within the dataset. Finally, the dataset was large enough to allow deletion
without facing issues related to sample size. Initially, the dataset contained 385,073 individuals, and
after deletion of individuals with missing values (94,695), it retained 290,378 individuals.

2.14. Pre-processing Variables

Two models, a random forest and a logistic regression, were trained, and each required a distinct
approach to handle numerical and categorical variables. This pre-processing is done using the Scikit-
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Variable number of missings
Social Network Variables
place in the household 1
loneliness 28948
Lifestyle Variables
minutes of light intensity exercise per week 27850
minutes of middle intensity exercise per week 27850
minutes of high intensity exercise per week 27850
adherence to exercise guidelines 27850
(ex-)smoker 27184
(ex-)drinker 15716
number of alcoholic drinks per week 31836
BMI 18371
experienced health 4678
Socioeconomic Variables
education level 25460
Living Environment Variables
number of supermarkets and grocery stores within 3 km 885
distance in meters to the nearest public green space 5307
distance in meters to the nearest park 5307
distance in meters to the nearest day recreational area 5307
distance in meters to the nearest forest 5307
distance in meters to the nearest open dry land 5307
distance in meters to the nearest sports field 5307
distance in meters to the nearest swimming pool 885
Total Unique Individuals with Missings 94695

Table 2.7: The number of missings per variable and the total number of unique missings. Only variables that have at least one
missing are included.

learn library [90].

For the numerical variables:

• Random Forest Model
In the random forest model, numerical data can be fed directly into the algorithm without additional
pre-processing, therefore no standardization was done.

• Logistic Regression Model
For the logistic regression model, numerical data was first scaled using z-score normalization.
While z-score normalization does not affect the fit of an unpenalized linear model due to its linear
transformation, it is relevant for penalized regression (e.g., L2 regularization). Scaling ensures
that features with varying scales do not disproportionately influence the regularization penalty and
also facilitates more efficient optimization during the fitting process.

For the categorical variables:

• Random Forest Model
For a random forest model, when a categorical variable has only two possible values (binary),
one category is dropped because it is implicitly captured in the other, reducing redundancy and
preventing perfect multicollinearity in the model. When the categorical variable has more than 2
categories, all categories are retained for easier interpretation of results.

• Logistic Regression Model
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For logistic regression the first category of every categorical variable was dropped to avoid multi-
collinearity.

2.15. Models

2.15.1. Random Forest Algorithm Background Information

The Random Forest [92] classifier is an ensemble learning method that operates by constructing mul-
tiple decision trees during training and outputting the mode (majority vote) of the classes as the final
prediction. It is a powerful algorithm for both classification and regression tasks due to its ability to han-
dle high-dimensional data, manage non-linear relationships, and resist overfitting through averaging or
voting.

A Random Forest consists of a collection of individual decision trees. Each decision tree is a model
that recursively splits the data into subsets based on feature values, aiming to maximize the separation
of classes at each split. The separation of classes is measured using the Gini impurity.

The strength of a Random Forest, compared to a single decision tree, lies in its use of bagging (Boot-
strap Aggregating). During training, the algorithm generates multiple subsets of the training data by
sampling with replacement (bootstrap sampling). Each decision tree is trained on a different bootstrap
sample, creating a diverse ensemble of trees. Since each tree sees a slightly different version of the
data, the model becomes more robust to overfitting.

In addition to using different bootstrap samples, the Random Forest algorithm also randomly selects
a subset of features at each split. This process further reduces the risk of overfitting by ensuring that
no single tree relies too heavily on any one feature. It enhances the model’s ability to generalize to
unseen data.

Once all trees are trained, the final classification is determined through a majority voting process. Each
tree independently predicts a class label, and the class with the most votes becomes the final prediction
for that instance. This majority vote reduces the overall variance of the model and improves prediction
accuracy. The probability of the classification is defined by the proportion of votes for the predicted
class and can be used to produce a precision/recall graph. A decision threshold (the proportion of
votes of trees needed to classify an individual as using diabetes medication) can be chosen based on
the preferred trade-off between precision and recall.

2.15.2. Logistic Regression Algorithm Background Information

Logistic regression is a widely employed statistical method for binary classification tasks, where the
objective is to distinguish between two possible outcomes, such as positive and negative cases. This
model estimates the probability that a given input belongs to a specific class. The advantages of lo-
gistic regression include its simplicity and ease of interpretation, allowing clear insights into how input
variables influence outcomes. It is computationally efficient, enabling quick training and predictions,
even with large datasets. Additionally, it performs well with linearly separable data.
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The logistic regression model utilizes the logistic function (or sigmoid function) to transform a linear
combination of the input features into a probability value ranging from 0 to 1. The probability of the
prediction can be used to create a precision/recall graph. A decision threshold can be chosen. For
example if the decision threshold is 0.5, then when the estimated probability exceeds a threshold of
0.5, the model classifies the input as belonging to class 1; otherwise, it classifies it as class 0.

Penalized Logistic Regression
A significant aspect of logistic regression is the application of penalized techniques, such as Lasso (L1
regularization) or Ridge (L2 regularization) regression. These methods introduce a penalty term that
constrains the magnitude of the coefficients. This penalization mitigates the influence of less important
variables, leading to a more parsimonious model. Consequently, penalized logistic regression enables
the attribution of predictions to a limited set of significant variables, improving both interpretability and
model performance.

2.15.3. Training of the Random Forest and Logistic Regression Model

A random forest classifier and a logistic regression model are trained to predict on a person level the
prevalence of T2D (operationalized by the use of diabetes medication, see section 2.4) using the earlier
described independent variables (see sections 2.7, 2.8, 2.9, 2.10 and 2.11). For training of these mod-
els, Scikit-Learn [90] is used, which is a widely used open-source Python library that provides simple
and efficient tools for machine learning. This section explains how the models were trained, selected
and evaluated. For reference, the code used for both models is included in Appendix G.

The dataset was randomly divided into training and testing subsets using the train_test_split function
from scikit-learn [90]. Specifically, 80% of the data was allocated to the training set, while the remaining
20% was reserved for testing. The training set is used for model training. The test set is not used in
any of the training and is only used in the end for the final evaluation of the best model.

The classes in the dataset are unbalanced, with around 9.04% of people belonging to the class ’us-
ing diabetes medication’ and the remaining 90.96% in the class ’no use of diabetes medication’. This
imbalance can lead to problems during model training, as the model may favor predicting the majority
class (’0’). To address this, balanced class weights are used. Balanced class weights assign higher
importance (or weight) to the minority class, meaning that incorrectly classifying someone who uses
diabetes medication as someone who doesn’t will incur a much higher penalty compared to the reverse.
This ensures the model is encouraged to treat both classes more equally, rather than just favoring the
majority class.

Hyperparameter tuning with 5-fold cross-validation is performed to test different combinations of hy-
perparameters, which are predefined settings that control the model’s learning process. The model is
repeatedly trained and validated on different subsets of the data, and the hyperparameter combination
that provides the best average performance across all folds is selected to ensure good generalization.
Hyperparameter tuning is performed to find the optimal model by selecting the best combination of
hyperparameters. However, there is a balance in the number of hyperparameters to test, as it is impor-
tant to avoid underfitting (by having too little complexity) while explaining as much variance in the data
as possible. Additionally, hyperparameter tuning can help prevent overfitting to avoid overly complex
models that fit the training data too closely and fail to generalize well to new data. There is however
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a limit to computation time and power, which constrains the number of hyperparameters that can be
tested and it also constrains the values of the hyperparameters itself.

The following hyperparameters are tuned for the random forest model:

• The number of decision trees in the forest. A larger number typically increases performance
but also computational cost.

• The maximum depth of each tree. Greater depth allows the model to capture more complex
patterns, potentially improving performance. However, it also increases the risk of overfitting, as
deeper trees may learn noise instead of general trends.

• The minimum number of samples required to split an internal node A larger number ensures
that each split has sufficient data, reducing the risk of overfitting; however, it may also prevent
the model from capturing important patterns, leading to underfitting.

• The number of features to consider when looking for the best split. Random selection of
features ensures diversity among the trees. This promotes diversity among the trees, which
can enhance the overall robustness and accuracy of the model. However, if too few features
are chosen, the model may miss critical predictors, potentially leading to suboptimal splits and
reduced predictive power.

• For all other tunable hyperparameters the defaults of Scikit-Learn [90] are used.

The various values tested for these hyperparameters are shown in table 2.8.

Hyperparameter Values

Number of trees 50, 100, 150

Maximum depth of each tree 5, 10, 20, 30

Minimum number of samples per split 5, 10, 20

Maximum number of features to consider for best split sqrt(*), log2(*), None **

Table 2.8: Hyperparameters for the random forest model. The * stand for: ’total number of variables’. **: None means all
features are considered.

The following hyperparameters are tuned for the logistic regression model:

• The inverse of regularization strength (C). Lower values of C apply stronger regularization,
which helps prevent overfitting by penalizing large coefficients. However, too strong regularization
can lead to underfitting, where the model fails to capture important patterns in the data.

• The solver used. The solver determines the optimization algorithm for finding the best coef-
ficients. Choosing the right solver can improve computational efficiency and accuracy, but an
unsuitable solver may fail to converge or result in suboptimal performance for certain datasets or
regularization types.

• The regularization penalty. Regularization helps control overfitting by shrinking coefficients,
simplifying the model, and improving generalization. However, excessive regularization can lead
to underfitting by removing meaningful predictors, reducing the model’s ability to learn from the
data.

• For all other tunable hyperparameters, the defaults of Scikit-Learn [90] are used.
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The various values tested for those logistic regression hyperparameters are shown in table 2.9. All
hyperparameter combinations are tested, except for the combinations of L1 and LBFGS and L1 and
Newton-Cholesky as these combinations are not compatible [90].

Hyperparameter Values

Inverse of regularization strength (C) 0.01, 0.1, 1, 10, 100

Solver liblinear, lbfgs, saga, newton-cholesky

Penalty l2, l1

Table 2.9: Hyperparameters for the model

After having trained all themodels with those different hyperparameter combinations, the best model
is selected based on the highest average precision on the validation set (of the cross-validation). The
average precision is the metric that quantifies the area under the Precision/Recall curve (for the defi-
nition of precision and recall, see table 2.10). It represents the average precision achieved at varying
levels of recall and provides a single-value summary of the trade-off between precision and recall across
different decision thresholds. Average Precision is a suitable metric to use when there is class imbal-
ance, which is the case for this classifciation task (only 9.15% is using diabetes medication).

Next, the decision threshold is selected based on precision/recall threshold curves generated from
the training set. A precision-recall threshold curve is a graphical representation that illustrates how
precision, recall, and the F1-score change as the decision threshold varies in a binary classification
model. The decision threshold is chosen where the F1 score is maximized. Setting the threshold at
a maximal F1 score means that recall and precision are considered to be equally important and thus
false positives are considered to be at equal costs of false negatives. Setting this threshold is done
for evaluation purpose, however other thresholds might be preferred depending on where the model is
used for, see section 4.5.2 in the discussion (chapter 4) for further detail.

Then the ’real’ model performance is checked by evaluating the average precision, the precision, recall,
negative predictive value and specificity (using the threshold where F1 is optimal) on the unseen test
set. The definition of the metrics is shown in table 2.10.

2.16. Shapley

2.16.1. Shapley Background Information

SHapley Additive exPlanations (SHAP) [93] is a widely used method for interpreting machine learning
models, leveraging Shapley values from cooperative game theory [94]. This technique provides a fair
attribution of a model’s output to its input features, offering interpretability for both simple models like
logistic regression and complex ’black-box’ models such as Random Forests.

At its core, SHAP quantifies the contribution of each feature to a model’s prediction by examining
all possible subsets of input features. For each feature, the Shapley value is calculated as its average
marginal contribution to the prediction across all possible subsets of input features. Positive Shapley
values indicate that a feature increases the prediction, while negative values suggest it decreases the
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Metric Formula

Precision True Positives
True Positives+ False Positives

Recall True Positives
True Positives+ False Negatives

Negative Predictive Value True Negatives
True Negatives+ False Negatives

Specificity True Negatives
True Negatives+ False Positives

F1 F1 = 2 · Precision · Recall
Precision+ Recall

Table 2.10: Formulas for evaluation metrics

prediction. In figure 2.2 a SHAP plot is shown with on the x-axis the SHAP value for a certain feature
(age in this case) and the color indicates the feature value. It can be seen that for this feature a high
value results in a SHAP value above zero, which means a high value increases the prediction for a
certain outcome (in this case the use of diabetes medication).

Figure 2.2: An example for the interpretation of SHAP values.

2.16.2. Calculation of Shapley Values

The SHAP library [78, 93] in Python is used for computing the Shapley values. SHAP analyzes feature
importance, revealing how each feature impacts themodel’s predictions on average. To calculate SHAP
values for a random forest, a specific method designed for tree-based models is used: the SHAP Tree
Explainer [78]. To calculate SHAP values for a logistic regression model the (normal) SHAP explainer is
used [93]. For the random forest model a random sample of 100,000 individuals of the dataset is used
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to calculate the SHAP values. For the logistic regression model a random sample of 10,000 individuals
of the dataset is used to calculate the SHAP values. The SHAP Tree explainer (for the random forest
model) was more efficient in calculating the SHAP values, therefore a sample of 100,000 could be
included.



3
Results

In this chapter the results of training a random forest classifier and logistic regression model on social
network, lifestyle, socioeconomic status, and living environment variables will be discussed. First, we
will look into the performance of the models. Then we will look into the results of Shapley values, which
are used to examine the influence (magnitude and polarity) of each variable on the model outputs. With
this the associations of the variables with T2D prevalence can be evaluated. With these results it is
possible to answer the research questions, which will be done in chapter 4.

3.1. Prediction Power of the Models

As described in section 2.15.3 random forest and logistic regression models are trained to predict on a
person level the prevalence of T2D (operationalized by the use of diabetes medication).

3.1.1. Random Forest Model

There are in total 108 random forest models trained (see table 2.8 for all the hyperparameter combi-
nations). In table 3.1 the hyperparameters and the average precision on the cross-validation sets of
the train set are shown for the best, the second best, third best and worst random forest model of the
gridsearch. The best model is used for evaluation and has an average precision of 0.345 on the train
set and an average precision of 0.291 on the test set.

Rank Average Precision Trees Max Depth Min Samples Max Features
1 0.2751 ± 0.0077 150 10 20 All
2 0.2749 ± 0.0078 150 10 10 All
3 0.2748 ± 0.0078 100 10 20 All

108 0.2431 ± 0.0073 50 20 5 log2

Table 3.1: The best, second best, third best and worst poerforming model of the random forest gridsearch. The mean average
precision (of all 5 cross-validation splits) is shown including the standard deviation. The accompanying hyperparameters

(number of trees, maximum depth of eacht tree, minimum number of samples per split and the maximum number of features to
consider for the best split) are also shown.

27
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The precision/recall threshold curve for the tain set including the F1 curve is shown in figure 3.1. It
can be seen that the F1 is optimal (0.40) for a threshold around 0.65. This threshold is used to evaluate
the precision, recall, negative predictive value and the specificity (see table 2.10 for the definitions) for
both the train and test set. The results are shown in table 3.2.

Figure 3.1: The precision/recall threshold curve for the train set of the random forest model.

Train Set
group support

precision recall F1
Diabetes medication 0.32 0.53 0.40 21,180

negative predictive value specificity
No diabetes medication 0.95 0.89 211,122

Test Set
group support

precision recall F1
Diabetes medication 0.28 0.46 0.35 5,396

negative predictive value specificity
No diabetes medication 0.94 0.88 52,680

Table 3.2: Classification report for a threshold of 0.65 for both the train and test sets for the random forest model for the ’No
diabetes medication’ group and the ’Diabetes medication’ group.

The best random forest model of the gridsearch identified 46% of individuals using diabetes medica-
tion in the test set successfully for a threshold of 0.65. The precision for predicting diabetes medication
use in the test set for that threshold was 32%, meaning that for every correct prediction, there were
around two false positives.

When comparing the performance between the training and test sets, the average precision and the
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precision and recall in the training set were considerably higher than those in the test set (see table
3.2). This suggests that the random forest model is overfitted on the train set and generalizes less well
to unseen data of the test set. In appendix D the precision recall curve and precision recall threshold
curve for the test set are added for reference.

3.1.2. Logistic Regression Model

There are in total 30 logistic regression models trained (see table 2.9 for the hyperparameter combina-
tions). In table 3.3 the hyperparameters and the average precision on the cross-validation sets of the
train set are shown for the best,the second best, third best and worst logistic regression model of the
gridsearch are shown. The best model is used for evaluation and has an average precision of 0.276
on the train set and an average precision of 0.283 on the test set.

Rank Average Precision C solver penalty
1 0.2753 ± 0.0095 1.00 saga L2
2 0.2752 ± 0.0095 1.00 liblinear L2
3 0.2752 ± 0.0095 1.00 Newton-Cholesky L2
30 0.2738 ± 0.0096 0.01 saga L1

Table 3.3: The best, second best, third best and worst poerforming model of the random forest gridsearch. The mean average
precision (of all 5 cross-validation splits) is shown including the standard deviation. The accompanying hyperparameters (C:

the inverse of the regularization strength, the solver and the penalty) are also shown.

The precision/recall threshold curve for the tain set including the F1 curve is shown in figure 3.2. It
can be seen that the F1 is optimal (0.34) for a threshold around 0.65. This threshold is used to evaluate
the precision, recall, negative predictive value and the specificity (see table 2.10 for the definitions) for
both the train and test set. The results are shown in table 3.4.
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Figure 3.2: The precision/recall threshold curve for the train set of the logistic regression model.

Train Set
group support

precision recall F1
Diabetes medication 0.26 0.51 0.34 21,180

negative predictive value specificity
No diabetes medication 0.95 0.85 211,122

Test Set
group support

precision recall F1
Diabetes medication 0.26 0.52 0.35 5,396

negative predictive value specificity
No diabetes medication 0.95 0.85 52,680

Table 3.4: Classification report for a threshold of 0.65 for both the train and test sets for the logistic regression model for the
’No diabetes medication’ group and the ’Diabetes medication’ group.

The best logistic regression model of the gridsearch identified 52% of individuals using diabetes
medication in the test set for a threshold of 0.65. The precision for predicting diabetes medication use
in the test set was 26%, meaning that for every correct prediction, there were around three false posi-
tives.

When comparing the performance between the training and test sets (see table 3.4), the average pre-
cision and the precision and recall in the training set were very similar to that of the test set. The
average precision and the recall are even slightly higher for the test set. This suggests that the logistic
regression model is not overfitted on the train set and generalizes well to unseen data of the test set.
In appendix D the precision recall curve and precision recall threshold curve for the test set are added
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for reference.

3.1.3. Post Hoc: Prediction power for using diabetes medication in the near fu-
ture

Although it was not the primary focus of the research, it is expected that the models may also hold
some predictive value for future outcomes. Specifically, the false positives (i.e., individuals incorrectly
predicted to have T2D) could represent a particularly interesting group. These individuals may be at
high risk of developing T2D in the near future, have undiagnosed T2D, or already have T2D but are
not yet on medication, potentially starting diabetes medication in the future. To investigate this, the
true negative and the false positive groups are compared and it is found that the model not only has
predictive power for current diabetes medication use but also for future use (in 2022, six years later).
The groups where no one used diabetes medication in 2016 are the true negatives (TN) and false
positives (FP) groups. The FP group consists of individuals for whom the model predicted diabetes
medication use, although they did not use it. However, by 2022, 7.91% of the FP group from the
random forest model was using diabetes medication, compared to 2.65% of the TN group (see Table
3.5). This indicates that individuals labeled as false positives have, over a six-year period, a three
times (2.99) higher chance of using diabetes medication than people that are true negatives. A similar
pattern is observed for the logistic regression model, where by 2022, 7.20% of the FP group was using
diabetes medication compared to 2.59% of the TN group (see Table 3.5).

Random Forest Logistic Regression
2016 2022 2016 2022

TN 0% 2.65% 0% 2.59%
FP 0% 7.91% 0% 7.20%

factor 2.99 2.78

Table 3.5: The percentage of diabetes medication use for the true negatives (TN) en false positives (FP) groups for the random
forest and logistic regression models for the years 2016 and 2022. Additionally the factor, which is the ratio of the percentage
of people using diabetes medication in 2022 in the FP group from 2016 using diabetes medication in 2022 to the percentage of

people in the TN group from 2016 using diabetes medication in 2022, is shown.

3.2. The associations of variables with diabetes medication use

Table 3.6 presents the rankings of variables based on their predictive power for both the random forest
and logistic regression models, as well as their associations (positive or negative) with diabetes medi-
cation use. For additional context, Shapley plots for each variable are provided in Appendix E and F.

The predictive power rankings in table 3.6 are calculated using the mean absolute Shapley values.
These values represent a weighted average of the variable’s contributions across all individuals in the
dataset. As such, the rankings indicate the overall predictive power of a variable for the model as a
whole, rather than its importance for individual predictions. This distinction is particularly relevant for
nominal categorical variables with low representation in the dataset as those variables may rank low
overall but have a significant impact on predictions for individuals that do comply with that category.
Examples of variables where this may apply include those related to certain origins (see table 2.1 for
representation details), socio-economic categories (see table 2.5), and household positions (see table
2.3).
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Additionally, table 3.6 specifies the exact mean absolute Shapley values. Notably, there is a signifi-
cant difference in predictive power between the highest and lowest-ranked variables, with differences
spanning orders of magnitude up to 10−5. This highlights that many variables contribute minimally
to the overall model predictions. When comparing the predictive power rankings (based on Shapley
values) between the random forest and logistic regression models, it is evident that the top-ranking vari-
ables are highly consistent, with eight out of the top ten variables appearing in both models. Notably,
several social network factors demonstrate substantial predictive power in both models. Additionally,
when focusing on the highest-ranking variables within each factor group and comparing their relative
rankings, it becomes clear that lifestyle factors exhibit the strongest predictive power, followed by social
network factors, socioeconomics, and finally, living environment variables. The following sections will
provide a detailed discussion of the findings for each variable group.
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Table 3.6: The direction, positive (+) or negative (-), of association with a variable and diabetes medication use. The variables are in the left
column. The rankings of predictive power for the random forest model and the logistic regression model are in the ’RF’ and ’LR’ columns

respectively. The SHAP column represents the mean absolute Shapley values. A X after a number means there is no association. A X without a
number means that variable does not explicitly exist in the logistic regression model (because of dummy variables). A X! means there is a mixed

association, so both positive as well as negative depending on the value of the variable.

Variable RF LR SHAP RF SHAP LR
self-reported experienced health 1- 1- 1.23-01 1.32-01
age 2+ 3+ 1.02-01 1.11-01
body mass index 3+ 2+ 7.99-02 1.18-01
woman 4- 4- 4.44-02 9.90-02
number of alcoholic drinks per week 5- 5- 4.15-02 4.61-02
exposure to family members of the same gender using diabetes medication 6+ 7+ 1.38-02 3.78-02
exposure to family members of a different gender using diabetes medication 7+ 8+ 1.22-02 3.61-02
number of minutes of middle intensity exercise per week 8- 22- 9.49-03 7.78-03
exposure to people with master education level 9- 9- 6.57-03 3.46-02
household income percentile 10- 29- 6.48-03 4.81-03
exposure to people with low education level 11+ 20+ 5.87-03 1.26-02
number of minutes of low intensity exercise per week 12- 30- 5.08-03 4.77-03
exposure to people with bachelor education levels 13- 26- 4.00-03 6.78-03
distance to nearest park 14X! 23- 2.45-03 7.57-03
distance to nearest recreation area 15X! 33+ 2.44-03 4.08-03
number of minutes of high intensity exercise per week 16- 38- 2.43-03 3.67-03
adherence to exercise guidelines 17- 15- 2.27-03 2.28-02
distance to nearest forest 18X! 39+ 2.02-03 3.58-03
distance to nearest swimming pool 19X! 27+ 2.02-03 6.29-03
exposure to people with middle education level 20X 25+ 1.97-03 7.25-03
distance to the nearest open dry land 21X! 36+ 1.94-03 3.79-03
distance to nearest sports field 22X! 31+ 1.85-03 4.24-03
exposure to neighbors of the same gender using diabetes medication 23+ 24+ 1.65-03 7.43-03
distance to nearest public green space 24X! 37- 1.56-03 3.67-03
alcohol drinker 25- 12- 1.54-03 2.85-02
exposure to colleagues of the same gender using diabetes medication 26+ 18+ 1.54-03 1.74-02
education level 27- 17- 1.34-03 1.84-02
number of supermarkets and grocery stores within 3 kilometers 28+ 32+ 1.16-03 4.09-03
never smoked 29- X 1.16-03 X
exposure to neighbors of a different gender using diabetes medication 30X 35+ 9.29-04 3.86-03
Dutch 31- X 7.90-04 X
urbanity 32+ 19+ 6.49-04 1.30-02
ex-smoker 33+ 11+ 6.31-04 3.16-02

Continued on next page
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Variable RF LR SHAP RF SHAP LR
working 34- 14- 5.28-04 2.68-02
Surinamese 35+ 40+ 5.27-04 2.99-03
retired 36+ 13+ 4.54-04 2.85-02
exposure to colleagues of a different gender using diabetes medication 37X 48+ 4.31-04 7.45-04
partner in a married couple without children living at home 38+ 6+ 4.09-04 3.84-02
never drank alcohol 39+ X 2.97-04 X
exposure to household members using diabetes medication 40+ 41+ 2.48-04 2.52-03
loneliness 41- 21- 2.33-04 9.47-03
living alone 42+ 10+ 2.04-04 3.45-02
ex-alcohol drinker 43+ 42- 1.94-04 1.57-03
receiving social benefits (Dutch: bijstand) 44+ 55+ 1.83-04 3.48-04
partner in married couple with children living at home 45- 28+ 1.68-04 4.98-03
European (except Dutch) 46- 51- 1.64-04 5.29-04
smoker 47X 16+ 1.42-04 2.16-02
parent in single-parent household 48X 44+ 1.27-04 1.43-03
receiving unemployment benefits (Dutch: werkloosheidsuitkering) 49+ 52+ 9.95-05 4.99-04
Indonesian 50+ 34+ 8.87-05 4.05-03
unfit for work (Dutch: arbeidsongeschikt) 51X X 8.15-05 X
partner in unmarried couple without children living at home 52- 43+ 8.11-05 1.47-03
receiving social benefits (Dutch: sociale voorzieningen) 53+ 50+ 7.50-05 6.43-04
other Asian 54+ 47+ 7.04-05 8.80-04
no income 55- 45+ 6.12-05 9.58-04
other African 56+ 49+ 5.68-05 6.97-04
Moroccan 57+ 56+ 4.35-05 3.01-04
other type of household member 58X 46+ 3.65-05 9.55-04
Turkish 59+ 57+ 3.32-05 1.17-04
other American & Oceanian 60+ 59- 2.69-05 4.67-05
living at parents home 61X X 2.58-05 X
partner in unmarried couple with children living at home 62X 54- 2.21-05 3.64-04
Dutch Caribbean 63+ 53+ 2.15-05 4.58-04
reference person in other household 64X 60+ 4.79-06 3.77-05
member of institutional household 65X 58- 1.20-06 1.13-04
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3.2.1. Social Network

Exposure to Diabetes
Variables measuring exposure to people using diabetes medication demonstrate predictive power for
one’s own use of diabetes medication, which is in line with hypothesis H1 (see section 1.5). The
predictive power of exposure to diabetes medication varies across different network layers. The family
network layer shows very strong predictive power, followed by the work and neighborhood layers, and
finally the household layer. That the predictive power varies between different network layers is in
line with hypothesis H1 and H2 (see section 1.5). Exposure to family members with diabetes of the
same and opposite gender ranks among the most predictive variables, placing sixth and seventh in the
random forest model and seventh and eight in the logistic regression model. Exposure to people of the
same gender who use diabetes medication within one’s neighbor and colleague networks also ranks
relatively high in predictive power, with positions of twenty-third and twenty-sixth in the random forest
and twenty-fourth and eighteenth in the logistic regression models, respectively. All these exposure
variables show a positive association with an individual’s own use of diabetes medication. In contrast,
exposures to individuals using diabetes medication in the neighbor and colleague networks who are
of a different gender do not show clear associations in the random forest model, which means that the
SHAP values (in addition to being very low) exhibit both positive and negative associations for different
individuals. For the logistic regression model exposures to individuals using diabetes medication in
the neighbor and colleague networks who are of a different gender show slightly positive associations,
although having 23 (1.74 × 10−2 / 7.45 × 10−4) times less (for the work network) and 1.92 (7.43 × 10−3

/ 3.86 × 10−3) times less (for the neigbor network) predictive power than the same gender exposure
scores. This found same-gender effect (for neighbor and work networks) is in line with hypothesis H3
(see section 1.5). Lastly, exposure to people using diabetes medication within one’s household (not
categorized by gender) has the lowest predictive power but remains positively associated with diabetes
medication use in both the random forest and logistic regression models.

Exposure to Education Level
Exposure to individuals with a master’s, bachelor’s, or low level of education shows clear associations
with an individual’s use of diabetes medication. Notably, exposure to those with amaster’s or bachelor’s
education is negatively associated in both models, while exposure to those with a low level education is
positively associated, which is in line with hypothesis H4 (see section 1.5). In both models, the master’s,
bachelor’s and low education level exposure scores rank relatively high (for the random forest model
top 13 and in the logistic regression model top 26).

Position in the Household
In the random forest model, all position in the household variables rank at place thirty-eight or lower,
while some have higher predictive power in the logistic regression model, such as living alone (rank
ten), which is positively associated with diabetes medication use in both models, confirming hypothesis
H5 (see section 1.5).

Loneliness
In both models, loneliness is negatively associated with the use of diabetes medication. In terms of
predictive power, the loneliness variable ranks forty-first in the random forest model, whereas it ranks
higher in the logistic regression model, at twenty-first. This negative association is the opposite of what
was expected by hypothesis H6 (see section 1.5).
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3.2.2. Living Environment

Food Environment & Urbanity
When analyzing the food environment, a higher number of supermarkets or grocery stores within 3 kilo-
meter is positively associated with diabetes medication use. This applies to both the random forest and
the logistic regression model. The variable ranks twenty-eighth for the random forest and thirty-second
for the logistic regression model, respectively. Based on this finding, little can be said about hypothesis
H7 (see section 1.5), for further explanation about this, see section 4.4.2 in chapter 4. Urbanity is in
both models positively associated with diabetes medication use.

Exercise Environment
Looking into the exercise environment variables (distance to nearest public green space, park, recre-
ation area, forest, open dry natural land, sports field and swimming pool) it can be seen that all variables
show the same pattern for the random forest model. This pattern is that very short distances to those
exercise environments are negatively associated with diabetes medication use, which is in line with
hypothesis H8 (see section 1.5). After small distances there is either no association (a Shapley value
around 0) with diabetes medication use or there is a slightly positive association with diabetes med-
ication use and for relatively very far distances again a negative association. An example of this is
shown in the dependence plot of the distance to nearest recreation area, see figure 3.3. This figure
shows that distances of less than approximately 1 kilometer are associated with a lower likelihood of
using diabetes medication. For the other exercise environment variables, this maximum distance that
is negatively associated ranges from 250 meter to 1 kilometer.

Figure 3.3: The Shapley values for the distance to the nearest recreation area in meters.

Looking at the predictive powers, it is seen for the random forest model that all seven variables about
the exercise environment cluster in between ranks fourteen and twenty-four. For the logistic regression
model, these variables also cluster , namely between twenty-third and thirty-nine. The associations with
exercise environments in the logistic regression model differ with some showing a positive and some
showing a negative association with diabetes medication use.
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3.2.3. Demographics

The age variable is very predictive as it is for both models in the top three of the predictive power
ranking. Age is strongly positively associated with diabetes medication use. The gender variable is
also very predictive, it ranks fourth for both models in predictive power. Being female is associated with
a lower likelihood of using diabetes medication. Origin does not rank among the most predictive factors,
as all origin-related variables fall outside the top 30 in terms of predictive power and most are around
the top 50 for both models. Having an origin from the Netherlands appears to have a slightly negative
association with diabetes medication use. However, non-Dutch origins, except for ’other European’
and ’other American & Oceanian’, show a positive correlation with medication use in both models.
However, origin is a nominal categorical variable, with many categories having low representation (see
Table 2.7). This suggests that, although the overall predictive power may be low, being from a certain
origin could still have a significant impact on predictions for individuals. For instance, the ’Surinamese’
category demonstrates relatively high predictive power, despite representing only 0.78% of the sample
population.

3.2.4. Lifestyle

(Self-reported) Experienced health is the most predictive variable in both models. Better experienced
health is negatively associated with diabetes medication use.

Body Mass Index (BMI) is also very predictive for both models. It ranks third most predictive variable for
the random forest model and second for the logistic regression model. BMI is positively associated with
the use of diabetes medication. A BMI of category 0 (18.5-: underweight), 1 (18.5-20) and 2 (20-25)
are negatively associated with diabetes medication use, while a BMI of category 3 (25-30: overweight)
and category 4 (30+: obese) are positively associated with diabetes medication use.

Different levels of physical activity intensity (measured in minutes) and adherence to exercise guide-
lines show consistent and relatively high predictive power across both models regarding an individual’s
use of diabetes medication and all exercise variables are negatively associated with diabetes medica-
tion use. Specifically, time spent on moderate intensity exercise and adherence to exercise guidelines
have relatively high predictive power in both models.

Higher alcohol consumption and current alcohol drinking are negatively associated with diabetes med-
ication use and have strong predictive power in both models (ranking fifth for both models). In contrast,
never drinking or being an ex-drinker show positive association with diabetes medication use in the ran-
dom forest model, while in the logistic regression model being an ex-drinker is negatively associated
with diabetes medication use.

Regarding smoking variables, the logistic regression model demonstrates stronger and clearer associ-
ations between smoking variables and diabetes medication use compared to the random forest model.
Notably, current and former smoking are more predictive and positively associated with medication use
in the logistic regression model, while these associations are weaker or absent in the random forest
model.
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3.2.5. Socioeconomic Status

One’s own education level is negatively associated with diabetes medication use in both models and
has higher overall prediction power in the logistic regression model than in the random forest model.

Employment (’working’) is negatively associated with diabetes medication use and retirement positively.
These variables are more predictive in the logistic regression model than in the random forest model.
Other socioeconomic categories show weak predictive power (outside the top 40) for both models, how-
ever there is a notable observation, namely receiving social benefits (both Dutch: ’bijstand’ and ’sociale
voorzieningen’) and receiving unemployment benefits (Dutch: ’werkloosheidsuitkering’) are positively
associated with diabetes medication use in both models. Although they exhibit low predictive power,
the same principle applies as with origin as they are nominal categorical variables with low represen-
tation (ranging from 0.44% - 2.74%, see table 2.5) and thus they can still have a significant impact on
predictions for individuals that comply with those categories.

Household income percentile is negatively associated with diabetes medication use and is quite pre-
dictive in both models.

3.3. Post Hoc: Training on only the people who work

Although the focus of the research was on the whole population of 40+ (see sections 2.2 and 2.5). We
decided to do an additional analysis exclusively on working individuals. This decision was motivated
by the fact that a significant portion (67.9%) of individuals lack a work network, which can be attributed
to their retirement status (82%), voluntary or involuntary not employed (approximately 13%, includ-
ing those who are unemployed, disabled, or not working), or being self-employed without colleagues
(5%). Imputing zeros for these work exposure to diabetes medication scores may distort the predic-
tive power of the work exposure variable. To better evaluate the true predictive power of exposure
to colleagues who use diabetes medication a model was trained exclusively on working individuals.
The hypothesis was that exposure to colleagues of the same gender using diabetes medication would
demonstrate greater predictive power. Two models were trained, namely a random forest model and
a logistic regression model, for both using the hyperparameter settings identified previously as optimal
(see tables 3.1 and 3.3). For the random forest model, exposure to same gender colleagues using
diabetes medication ranked eight in predictive power, while exposure to opposite-gender colleagues
ranked twentie-eight. The random forest model achieved an average precision of 0.15 on the test set.
For the logistic regression model, exposure to same-gender colleagues ranked fifth, and exposure to
opposite-gender colleagues ranked thirtieth, with an average precision of 0.20 on the test set. These
results show that focusing exclusively on the working population enhances the predictive power of ex-
posure to colleagues, as it likely removes the noise introduced by imputing zeros for retired individuals.
Additionally, the findings reaffirm that same-gender exposure has significantly higher predictive power
than opposite gender exposure, thereby again confirming hypothesis H3 (see section 1.5).



4
Discussion & Conclusion

In this chapter the main research questions will be answered, the strengths and limitations of the re-
search will be mentioned. A comparison with the outcomes of the research and the literature will be
discussed. Additionally the suitability for policy making are addressed, policy recommendations will be
given and the options for future research are mentioned.

4.1. Strengths of the Research

The strengths of this research lie in its use of a unique, comprehensive dataset that links individual-level
data across an entire population network, allowing for an unprecedented analysis of the associations be-
tween T2D and social network, lifestyle, socioeconomic status and living environment at the population
scale. In addition, it provides a comparison between the performance of both a random forest model,
which can capture nonlinear interactions, with a logistic regression model, which can only capture lin-
ear patterns, providing a nuanced approach to understanding T2D risk factors. Lastly, the discussion
section (see section 4.6) addresses how the key findings of this research can be translated into policy
advice, aiming to enhance the relevance of this research for promoting social welfare.

4.2. Answers on the Research Questions

1. How do social networks, lifestyle, socioeconomic status, and living environ-
ment contribute to the prediction of Type 2 Diabetes prevalence among adults
in the Netherlands?

This research highlights the significant association of social networks with the prevalence of T2D (op-
erationalized through diabetes medication use). A strong association was found between diabetes
medication use within one’s social network and an individual’s own use (confirming hypothesis H1). Di-
abetes medication use among family members emerged as particularly strong predictors, while medica-
tion use by same-gender colleagues also showed a significant predictive capacity. In contrast, the use
of diabetes medication by colleagues of a different gender had little impact (confirming hypothesis H3).

39
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A similar pattern was observed among neighbors: medication use by neighbors of the same gender
was predictive, whereas use by neighbors of a different gender had less predictive power (confirming
hypothesis H3). Interestingly, exposure to diabetes medication use within the household exhibited al-
most no predictive capacity. These findings highlight that the predictive influence of social networks on
diabetes medication use varies significantly depending on the type of network (confirming hypothesis
H2).

The education level within one’s social network also played a key role in prediction. Networks with
a higher average education level were negatively associated with one’s own diabetes medication use
(confirming hypothesis H4).

Living arrangement also played a role, with living alone being positively associated with diabetes med-
ication use (confirming hypothesis H5), although the strength of this association was relatively weak.
Contrary to expectations, loneliness was found to be negatively associated with diabetes medication
use, albeit weakly (thereby disproving hypothesis H6).

Regarding the living environment, proximity to exercise facilities (within a maximum distance of ap-
proximately 1 km) was negatively associated with diabetes medication use (confirming hypothesis H8).
However, due to data limitations, no conclusions could be established about the association between
an unhealthy food environment and diabetes medication use (neither confirming nor disproving hypoth-
esis H7).

As expected, lifestyle factors such as BMI and adherence to exercise guidelines were highly predic-
tive of diabetes medication use. Specifically, a higher BMI and non-adherence to exercise guidelines
were both positively associated with diabetes medication use.

With respect to socioeconomic status, household income and education level were negatively asso-
ciated with diabetes medication use. Furthermore, receiving social benefits (in Dutch: ’bijstand’ and
’sociale voorzieningen’) and unemployment benefits (Dutch: ’werkloosheidsuitkering’) were positively
associated with diabetes medication use, although these associations were relatively weak.

When comparing the predictive power rankings of the variables between the models, consistent pat-
terns, with eight of the top ten variables shared between the models and a similar hierarchy of predictive
capacity observed, indicating that lifestyle is most predictive for diabetes medication use, followed by
social network, socioeconomic status and, last, living environment.

2. How does the performance of a random forest model compare to that of a lo-
gistic regression model in the prediction of Type 2 Diabetes prevalence among
adults in the Netherlands based on social network, lifestyle, socioeconomic sta-
tus, and living environment?

Regarding the performance of the models, the random forest model outperforms the logistic regression
model in capturing patterns within the training data, reaching an average precision of 0.345 on the train
set against an average precision of 0.276 on the train set for the logistic regression model. Also, as
anticipated, the random forest model captures non-linear relationships, in contrast to the logistic re-
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gression model, which is limited to identifying linear effects. This distinction was particularly evident for
the exercise environment variables, where the random forest model detected non-linear relationships
across all exercise environment variables, while the logistic regression model captured linear associa-
tions. However, when looking at the performance on the test set, the random forest model reaches a
lower average precision, namely 0.291, indicating that it does not generalize well to unseen data. This
while the logistic regression model does generalize well and reaches an average precision of 0.283
on the test set. This results in the fact that the random forest and logistic regression model have very
similar performance on the unseen (test) data. Returning to hypothesis H9, it can therefore be con-
cluded that the random forest model only very slightly outperforms the logistic regression model on the
test dataset in terms of average precision, despite its ability to capture non-linear patterns. Therefore,
hypothesis H9 cannot be confirmed.

4.3. Discussion of the Performance of the Models

The average precisions of the models is far from perfect, however it is plausible for two reasons. First,
there is some noise in the data due to the presence of individuals with T1D, who make up approximately
10% of the diabetes population [7]. Second, it was anticipated that the set of variables used to train
the model would not capture all factors influencing T2D prevalence, and thus, a perfect prediction was
never expected. However, the performance being far from perfect calls for caution when interpreting
aspects such as the predictive power ranking.

As the random forest model did not outperform the logistic regression model as initially expected, this
suggest that there may not be a lot of non-linear relationships between T2D and the included factors.
Additionally it is important to note that our study focuses on disease prevalence rather than onset and
non-linear relationships might play a more significant role for disease onset.

Further, the random forest model exhibited overfitting on the training set, which is plausible as it is
a characteristic of tree-based models, they tend to overfit due to their high flexibility in adapting to
the data. However, a more extensive hyperparameter search using wider hyperparameter ranges and
other optimization methods, such as Bayesian optimization, Hyperband, successive halving, and evo-
lutionary algorithms could potentially have mitigated some of the overfitting. However for this study we
were limited to computational constraints which limited the hyperparameter search.

4.4. Comparison with the Literature & Limitations of the Data

4.4.1. Social Network

Exposure to Diabetes Medication & Exposure to Education Level
Exposure to people using diabetes medication within one’s family or workplace or neighborhood net-
works is predictive of an individual’s own diabetes medication use. This indicates a clustering of T2D
within personal networks. Very little prior research has explored this area [45], making this finding par-
ticularly innovative, especially given the large dataset used in this study. Regarding the association
with family it is less surprising as genetics may also play a part [12]. Regarding the role of neighbors,
previous research in the U.S. [49] found no clustering of obesity (which is related to T2D [46]) among
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neighbors. However, our study suggests that for the Netherlands and in the context of T2D, neighbors
do exhibit clustering effects. As for colleagues, to the best of my knowledge, no prior research has in-
vestigated clustering of T2D within workplace networks. It is therefore a notable finding that colleagues
appear to strongly cluster. The finding that gender does not significantly impact clustering within family
networks contrasts with previous research on obesity, which showed stronger clustering among same-
gender family connections than opposite-gender ones [49]. Additionally, this study offers an innovative
perspective by examining the association between the education level of one’s social network and the
use of diabetes medication. The finding that a highly educated social network is associated with lower
diabetes medication use, while a less educated social network is linked to higher diabetes medication
use, represents a novel finding and also suggests that the existence of healthy and unhealthy social
networks go hand in hand with high- and low-educated social networks.

Several potential explanations for the clustering of diabetes medication use within networks were dis-
cussed in the introduction (see Section 1.3.3). However, on the basis of this research we cannot
determine whether the effect arises from social influence, shared underlying characteristics or other
reasons. The observed gender effects however suggest the presence of social influence, as individu-
als are more likely to be influenced by those with whom they identify [49].

Due to several limitations of the social network data, we were unable to explore potential relevant
associations between network characteristics and diabetes medication use. For instance, previous re-
search has identified several associations between network characteristics, such as network size [45,
54, 84], network quality [45, 54, 84], network directionality [49], and degrees of influence within social
networks [49], with T2D and obesity. First, network size was not a usable measure in this study, as
the data collection was constrained by artificial caps on the number of colleagues (100) and neighbors
(30) (see section 2.8). Second, network quality could not be operationalized, as the relationships were
based on registry data, which does not confirm the actual existence or quality of these connections
[52, 79, 83, 95]. Additionally, data on network directionality were unavailable. Lastly, the study was
unable to assess the influence of degrees of separation for clustering of T2D as only the direct network
contacts were considered (see section 2.8).

Moreover, potential relevant network type data was not avaialble. eFor instance, friendship networks
could be particularly relevant, as clustering effects for obesity have been predominantly observed in
such networks [49]. Furthermore, colleague networks are less relevant for retired individuals, who may
instead participate actively in other types of networks, such as volunteer organizations. Similarly, par-
ents who are not employed might be actively involved in school-related networks through their children.
However, it is important to note that while these ”schoolyard parent” networks are not included in the
(direct) exposure scores for diabetes medication use, they are accounted for in the (indirect) exposure
scores for education level as the indirect exposure score incorporates school networks and considers
both direct and indirect contacts across all age groups (see Section 2.8.2).

Furthermore, another limitation of the study is that when an individual lacks a specific network, the
corresponding exposure score is filled with zero. This approach is particularly problematic for work
exposure, as 67.9% of the individuals are not employed (see Table 2.2) and therefore lack a colleague
network. Despite this, the exposure to diabetes medication within the work network was found to have
relatively high predictive power. Additionally, a separate model trained exclusively on employed indi-
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viduals demonstrated that this exposure variable had even greater predictive power in that context (see
Section 3.3). It is also important to consider the implications of missing data and filling gaps with zeros
in other network layers. For example, individuals without a family network may include minority groups,
such as immigrants who have moved to the Netherlands without accompanying family members.

Household
The finding that living alone is consistently positively associated with diabetes medication use in both
models, aligns with findings in the literature [45, 54].

Loneliness
The finding that loneliness is negatively associated with diabetes medication use is unexpected. Pre-
vious studies [55–57] suggested a positive association with the risk of developing T2D [42–44]. One
possible explanation for this discrepancy is that high levels of loneliness may be more common among
very old individuals, who, due to a survival effect, are often healthier overall.

4.4.2. Living environment

Food environment
No insights about an association between the food environment and diabetes medication use have
emerged. This because of several reasons. First, as most variables about the food environment have
been excluded from model trainings because they were very highly correlated and that would distort
model training and outcomes (see section 2.12). Second, no ruling could be made if supermarkets are
healthy as they offer a mix of both healthy and unhealthy food options [64].

Exercise Environment
The random forest model indicates that very close proximity to potential exercise environments is neg-
atively associated with diabetes medication use. However, this relationship diminishes at greater dis-
tances, suggesting that beyond a certain threshold, all distances are perceived as ’far.’ For these
greater distances, other factors may influence the observed associations, such as levels of urbaniza-
tion or alternative influences not accounted for in our dataset. The logistic regression model finds no
clear associations for the exercise variables, likely because it is linear, whereas the findigns of the
random forest model suggests that the relationships for these variables are non-linear.

4.4.3. Demographics, Lifestyle and Socioeconomics

Age and gender are highly predictive for diabetes medication use and associations were as expected
from literature [10, 11]. The interpretation of the findings about origin is complex due to several factors.
First, the representation of different origins in the health monitor data may be insufficiently compre-
hensive, with half of the origins comprising less than 0.5% of the sample. Second, the origin variable
may capture a mix of influences, potentially reflecting genetic predispositions [12], cultural factors like
dietary habits, or might even serve as a proxy for unrelated factors such as socioeconomic status within
certain groups.

The findings about lifestyle are as expected by literature (see section 1.3.1), except for alcohol drinking.
Alcohol use unexpectedly correlates with not using medication, this while it is well known that alcohol
is a risk factor for T2D [33, 34]. This finding is likely reflecting medical advice to avoid alcohol when
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using diabetes medication rather than a protective effect. Further, it is noteworthy that self-reported
health emerges as the strongest predictor, highlighting its utility as a simple yet powerful measure.

The findings about socioeconomics are in line with the findings in literature (see section 1.3.2). Fur-
ther it is noteworthy that, although the association is relatively weak, receiving social or unemployment
benefits is positively associated with usage of diabetes medication.

4.5. Suitability for Policy Making

To enhance the understanding of the applicability of the research findings for policy-making, this section
examines the limitations and opportunities of the data and models, along with the associated ethical
and legal considerations.

4.5.1. Data Limitations

Several limitations in the data impact its use for policy. First, there is no distinction between T1D and
T2D in the data nor is there data available about people with T2D who do not use diabetes medication
or who have pre-diabetes, the latter of which represents a significantly larger population than those with
T2D [5–7]. Those limitations introduce noise into the data and limit the understanding of the relationship
between T2D and its risk and protective factors. Second, the health monitor sample may not represent
the entire Dutch population, as some groups might be underrepresented. Additionally, the removing of
individuals with missings (see section 2.13) led to reduced representation of certain minority groups (for
example certain origin groups) and can also introduce bias in the model (see section 2.13). Because of
this extra caution is required when interpreting the results of the models. Furthermore, even if the study
sample were a perfect representation of the study population, caution is still warranted as the model
may underperform for minority groups, where ’minority’ refers to any group that is underrepresented
relative to the rest of the population. If the model is used to inform policy decisions, it is crucial to
gain a deeper understanding of its biases and explore ways to mitigate them as studies have shown
that machine learning models often exhibit performance disparities for minority groups [96]. Lastly,
the data is from 2016, raising questions about its relevance to the current situation. Changes in work
patterns post-COVID-19, such as the increase in remote work [97], could weaken associations like that
between colleague networks and diabetes medication use. This is predicated on the assumption that
social contagion contributes to the clustering of T2D within social networks, and that reduced in-person
interactions affect social contagion. reduced in-person interactions affect social contagion.

4.5.2. Model Limitations & Possibilities

Model limitations also influence its policy applicability. First, the models predict the current presence
of diabetes medication use rather than the onset of diabetes, which limits its predictive value for future
cases. However, the models have shown some predictive power for the future (see section 3.1.3),
indicating that it may be partially useful for this purpose. Additionally, if the models were to be adapted
for future predictions (though it is not currently trained for this purpose), it is important to recognize
that its decision threshold can be adjusted. For evaluation (see section 3.1), the models’ thresholds
are configured to balance the costs of false positives and false negatives equally, meaning recall and
precision are given equal importance. However, by tuning this threshold, the costs of false positives and
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false negatives can be rebalanced to align with specific policy goals. For instance, precision could be
prioritized (placing a higher cost on false positives) in scenarios where interventions involve substantial
expenses, such as personalized lifestyle programs. Conversely, recall could be emphasized (placing
a higher cost on false negatives) in cases where the goal is to reach as many at-risk individuals as
possible, especially when subsequent actions, such as an informational campaign, involve minimal
costs. It should also be noted that due to the models’ insufficient performance at the individual level,
it is not suitable for making predictions about specific individuals. However, it can still be effectively
employed to compare groups and prioritize among them, helping to identify the highest-priority groups
for targeted intervention programs.

4.5.3. Ethical and Legal Considerations

Ethical and legal considerations further shape the model’s role in policy making. It is crucial to view the
model as an informative, not a decisive, tool for policy decisions, given that the model is a simplified
version of reality and many factors outside the model contribute to policy choices. Additionally, the use
of personal data without explicit consent, linked solely for research, raises ethical and legal concerns
about its application for policy guidance. Although, it is good to know that CBS data can never be
used for research that can be traced back to individual persons; conclusions can only be drawn about
(sufficiently large) groups. Finally, access to data and models is restricted, stored in a secure CBS
environment, making it currently impossible for external use for policy development.

4.6. Policy Recommendations

The goal of this research was to identify key leverage points for effective interventions aimed at reduc-
ing the incidence of T2D (see section 1.4). Several findings from this study offer valuable insights for
the development of preventive policies.

Firstly, lifestyle interventions remain a critical pillar for policy focus. Encouraging and facilitating a
healthy BMI and ensuring that individuals meet minimum weekly physical activity guidelines could sig-
nificantly mitigate the risk of T2D. Targeting social networks as a basis for policy interventions appears
particularly promising due to the observed clustering of T2D cases within these social networks.

Within family networks, it is important to also inform and support family members of individuals di-
agnosed with T2D about T2D and preventive practices as they seem to have a heightened risk.

In terms of workplace networks, targeting low-SES colleague groups with a focus on gender-based dif-
ferences could be a promising area for intervention. While workplace interventions have been identified
as potential policy avenues in prior research [98], gender-based approaches are unexplored. Policies
could place legal responsibility on employers to promote physical activity during work hours, enabling
employees to meet recommended physical activity guidelines during the workday. Such regulatory
measures would align with existing recommendations that advocate for more comprehensive work-
place health policies, particularly in low-SES environments [98]. Current policy advice emphasizes the
need to improve the food environment in workplaces [98], but mandating physical activity as a legal
requirement for employers is an innovative approach. Additionally, this also seems highly necessary,
as the Netherlands is holding the title for the most sitting in Europe [99].
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Policies must also be inclusive, targeting all societal groups, including those who are unemployed.
Unemployed individuals, particularly those receiving social benefits, seem to have a heightened risk
of developing T2D. Therefore, policy initiatives could extend beyond financial assistance for people
receiving social benefits to also include lifestyle support programs.

Neighborhood-level policies should also be strengthened, focusing on social networks within commu-
nities and ensuring the availability of spaces conducive to walking and exercise within a radius 1 km.
This approach should include targeted interventions in low-SES neighborhoods and incorporate gender-
specific strategies. Current policy advice already recommends this as well [98], however, here again
the gender aspect is innovative advice. An added advantage of focusing on community-level policies
is their inclusivity, potentially benefiting retirees who do not have access to workplace networks and
who also face increased T2D risk.

Finally, greater emphasis on educational diversity within work, and neighborhood social networks could
be beneficial. The research highlights that the educational level of an individual’s network has a strong
correlation with T2D risk. This suggests that educational segregation in society may contribute to
health disparities. On a positive note, educational segregation has decreased in recent years in the
Netherlands [52, 53].

4.7. Future Research

For future research three main focus points are interesting. The first is to focus on being more inform-
ing for policy making by improving and changing data and models. The second thing is to apply the
research now done for T2D in other areas. The third point is to investigate the feasibility of the policy
recommendations (described in chapter 4.6).

Concerning the first focus, the models could be more useful and informing in several ways:

Prognostic Model
First, it is valuable for policymakers to have a model specifically designed to forecast future T2D. This
as a prognostic model can help identify people at high risk for T2D earlier and provide them with per-
sonalized lifestyle guidance, which is in line with the objective of the Diabetes Fund [19]. Additionally,
a prognostic model could be used to simulate policy effects. For instance, if a policy is estimated to
increase physical activity by 10%, the model could then project the resulting reduction in T2D cases.
While the current model does offer some predictive insights, this has been more of an incidental benefit.
Developing a model using longitudinal data that is intentionally focused on future prediction would be
highly beneficial.

Optimize for a Top-Performing Model
The focus for our research was on understanding the associations between variables and T2D and not
on creating a top-performing model. However, for a prognostic model, optimizing model performance
even further is beneficial. This could involve feature selection (based on the mean average SHAP val-
ues (see table 3.6) or by doing additional ablation analyses), leveraging insights from the random forest
and logistic regression models to create hard-coded features that capture interaction effects and dis-
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crete transitions, as well as more comprehensive hyperparameter tuning. Additionally, exploring other
high-performing machine learning models, like XGBoost [100], might enhance the model’s predictive
accuracy.

A deeper exploration is required into how various factors are associated with T2D for different de-
mographic and minority groups, with the ultimate goal of mitigating bias.

Running separate models for different demographic groups
First, it can be helpful to run separate models for different demographic groups, as for example the con-
text for older adults often differs significantly from that of younger, working individuals, which may hinder
the model’s ability to identify relevant patterns. Creating separate models for different age groups, dis-
tinguishing between working individuals and retirees might provide deeper insights into their unique
relationships and dynamics, ultimately enhancing the understanding of how different factors influence
each group.

Examine model performance for minority groups
Additionally, gaining a better understanding on the model’s performance with respect to minority groups
is needed. This includes investigating whether the model consistently underperforms for certain minor-
ity groups, resulting in higher rates of false positives or false negatives for these groups. If this is the
case, potential avenues for addressing these issues include the use of imputation methods, training
separate models specifically for minority populations, or incorporating weighting mechanisms to adjust
for the penalties associated with misclassifications.

Investigate the cause and impact of 'Item Non Response' missings
Furthermore, focusing on a deeper investigation of item non-response of the health monitor survey
would be helpful to understand and mitigate bias. Understanding why individuals choose not to answer
certain questions, whether due to embarrassment (e.g., related to lack of physical activity), survey
fatigue or other reasons, could provide valuable insights. Methods such as follow-up phone interviews
or additional qualitative research could help identify underlying reasons, which can help to understand
the impact of these missings on the model outcomes.

Create T2D Personas
When a clearer understanding is obtained of how various factors are associated with different demo-
graphic and minority groups, it becomes possible to develop T2D personas. These personas are fic-
tional, data-driven representations of at-risk groups, characterized by attributes such as age, lifestyle,
and socioeconomic background. The creation of T2D personas aligns with the Diabetes Fund’s objec-
tive of identifying individuals at high risk for T2D and enabling personalized prevention strategies [19].
By leveraging these personas, policymakers can design and implement more targeted and effective
interventions to address specific needs.

Understand Underlying Mechanisms
It would also be valuable to gain a deeper understanding of the mechanisms underlying the relationship
between social network factors and their associations with T2D. As mentioned, this relationship could
potentially be explained by social contagion, shared underlying characteristics (see Section 1.3.3), or
other contributing factors. To explore these dynamics more comprehensively, longitudinal data could
be utilized. Such data would enable the investigation of causality, as well as the identification of medi-
ation and moderation within these associations.
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For the second focus—applying those research methods to other areas to inform policy—several av-
enues for future research would be valuable:

Transfer learning about Depression
It is interesting to look at other health outcomes. Specifically, depression, since research already indi-
cates that psychological symptoms can spread in social networks and work environments [101–105].

Investigate the effect of educational segregation on health outcomes
This research suggests that there is existence of healthy social networks and unhealthy social net-
works and that those overlap with educational social networks suggesting that educational segregation
in society may contribute to health inequities, providing an intriguing opportunity for further research if
this is indeed the case and if so what the mechanisms are that control how educational segregation
permeates health outcomes.

Concerning the third focus, to investigate the feasibility of the policy recommendations, the following
would be valuable to further investigate:

Investigate possibility to legally mandate employers
Regarding the policy advice to place legal responsibility on employers to promote physical activity
during work hours (see section 4.6) research is needed to explore the feasibility of this. This includes
examining legal frameworks, considering the needs of people with disabilities, and evaluating potential
negative side effects.

4.8. Take Home Message

While existing research identifies lifestyle behavior as a key determinant of T2D, our findings under-
score the significant role of an individual’s social network in shaping T2D risk. As a result, prevention
and intervention strategies in the Netherlands should extend beyond individual-level approaches to
incorporate group-based interventions tailored to specific at-risk populations. An innovative policy rec-
ommendation emerging from this research is to place legal responsibility on employers to encourage
physical activity during work hours. This approach could help employees meet recommended exer-
cise guidelines. The most interesting avenue for future research seems to develop a robust prognostic
model to be able to identify high-risk individuals early and support them with personalized lifestyle
interventions to prevent or delay the onset of T2D.



References

1. Abdul Basith Khan, M. et al. Epidemiology of type 2 diabetes—global burden of disease and
forecasted trends. Journal of epidemiology and global health 10, 107–111 (2020).

2. Who, W. H. O. Diabetes. World Health Organization: WHO. https://www.who.int/news-
room/fact-sheets/detail/diabetes (Apr. 2023).

3. Lovic, D. et al. The growing epidemic of diabetes mellitus. Current vascular pharmacology 18,
104–109 (2020).

4. Prasad, R. B. & Groop, L. Genetics of type 2 diabetes—pitfalls and possibilities. Genes 6, 87–
123 (2015).

5. Nielen, M., Poos, R. & Korevaar, J. Diabetes mellitus in Nederland. Prevalentie en incidentie:
heden, verleden en toekomst. Utrecht: Nivel (2020).

6. Diabetes mellitus | Leeftijd en geslacht | Volksgezondheid en Zorg [Online; accessed 28. Mar.
2024]. Mar. 2024. https://www.vzinfo.nl/diabetes-mellitus/leeftijd-en-geslacht.

7. Diabetes in cijfers [Online; accessed 28. Mar. 2024]. Mar. 2024. https://www.diabetesfonds.
nl/over-diabetes/diabetes-in-het-algemeen/diabetes-in-cijfers.

8. Ranglijsten | Aandoeningen op basis van zorguitgaven | Volksgezondheid en Zorg [Online; ac-
cessed 29. Mar. 2024]. Mar. 2024. https://www.vzinfo.nl/ranglijsten/aandoeningen-op-
basis-van-zorguitgaven.

9. Diabetes mellitus | Zorguitgaven | Volksgezondheid en Zorg [Online; accessed 29. Mar. 2024].
Mar. 2024. https://www.vzinfo.nl/diabetes-mellitus/zorguitgaven.

10. Diabetes mellitus | Volksgezondheid en Zorg https://www.vzinfo.nl/diabetes-mellitus.
(Accessed on 10/14/2024).

11. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates
for the year 2000 and projections for 2030. Diabetes care 27, 1047–1053 (2004).

12. Galicia-Garcia, U. et al. Pathophysiology of type 2 diabetes mellitus. International journal of
molecular sciences 21, 6275 (2020).

13. Levensverwachting mensen met diabetes aanzienlijk lager | RIVM [Online; accessed 28. Mar.
2024]. Mar. 2024. https://www.rivm.nl/nieuws/levensverwachting-mensen-met-diabetes-
aanzienlijk-lager.

14. Diabetes - long-term effects [Online; accessed 29. Mar. 2024]. Mar. 2024. https://www.bette
rhealth.vic.gov.au/health/conditionsandtreatments/diabetes-long-term-effects.

15. Collaboration, E. R. F. et al. Diabetes mellitus, fasting blood glucose concentration, and risk
of vascular disease: a collaborative meta-analysis of 102 prospective studies. The lancet 375,
2215–2222 (2010).

16. Geurten, R. J. et al. Identifying and delineating the type 2 diabetes population in the Netherlands
using an all-payer claims database: characteristics, healthcare utilisation and expenditures. BMJ
open 11, e049487 (2021).

49

https://www.who.int/news-room/fact-sheets/detail/diabetes
https://www.who.int/news-room/fact-sheets/detail/diabetes
https://www.vzinfo.nl/diabetes-mellitus/leeftijd-en-geslacht
https://www.diabetesfonds.nl/over-diabetes/diabetes-in-het-algemeen/diabetes-in-cijfers
https://www.diabetesfonds.nl/over-diabetes/diabetes-in-het-algemeen/diabetes-in-cijfers
https://www.vzinfo.nl/ranglijsten/aandoeningen-op-basis-van-zorguitgaven
https://www.vzinfo.nl/ranglijsten/aandoeningen-op-basis-van-zorguitgaven
https://www.vzinfo.nl/diabetes-mellitus/zorguitgaven
https://www.vzinfo.nl/diabetes-mellitus
https://www.rivm.nl/nieuws/levensverwachting-mensen-met-diabetes-aanzienlijk-lager
https://www.rivm.nl/nieuws/levensverwachting-mensen-met-diabetes-aanzienlijk-lager
https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/diabetes-long-term-effects
https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/diabetes-long-term-effects


References 50

17. Cholerton, B., Baker, L. D., Montine, T. J. & Craft, S. Type 2 diabetes, cognition, and dementia
in older adults: toward a precision health approach. Diabetes Spectrum 29, 210–219 (2016).

18. Diabetes tot 2025. Preventie en zorg in samenhang | RIVM https://www.rivm.nl/publicati
es/diabetes-tot-2025-preventie-en-zorg-in-samenhang. (Accessed on 09/29/2024).

19. ’Diabetescrisis’: veel meer mensen met voorstadium diabetes https : / / nos . nl / artikel /
2520281-diabetescrisis-veel-meer-mensen-met-voorstadium-diabetes. (Accessed on
09/29/2024).

20. Nationaal Preventieakkoord | Convenant | Rijksoverheid.nl https : / / www . rijksoverheid .
nl/documenten/convenanten/2018/11/23/nationaal- preventieakkoord. (Accessed on
09/29/2024).

21. Hu, F. B. et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. New England
journal of medicine 345, 790–797 (2001).

22. Ojo, O. Dietary intake and type 2 diabetes 2019.

23. Petroni, M. L. et al. Nutrition in patients with type 2 diabetes: present knowledge and remaining
challenges. Nutrients 13, 2748 (2021).

24. Del Carmen Fernández-Fígares Jiménez, M. Plant foods, healthy plant-based diets, and type 2
diabetes: a review of the evidence. Nutrition Reviews, nuad099 (2023).

25. Schellenberg, E. S., Dryden, D. M., Vandermeer, B., Ha, C. & Korownyk, C. Lifestyle interven-
tions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis.
Annals of internal medicine 159, 543–551 (2013).

26. Uusitupa, M. et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and
meta-analysis. Nutrients 11, 2611 (2019).

27. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects
with impaired glucose tolerance. New England journal of medicine 344, 1343–1350 (2001).

28. Mendenhall, E., Kohrt, B. A., Norris, S. A., Ndetei, D. & Prabhakaran, D. Non-communicable dis-
ease syndemics: poverty, depression, and diabetes among low-income populations. The Lancet
389, 951–963 (2017).

29. Mendenhall, E., Newfield, T. & Tsai, A. C. Syndemic theory, methods, and data. Social Science
& Medicine (1982) 295, 114656 (2022).

30. Chater, N. & Loewenstein, G. The i-frame and the s-frame: How focusing on individual-level
solutions has led behavioral public policy astray. Behavioral and Brain Sciences 46, e147 (2023).

31. Campagna, D. et al. Smoking and diabetes: dangerous liaisons and confusing relationships.
Diabetology & metabolic syndrome 11, 1–12 (2019).

32. Quitting smoking cuts your risk of developing type 2 diabetes by 30–40% https://www.who.
int/news/item/14-11-2023-quitting-smoking-cuts-your-risk-of-developing-type-2-
diabetes-by-30-40. (Accessed on 04/29/2024). Nov. 2023.

33. Kim, S.-J. & Kim, D.-J. Alcoholism and diabetes mellitus. Diabetes & metabolism journal 36,
108–115 (2012).

34. Wannamethee, S., Shaper, A., Perry, I. & Alberti, K. Alcohol consumption and the incidence of
type II diabetes. Journal of Epidemiology & Community Health 56, 542–548 (2002).

https://www.rivm.nl/publicaties/diabetes-tot-2025-preventie-en-zorg-in-samenhang
https://www.rivm.nl/publicaties/diabetes-tot-2025-preventie-en-zorg-in-samenhang
https://nos.nl/artikel/2520281-diabetescrisis-veel-meer-mensen-met-voorstadium-diabetes
https://nos.nl/artikel/2520281-diabetescrisis-veel-meer-mensen-met-voorstadium-diabetes
https://www.rijksoverheid.nl/documenten/convenanten/2018/11/23/nationaal-preventieakkoord
https://www.rijksoverheid.nl/documenten/convenanten/2018/11/23/nationaal-preventieakkoord
https://www.who.int/news/item/14-11-2023-quitting-smoking-cuts-your-risk-of-developing-type-2-diabetes-by-30-40
https://www.who.int/news/item/14-11-2023-quitting-smoking-cuts-your-risk-of-developing-type-2-diabetes-by-30-40
https://www.who.int/news/item/14-11-2023-quitting-smoking-cuts-your-risk-of-developing-type-2-diabetes-by-30-40


References 51

35. Knutson, K. L., Ryden, A. M., Mander, B. A. & Van Cauter, E. Role of sleep duration and quality
in the risk and severity of type 2 diabetes mellitus. Archives of internal medicine 166, 1768–1774
(2006).

36. Shan, Z. et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies.
Diabetes care 38, 529–537 (2015).

37. Maddatu, J., Anderson-Baucum, E. & Evans-Molina, C. Smoking and the risk of type 2 diabetes.
Translational Research 184, 101–107 (2017).

38. Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D. & Cornuz, J. Active smoking and the risk of
type 2 diabetes: a systematic review and meta-analysis. Jama 298, 2654–2664 (2007).

39. StatLine - Gezondheid en zorggebruik; persoonskenmerken, 2014-2021 https://opendata.
cbs.nl/statline/#/CBS/nl/dataset/83005NED/table?dl=F25F. (Accessed on 05/21/2024).

40. Sociaal economische Gezondheidsverschillen (SEGV) https://www.pharos.nl/factsheets/
sociaaleconomische-gezondheidsverschillen-segv/. (Accessed on 05/21/2024).

41. Wang, J. & Geng, L. Effects of socioeconomic status on physical and psychological health:
lifestyle as a mediator. International journal of environmental research and public health 16, 281
(2019).

42. Kelly, S. J. & Ismail, M. Stress and type 2 diabetes: a review of how stress contributes to the
development of type 2 diabetes. Annual review of public health 36, 441–462 (2015).

43. Mishra, D. N. et al. Stress etiology of type 2 diabetes. Current diabetes reviews 18, 50–56 (2022).

44. Sharma, K., Akre, S., Chakole, S. & Wanjari, M. B. Stress-induced diabetes: a review. Cureus
14 (2022).

45. Schram, M. T., Assendelft, W. J., van Tilburg, T. G. & Dukers-Muijrers, N. H. Social networks and
type 2 diabetes: a narrative review. Diabetologia 64, 1905–1916 (2021).

46. Yashi, K. & Daley, S. F. Obesity and Type 2 Diabetes (2023).

47. Leitner, D. R. et al.Obesity and type 2 diabetes: two diseases with a need for combined treatment
strategies-EASO can lead the way. Obesity facts 10, 483–492 (2017).

48. Zhang, S., De La Haye, K., Ji, M. & An, R. Applications of social network analysis to obesity: a
systematic review. Obesity reviews 19, 976–988 (2018).

49. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years.
New England journal of medicine 357, 370–379 (2007).

50. Smith, N. R., Zivich, P. N. & Frerichs, L. Social influences on obesity: Current knowledge, emerg-
ing methods, and directions for future research and practice. Current nutrition reports 9, 31–41
(2020).

51. Berkman, L. F., Kawachi, I. & Glymour, M. M. Social epidemiology (Oxford University Press,
2014).

52. Opleidingssegregatie in Nederland gedaald | CBS https://www.cbs.nl/nl-nl/nieuws/2023/
15/opleidingssegregatie-in-nederland-gedaald. (Accessed on 04/17/2024).

53. Opleidingssegregatie https://dashboards.cbs.nl/v4/opl_segregatie/. (Accessed on
04/17/2024).

54. Brinkhues, S. et al. Social network characteristics are associated with type 2 diabetes complica-
tions: the Maastricht study. Diabetes care 41, 1654–1662 (2018).

https://opendata.cbs.nl/statline/##/CBS/nl/dataset/83005NED/table?dl=F25F
https://opendata.cbs.nl/statline/##/CBS/nl/dataset/83005NED/table?dl=F25F
https://www.pharos.nl/factsheets/sociaaleconomische-gezondheidsverschillen-segv/
https://www.pharos.nl/factsheets/sociaaleconomische-gezondheidsverschillen-segv/
https://www.cbs.nl/nl-nl/nieuws/2023/15/opleidingssegregatie-in-nederland-gedaald
https://www.cbs.nl/nl-nl/nieuws/2023/15/opleidingssegregatie-in-nederland-gedaald
https://dashboards.cbs.nl/v4/opl_segregatie/


References 52

55. Henriksen, R. E., Nilsen, R. M. & Strandberg, R. B. Loneliness increases the risk of type 2
diabetes: a 20 year follow-up–results from the HUNT study. Diabetologia 66, 82–92 (2023).

56. Rosenkilde, S. et al. Loneliness and the risk of type 2 diabetes. BMJ Open Diabetes Research
and Care 12, e003934 (2024).

57. Song, Y. et al. Social isolation, loneliness, and incident type 2 diabetes mellitus: results from
two large prospective cohorts in Europe and East Asia and Mendelian randomization. EClini-
calMedicine 64 (2023).

58. Cohen, S. Social relationships and health. American psychologist 59, 676 (2004).

59. Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the
Lancet Commission report. The lancet 393, 791–846 (2019).

60. De Ruijter, A. et al. Tussen Mens En Ruimte. De (On) gezonde Voedselomgeving Als Omgev-
ingswaarde (Between People and Space. The (Un) healthy Food Environment as an Environ-
mental Value).De (On) gezonde Voedselomgeving Als Omgevingswaarde (Between People and
Space. The (Un) healthy Food Environment as an Environmental Value)(December 6, 2023).
Amsterdam Law School Research Paper (2023).

61. Downs, S. M., Ahmed, S., Fanzo, J. & Herforth, A. Food environment typology: advancing an
expanded definition, framework, and methodological approach for improved characterization of
wild, cultivated, and built food environments toward sustainable diets. Foods 9, 532 (2020).

62. Wansink, B. & Sobal, J. Mindless eating: The 200 daily food decisions we overlook. Environment
and Behavior 39, 106–123 (2007).

63. De Krom, M., Vonk, M. & Muilwijk, H. Voedselconsumptie veranderen: bouwstenen voor beleid
om verduurzaming van eetpatronen te stimuleren (PBL, Planbureau voor de Leefomgeving,
2020).

64. Poelman, M. et al. Monitoring van de mate van gezondheid van het aanbod en de promoties van
supermarkten en out-of-home-ketens: Inzicht in de huidige stand van zaken en aanbevelingen
voor het opzetten van een landelijke monitor (Wageningen University & Research, 2021).

65. Hendriksen, A. et al. How healthy and processed are foods and drinks promoted in supermarket
sales flyers? A cross-sectional study in the Netherlands. Public Health Nutrition 24, 3000–3008
(2021).

66. Van Erpecum, C.-P. L., van Zon, S. K., Bültmann, U. & Smidt, N. The association between fast-
food outlet proximity and density and Body Mass Index: Findings from 147,027 Lifelines Cohort
Study participants. Preventive Medicine 155, 106915 (2022).

67. Ntarladima, A.-M. et al. Associations between the fast-food environment and diabetes preva-
lence in the Netherlands: a cross-sectional study. The Lancet Planetary Health 6, e29–e39
(2022).

68. Poelman, M. et al.Relations between the residential fast-food environment and the individual risk
of cardiovascular diseases in The Netherlands: A nationwide follow-up study. European journal
of preventive cardiology 25, 1397–1405 (2018).

69. Harbers, M. C. et al. Residential exposure to fast-food restaurants and its association with diet
quality, overweight and obesity in the Netherlands: a cross-sectional analysis in the EPIC-NL
cohort. Nutrition Journal 20, 56 (2021).



References 53

70. Poelman, M. P. et al. Does the neighbourhood food environment contribute to ethnic differences
in diet quality? Results from the HELIUS study in Amsterdam, the Netherlands. Public health
nutrition 24, 5101–5112 (2021).

71. Hoenink, J. C., Eisink, M., Adams, J., Pinho, M. G. & Mackenbach, J. D. Who uses what food
retailers? A cluster analysis of food retail usage in the Netherlands. Health & place 81, 103009
(2023).

72. Smith, D. M. & Cummins, S. Obese cities: how our environment shapes overweight. Geography
Compass 3, 518–535 (2009).

73. Frank, L. D., Saelens, B. E., Powell, K. E. & Chapman, J. E. Stepping towards causation: do
built environments or neighborhood and travel preferences explain physical activity, driving, and
obesity? Social science & medicine 65, 1898–1914 (2007).

74. Poortinga, W. Perceptions of the environment, physical activity, and obesity. Social science &
medicine 63, 2835–2846 (2006).

75. Giles-Corti, B. &Donovan, R. J. Socioeconomic status differences in recreational physical activity
levels and real and perceived access to a supportive physical environment. Preventive medicine
35, 601–611 (2002).

76. Li, F., Fisher, K. J., Brownson, R. C. & Bosworth, M. Multilevel modelling of built environment
characteristics related to neighbourhood walking activity in older adults. Journal of Epidemiology
& Community Health 59, 558–564 (2005).

77. Vreke, J., Donders, J., Langers, F., Salverda, I. & Veeneklaas, F. Potenties van groen!: de invloed
van groen in en om de stad op overgewicht bij kinderen en op het binden van huishoudens met
midden-en hoge inkomens aan de stad tech. rep. (Alterra, 2006).

78. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for
trees. Nature machine intelligence 2, 56–67 (2020).

79. Van der Laan, J., de Jonge, E., Das, M., Te Riele, S. & Emery, T. A whole population network
and its application for the social sciences. European sociological review 39, 145–160 (2023).

80. Nation-scale social networks – SODAS - University of Copenhagen https://sodas.ku.dk/
/projects/nation-scale-social-networks/. (Accessed on 11/28/2024).

81. De Zoete, B. Measuring Social Capital in a Population-scale Social Network MA thesis (Sept. 1,
2022). https://theses.liacs.nl/2319 (2023). published.

82. Bos, B. et al. Persoonsnetwerken en criminaliteit van Neder-landse jongeren. Tijdschrift voor
Criminologie 64, 170 (2022).

83. Herkomstsegregatie in Nederland: een netwerkanalyse | CBS https://www.cbs.nl/nl-nl/
longread/statistische-trends/2024/herkomstsegregatie-in-nederland-een-netwerkan
alyse. (Accessed on 04/17/2024).

84. Hempler, N. F., Joensen, L. E. & Willaing, I. Relationship between social network, social support
and health behaviour in people with type 1 and type 2 diabetes: cross-sectional studies. BMC
public health 16, 1–7 (2016).

85. De Gezondheidsmonitors | Gezondheidsmonitor https://www.monitorgezondheid.nl/. (Ac-
cessed on 10/01/2024).

https://sodas.ku.dk//projects/nation-scale-social-networks/
https://sodas.ku.dk//projects/nation-scale-social-networks/
https://theses.liacs.nl/2319
https://www.cbs.nl/nl-nl/longread/statistische-trends/2024/herkomstsegregatie-in-nederland-een-netwerkanalyse
https://www.cbs.nl/nl-nl/longread/statistische-trends/2024/herkomstsegregatie-in-nederland-een-netwerkanalyse
https://www.cbs.nl/nl-nl/longread/statistische-trends/2024/herkomstsegregatie-in-nederland-een-netwerkanalyse
https://www.monitorgezondheid.nl/


References 54

86. Centraal Bureau voor de Statistiek. A Person Network of the Netherlands. Centraal Bureau voor
de Statistiek. https://www.cbs.nl/nl-nl/achtergrond/2022/20/a-person-network-of-
the-netherlands (May 2022).

87. Voor de Statistiek, C. B. Tijdreeks persoonsnetwerkbestanden: overzicht van de verschillen met
de eerste versie van het persoonsnetwerk https://www.cbs.nl/- /media/cbs- op- maat/
microdatabestanden/documents/2023/36/overzicht_verschillen_oude_nieuwe_persoons
netwerk.pdf. [Accessed 23-12-2024]. 2023.

88. Beweegrichtlijnen 2017 [Online; accessed 9. Dec. 2024]. Dec. 2024. https://www.gezondhei
dsraad.nl/documenten/adviezen/2017/08/22/beweegrichtlijnen-2017.

89. Pearson, K. VII. Note on regression and inheritance in the case of two parents. proceedings of
the royal society of London 58, 240–242 (1895).

90. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search 12, 2825–2830 (2011).

91. Hariharan, S. Statistical test for MCAR in python… - Towards Data Science. Medium. https:
//towardsdatascience.com/statistical-test-for-mcar-in-python-9fb617a76eac (Dec.
2021).

92. Breiman, L. Random forests. Machine learning 45, 5–32 (2001).

93. Lundberg, S. & Lee, S. A unified approach to interpreting model predictions. Part of Advances in
Neural Information Processing Systems 30 in 31st Conference on Neural Information Processing
Systems (NIPS December 2017), Long Beach, CA. NeuroIPS Proceedings (2017).

94. Shapley, L. S. A value for n-person games. Contribution to the Theory of Games 2 (1953).

95. Mensen met Nederlandse herkomst hebben meest gesegregeerde netwerk | CBS https://
www.cbs.nl/nl-nl/nieuws/2024/08/mensen-met-nederlandse-herkomst-hebben-meest-
gesegregeerde-netwerk. (Accessed on 04/17/2024).

96. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness
in machine learning. ACM computing surveys (CSUR) 54, 1–35 (2021).

97. TNO. Aantal thuiswerkuren sinds coronapandemie fors gestegen Accessed: 2024-11-05. https:
//www.tno.nl/nl/newsroom/2023/10/corona-thuiswerkuren-gestegen/.

98. Boer, J. et al. Preventief gezondheidsbeleid 2006-2018. Wat zijn de effecten en lessen? (2021).

99. Nederland Europees kampioen zitten | TNO [Online; accessed 7. Jan. 2025]. Dec. 2024. https:
//www.tno.nl/nl/newsroom/2024/02/nederland-europees-kampioen-zitten.

100. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, San
Francisco, California, USA, 2016), 785–794. ISBN: 978-1-4503-4232-2. http://doi.acm.org/
10.1145/2939672.2939785.

101. Lee, D. & Lee, B. The role of multilayered peer groups in adolescent depression: A distributional
approach. American Journal of Sociology 125, 1513–1558 (2020).

102. Bakker, A. B., Le Blanc, P. M. & Schaufeli, W. B. Burnout contagion among intensive care nurses.
Journal of advanced nursing 51, 276–287 (2005).

103. Alho, J. et al. Transmission of Mental Disorders in Adolescent Peer Networks. JAMA psychiatry
(2024).

https://www.cbs.nl/nl-nl/achtergrond/2022/20/a-person-network-of-the-netherlands
https://www.cbs.nl/nl-nl/achtergrond/2022/20/a-person-network-of-the-netherlands
https://www.cbs.nl/-/media/cbs-op-maat/microdatabestanden/documents/2023/36/overzicht_verschillen_oude_nieuwe_persoonsnetwerk.pdf
https://www.cbs.nl/-/media/cbs-op-maat/microdatabestanden/documents/2023/36/overzicht_verschillen_oude_nieuwe_persoonsnetwerk.pdf
https://www.cbs.nl/-/media/cbs-op-maat/microdatabestanden/documents/2023/36/overzicht_verschillen_oude_nieuwe_persoonsnetwerk.pdf
https://www.gezondheidsraad.nl/documenten/adviezen/2017/08/22/beweegrichtlijnen-2017
https://www.gezondheidsraad.nl/documenten/adviezen/2017/08/22/beweegrichtlijnen-2017
https://towardsdatascience.com/statistical-test-for-mcar-in-python-9fb617a76eac
https://towardsdatascience.com/statistical-test-for-mcar-in-python-9fb617a76eac
https://www.cbs.nl/nl-nl/nieuws/2024/08/mensen-met-nederlandse-herkomst-hebben-meest-gesegregeerde-netwerk
https://www.cbs.nl/nl-nl/nieuws/2024/08/mensen-met-nederlandse-herkomst-hebben-meest-gesegregeerde-netwerk
https://www.cbs.nl/nl-nl/nieuws/2024/08/mensen-met-nederlandse-herkomst-hebben-meest-gesegregeerde-netwerk
https://www.tno.nl/nl/newsroom/2023/10/corona-thuiswerkuren-gestegen/
https://www.tno.nl/nl/newsroom/2023/10/corona-thuiswerkuren-gestegen/
https://www.tno.nl/nl/newsroom/2024/02/nederland-europees-kampioen-zitten
https://www.tno.nl/nl/newsroom/2024/02/nederland-europees-kampioen-zitten
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785


References 55

104. Kensbock, J. M., Alkærsig, L. & Lomberg, C. The epidemic of mental disorders in business—
How depression, anxiety, and stress spread across organizations through employee mobility.
Administrative Science Quarterly 67, 1–48 (2022).

105. Rosenquist, J. N., Fowler, J. H. & Christakis, N. A. Social network determinants of depression.
Molecular psychiatry 16, 273–281 (2011).



56



57

A
Living Environment Graphs

Figure A.1: Cafe Figure A.2: Cafetaria

Figure A.3: Supermarkets & Grocery stores Figure A.4: other daily food stores

Figure A.5: Restaurant

Figure A.6: The distribution plots of the food environment variables. The x-axis shows the distance in meters to the nearest
one (variable of the exercise environment). The y-axis shows the percentage of diabetes medication use. For privacy reasons

and readability only bins that include at least 50 people are included.
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Figure A.7: Forest Figure A.8: Swimming Pool

Figure A.9: Park Figure A.10: Sports Field

Figure A.11: Recreational Area Figure A.12: Semi-public green space

Figure A.13: Public Green Space Figure A.14: Open Dry Land

Figure A.15: The distribution plots of the exercise environment variables. The x-axis shows the distance in meters to the
nearest one (variable of the exercise environment). The y-axis shows the percentage of diabetes medication use. For privacy

reasons and readability only bins that include at least 50 people are included.



B
Left Out Data

In total 94,695 individiuals had missings for one or more variables. Those individuals were left out (see
section 2.13). Of those left out individuals, 12.44% (11,777 individuals) is using diabetes medication.
The summary statistics of those individuals is shown in tables B.1, B.2, B.3, B.4 and B.5.

B.1. Demographic Summary Statistics Left Out Individuals

Category Overall (N) Using Diabetes Medication
Average age 68.55 ± 12.31 years 72.96 ± 9.33 years
Men 41.41% (39216) 14.04% (5505)
Women 58.59% (55479) 11.31% (6272)
Dutch 85.81% (81256) 11.94% (9704)
Other European 6.97% (6601) 12.83% (847)
Turkish 0.53% (502) 19.72% (99)
Moroccan 0.50% (473) 23.26% (110)
Surinamese 1.26% (1193) 29.84% (356)
Dutch Caribbean 0.41% (391) 16.62% (65)
Indonesian 2.67% (2526) 14.45% (365)
Other African 0.48% (454) 16.30% (74)
Other Asian 1.01% (953) 13.12% (125)
Other American & Oceanian 0.37% (346) 9.25% (32)

Table B.1: Demographic summary statistics of the left out individuals with a comparison between the overall left out individuals
and the individuals within this left out group that are using diabetes medication. Either the average of the variable value or the
percentage of people that comply with that variable is shown. Besides the percentages, also the absolute number of people (N)

is shown.
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B.2. Social Network Summary Statistics Left Out Individuals

Category Overall (N) Using Diabetes Medication
Living at parents home 0.32% (305) 10.82% (33)
Living alone 29.82% (28237) 14.91% (4210)
Partner in unmarried couple without children living at home 3.66% (3469) 10.15% (352)
Partner in married couple without children living at home 48.08% (45527) 13.08% (5957)
Partner in unmarried couple with children living at home 1.78% (1688) 3.73% (63)
Partner in married couple with children living at home 12.34% (11683) 6.25% (730)
Parent in single-parent household 2.56% (2427) 10.55% (256)
Reference person in other household 0.17% (163) 9.82% (16)
Other household member 1.02% (969) 13.62% (132)
Member of institutional household 0.24% (226) 12.39% (28)
Not lonely 35.68% (33791) 10.95% (3699)
Slightly lonely 26.55% (25141) 14.19% (3567)
Lonely 4.72% (4473) 16.23% (726)
Very lonely 2.47% (2342) 16.82% (394)
Average loneliness ** 0.63 ± 0.64 0.71 ± 0.68
Indirect exposure to people * across all network layers 0.05 ± 0.06 0.07 ± 0.08
Exposure to family members * 0.07 ± 0.12 0.10 ± 0.15
Exposure to family members of the same gender * 0.05 ± 0.13 0.08 ± 0.17
Exposure to family members of a different gender * 0.07 ± 0.15 0.11 ± 0.19
Exposure to household members * 0.08 ± 0.26 0.12 ± 0.33
Exposure to household members of the same gender * 0.00 ± 0.05 0.00 ± 0.06
Exposure to household members of a different gender * 0.08 ± 0.26 0.12 ± 0.33
Exposure to neighbors * 0.09 ± 0.07 0.11 ± 0.08
Exposure to neighbors of the same gender * 0.09 ± 0.10 0.11 ± 0.10
Exposure to neighbors of a different gender * 0.09 ± 0.10 0.11 ± 0.11
Exposure to colleagues * 0.01 ± 0.03 0.01 ± 0.04
Exposure to colleagues of the same gender * 0.01 ± 0.04 0.01 ± 0.05
Exposure to colleagues of a different gender * 0.01 ± 0.04 0.00 ± 0.03
Exposure to colleagues * (***) 0.03 ± 0.05 0.05 ± 0.08
Exposure to colleagues * of the same gender (***) 0.03 ± 0.06 0.06 ± 0.13
Exposure to colleagues * of a different gender (***) 0.03 ± 0.08 0.04 ± 0.08
Exposure to people with master education 0.12 ± 0.12 0.10 ± 0.10
Exposure to people with bachelor education 0.23 ± 0.13 0.21 ± 0.12
Exposure to people with middle education 0.46 ± 0.16 0.47 ± 0.16
Exposure to people with low education 0.19 ± 0.14 0.22 ± 0.15

Table B.2: Social Network summary statistics of the left out individuals with a comparison between the overall left out
individuals and the individuals within this left out group that are using diabetes medication. Either the average of the variable
value or the percentage of people that comply with that variable is shown. Besides the percentages, also the absolute number
of people (N) is shown. The ’*’ in the table stands for: using diabetes medication. **: The average loneliness ranges from 0
(not lonely) to 3 (very lonely). ***: Only the working population is included for those variables as only that group can have

colleagues.
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B.3. Lifestyle Summary Statistics Left Out Individuals

Category Overall (N) Using Diabetes Medication
Minutes of light intensity exercise * 1135.13 ± 865.99 921.69 ± 772.26
Minutes of middle intensity exercise * 682.63 ± 702.49 546.85 ± 620.34
Minutes of high intensity exercise * 22.78 ± 82.09 14.09 ± 66.81
Adherence to exercise guidelines 22.97% (21754) 7.57% (1647)
Never smoked 28.00% (26517) 11.68% (3098)
Ex-smoker 32.58% (30849) 14.21% (4383)
Smoker 10.71% (10145) 11.68% (1185)
Never drank alcohol 12.11% (11463) 18.12% (2077)
Alcohol drinker 65.14% (61688) 10.40% (6418)
Ex-alcohol drinker 6.15% (5828) 21.00% (1224)
Number of alcoholic drinks * 5.87 ± 7.37 4.72 ± 6.48
Under weight (BMI: 18.5-) 0.95% (901) 4.77% (43)
Normal weight (BMI: 18.5-20) 2.08% (1967) 3.51% (69)
Normal weight (20-25) 30.27% (28660) 7.12% (2041)
Overweight (BMI: 25-30) 33.14% (31382) 12.63% (3965)
Obese (BMI: 30+) 14.17% (13414) 23.84% (3198)
Very good experienced health 9.67% (9153) 2.29% (210)
Good experienced health 49.22% (46610) 8.83% (4117)
Moderate experienced health 29.72% (28148) 19.31% (5434)
Bad experienced health 5.60% (5301) 24.52% (1300)
Very bad experienced health 0.85% (805) 25.34% (204)

Table B.3: Lifestyle summary statistics of the left out individuals with a comparison between the overall left out individuals and
the individuals within this left out group that are using diabetes medication. Either the average of the variable value or the

percentage of people that comply with that variable is shown. Besides the percentages, also the absolute number of people (N)
is shown. The * stands for: ’per week’.

B.4. Socioeconomic Summary Statistics Left Out Individuals

Category Overall (N) Using Diabetes Medication
Low education (primary education) 11.15% (10560) 19.83% (2094)
Middle 1 education (Dutch: MAVO, LBO) 33.37% (31598) 13.41% (4236)
Middle 2 education (Dutch: HAVO, VWO, MBO) 16.98% (16078) 9.63% (1548)
High education (HBO, WO) 11.62% (10999) 7.82% (860)
Unfit for work (Dutch: arbeidsongeschikt) 2.56% (2424) 13.08% (317)
Social benefits (Dutch: bijstand) 1.38% (1308) 14.14% (185)
No income 3.68% (3487) 7.14% (249)
Retired 68.70% (65052) 15.26% (9924)
Social benefits (Dutch: sociale voorzieningen) 0.47% (445) 10.56% (47)
Working 22.12% (20945) 4.74% (993)
Using unemployment benefits * 1.09% (1034) 6.00% (62)
Average household income percentile 49.42 ± 25.57 41.41 ± 22.87

Table B.4: Socioeconomic summary statistics of the left out individuals with a comparison between the overall left out
individuals and the individuals within this left out group that are using diabetes medication. Either the average of the variable
value or the percentage of people that comply with that variable is shown. Besides the percentages, also the absolute number

of people (N) is shown. *: Dutch: werkloosheidsuitkering.



B.5. Living Environment Summary Statistics Left Out Individuals 62

B.5. Living Environment Summary Statistics Left Out Individuals

Category Overall (N) Using Diabetes Medication
Very strong urbanity (≥ 2500 surrounding addresses/km²) 13.81% (13079) 15.72% (2056)
Strong urbanity (1500-2500) 22.45% (21261) 13.30% (2827)
Moderate urbanity (1000-1500) 18.61% (17625) 11.99% (2113)
Little urbanity (500-1000) 20.28% (19204) 11.61% (2229)
Not urban (<500) 24.84% (23525) 10.85% (2552)

Table B.5: Living Environment summary statistics of the left out individuals with a comparison between the overall left out
individuals and the individuals within this left out group that are using diabetes medication. The percentage of people that

comply with that variable is shown. Besides the percentages, also the absolute number of people (N) is shown.



C
Correlation between Variables

C.1. Heatmap

In figure C.1 the heatmap for the correlations between all variables is shown. For the meaning of the
variable names, see table C.1.
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Figure C.1: The heatmap of all the variables showing if and how much variables are positively or negatively correlated.
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Table C.1: Legend for variable names and meanings.
With * standing for: using diabetes medication

Variable Name Variable meaning
num__Opleiding_samind Education level
num__KLGGB201 Experienced health
num__GGEES208 Loneliness
num__AGGWS203 Body mass index
num__l_mwk Minutes of light intensity exercise
num__m_mwk Minutes of moderate intensity exercise
num__z_mwk Minutes of high intensity exercise
num__alc_week Number of alcoholic drinks per week
num__STEDBUURT Urbanity
num__INHP100HGEST Average household income percentile
num__LFT Age
num__VZAANTGRSUPERM03KM Number of supermarkets and grocery stores within 3 km
num__VZAANTOVDAGLEV03KM Number of other daily food stores within 3 km
num__VZAANTCAFE03KM Number of cafes within 3 km
num__VZAANTCAFETARIA03KM Number of cafeterias within 3 km
num__VZAANTRESTAU03KM Number of restaurants within 3 km
num__VZAFSTANDOPENBAARGROENTOT Distance in meters to nearest public green space
num__VZAFSTANDPARK Distance in meters to nearest park
num__VZAFSTANDDAGRECRTERREIN Distance in meters to nearest day recreational area
num__VZAFSTANDBOS Distance in meters to nearest forest
num__VZAFSTANDOPENDROOGTERREIN Distance in meters to nearest open dry land
num__VZAFSTANDSEMIOPENBGRTOT Distance in meters to nearest semi-public green space
num__VZAFSTANDSPORTTERREIN Distance in meters to nearest sports field
num__VZAFSTANDZWEMBAD Distance in meters to nearest swimming pool
num__exp_master Exposure to people with master education
num__exp_bachelor Exposure to people with bachelor education
num__exp_middelbaar Exposure to people with middle education
num__exp_laag Exposure to people with low education
num__exposure_diabetes_geslacht_fam Exposure to family members of the same gender *
num__exposure_diabetes_ander_geslacht_fam Exposure to family members of a different gender *
num__exposure_diabetes_fam Exposure to family members *
num__exposure_diabetes_geslacht_huis Exposure to household members of the same gender *
num__exposure_diabetes_ander_geslacht_huis Exposure to household members of a different gender *
num__exposure_diabetes_huis Exposure to household members *
num__exposure_diabetes_geslacht_buren Exposure to neighbors of the same gender *
num__exposure_diabetes_ander_geslacht_buren Exposure to neighbors of a different gender *



C.1. Heatmap 66

Variable Name Variable meaning
num__exposure_diabetes_buren Exposure to neighbors *
num__exposure_diabetes_geslacht_collega Exposure to colleagues of the same gender *
num__exposure_diabetes_ander_geslacht_collega Exposure to colleagues of a different gender *
num__exposure_diabetes_collega Exposure to colleagues *
cat__KI_RLBEW2017_100.0 Adherence to exercise guidelines
cat__GBAGESLACHT_2 Women
cat__drinker_0.0 Never drank alcohol
cat__drinker_1.0 Alcohol drinker
cat__drinker_2.0 Ex-alcohol drinker
cat__LANDTIENDELING_01 Dutch
cat__LANDTIENDELING_02 Other European
cat__LANDTIENDELING_03 Turkish
cat__LANDTIENDELING_04 Moroccan
cat__LANDTIENDELING_05 Surinamese
cat__LANDTIENDELING_06 Dutch Caribbean
cat__LANDTIENDELING_07 Indonesian
cat__LANDTIENDELING_08 Other African
cat__LANDTIENDELING_09 Other Asian
cat__LANDTIENDELING_10 Other American and Oceanian
cat_PLHH_1 Living at parents home
cat_PLHH_2 Living alone
cat_PLHH_3 Partner in unmarried couple without children living at home
cat_PLHH_4 Partner in married couple without children living at home
cat_PLHH_5 Partner in unmarried couple with children living at home
cat_PLHH_6 Partner in married couple with children living at home
cat_PLHH_7 Parent in single-parent household
cat_PLHH_8 Reference person in other household
cat_PLHH_9 Other household member
cat_PLHH_10 Member of institutional household
cat__SECM_arbeidsongeschikt Unfit for work (Dutch: arbeidsongeschikt)
cat__SECM_bijstand Receiving social benefit (Dutch: bijstand)
cat__SECM_geeninkomen No income
cat__SECM_pensioen Retired
cat__SECM_socialevoorzieningen Receiving social benefits (Dutch: sociale voorzieningen)
cat__SECM_werkend Working
cat__SECM_werkloosheid Receiving unemployment benefits (Dutch: werkloosheidsuitkering)
cat__LFRKA206_0.0 Never smoked
cat__LFRKA206_1.0 Smoker
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Variable Name Variable meaning
cat__LFRKA206_8.0 Ex-smoker
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C.2. Correlations between Variables

The Pearson correlations between variables if the absolute correlation is equal or higher than 0.45. For
the meaning of the variable names, see table C.1.

Variable 1 Variable 2 Correlation
num__exposure_diabetes_huis num__exposure_diabetes_ander_geslacht_huis 0.99
num__VZAANTCAFE03KM num__VZAANTCAFETARIA03KM 0.97
num__VZAANTOVDAGLEV03KM num__VZAANTCAFETARIA03KM 0.97
num__VZAANTCAFETARIA03KM num__VZAANTRESTAU03KM 0.96
num__VZAANTOVDAGLEV03KM num__VZAANTCAFE03KM 0.95
num__VZAANTCAFE03KM num__VZAANTRESTAU03KM 0.95
num__VZAANTGRSUPERM03KM num__VZAANTOVDAGLEV03KM 0.95
num__VZAANTGRSUPERM03KM num__VZAANTCAFETARIA03KM 0.93
num__VZAANTOVDAGLEV03KM num__VZAANTRESTAU03KM 0.92
num__VZAANTGRSUPERM03KM num__VZAANTCAFE03KM 0.89
cat__KI_RLBEW2017_0.0 cat__KI_RLBEW2017_100.0 -0.86
num__VZAANTGRSUPERM03KM num__VZAANTRESTAU03KM 0.85
num__exposure_diabetes_ander_geslacht_fam num__exposure_diabetes_fam 0.82
cat__SECM_pensioen cat__SECM_werkend -0.81
num__LFT cat__SECM_pensioen 0.80
num__exposure_diabetes_geslacht_collega num__exposure_diabetes_collega 0.79
num__exposure_diabetes_geslacht_buren num__exposure_diabetes_buren 0.75
num__exposure_diabetes_ander_geslacht_buren num__exposure_diabetes_buren 0.75
num__VZAFSTANDSEMIOPENBGRTOT num__VZAFSTANDSPORTTERREIN 0.72
num__LFT cat__SECM_werkend -0.69
cat__LANDTIENDELING_01 cat__LANDTIENDELING_02 -0.69
num__STEDBUURT num__VZAANTGRSUPERM03KM -0.67
cat__drinker_0.0 cat__drinker_1.0 -0.67
cat__LFRKA206_0.0 cat__LFRKA206_1.0 -0.65
num__exposure_diabetes_geslacht_fam num__exposure_diabetes_fam 0.56
num__STEDBUURT num__VZAANTOVDAGLEV03KM -0.55
cat__PLHH_2 cat__PLHH_4 -0.55
num__exp_master num__exp_middelbaar -0.54
num__STEDBUURT num__VZAFSTANDZWEMBAD 0.54
num__STEDBUURT num__VZAANTCAFETARIA03KM -0.52
num__exposure_diabetes_ander_geslacht_collega num__exposure_diabetes_collega 0.52
cat__drinker_nan cat__LFRKA206_nan 0.51
num__exp_bachelor num__exp_middelbaar -0.51
cat__drinker_1.0 cat__drinker_2.0 -0.51
num__exposure_diabetes_ander_geslacht_fam num__exposure_diabetes_ander_geslacht_huis 0.49
num__LFT cat__PLHH_6 -0.49
num__totspier cat__KI_RLBEW2017_100.0 0.48
num__exposure_diabetes_ander_geslacht_fam num__exposure_diabetes_huis 0.48
num__STEDBUURT num__VZAFSTANDPARK 0.46
num__Opleiding_samind num__INHP100HGEST 0.45

Table C.2: Pearson Correlations that are higher than (absolute of) 0.45 between different variables.
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D
Precision Recall Curves Test Set

D.1. Random Forest Model

Figure D.1: The precision/recall curve for the test set of the random forest model.
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Figure D.2: The precision/recall and F1 threshold curve for the test set of the random forest model.
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D.2. Logistic Regression Model

Figure D.3: The precision/recall curve for the test set of the logistic regression model.
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Figure D.4: The precision/recall and F1 threshold curve for the test set of the logistic regression model.



E
Shapley Graph Random Forest

For the interpretation of this graph, see section 2.16.2. For the meaning of the variable names, see
table C.1.
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F
Shapley Graph Logistic Regression

For the interpretation of this graph, see section 2.16.2. For the meaning of the variable names, see
table C.1.
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Code

G.1. Random Forest Code
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250109_Code_RF

January 9, 2025

1 Code Random Forest
[ ]: import pandas as pd

import matplotlib.pyplot as plt
import numpy as np
import random
import time
import warnings
import joblib
import seaborn as sns
import shap
import xgboost as xgb
from joblib import Parallel, delayed
from sklearn.decomposition import PCA

from scipy.stats import pearsonr, pointbiserialr, chi2_contingency
from sklearn.linear_model import LinearRegression
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import (

train_test_split, cross_val_score, StratifiedKFold, GridSearchCV
)
from sklearn.metrics import (

accuracy_score, confusion_matrix, classification_report, recall_score,
make_scorer, precision_score, f1_score, precision_recall_curve,
PrecisionRecallDisplay, average_precision_score

)
from sklearn.inspection import PartialDependenceDisplay, permutation_importance
from sklearn.tree import plot_tree
from sklearn.preprocessing import FunctionTransformer

from tabulate import tabulate
from fancyimpute import KNN, IterativeImputer
from sklearn.linear_model import BayesianRidge
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import multiprocessing
multiprocessing.cpu_count()

from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

1.0.1 Document imports

[ ]: df = pd.read_parquet('CoupledData.parquet')

1.0.2 Select only group who is 40+

[ ]: df = df[df['LFT']>= 40]
print(f' The shape of df is: {df.shape}')

1.0.3 Fill missing values familie, huis, buren, colleague

[ ]: columns_to_fill =['exposure_diabetes_fam','exposure_diabetes_geslacht_fam',␣
↪'exposure_diabetes_ander_geslacht_fam',

'exposure_diabetes_huis','exposure_diabetes_geslacht_huis',␣
↪'exposure_diabetes_ander_geslacht_huis',

'exposure_diabetes_buren','exposure_diabetes_geslacht_buren',␣
↪'exposure_diabetes_ander_geslacht_buren',

'exposure_diabetes_collega',␣
↪'exposure_diabetes_geslacht_collega',␣
↪'exposure_diabetes_ander_geslacht_collega']

df[columns_to_fill] = df[columns_to_fill].fillna(0)

1.0.4 De input for training are only rows that have no missings

[ ]: df_nomis = df.dropna()
len(df_nomis)
print(f'The difference is: {len(df)-len(df_nomis)}')
print(len(df_nomis))

[ ]: len(df)

1.0.5 Check missings per column

[ ]: missing_per_column = df.isnull().sum()
print(missing_per_column)
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1.0.6 Check exposure missings

[ ]: df_check_exp_missings = df_nomis[['RINPERSOON']].merge(df_famexp,␣
↪on='RINPERSOON', how='left')\
.merge(df_huisexp, on='RINPERSOON', how='left')\
.merge(df_burenexp, on='RINPERSOON', how='left')\
.merge(df_collegaexp, on='RINPERSOON', how='left')

[ ]: df_check_exp_missings.isna().sum()

2 Train machine learning model

[ ]: df = df_nomis

[ ]: # Separate features and target
X = df.drop('DIABETESMED_2016', axis=1)
y = df['DIABETESMED_2016']

[ ]: # Identify numerical and categorical columns
categorical_cols = ['KI_RLBEW2017', 'GBAGESLACHT', 'drinker',

'LANDTIENDELING','PLHH','SECM', 'LFRKA206']

numerical_cols = ['Opleiding_samind','KLGGB201', 'GGEES208', 'AGGWS203',␣
↪'l_mwk',

'm_mwk', 'z_mwk', 'alc_week', 'STEDBUURT','INHP100HGEST',
'LFT',
␣

↪'VZAANTGRSUPERM03KM','VZAFSTANDOPENBAARGROENTOT','VZAFSTANDPARK',
␣

↪'VZAFSTANDDAGRECRTERREIN','VZAFSTANDBOS','VZAFSTANDOPENDROOGTERREIN',
'VZAFSTANDSPORTTERREIN','VZAFSTANDZWEMBAD',
'exp_master','exp_bachelor','exp_middelbaar','exp_laag',
'exposure_diabetes_geslacht_fam',␣

↪'exposure_diabetes_ander_geslacht_fam',
'exposure_diabetes_huis',
'exposure_diabetes_geslacht_buren',␣

↪'exposure_diabetes_ander_geslacht_buren',
'exposure_diabetes_geslacht_collega',␣

↪'exposure_diabetes_ander_geslacht_collega']

[ ]: numerical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='mean')) # there are NO missing values␣

↪(are already deleted/filled)
])

categorical_transformer = Pipeline(steps=[
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('onehot', OneHotEncoder(drop='if_binary', handle_unknown='ignore')) ␣
↪#there are no unkowns

])

# Combine preprocessing steps
preprocessor = ColumnTransformer(

transformers=[
('num', numerical_transformer, numerical_cols),
('cat', categorical_transformer, categorical_cols)

])

2.0.1 Change the parameters for the GridSearch

[ ]: # Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)

# Define hyperparameter grid for RandomForest
param_grid = {

'model__n_estimators': [50, 100, 150],
'model__max_depth': [5, 10, 20, 30],
'model__min_samples_split': [5, 10, 20],
'model__max_features':['sqrt', 'log2', None], #[0.1, 0.4, 0.8, None]
'model__random_state':[42]

}

# Create the pipeline
pipeline = Pipeline(steps=[

('preprocessor', preprocessor),
('model', RandomForestClassifier(random_state=42, class_weight='balanced'))

])

[ ]: # Initialize GridSearchCV
grid_search = GridSearchCV(pipeline, param_grid, cv=5,␣

↪scoring='average_precision', n_jobs=-10)

[ ]: # Train the model with GridSearchCV
start_time = time.time()
grid_search.fit(X_train, y_train)
end_time = time.time()

training_time = (end_time - start_time) / 60
print(f'Training time: {training_time} minutes')

[ ]: # check results of the grid search
gridsearch_results = pd.DataFrame(grid_search.cv_results_)
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gridsearch_results = gridsearch_results.sort_values(by=['rank_test_score'])

gridsearch_results

Save the gridsearch data
[ ]: # save the data

gridsearch_results.to_parquet('241228_gridsearchRF_results.parquet',␣
↪index=False)

# read the data
gridsearch_results = pd.read_parquet('241228_gridsearchRF_results.parquet')

Save the best model
[ ]: best_model = grid_search.best_estimator_

# save the best model to a file
joblib.dump(best_model, '241228_best_model_RF_NEW.pkl')
best_model = joblib.load('241228_best_model_RF_NEW.pkl')

2.1 Calculate predicted probabilities

[ ]: # Predict probabilities on the TRAIN set with the best model
y_pred_proba_train = best_model.predict_proba(X_train)[:, 1]

[ ]: # Predict probabilities on the TEST set with the best model
y_pred_proba = best_model.predict_proba(X_test)[:, 1]

3 Precision Recall Curve
3.0.1 Train set

[ ]: # Train Set Raw Numbers
precision, recall, thresholds = precision_recall_curve(y_train,␣

↪y_pred_proba_train)
disp = PrecisionRecallDisplay(precision=precision, recall=recall)
disp.plot()
average_precision = average_precision_score(y_train, y_pred_proba_train)
print(f'average precision: {average_precision}')

# calculate F1 scores
f1_scores = 2*(precision*recall)/(precision+recall)
f1_scores = np.nan_to_num(f1_scores) # handle any NAN from division by zero
# plot precisie en recall als functie van de thresholds
plt.figure(figsize=(10,6))
plt.plot(thresholds, precision[:-1], label='Precision', color='blue')
plt.plot(thresholds, recall[:-1], label='Recall', color='orange')

5



plt.plot(thresholds, f1_scores[:-1], label='F1 score', color='green')
plt.xlabel('Threshold')
plt.ylabel('Precision/Recall/F1')
plt.title('Precision, Recall and F1 score vs Threshold')
plt.legend()
plt.grid()
plt.show()

3.0.2 Test set

[ ]: # Test Set Raw Numbers
precision, recall, thresholds = precision_recall_curve(y_test, y_pred_proba)
disp = PrecisionRecallDisplay(precision=precision, recall=recall)
disp.plot()
average_precision = average_precision_score(y_test, y_pred_proba)
print(f'average precision: {average_precision}')

# calculate F1 scores
f1_scores = 2*(precision*recall)/(precision+recall)
f1_scores = np.nan_to_num(f1_scores) # handle any NAN from division by zero
# plot precisie en recall als functie van de thresholds
plt.figure(figsize=(10,6))
plt.plot(thresholds, precision[:-1], label='Precision', color='blue')
plt.plot(thresholds, recall[:-1], label='Recall', color='orange')
plt.plot(thresholds, f1_scores[:-1], label='F1 score', color='green')
plt.xlabel('Threshold')
plt.ylabel('Precision/Recall/F1')
plt.title('Precision, Recall and F1 score vs Threshold')
plt.legend()
plt.grid()
plt.show()

3.0.3 Set decision threshold

[ ]: optimal_threshold = 0.65

3.0.4 Confusion matrix Train set

[ ]: # Apply the optimal threshold to the TRAIN set
# when the predicted probability is bigger than the optimal_threshold, a 1 will␣

↪be put (so has diabetes), otherwise a 0 will be put (no diabetes)
optimal_threshold = optimal_threshold
y_pred_adjusted_train = (y_pred_proba_train >= optimal_threshold).astype(int)

[ ]: # Classification report TRAIN set
class_report = classification_report(y_train, y_pred_adjusted_train)
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print('Classification Report TRAIN set:')
print(class_report)

3.0.5 Confusion matrix Test set

[ ]: # Apply the optimal threshold to the test set
# when the predicted probability is bigger than the optimal_threshold, a 1 will␣

↪be put (so has diabetes), otherwise a 0 will be put (no diabetes)
optimal_threshold = optimal_threshold
y_pred_adjusted = (y_pred_proba >= optimal_threshold).astype(int)

[ ]: # Classification report
class_report = classification_report(y_test, y_pred_adjusted)
print('Classification Report:')
print(class_report)

3.0.6 Analyse TP, FP, TN, FN (of the TEST set) in further detail

[ ]: results_df = pd.DataFrame({
'Actual': y_test, #actual outcomes
'Predicted': y_pred_adjusted #predicted outcomes

})

results_df = pd.concat([results_df, X_test], axis=1)

false_positives = results_df[(results_df['Predicted']==1) &␣
↪(results_df['Actual']==0)]

false_negatives = results_df[(results_df['Predicted']==0) &␣
↪(results_df['Actual']==1)]

true_positives = results_df[(results_df['Predicted']==1) &␣
↪(results_df['Actual']==1)]

true_negatives = results_df[(results_df['Predicted']==0) &␣
↪(results_df['Actual']==0)]

[ ]: # check percentage of people who are in the true negative group and do use␣
↪diabetesmedicatie in 2022

print(true_negatives['DIABETESMED_2022'].value_counts())
TN1_2022 = (true_negatives['DIABETESMED_2022'].value_counts()[1]/

↪true_negatives['DIABETESMED_2022'].value_counts()[0])*100
print(f'percentage: {TN1_2022}')

[ ]: # check percentage of people who are in the false positive group and do use␣
↪diabetesmedicatie in 2022

print(false_positives['DIABETESMED_2022'].value_counts())
#vergelijk dat met de True negatives hoeveel die omhoog gaan
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FP1_2022 = (false_positives['DIABETESMED_2022'].value_counts()[1]/
↪false_positives['DIABETESMED_2022'].value_counts()[0])*100

print(f'percentage: {FP1_2022}')

[ ]: # factor
FP1_2022/TN1_2022

4 Shapley

[ ]: # Transform the data sing the preprocessor
sample_size = 100000 #00
X_sample = X_train.sample(sample_size, random_state=42)
X_transformed = preprocessor.fit_transform(X_sample)

# convert transformed data to dataframe
X_transformed_df = pd.DataFrame(X_transformed, columns = preprocessor.

↪get_feature_names_out())

[ ]: X_transformed.shape

[ ]: explainer = shap.TreeExplainer(best_model.named_steps['model'], feature_names =␣
↪preprocessor.get_feature_names_out()) #, X_transformed)

[ ]: # For all plots except the dependence plot
start_time = time.time()
shap_values = explainer(X_transformed)
end_time = time.time()
shapley_time = (end_time - start_time) / 60
print(f'Shapley time: {shapley_time} minutes')

[ ]: joblib.dump(shap_values, '241228_shap_values_RF_NEW.pkl')
shap_values = joblib.load('241228_shap_values_RF_NEW.pkl')

[ ]: # For the dependence plot
start_time = time.time()
shap_values_2 = explainer.shap_values(X_transformed)
end_time = time.time()
shapley_time = (end_time - start_time) / 60
print(f'Shapley 2 time: {shapley_time} minutes')

[ ]: joblib.dump(shap_values_2, '241228_shap_values_2_RF_NEW.pkl')
shap_values_2 = joblib.load('241228_shap_values_2_RF_NEW.pkl')
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4.0.1 Global interpretability

4.0.2 Get the Ranking

[ ]: mean_abs_shap_values = np.mean(np.abs(shap_values[:,:,1].values), axis=0)
sorted_features = np.array(shap_values[:,:,1].feature_names)[np.

↪argsort(-mean_abs_shap_values)]
print(sorted_features)

[ ]: np.sort(-mean_abs_shap_values)
# t/m variable 29 gaat het tot de macht -3, daarna tot de macht -4

[ ]: shap.summary_plot(shap_values[:,:,1], max_display=150)#, X_transformed)

4.0.3 Afstand dag recreatie terrein

[ ]: dot_size = 10
jitter = 0.3
alpha = 0.2
interaction_index = 'auto'

[ ]: feature = 'num__VZAFSTANDDAGRECRTERREIN'
shap.dependence_plot(feature, shap_values_2[:,:,1], X_transformed_df,␣

↪dot_size=dot_size, x_jitter=jitter, alpha=alpha, interaction_index=None,␣
↪show=False)

# Set custom x and y axis labels
plt.xlabel('distance to nearest recreation area in meters')
plt.ylabel('SHAP value')
#plt.title('Custom Title')
plt.savefig('dependence_plot_RF_VZAFSTANDDAGRECRTERREIN.png', dpi=300,␣

↪bbox_inches='tight')

plt.show()
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G.2. Logistic Regression Code



250109_Code_LR

January 9, 2025

1 Code Logistic Regression

[ ]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random
import time
import warnings
import joblib
import seaborn as sns
import shap
import xgboost as xgb
from joblib import Parallel, delayed
from sklearn.decomposition import PCA

from scipy.stats import pearsonr, pointbiserialr, chi2_contingency
from sklearn.linear_model import LinearRegression
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import (

train_test_split, cross_val_score, StratifiedKFold, GridSearchCV
)
from sklearn.metrics import (

accuracy_score, confusion_matrix, classification_report, recall_score,
make_scorer, precision_score, f1_score, precision_recall_curve,
PrecisionRecallDisplay, average_precision_score

)
from sklearn.inspection import PartialDependenceDisplay, permutation_importance
from sklearn.tree import plot_tree

from tabulate import tabulate
from fancyimpute import KNN, IterativeImputer
from sklearn.linear_model import BayesianRidge
import multiprocessing
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multiprocessing.cpu_count()

from sklearn.linear_model import LogisticRegression

1.0.1 Document imports

[ ]: df = pd.read_parquet('CoupledData.parquet')

1.0.2 Select only group who is 40+

[ ]: df = df[df['LFT']>= 40]
print(f' The shape of df is: {df.shape}')

1.0.3 Fill missing values familie, huis, buren, (collega, maar al eerder gedaan)
netwerken

[ ]: columns_to_fill =['exposure_diabetes_fam','exposure_diabetes_geslacht_fam',␣
↪'exposure_diabetes_ander_geslacht_fam',

'exposure_diabetes_huis','exposure_diabetes_geslacht_huis',␣
↪'exposure_diabetes_ander_geslacht_huis',

'exposure_diabetes_buren','exposure_diabetes_geslacht_buren',␣
↪'exposure_diabetes_ander_geslacht_buren',

'exposure_diabetes_collega',␣
↪'exposure_diabetes_geslacht_collega',␣
↪'exposure_diabetes_ander_geslacht_collega']

df[columns_to_fill] = df[columns_to_fill].fillna(0)

1.0.4 De input for training are only rows that have no missings

[ ]: df_nomis = df.dropna()
len(df_nomis)
print(f'The difference is: {len(df)-len(df_nomis)}')

2 Train machine learning model

[ ]: # Separate features and target
df = df_nomis.drop('RINPERSOON', axis=1)
X = df.drop('DIABETESMED_2016', axis=1)
y = df['DIABETESMED_2016']

[ ]: # Identify numerical and categorical columns
categorical_cols = ['KI_RLBEW2017', 'GBAGESLACHT', 'drinker',

'LANDTIENDELING','PLHH','SECM', 'LFRKA206']
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numerical_cols = ['Opleiding_samind','KLGGB201', 'GGEES208', 'AGGWS203',␣
↪'l_mwk',

'm_mwk', 'z_mwk', 'alc_week', 'STEDBUURT','INHP100HGEST',
'LFT',
'VZAANTGRSUPERM03KM',␣

↪'VZAFSTANDOPENBAARGROENTOT','VZAFSTANDPARK',
␣

↪'VZAFSTANDDAGRECRTERREIN','VZAFSTANDBOS','VZAFSTANDOPENDROOGTERREIN',
'VZAFSTANDSPORTTERREIN','VZAFSTANDZWEMBAD',
'exp_master','exp_bachelor','exp_middelbaar','exp_laag',
'exposure_diabetes_geslacht_fam',␣

↪'exposure_diabetes_ander_geslacht_fam',
'exposure_diabetes_huis',
'exposure_diabetes_geslacht_buren',␣

↪'exposure_diabetes_ander_geslacht_buren',
'exposure_diabetes_geslacht_collega',␣

↪'exposure_diabetes_ander_geslacht_collega']

[ ]: # Preprocessing for numerical data
numerical_transformer = Pipeline(steps=[

('imputer', SimpleImputer(strategy='mean')), # there are NO missing values␣
↪(are already deleted/filled)

('scaler', StandardScaler())
])

# Preprocessing for categorical data (one hot encoding)
categorical_transformer = Pipeline(steps=[

('onehot', OneHotEncoder(drop='first', handle_unknown='ignore')) #there are␣
↪no unkowns

])

# Combine preprocessing steps
preprocessor = ColumnTransformer(

transformers=[
('num', numerical_transformer, numerical_cols),
('cat', categorical_transformer, categorical_cols)

])

[ ]: X_prepp = preprocessor.fit_transform(X)

[ ]: X_prepp.shape
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3 Logistic Regression

[ ]: # Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)

param_grid = {
'model__C':[0.01, 0.1, 1, 10, 100],
'model__solver':['liblinear', 'lbfgs', 'saga', 'newton-cholesky'],
'model__penalty':['l2', 'l1'],
'model__random_state':[42]

}

# Create the pipeline
pipeline = Pipeline(steps=[

('preprocessor', preprocessor),
('model', LogisticRegression(class_weight='balanced', max_iter=200,␣

↪random_state=42))
])

[ ]: # Initialize GridSearchCV
grid_search = GridSearchCV(pipeline, param_grid, cv=5,␣

↪scoring='average_precision', n_jobs=-10, verbose = 1,)

# Train the model with GridSearchCV
start_time = time.time()
grid_search.fit(X_train, y_train)
end_time = time.time()

training_time = (end_time - start_time) / 60
print(f'Training time: {training_time} minutes')

[ ]: # check results of the grid search
gridsearch_results = pd.DataFrame(grid_search.cv_results_)
gridsearch_results = gridsearch_results.sort_values(by=['rank_test_score'])
gridsearch_results

Save the gridsearch data
[ ]: # save the data

gridsearch_results = pd.read_parquet('gridsearch_LR_250102.parquet')
gridsearch_results

Save the best model
[ ]: best_model = grid_search.best_estimator_
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# save the best model to a file
joblib.dump(best_model, 'best_model_LR_250102.pkl')
best_model = joblib.load('best_model_LR_250102.pkl')

Use the best model

3.1 Calculate predicted probabilities

[ ]: # Predict probabilities on the TRAIN set with the best model
y_pred_proba_train = best_model.predict_proba(X_train)[:, 1]

[ ]: # Predict probabilities on the test set with the best model
y_pred_proba = best_model.predict_proba(X_test)[:, 1]

4 Precision Recall Curve
4.0.1 Train set

[ ]: # Test Set Raw Numbers LR
precision, recall, thresholds = precision_recall_curve(y_train,␣

↪y_pred_proba_train)
disp = PrecisionRecallDisplay(precision=precision, recall=recall)
disp.plot()
average_precision = average_precision_score(y_train, y_pred_proba_train)
print(f'average precision: {average_precision}')

# calculate F1 scores
f1_scores = 2*(precision*recall)/(precision+recall)
f1_scores = np.nan_to_num(f1_scores) # handle any NAN from division by zero
# plot precisie en recall als functie van de thresholds
plt.figure(figsize=(10,6))
plt.plot(thresholds, precision[:-1], label='Precision', color='blue')
plt.plot(thresholds, recall[:-1], label='Recall', color='orange')
plt.plot(thresholds, f1_scores[:-1], label='F1 score', color='green')
plt.xlabel('Threshold')
plt.ylabel('Precision/Recall/F1')
plt.title('Precision, Recall and F1 score vs Threshold')
plt.legend()
plt.grid()
plt.show()
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4.0.2 Test set

[ ]: # Test Set Raw Numbers LR
precision, recall, thresholds = precision_recall_curve(y_test, y_pred_proba)
disp = PrecisionRecallDisplay(precision=precision, recall=recall)
disp.plot()
average_precision = average_precision_score(y_test, y_pred_proba)
print(f'average precision: {average_precision}')

# calculate F1 scores
f1_scores = 2*(precision*recall)/(precision+recall)
f1_scores = np.nan_to_num(f1_scores) # handle any NAN from division by zero
# plot precisie en recall als functie van de thresholds
plt.figure(figsize=(10,6))
plt.plot(thresholds, precision[:-1], label='Precision', color='blue')
plt.plot(thresholds, recall[:-1], label='Recall', color='orange')
plt.plot(thresholds, f1_scores[:-1], label='F1 score', color='green')
plt.xlabel('Threshold')
plt.ylabel('Precision/Recall/F1')
plt.title('Precision, Recall and F1 score vs Threshold')
plt.legend()
plt.grid()
plt.show()

4.0.3 Set decision threshold

[ ]: optimal_threshold = 0.65

4.0.4 Confusion matrix Train set

[ ]: # Apply the optimal threshold to the TRAIN set
# when the predicted probability is bigger than the optimal_threshold, a 1 will␣

↪be put (so has diabetes), otherwise a 0 will be put (no diabetes)
optimal_threshold = optimal_threshold
y_pred_adjusted_train = (y_pred_proba_train >= optimal_threshold).astype(int)

[ ]: # Classification report TRAIN set
class_report = classification_report(y_train, y_pred_adjusted_train)
print('Classification Report TRAIN set:')
print(class_report)

4.0.5 Confusion matrix Test Set

[ ]: # Apply the optimal threshold to the test set
# when the predicted probability is bigger than the optimal_threshold, a 1 will␣

↪be put (so has diabetes), otherwise a 0 will be put (no diabetes)
optimal_threshold = optimal_threshold
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y_pred_adjusted = (y_pred_proba >= optimal_threshold).astype(int)

[ ]: # Classification report
class_report = classification_report(y_test, y_pred_adjusted)
print('Classification Report:')
print(class_report)

4.0.6 Analyse TP, FP, TN, FN (of the TEST set) in further detail

[ ]: results_df = pd.DataFrame({
'Actual': y_test, #actual outcomes
'Predicted': y_pred_adjusted #predicted outcomes

})

results_df = pd.concat([results_df, X_test], axis=1)

false_positives = results_df[(results_df['Predicted']==1) &␣
↪(results_df['Actual']==0)]

false_negatives = results_df[(results_df['Predicted']==0) &␣
↪(results_df['Actual']==1)]

true_positives = results_df[(results_df['Predicted']==1) &␣
↪(results_df['Actual']==1)]

true_negatives = results_df[(results_df['Predicted']==0) &␣
↪(results_df['Actual']==0)]

[ ]: # check percentage of people who are in the true negative group and do use␣
↪diabetesmedicatie in 2022

print(true_negatives['DIABETESMED_2022'].value_counts())
MedUse2022_TN = (true_negatives['DIABETESMED_2022'].value_counts()[1]/

↪true_negatives['DIABETESMED_2022'].value_counts()[0])*100
print(MedUse2022_TN)

[ ]: # check percentage of people who are in the false positive group and do use␣
↪diabetesmedicatie in 2022

print(false_positives['DIABETESMED_2022'].value_counts())
MedUse2022_FP = (false_positives['DIABETESMED_2022'].value_counts()[1]/

↪false_positives['DIABETESMED_2022'].value_counts()[0])*100
print(MedUse2022_FP)

[ ]: # factor
MedUse2022_FP/MedUse2022_TN
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4.0.7 Coefficients

[ ]: coefficients = best_model.named_steps['model'].coef_
feature_names = preprocessor.get_feature_names_out()
coef_df = pd.DataFrame(coefficients, columns=feature_names)
coef_df.T.sort_values(by=0, ascending=False).head(60)

4.0.8 Shapley

[ ]: # Transform the data sing the preprocessor
sample_size = 10000
X_sample = X_test.sample(sample_size, random_state=42)
X_transformed = best_model.named_steps['preprocessor'].transform(X_sample)
##X_transformed_train = best_model.named_steps['preprocessor'].

↪transform(X_train)

# convert transformed data to dataframe
X_transformed_df = pd.DataFrame(X_transformed, columns = preprocessor.

↪get_feature_names_out())

[ ]: # define the SHAP explainer
explainer = shap.KernelExplainer(best_model.named_steps['model'].predict, shap.

↪sample(X_transformed_df, 5), feature_names = preprocessor.
↪get_feature_names_out())

[ ]: # For all plots except the dependence plot
start_time = time.time()
shap_values = explainer(X_transformed)
end_time = time.time()
shapley_time = (end_time - start_time) / 60
print(f'Shapley time: {shapley_time} minutes')

[ ]: joblib.dump(shap_values, 'shap_values_LR_250102.pkl')
shap_values = joblib.load('shap_values_LR_250102.pkl')

[ ]: # For the dependence plot
start_time = time.time()
shap_values_2 = explainer.shap_values(X_transformed)
end_time = time.time()
shapley_time = (end_time - start_time) / 60
print(f'Shapley 2 time: {shapley_time} minutes')

[ ]: joblib.dump(shap_values_2, 'shap_values_2_LR_250102.pkl')
shap_values_2 = joblib.load('shap_values_2_LR_250102.pkl')
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4.0.9 Global interpretability

[ ]: shap_values.shape

4.0.10 Get the Ranking

[ ]: mean_abs_shap_values = np.mean(np.abs(shap_values.values), axis=0)
sorted_features = np.array(shap_values.feature_names)[np.

↪argsort(-mean_abs_shap_values)]
print(sorted_features)

[ ]: np.sort(-mean_abs_shap_values)

[ ]: shap.summary_plot(shap_values, max_display=150)#, X_transformed)

4.0.11 Afstand dag recreatie terrein

[ ]: dot_size = 10
jitter = 0.3
alpha = 0.2
interaction_index = 'auto'

[ ]: feature = 'num__VZAFSTANDDAGRECRTERREIN'
shap.dependence_plot(feature, shap_values_2, X_transformed_df,␣

↪dot_size=dot_size, x_jitter=jitter, alpha=alpha, interaction_index=None,␣
↪show=False)

# Set custom x and y axis labels
plt.xlabel('distance to nearest recreation area in meters')
plt.ylabel('SHAP value')
#plt.title('Custom Title')
plt.savefig('dependence_plot_LR_VZAFSTANDDAGRECRTERREIN.png', dpi=300,␣

↪bbox_inches='tight')

plt.show()
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