
Master Media Technology

Mirror Mode: Your Biggest Enemy is Yourself

Name: Yanna Elizabeth Smid
Student ID: s2634163

Date: 27/08/2025

1st supervisor: Dr. P.W.H. van der Putten, Lei-
den University
2nd supervisor: Prof.dr. A. Plaat, Leiden Univer-
sity

Master’s Thesis in Media Technology

Leiden Institute of Advanced Computer Science
Leiden University
Einsteinweg 55
2333 CC Leiden
The Netherlands

Mirror Mode: Your Biggest Enemy Is Yourself

Yanna E. Smid
y.e.smid@umail.leidenuniv.nl

Master’s Thesis in Media Technology
Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Primary supervisor:
Dr. P.W.H. van der Putten, Leiden University

Secondary supervisor:
Prof.dr. A. Plaat, Leiden University

Abstract. Turn-based strategy games face a decline in popularity, pos-
sibly caused by repetitive gameplay and predictable enemy strategies.
Therefore, this study introduces Mirror Mode, a new game mode where
the enemy AI mimics the personal strategy of a player. A simplified ver-
sion of the Nintendo strategy video game Fire Emblem Heroes has been
built for this in Unity, with a Standard Mode and a Mirror Mode. Pre-
liminary experiments have been carried out to design a suitable model
for the task to imitate player demonstrations. A configuration of Rein-
forcement Learning and Imitation Learning techniques is used for this.
The second set of experiments evaluates the constructed model during
player tests, where models are trained specifically on the demonstrations
provided by participants. Results find potential signs of copied defensive
strategies, but still lack in imitating offensive strategies. Participants
generally show higher satisfaction scores for Mirror Mode compared to
the Standard Mode, but no significant difference was found according to
the statistical paired t-test. Refining the model may improve imitation
quality and increase player’s satisfaction, especially when players face
their own strategies.

Keywords: Imitation Learning · Game AI · Strategy Games.

1 Introduction

During the past few years, it has become increasingly apparent that Artificial
Intelligence (AI) has taken a prominent role in society. Machine Learning (ML)
techniques, such as Deep Neural Networks, have advanced significantly, providing
interesting applications of AI across many fields. In Game Development, ML
has also become widely studied. In particular, for the enhancement of realistic
behaviors of non-playable characters (NPCs).

NPC behavior refers to how characters in games should act and react to
certain events in the game environment. Realistic NPC behavior contributes

2 Y.E. Smid

significantly to the player immersion and satisfaction of the game [17]. Ideally,
each NPC should exhibit behavior that aligns with its role in the game. For
instance, a knight character might be programmed to act more aggressively in
combat, while a cleric would prioritize healing or supporting allies.

Traditionally, these behavior types are handled by Finite State Machines
(FSM) or Behavior Trees (BT), where each character follows a set of predefined
heuristics and transitions between states based on game events [9]. However, this
method of programmable behavior can result in repetitive behavior that makes
NPCs predictable in their actions [2][18].

In strategy games, the predictability in enemy tactics can have a major influ-
ence on a player’s experience. Strategy games require tactical thinking to defeat
a team of opposing characters, while keeping your own team alive. Statistics in
2024 have shown that the popularity of strategy games has drastically decreased
in the past 9 years [34]. According to this study, the causal reason for this is hard
to identify. However, the predictability of the enemy’s action can be an impor-
tant effect to this. Predictable enemy behavior makes the games easier to play,
possibly reducing the engagement of a player for more experienced players who
recognize the enemy’s behavior [2]. In addition to this, it is found that playing
several repetitive games can cause boredom [5].

To address the risk of boredom in strategy video games over time among
experienced players, this research introduces a new game mode called Mirror
Mode, where the enemy NPCs learn a strategy based on the player’s strategy by
using Imitation Learning (IL)[24]. For this research, a simplified version of the
mobile strategy game Fire Emblem Heroes is created. Several Imitation Learning
and Reinforcement Learning (RL) techniques are applied to train agents in the
Fire Emblem environment and compared to each other, including Generative
Adversarial Imitation Learning (GAIL), Behavioral Cloning (BC), and Proximal
Policy Optimization (PPO).

The algorithms are tested among different parameters to find the optimal
model that is used for the player tests. Ultimately, the optimal hyperparameters
are used for the model that are trained on real player’s data. Tests are conducted
where participants need to play the created game for five rounds against the
standard enemy AI. A second test is taken where each player is up against
an enemy AI trained by either their demonstrated data or that from another
participant.

Their game experience and satisfaction is measured for both the Standard
Mode as well as the Mirror Mode via questionnaires and gameplay metrics. Alto-
gether, the collected results from the player tests are used to establish an answer
to the following question: “How will a player’s game experience be influenced
when NPCs imitate their strategy in a turn-based strategy game? ”

With the results of the finetuning experiments the following sub-question will
be discussed: “To what extent can RL and IL be applied to teach NPCs a player’s
strategy in a turn-based strategy game? ”

Mirror Mode: Your Biggest Enemy Is Yourself 3

Accordingly, the following hypothesis will be tested: The game experience
of a player will be positively influenced after the enemy AI has imitated their
strategy, as the player will be more engaged and more satisfied with the game.

The remainder of this thesis will discuss the approach and development of
addressing these setup questions and hypothesis. First, Section 2 reviews prior
research relevant to this study. This is followed by Section 3, which briefly ex-
plains the key concepts needed for this research. Before going deeper into the
aspects of the study, the setup for the game and virtual environment is given
in Section 4.1. After this, Section 4 describes the implementation of the Fire
Emblem strategy game variant used as a test environment. Subsequently, the
experiments including the corresponding results will be discussed into two sec-
tions. Section 5 presents the training and configuration of the imitation models,
followed by Section 6 which explains the evaluation of the resulted imitation
model through player tests. The results from both experiments will be discussed
in Section 7, as well as the limitations of this study and possible future work. Fi-
nally, Section 8 concludes the thesis by summarizing the findings and answering
the aforementioned questions and hypothesis.

2 Related Work

Before discussing the methods used in this study, it is important to review the
background concepts and relevant research related to the topic of this paper.
Understanding player engagement essential for motivating the development of
more advanced enemy AI. In addition, prior research forms the motivation for the
approach conducted in this research. Both topics are discussed in the remainder
of this section.

2.1 Game Experience

Game experience is a broad concept in game development and must be im-
plemented effectively to maintain optimal player engagement and satisfaction.
Player engagement is strongly influenced by game elements and design choices
intended to shape the overall game experience. A foundational theory that guides
these design decisions is Csíkszentmihályi’s flow theory. According to this flow
theory, an individual is most engaged when the challenge of an activity is well
aligned to their skill level, creating an optimal state of focus and satisfaction
[8][15]. This theory has brought a baseline in game design to maintain a steady
balance between the skills of a player and the challenge of the game. To sup-
port this balance, many game developers provide adjustable difficulty settings,
allowing players to match the challenge to their abilities as they play. However,
frequently adjusting the difficulty can break immersion and disrupt the player’s
sense of flow, making it harder for them to stay engaged over time [15].

Moreover, a player’s motivation to play can also shape their experience of
the game. Players who focus primarily on achieving in-game objectives tend to

4 Y.E. Smid

be more satisfied with smooth and accessible gameplay, while those who play for
enjoyment are more engaged by challenging and exciting gameplay [6].

These differences in player motivations and preferred levels of challenge, high-
light the difficulty of creating a single game experience that satisfies all types of
players.

Research by A. Akram et. al, has shown that the player satisfaction has
improved after the implementation of AI driven mechanics for the animation
of NPCs. They suggest that further improvement on the game satisfaction can
include using AI for the adaptability of NPCs on player’s gaming behavior [2].
In addition to this, Modern Game AI has already proven its success in record
breaking games such as 2020s game of the year, The Last of Us 2, where enemies
are more aware of their environment and stay alerted when they found an ally
dead [29] [19]. Therefore, implementing new AI methods to improve the adapt-
ability of NPCs and reduce the predictability of their actions, can potentially
help maintaining the satisfaction and flow of a game.

However, for a more advanced enemy behavior, different approaches need
to be found to create agents that are adaptable to the environment. RL in the
context of video games still has its limitations, due to the heavy computational
demands, arbitrary reward systems, and slow learning curves. This often makes
RL a less desirable method for complex game environments. RPG strategy games
are considerably a complex environment, making it challenging to specify a suit-
able game state for the RL algorithms, and require a high degree of adaptability
in the game [35].

2.2 Prior Research

RL and Video Games share a mutual interest, where RL offers new possibili-
ties for creating intelligent game agents, while video games provide a practical
environment for testing and developing RL techniques [9]. Over the years, RL
has been applied to NPC behavior in games to make them more complex and
adaptable.

Early work by Sanchez-Ruiz et al. explored NPC adaptation in the turn-
based strategy game Call to Power2, using an ontological approach [28]. They
stored previously successful strategies in a case library and organized them hi-
erarchically through Hierarchal Task Networks. When encountered with a new
situation, the agent van retrieve actions by looking up similar states in the li-
brary. Their Repair-SHOP system makes sure that the plan gets modified of it
did not fully suit the current situation, allowing the adaptable behavior. While
effective in improving decision-making speed and accuracy, the approach was
limited in adapting to entirely new conditions and involved computational com-
plexity due to its ontology-based reasoning.

Researchers from OpenAI demonstrated the adaptability of agents while let-
ting them play a game of hide-and-seek, through self-play [4]. Self-play enables
agents to continuously adapt their policy by playing against agents using the
same policy that gets updated iteratively. The research applied PPO and Gener-
alized Advantage Estimation to optimize their policy. It was found that through

Mirror Mode: Your Biggest Enemy Is Yourself 5

self-play, agents learned to develop counter-strategies to earlier discovered in-
game strategies. Although the hide-and-seek environment differs from turn-based
strategy games, this research shows how RL agents can evolve adaptive behav-
iors based on in-game interactions and strongly motivates the use of RL and
self-play for adaptable behavior.

Continuing on this work, OpenAI explored a wider range of possibilities of
RL for adaptive behavior. OpenAI Five was the first AI system that was able to
defeat the professional players in the multiplayer real-time strategy game Dota
2 [22]. While the hide-and-seek research showed how agents can learn creative
new strategies through self-play, the work on Dota 2 takes this a step further by
applying RL and self-play to a much larger action and observation space. Their
achievement of defeating the world champions in Dota 2, marked a great success
for deep RL techniques in stategy games.

C. Amato and G. Shani further investigate adaptive strategy behavior for
NPCs, in the turn-based strategy game Civilization [3]. They applied several
RL techniques such as Q-learning and Dyna-Q, to make agents learn policies to
switch between strategies given the current game situation. The authors repre-
sent NPC behavior through a Markov Decision Process. Via RL, the goal is to
find a policy π that maximizes the sum of rewards over the steps of the process.

Interestingly, this research focuses on adapting the agents while playing the
game in real-time, making the agent behavior unique to a player’s current strat-
egy. Their results show that these RL algorithms provide a powerful tool to let
agents adapt to game situations as complicated as strategy games. As it shows
high potential for the use of RL to teach agents the player’s strategy, the authors
encourage investigating the use of more advanced RL approaches in the future.
This motivates the choice for using IL in strategy games for this research. For
these environments, learning with the help of expert gameplay can be more ef-
ficient than using standard RL reward systems [35]. By using expert data that
demonstrates human gaming behavior, IL offers a new potential ML method for
strategy gaming behavior.

One of such IL methods is Generative Adversarial Inverse Learning (GAIL),
introduced by J. Ho and S. Ermon [14]. This algorithm makes an appealing
method for IL in video games environments. Research by Gharbi and Fennan
continue working through this claim by comparing GAIL to other methods that
imitate player behavior, such as Proximal Policy Optimization (PPO) and Be-
havioral Cloning (BC) [13]. They find that GAIL is an effective technique for
replicating player behavior in video games, and that they provide a high ac-
curacy in replicating complex player strategies. They suggest that combining
methods, such as GAIL with PPO or other model-free reinforcement learning
techniques, could be optimal for developing adaptive game AI. Such combina-
tions allow agents to imitate player strategies while remaining responsive to
changing game conditions. Their findings are a strong motivation to explore the
effect of combining PPO, BC and GAIL, in the strategy video game created for
this study.

6 Y.E. Smid

While no research has yet explored the possibilities of RL techniques to copy
player behavior, specifically for turn-based strategy games, these studies together
highlight the potential of combining model-free RL with imitation reward sys-
tems in video game environments. This combination would allow agents to dy-
namically mimic player behavior, possibly creating a challenging and engaging
game experience. Therefore the possibilities of IL in strategic video games is
further explored in this research.

3 Background

To address the possible boredom and decline in popularity in strategy games, this
study applies ML techniques to develop a novel game mode. Before discussing
the implementation and research setup, relevant background knowledge will be
discussed. First, the game rules of the implemented strategy video game will be
explained. Subsequently, the ML methods used in this research will be briefly
explained.

3.1 Fire Emblem Heroes

Fire Emblem is a turn-based strategy role-playing game developed by Intelligent
Systems and published by Nintendo. This research uses a simplified version of
the 2017 mobile game adaption, maintaining the complex tactical thinking in a
compact 6× 8 grid-based map, such as the maps shown in Figure 1.

The game revolves around an alternating player and enemy phase. Starting
with the player phase, all units are positioned on one tile on the map. Charac-
teristics corresponding to the player’s team can be recognized by its blue color,
while the enemy team is always represented by the red color. An example of the
start interface can be seen in Figure 1a.

In each phase, all surviving units in a team have one turn. One unit can be
selected at a time to perform an action in their turn, which can be to move,
wait, or attack. Attacks are only possible if a foe is within the attack range of
a unit, and a target may counterattack if their range matches the attacker’s
range. Figure 1b shows how the game presents tiles that are within attack or
movement range. Tiles that are in attack range are highlighted in red, and tiles
that are within movement range in blue. A unit can move to any tile highlighted
in blue, as given in Figure 1c. If an enemy stands on a tile within attack range,
the tile is highlighted in brighter red to indicate that the enemy can be selected
to attack. When a target is selected, the combat information appears in the top
of the screen, shown in Figure 1d.

The game ends when all units on one side are defeated. Each team contains
four units, and the game starts at the player phase.

Each unit belongs to one of four types: infantry, cavalry, flying, and heavy
armor units. The unit type determines their terrain accessibility, step size, and
attack and defense power named as stats. Units also carry one of the five weapon
types: sword, lance, axe, bow, or magic. Weapons determine attack range and

Mirror Mode: Your Biggest Enemy Is Yourself 7

can apply advantages and effectiveness. Melee weapons (sword, axe, lance) have
a range of one tile, while bow and magic can attack from two tiles away.

The strategic thinking arises from the interaction of unit types, their weapons,
and stats. The melee weapons are part of a weapon triangle, presented in Fig-
ure 2, similar to the "rock, paper, scissors" principle. Sword has an advantage
against axe, axe against lance, and lance against sword. Boosting damage by
1.2x, or 0.8 the other way around.

Bows are highly effective against flying units, dealing 1.5× extra damage.
Heavy armor units have a high attack and defense, but a low resistance, making
them only vulnerable to magic. Magic units have a high resistance, and are valu-
able to defeat the heavy armor units, but they are vulnerable to melee attacks.

Lastly, the five core stats are important to keep in mind. HP determines the
hit points the unit can take. Attack calculates the damage output by the unit.
Defense is subtracted from the damage of an attacker carrying a melee weapon,
whereas the resistance is subtracted from the damage of a magic user. The
speed enables a follow-up attack when the difference in speed between attacker
and target differs at least 5 points.

(a) Player phase
start. All units are
ready to act while
enemies await their
turn. Each unit’s
HP bar appears
below its sprite,
with a weapon type
icon above its head.

(b) The available
movement range
(blue) and attack
range (red) of a se-
lected infantry unit.
An enemy that can
be attacked stands
on a tile highlighted
in brighter red.

(c) Movement inter-
face of a selected
unit. The unit in-
formation is shown
at the top. On the
map, an arrow indi-
cates the movement
to a chosen blue tile
within range.

(d) Combat in-
formation at the
top of the screen.
First line shows HP
before and after
combat. Second
line shows attack
power × number of
attacks.

Fig. 1: An example of a battle map from Fire Emblem Heroes. For a video of
a completion of this map, with different characters, see the available gameplay
[21]. Units are generally recognized by blue colors, and enemies by red.

8 Y.E. Smid

Fig. 2: The melee weapon triangle in Fire Emblem, showing the advantage and
disadvantage attacks triangle. Sword has its advantage against axe, axe against
lance, and lance against sword. The other way around presents the disadvantage
chart. This chart forms a key element to the strategic thinking in Fire Emblem.

Originally, the game includes more types than the aforementioned unit and
weapon types. In addition, the strategies are widely influences by special abilities,
assists, and skills. To maintain simplicity, this implementation solely focuses on
the interaction between the four unit types, and five weapon types.

3.2 Proximal Policy Optimization

In Reinforcement Learning, an agent interacts with an environment by observing
states, selecting actions, and receiving feedback in the form of rewards or penal-
ties. This is often referred to as extrinsic rewards, as the rewards are defined
externally from the algorithm. Rewards, can also be defined as intrinsic rewards,
to encourage the agent to explore in certain paths, known as the curiosity rewards
[30]. Its objective is to learn a policy π that maximizes the expected cumulative
reward over time, given by taken actions a in observed state s. This is usually
achieved by estimating value functions that calculate the expected value of a
taken action in a given state.

Typical RL algorithms often rely on the Bellman equation to iteratively ap-
proximate the optimal value function. However, in high-dimensional spaces such
as video games, storing and updating value functions for every possible state
becomes computationally impractical. Therefore, a Neural Network often comes
in as function approximator to estimate the action-value function [20].

A common method is Proximal Policy Optimization (PPO), which improves
the stability of policy gradient methods in RL. In PPO, both the policy and the
value functions are parameterized using neural networks, allowing learning effi-
ciency in high-dimensional spaces through first-order optimization of a clipped
surrogate objective [26], A surrogate objective is used as a replacement to true
objective functions that are difficult or impossible to optimize through calculat-
ing its derivatives. So a surrogate loss function is used as a proxy that can be
optimized to approximate how the true objective would behave when the policy
is updated.

PPO directly optimizes a parameterized policy to maximize expected rewards
(θ), using a clipped surrogate loss function to ensure stable updates by limiting
the degree in which a policy can be changed during an update 1. This stabi-

Mirror Mode: Your Biggest Enemy Is Yourself 9

lization is important, as it prevents the agent from diverging from the optimal
solution too quickly. This makes sure there is a maintained balance between
exploration and exploitations of the actions.

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(1)

Hyperparameter ϵ determines the clipped range. The first term inside the
minimal function is the surrogate objective defined by Trust Region Policy Op-
timization (TRPO) 2, that functions as a probability ratio between the old and
the new policy. The second term modifies this probability by clipping it, making
sure too large probabilities are removed. Consequently, the minimal value of the
two objectives is taken, and is used to compute a gradient descent to update
the policy parameters θ. The degree to which a policy gets updated into the
direction of the gradient descent is determined by the learning rate α. A larger
value means faster but less stable leaning capabilities, whereas a small value
gives slower convergence.

rt(θ) =
πθ(at | st)
πθold(at | st)

(2)

J. Schulman et al. formulated the methods for PPO and have found that the
performance of their method is overall better compared to other optimization
policy methods [26]. PPO is a commonly used technique for RL applications.

3.3 Behavioral Cloning

While PPO has demonstrated impressive results in complex environments, a
more efficient approach for teaching human behavior to an agent is through
human demonstrations. This is where IL becomes useful. Learning from Demon-
strations (LfD) falls under IL, which is the approach that trains a policy to
mimic the decisions seen in demonstrations. LfD often leads to faster learning
and more stable training in early phases [24].

One of the most straightforward approaches to IL is Behavioral Cloning (BC),
which uses supervised learning to train a policy directly from a given dataset of
state-action pairs given by an expert. Its objective is to minimize the supervised
loss function under the state distribution dπ∗ encountered in the expert data 3.
Subsequently, the learning policy π̂sup is obtained by applying standard super-
vised learning to match the expert’s actions with the actions predicted by the
policy on the same states [25].

π̂sup = arg min
π∈Π

Es∼dπ∗ [ℓ(s, π)] (3)

However, when the learned policy makes a mistake, it might go to a state
that the expert has not visited. Once the policy has entered an unfamiliar state,
it is more likely to make more mistakes as it has no data for those states. This
can increase the computational costs drastically [24]. To avoid this, an immense
amount of demonstrations is required, or a combination of BC with other RL
approaches. The latter approach is what will be used in this study.

10 Y.E. Smid

3.4 Generative Adversarial Imitation Learning

Since BC can be inefficient, especially when only a limited number of demon-
strations are available, alternative approaches have been found that address this
limitation. J. Ho and S. Ermon were inspired by the adversarial methods in
Generative Adversarial Networks, and combined these techniques with concepts
from IL and Inverse Reinforcement Learning. They proposed a new model-free
algorithm that imitates expert player behavior, named Generative Adversarial
Imitation Learning (GAIL) [14]. IRL aims to learn the cost function from ob-
served expert data. However, IRL costs a lot of computational power and it does
not teach the agent directly how to act as they primarily focus on the quality of
the actions. GAIL addresses this by using an adversarial training to teach the
agent human behavior without explicitly relying on the reward function.

This training technique is based on a minimax game between a policy π and
a discriminator D that is used to distinguish the generated gameplay from the
real game play. The policy tries to minimize the objective function by fooling the
discriminator by imitating the expert behavior as closely as possible. Meanwhile,
the discriminator tries to maximize the objective by getting better at telling the
agent and expert apart. This methods creates two distinct loss functions that
both value to be minimized. The discriminator loss needs to be maintained
properly, a loss very close to zero can cause the vanishing gradient problem,
while a loss close to one is caused by a weak discriminator. Therefore aiming
for a loss value around 0.5, likely indicates a good generative behavior [33].
Eventually, the aim is to retrieve a saddle point (π,D) of the expression defined
in equation 4, where the policy has learned to imitate the expert at a level
that the discriminator cannot tell the difference. The influence of this imitation
signal from the discriminator is scaled by a strength parameter, which controls
how strongly the discriminator’s estimations shape the policy updates during
training.

Eπ [logD(s, a)] + EπE
[log(1−D(s, a))]− λH(π) (4)

The last term in the objective, H(π) represents the entropy of the policy.
This encourages exploration by preventing the policy from becoming fairly de-
terministic early on in the process, ensuring that the agent continues to try
diverse actions. The coefficient λ balances the trade-off between imitating the
expert and maintaining sufficient randomness in the agent’s decisions.

As GAIL trains agents to closely follow expert trajectories without requiring
explicit reward signals, it is ideal for scenarios where expert data is available
but defining rewards is challenging such as game environments. Ho and Ermon
found that GAIL is effective at generating complex player strategies, making a
progress for imitation learning in games.

Mirror Mode: Your Biggest Enemy Is Yourself 11

Component Version
Unity Editor 2023.2.13f1
ML-Agents Toolkit 3.0.0 (Release 22)
Python 3.10.11
PyTorch 2.2.1
Pip 25.0.1
Operating System Windows 11

Table 1: Software Versions Used for Environment Setup

4 System Design and Implementation: Fire Emblem in
Unity

To investigate the impact of an enemy AI that imitates player behavior, a game
environment is developed in Unity Game Engine [27]. The process of this de-
velopment is detailed in this section. First, the backend and application setup
required for the system are reviewed in Section 4.1. A short review of the scene
setup presenting the Fire Emblem elements in Unity, is given in Subsection 4.2.
Subsequently, the implementation of the game environment and agent script is
explained in two separate subsections: Standard Mode 4.3 and Mirror Mode 4.4.

4.1 Environment and Technical Setup

A 2D game environment is created in Unity Engine. For the integration of ML
tools from Python PyTorch library with Unity, the ML-Agent toolkit has been
developed by A. Juliani et al., including the RL and IL algorithms programmed
in Python [16]. This package is available in Unity asset store, and is installed in
the created game environment for the research. The installation steps and setup
instructions are followed according to ML-Agent version release 22 [1].

After the installation of ML-Agents in the Unity game environment is fin-
ished, a virtual environment needs to be set up as an interaction tool between the
game environment and the ML tools in Python. A virtual environment is set up
in the directory of the game environment project, through Command Prompt in
Windows. Once the new virtual environment is activated, Python, ML-Agents,
and PyTorch can be installed within the environment.

For compatibility between Unity’s ML-Agent package and PyTorch tools, it
is necessary to acquire the specific application versions listed in table 1.

For a more detailed description of setting up the game environment and
virtual environment, a step by step instruction list is added the Appendix Section
A.1 and A.2.

4.2 Fire Emblem Unity Scene

The game environment is inspired by the tactical gameplay of the Fire Emblem
series. It is built as a 2D grid-based map, from 6x8 tiles, designed with complete

12 Y.E. Smid

(a) Interface displayed when selected a
unit. Movement range (blue) and attack
range (red) are highlighted. The informa-
tion UI is shown in the top left corner,
presenting the stats of the selected unit.

(b) The combat interface displayed when
a combat is initiated. The left side shows
the unit’s health before and after the com-
bat, while the right side shows the same
for the enemy.

Fig. 3: End result of the implemented version of Fire Emblem Heroes for this
study. The game is developed in Unity Engine, and the sprites are collected from
the original game sourced by the Fandom page [12]. Player units are presented
in their original colors, whereas enemy units are shown in darker red shades.

symmetry across both axes. Each team starts on its own side of the map, ensuring
that all tile types and movement distances are balanced and mirrored between
the player and enemy units.

Units are defined by a combination of movement type, weapon type, and
combat stats. These variables are set public and can be assigned in the Unity
Inspector tab, in the Information component of the unit. The enemy types are
completely randomized each game round. For both teams, the combat stats are
randomized. Standard Mode and Mirror Mode are each created in a separate
scene. In both scenes, all visual sprites and icons are collected from publicly
available Fire Emblem Fandom community resources in the game assets page
[12], and the unit sprites from the character misc information from the heroes
list [10]. These are used solely for academic and non-commercial purposes. The
resulting interface of the implemented game is shown in Figure 3, with the given
interface after selecting a unit in Figure 3a and initiating a combat in Figure 3b.

4.3 Standard Mode Environment

The standard scene includes the general gameplay, and is used to collect play-
ing data. In order to collect the necessary amount of data to train the agent
model, the scene includes multiple augmented versions of the map that mirror the
player’s actions across different axes, presented in Figure 4a. These augmented
environments are created by flipping the original map configuration along the
x-axis, y-axis, and both axes, resulting in four distinct versions of the map. In
the unity scene, each environment manager component should be assigned to the
Array of environment managers in the AugmentationManager component. The
first element in this array is always the original environment where the player
acts. The remaining three are enlisted as augmented environments, and are used

Mirror Mode: Your Biggest Enemy Is Yourself 13

(a) The four mirrored environments used
to collect player data. Each move set in
the original environment, is copied in its
mirrored orientation.

(b) The ten environments used for train-
ing the agent models. All environments
run in parallel, each controlling and play-
ing their own game.

Fig. 4: Environmental setup for collecting data and training agents. The original
environment used for collecting and transferring actions is seen in the lower left
corner, surrounded by a white frame.

to mirror the player’s actions in real time. This allows a single set of demonstra-
tions to generate four unique moves at one time step. The ML-Agents package
provides the Demonstration Recorder component, which is added to each player
unit to record the actions provided by that specific unit. To start recording, the
Game Scene needs to be activated and the player start the game. All the actions
are automatically recorded, and stored in demonstration files.

In addition, six more environments are included to further accelerate train-
ing. These environments are direct copies of the original environment and do not
operate as augmented environments. In the inspector tab, all environments used
for training should be added to the Environments list in AugmentationManager.
The augmented environments are also used as independent environments dur-
ing training, and do not function as augmentations of the original environment
in this case. These environments operate in parallel when training is enabled.
The ten environments run in parallel during training are presented in Figure 4b.
To train the model based on IL algorithms, the demonstration folder directory
must be specified in the demo_path in the configuration file that is used for train-
ing. To begin training, the virtual environment from section 4.1 has to be acti-
vated in the command prompt. Training can be activated when using the follow-
ing command: mlagents-learn directoryfilename.yaml –run-id=ID-Name-Run.
Once the game scene is started in Unity, the training progression begins.

Standard Enemy Behavior Script. For the Standard Mode, a rule-based
enemy AI is implemented to emulate enemy behavior in the original Fire Em-
blem Heroes game. The standard enemy tactics were derived through gameplay
observation by expert players, and documented by Game8 Inc. [11]. According to

14 Y.E. Smid

their analyses, the standard enemy AI follows a set of prioritized decision rules.
Most importantly, enemies always attack if there is an opposing unit within their
attack range. When multiple targets are in range, the enemy chooses the unit to
which it can deal the most damage. If no opposing units are within attack range,
the enemy holds its position. Furthermore, the order in which enemy units take
their turns is determined by the following a set of priorities. Melee attackers are
prioritized over ranged attackers, and are allowed to attack first. Among units
with the same attack range, it prioritizes the units that can reach the player
units the fastest. If all factors are equal, the leftmost unit in the map acts first.

Player Agent Behavior Script. The player’s actions need to be processed
and saved through the ML-Agents package. This package provides all necessary
functions and connections for collecting the player’s behavior, and replicating it.
A script is created to handle player’s action, and is given to all player units. The
script uses three main functions offered by the package, to collect observations,
mask action spaces, and receive an action.

The first function, CollectObservations(VectorSensor sensor), analyzes all of
the observations concerning the current state of the map based on the agent’s
local position. These observations are important for training the neural network
that is used for the decision making when an action needs to be chosen. The
state of the game is constructed by unit’s and enemy’s stats, weapon, and unit
types, and the manhattan tile distance between the unit and an opponent. For
more compatible computation all values are normalized to a value between 0-1.

After observing the current state, invalid actions can be masked from the
model, to prevent these actions from getting selected. This is provided by Write-
DiscreteActionMask(IDiscreteActionMask actionMask). For this study, the func-
tion filters out the tiles that are not reachable for an agent at a current state,
and the targets that are not available to attack.

Once the state has been observed and the invalid actions have been masked,
the agent receives an action processed through OnActionReceived(ActionBuffer
actions). The method through which the agent receives actions, can be decided
through a heuristics only behavior type or a default behavior type. Before playing
Standard Mode, the Behavior Type in each unit’s Behavior Parameters compo-
nent must be set to Heuristic Only, allowing manual player input to control the
unit. Additionally, all units should share the same Behavior Name, to ensure
that their actions are all sent to the same demonstration.

Training models occurs in the Standard scene as well, and the Behavior Type
should be switched to Default. This allows the agent to request decisions from
the learned policy, and update it after received rewards.

The actions that are processed and received are identified by three discrete
action variables: action type, selected tile, targeted unit. An action type holds
an index that corresponds to the action chosen by the player, which can be to
wait (0), to move (1), or to attack (2).

The selected tile corresponds to the index of a tile within the map size 6x8,
resulting in an array of size 48. The selected tile holds the index of the tile that

Mirror Mode: Your Biggest Enemy Is Yourself 15

Fig. 5: Mirror Mode in the implemented Fire Emblem environment for this study.
The player’s team and enemy’s team are completely mirrored from each other,
in positioning and typing.

the unit has selected to move to. For the waiting action, this equals the index of
the tile that the unit is currently already on. For the attack action, the tile that
the unit stands on to launch it attack from is used.

Lastly, the targeted unit decides the target that will be attacked during an
initiated combat. If no combat is initiated, the value is of no use. In case an
attack is performed, the index of the target unit is used. Therefore, in order for
an attack action to be valid, the selected tile and the targeted unit need to be
correctly chosen.

4.4 Mirror Mode Scene

Mirror Mode includes only one environment, and is used to evaluate the agent
model trained on player demonstrations. The enemy team is a complete mirror
of the player’s team in terms of positions, unit types, and weapons. The units
only differ in stats. An example of a Mirror Mode state is presented in Figure 5.
Compared to Standard Mode, the main difference lies in enemy behavior. Where
Standard Mode used a traditional heuristic approach, the enemy AI in Mirror
Mode uses the models trained by RL and IL algorithms.

Mirrored Enemy Behavior. Similar to the unit agent function discussed in
subsection 4.3, each enemy unit holds an agent script and behavior script. The
enemy agent script is identical to player agent script, with a few differences
in variable names, making variables specific to the enemy. This allows clear
identification between a player and an enemy agent. In addition to this, unlike
the player agent, an enemy agent does not receive actions from player input. The
action decision process is purely controlled by the learned algorithm, provided
by trained model. When it is the enemy’s turn to take an action, it requests
a decision from the trained model submitted in the model parameter from the
Behavior Parameters component. After requesting an action, the used model
outputs the discrete actions array based on the collected observation. The enemy
agent uses the array to set the actions. Similar to the mechanics in the unit agent,
the first value in the array corresponds to the action type, the second value to
the selected tile index to move to, and the third value to the targeted unit to

16 Y.E. Smid

attack. If an enemy has decided to initiate a combat, the selected target needs to
be within attack range of the selected enemy, from the selected tile index. If the
selected tile does not allow the enemy to attack the target but the target can be
attacked from another tile, the enemy can pick one of the valid tiles randomly.
This allows the enemy AI to attack even when the model returned the wrong
tile index, to increase the offensive behavior style.

Player Unit Script. The player unit interaction is handled the same way as
in the Standard Mode, however excluding the recorded demonstration functions
and the functions that transfer the actions to other environments. The input
for action handling is completely controlled by the player’s input, setting the
behavior type of each player unit to Heuristics Only, in the Behavior Parameters
component.

4.5 Agent Setup

For the RL algorithms, a practical reward system and learning conditions had to
be found. Throughout the process, several tests have been done to find a setup
that worked optimally for teaching the agents the right playing behavior.

First rounds of testing were unsuccessful as the agents failed to move. They
repeatedly selected invalid actions, causing them to remain idle. To address this,
the reward system was adjusted to the recommended range of [-1,1], which led to
small but immediate improvements. After a few episodes of training, the agents
began to move between tiles. However, the agents still did not perform any attack
actions correctly, often targeting opponents out of reach or attempted attacks
from invalid positions.

Interestingly, after an hour of training, flying agents learned to move to the
lower left corner of the map and stay there, presumable because this position
was out of reach for ground-based units. Figure 6 present this case. Additional
randomization was introduced to the training process to improve the agents’
adaptability. In addition to randomizing starting positions for each episode, the
agents’ side of the playing field was also varied. This was an important adjust-
ment, making the flying agents less attracted to the corners.

To reduce the learning space for each observation state, the masked actions
function discussed in section 4.3 was enabled. This increased the learning speed,
and degree in valid actions.

Eventually, killing enemies and winning a round was rewarded by +1, and a
penalty of -1 was given to dying or losing. Any other rewards for choosing valid
actions received a reward of +0.3.

Again after an hour of training, the agent started to repeatedly jump from
one tile to another, without any attempt of attacking the enemy. To prevent
this, a maximum set of actions per game was implemented. After the maximum
actions is reached, the game ends in a tie resulting in a punishment of -1. This
improved the learning curve, making sure the agents did not avoid attacking
targets.

Mirror Mode: Your Biggest Enemy Is Yourself 17

Fig. 6: Early stage of the developed strategy game. The agents found a tactic to
move to the lower left corner and stay there to protect themselves.

Finding these settings, the agents were fully ready to learn from the environ-
ment and demonstrations, with no further complications that lead to unjustified
behavior. The rest of the research continued with these agent settings.

5 Agent Training and Testing

For investigating the possibilities of ML algorithms in the adaption of strategy
behavior, the agent models need to be trained according to a set of optimal
hyperparameters. Moreover, the optimal model needs to be found through a
series of additional experiments where several combinations of ML algorithms
are tested. These two experiments form the first half of the experimental setup
for this research paper, to find an answer to the question whether RL and IL
can be used to imitate player’s strategy in video games.

5.1 Experiment 1: Hyperparameter Optimization

The aim of the first experiment was to optimize the performance in cumula-
tive reward, by adjusting one parameter at the time, while keeping the others
constant. The value range of each parameter recommended by the ML-Agent
developers were taken into consideration [31]. With a duration of over a month,
these optimizing experiments were held. The parameter values that were used
for optimization are summarized in table 2, with other parameters set to their
default values.

Optimizing the models for this study purely focused on the following hyper-
parameters:

– BC strength;
– PPO learning rate α;
– GAIL learning rate α;
– extrinsic strength;
– curiosity strength.

For identifying the best learning rate for PPO and GAIL, and the best
strength for BC, no extrinsic rewards or curiosity parameters were used. The

18 Y.E. Smid

Tuned PPO α GAIL α BC str Curiosity
str

Extrinsic
str

PPO α 0.0005,
0.0003,
0.0001

0.0001 0.0 0.0 0.0

GAIL α 0.0003 0.001,
0.0005,
0.0003,
0.0001

0.0 0.0 0.0

BC str 0.0003 0.0001 0.4, 0.5,
0.6, 0.8,
1.0

0.0 0.0

Curiosity
str

0.0003 0.0001 0.4 0.0, 0.05,
0.1

0.0

Extrinsic
str

0.0003 0.0001 0.4 0.1 0.1, 0.5, 1.0

Table 2: Hyperparameter tuning overview. The diagonals show the values for the
hyperparameters that are tested. Other values are fixed and are used for testing
the hyperparameter in the corresponding row.

goal was to find suitable values for these parameters to stimulate learning by
keeping track of the cumulative reward over time, but also to encourage imi-
tating player demonstrations by maintaining a proper GAIL discriminator loss
around a value of 0.5.

5.2 Experiment 2: Model Configurations

After identifying the optimal performing model from Experiment 5.1, further ex-
periments were conducted to determine the optimal configuration for the enemy
AI in Mirror Mode. Several combinations of RL and IL techniques were tested.

The following model variants were evaluated:

– PPO only
– PPO + GAIL
– PPO + GAIL + BC
– PPO + GAIL + BC + Curiosity;
– PPO + GAIL + BC + Curiosity + Extrinsic Rewards;
– PPO + GAIL + BC + Extrinsic Rewards;
– PPO + GAIL + BC + Extrinsic Rewards + self-play

Each model was trained for 200,000 steps starting at step 0 with no prior
knowledge yet. Models were evaluated based on the cumulative reward and GAIL
loss. Similar to the first experiment, the cumulative reward served as a measure-
ment for leaning capability of the agents, and GAIL loss for the imitating abilities
of player behavior.

During this phase, a fixed set of hyperparameters was used for consistency
across models, as listed in table 3.

Mirror Mode: Your Biggest Enemy Is Yourself 19

Parameter Value
PPO learning rate 0.0003
PPO hidden units 256
PPO batch size 128
GAIL learning rate 0.0001
GAIL hidden units 64
GAIL gamma 0.85
GAIL strength 1.0
BC strength 0.5
Extrinsic strength 0.9

Table 3: Hyperparameters used during model combination testing.

5.3 Results

The first part of this study looked into the possible hyperparameters and config-
urations for the model that will be applied to the Mirror Mode agents. Several
tests were conducted to find a model combination most suitable for the agent
behavior to imitate player strategies, as previously discussed in subsections 5.1
and 5.2. This subsection discusses the resulted model hyperparameters and con-
figurations.

Model Finetuning The first experiment tested several hyperparameters from
different RL and IL techniques, mentioned in Table 2.

The figures presented in Figure 7 show the results of finetuning the learning
rate values α for PPO and GAIL models, and the strength of BC. The results
indicate a gradual learning progression for both PPO and GAIL, whereas BC
shows a flattened learning curve. PPO and GAIL converge toward a relatively
high cumulative reward of approximately -0.8, with GAIL demonstrating a faster
convergence. For learning rates α = 0.0003, α = 0.0005 and α = 0.001, GAIL
reaches a cumulative reward of -1.0 after roughly 25k steps, while PPO achieves
this milestone after roughly 40k steps. The absence of environment interaction
in BC may explain the flat learning trend. Despite the limited learning progres-
sion, the BC model achieves a rather good cumulative reward compared to the
PPO and GAIL finetuning models. Specifically, a BC strength of 0.4 starts below
-0.8, and improves to a higher reward of nearly -0.6, ultimately outperforming
the PPO and GAIL. PPO results in a much higher GAIL discriminator loss, of
roughly 0.9, compared to other models, as seen in Figure 7b, suggesting a poor
performance of the GAIL discriminator. Introducing a higher value for GAIL α
causes the discriminator loss to drop. Figure 7d shows a much wider range in
discriminator loss over the training steps for GAIL compared to other finetuning
models. However, maintaining a balanced discriminator loss is crucial, as exces-
sively low values can cause gradient vanishing, hindering imitation learning. BC
further reduces the loss, often pushing it too close to zero. Higher BC strength
values amplify this effect, causing a more drastic decrease in the loss.

20 Y.E. Smid

(a) The cumulative reward for several
PPO α values. All curves incline gradually
to an optimal cumulative reward of -0.8.
α=0.0003 gives a slightly better perfor-
mance, and steadier growth. The results
confirm good learning, but not high opti-
mal rewards.

(b) The GAIL discriminator loss of PPO
α tuning. The loss declines toward 0.9
across all values α, with α=0.0005 result-
ing in a slightly lower loss overall, and
α=0.0003 showing a slower convergence.
A discriminator loss of 0.9 is rather high,
indicating a poor discriminator quality.

(c) Cumulative reward of tuning GAIL
α. A gradual growth toward a reward of
-0.8 is noted, with α = 0.0003 exhibiting
a more stable curve. The results further
confirm a consistent learning progress.

(d) The GAIL discriminator loss of differ-
ent GAIL α configurations. Larger values
for α give a more rapid decrease in loss,
and converge to an overall lower loss.

(e) The cumulative reward of different BC
strength values. A larger strength results
in a lower cumulative reward. The curves
show little progress. As BC is not focused
on environmental rewards, the learning
does not show any growth. A small in-
creasing slope is present after 125k steps
for strength=0.4, resulting in the highest
reward across the five configurations.

(f) The GAIL discriminator loss for
several strength values for BC. Larger
strength values decrease the discrimina-
tor loss, converging to a value of nearly
0.1. Strength of 0.4 and 0.5 are less steady
but converge to a slightly larger loss. The
irregular peaks present in str=0.4 and
str=0.5 are possibly caused by interrup-
tions of the model training process.

Fig. 7: Results given by finetuning PPO α, GAIL α, and BC strength, over
200k steps. All curves are smoothed by a factor of 5, the original curves are
transparent in the background. It is aimed to achieve a high cumulative reward,
with a maximum possible value of 2.0, and a GAIL discriminator loss around
0.5.

Mirror Mode: Your Biggest Enemy Is Yourself 21

(a) The cumulative reward for different
curiosity strength values. Curiosity 0.1
seemingly outperforms the other values.
All values converge to a similar cumula-
tive reward level, while a strength set to
0.1 appears to be give a slightly higher
mean reward.

(b) The GAIL discriminator loss set for
several curiosity strengths. There seems
to be little difference in loss when curios-
ity is applied, compared to when the cu-
riosity reward is disabled. Overall, adding
curiosity seems to drop the loss more
rapidly.

(c) Cumulative reward given by differ-
ent extrinsic strength configurations. An
immediate improvement in learning can
be observed, with strength=1.0 achiev-
ing the highest reward. Thus extrinsic re-
wards highly benefit learning abilities.

(d) GAIL discriminator loss set for extrin-
sic reward strengths. The loss decreases
rapidly, with strength=0.1 declining more
quickly than the others. Showing that
extrinsic rewards possibly negatively im-
pacts agents imitation abilities.

Fig. 8: Results given by finetuning strength values for curiosity and extrinsic
rewards. All curves are smoothed by a factor of 5, the original curves are trans-
parent in the background. A higher cumulative reward indicates better agent
performance, with a maximum possible reward of 2.0. The GAIL discriminator
loss should be around a value of 0.5. Overall, curiosity shows little effect to the
results, whereas extrinsic rewards rapidly increases cumulative reward and de-
creases GAIL loss.

In addition, extrinsic and curiosity rewards are added and tested among
different strength values, presented in Figure 8. Interestingly, introducing an
extrinsic reward accelerates the learning curve drastically, with the cumulative
reward converging to nearly -0.2 when the strength parameter is set to 1.0.
However, extrinsic reward reduces the GAIL discriminator loss, dropping too
close to zero, which may indicate poor imitation quality. In contrast, incorpo-
rating a curiosity-based reward appears to have little to no impact on either the
cumulative reward or GAIL loss. The results closely resemble those from BC

22 Y.E. Smid

finetuning models without curiosity, suggesting limited effectiveness of curiosity
in this setup.

Overall, the results lead to a clear indication of learning capabilities of the
agents. A trade-off between imitation ability and cumulative reward performance
needs to be maintained. Extrinsic rewards positively affect the cumulative re-
ward, leading to better performing agents. However, dropping the discriminator
loss for GAIL, suggesting less suitable imitation behavior. BC and GAIL provide
better imitation behavior, but perform less well as they rely less on interacting
with the environment. Considering all this, it was chosen to continue with a
PPO learning rate set to α = 0.0003, and GAIL α = 0.0001. Moreover, BC
was retained to enhance the imitation learning, with its strength set to 0.4.
Curiosity was excluded due to its minimal impact, while extrinsic reward was
set to a moderate value of 0.5 to maintain the balance between imitation and
exploration.

Model Configurations The second experiment involved different variations
of RL and IL techniques to find a suitable model for imitating player strategies.
The different combinations are assessed on cumulative reward for overall perfor-
mance, and GAIL loss as an indicator for imitation performance. The results are
presented in Figure 9.

As a continuation on the second experiment, alternative training techniques
are applied to see any potential effects on performance and imitation behavior.
As the GAIL loss in the different model configurations presented in Figure 9b,
tends to drop quickly toward zero, it is expected that the models will imitate

(a) Cumulative Rewards for different
ML combinations. All models provide a
steady learning curve, indicating good
learning progression. PPO+GAIL+BC
provides a less steady curve, indicating
less certain learning behavior, whereas cu-
riosity seemingly flattens the curve. PPO
and GAIL result in the highest reward,
giving the best performance.

(b) GAIL discriminator loss for different
model configurations. The loss for most
models decreases rapidly toward a value
of 0.2, whereas PPO+GAIL+BC declines
more gradually. None of the models are
too close to zero, possibly suitable for
imitation capabilities. PPO model is not
present in the figure, since it does not use
GAIL, suggesting no imitation behavior.

Fig. 9: The results for different RL and IL combinations, over 200k steps. Each
model is tested with the parameters found in the experiment 5.1. The curves are
smoothed by a factor of 5, and the original curve is present in the background.

Mirror Mode: Your Biggest Enemy Is Yourself 23

the player behavior less well over a longer period of steps. Moreover, the final
cumulative reward, shown in Figure 9a, still fails to reach any positive values.
As the maximum reward value equals 2.0, the agents still need a lot of progress.

Final alternative training adjustments are made to improve this behavior,
presented in Figure 10. One model is trained by using self-play. Another model
is trained by reducing the number of weapons used in the game, solely focusing
on melee weapons from the weapon triangle. The last model is referred to as the
Mirror Model, which has an increased PPO batch size of 256, and 128 hidden
units for GAIL, to ensure slower GAIL loss convergence.

The three new models are compared to the model trained with the optimal
hyperparameters found in experiment 5.1, as the baseline model. According to
the results, the new batch size and hidden units show an quick improvement in
cumulative reward as well as a much slower convergence in GAIL loss. The self-
play model shows a promising growth in cumulative reward, going from a large
negative value to positive reward. However, unlike the Mirror Model, self-play
quickly decreases in GAIL Loss, reaching a value too close to zero, making it not
a reliable model for imitation purposes.

Training a model purely on weapon triangle weapons shows no better re-
sults than the baseline model with the optimal parameters, indicating that fewer
weapon types does not improve agent performance.

(a) Cumulative rewards across model
variants. Self-play shows the steepest im-
provement, rising from below -2.0 to
around 0.5. BaselineModel+ converges
quickly to 0.6 despite a less stable curve.
Reducing the weapon space lowers perfor-
mance, falling behind the baseline. Over-
all, BaselineModel+ and self-play demon-
strate strong potential agent behavior.

(b) GAIL discriminator loss over different
model training adjustments. The loss has
decreased more rapidly for self-play and
weapon triangle, suggesting less reliable
imitation behavior. The baseline+ model
seems to slow down the loss over time less
rapidly, making it more suitable for train-
ing the Mirror Mode models over a larger
period of steps.

Fig. 10: Results of additional model adjustments aimed at reducing GAIL loss
and improving cumulative reward. Curves are smoothed (factor 5), with original
data shown transparently in the background. The baseline is the optimal config-
uration from Experiment 5.2. BaselineModel+ increases the PPO batch size to
256 and GAIL hidden units to 128. Self-Play applies the baseline in a self-play
setup. Weapon Triangle limits attacks to melee weapons, reducing the action
space.

24 Y.E. Smid

Taking the results of the first and second experiment all together, it was
chosen to continue the player tests with the Mirror Model architecture computed
in Experiment5.2 and the hyperparameter setup found in Experiment 5.1. The
configuration of this model is added to the Appendix A.3. This configuration
file is used for the third experiment, where the models are trained based on real
participant demonstrations.

6 User Tests: Mirror Mode Player Evaluation

The model configuration found in the first two experiments discussed in Section
5, is used to train the enemy agent models for the Mirror Mode. Player tests
were conducted to evaluate the effect of the Mirror Mode on player experience.
To evaluate this, 12 participants were found to compare their playing behavior
in Standard Mode to their behavior in Mirror Mode. Participants were divided
into two groups, an experimental group and a control group, each with six play-
ers. This section discusses the experimental setup of the player tests, and the
collected results.

6.1 Experiment 3: Player Tests

Both qualitative as well as quantitative data is collected to evaluate effect of
the Mirror Mode algorithm on a player’s gaming experience and satisfaction.
It is inspired by the methods used by Pagulayan et al. [23], which combined
qualitative, quantitative, and observational data for assessing user satisfaction.

Only players experienced with strategy video games were asked to participate
in this research, such as those familiar with the Fire Emblem series. Players were
asked beforehand to rate their skills and familiarity with turn-based strategy
video games.

In total, the study included 12 participants, randomly assigned to a control
group (n = 6) or an experimental group (n = 6). The experimental group played
against their personal strategy in the Mirror Mode, whereas the control group
played against the strategy of another player from the experimental group. Each
participant took part in two test sessions conducted on-site. In order for the AI
model to learn from a participant’s gameplay, the two game modes for the test
group were tested on separate days.

On the first day, the participant played the Standard Mode for five full
rounds. During this session, their game state and action pairs were recorded.
Additional game behavior metrics were tracked in the agent script, such as at-
tack advantages and disadvantages, total movements, and total attacks applied.
After the playing session, a survey was administered to assess the participant’s
experience and satisfaction. The survey provided a satisfaction score, with a
maximum possible score of 45 points, indicating a player’s satisfaction of the
game.

On the second day, the participant played the Mirror Mode, allowing the AI
to utilize the learned model from the Standard Mode. Similar playing metrics

Mirror Mode: Your Biggest Enemy Is Yourself 25

were collected, but this time from the enemy agent using the Mirror Model. The
session was again followed by the same survey for the satisfaction score, with
additional questions that focus on comparing the Standard Mode and the Mirror
Mode.

Each test was concluded with a few additional questions about the player’s
experience, recorded in the survey. This casual interview allowed participants to
provide qualitative feedback about their overall experience across both modes.
Interview questions recorded the game experience, interests, and skills of the
participants. Moreover, they were asked to describe the enemy behavior and any
potential differences that they noticed between the two game modes.

6.2 Results

The results from the third experiment were collected through questionnaires,
filled in by each participant. Only players familiar to strategy video games took
part in this research. They were asked to rate their skills and familiarity be-
forehand, with the results presented in the Appendix 16. Independent t-test
showed no significant differences between the experimental and control group in
familiarity t(10) = 0.00, p = 1.00, or in skill level t(10) = 0.42, p = .69. Hence,
the groups were considered fairly divided with respect to prior experience and
knowledge.

The game experience was measured through 9 rating questions on a scale
from 1-5, to compute a satisfaction score. The questionnaire also served as a
platform to record participant’s answers to the interview questions, to find more
details about their experience and potential remarks about the new enemy AI.

In addition, the participant’s gameplay results were tracked and compared
to the models trained on the demonstrations to the corresponding participant of
the experimental group.

Player Metrics Each game in Standard Mode played by a participant provided
demonstrations with their actions to corresponding observed states. Models are
trained uniquely to the demonstrations provided by participants in the exper-
imental group, resulting in six distinct agent models. The trained models are
assessed by the overall performance in cumulative rewards and win rate across
1million training steps, resulting in the learning curves observed in Figures 11a
and 11b. In the figures, the models are named after the participant ID that was
used to train the model. A difference in performance can be noted across mod-
els. The model of P01 and the model of P04 perform similarly well, converging
to a cumulative reward of over 1.5. Both models end with a high win rate, of
nearly 60%, making them the best performing models out of the models from the
experimental group. P02 performs the least well, converging to a reward below
1.0, with a win rate of nearly 40%.

In Mirror Mode, participants in the experimental group played against en-
emy agents that used a model trained on their own demonstrations collected
during their Standard Mode gameplay. The performance of the agent models

26 Y.E. Smid

(a) The cumulative rewards of models
trained on participant demonstrations. It
can be observed that there is a difference
in performance across models, with P02
performing the least, and P01 and P04
the best. All models gradually converge
to a high cumulative reward over 1. With
P01 and P04 nearly encountering the op-
timal reward of 2.0, suggesting their mod-
els result in the best performance.

(b) Win rate across different partici-
pant models. Win rate equals total won
games over the total games played over
all episodes ran. All models steadily con-
verge to a higher win rate. The small dips
present in P07 and P10 are caused by an
interruption during training. Results sug-
gest that P01 and P04 perform the best
by encountering a win rate of nearly 60%.
P02 performs the least.

Fig. 11: The results of the six player models trained on participant’s playing
demonstrations. The models are trained over 1M steps, with PPO α=0.0003,
GAIL α=0.0001, BC strength=0.4, no curiosity, and extrinsic strength=0.5. The
curves are smoothed by a factor of 5, the original curves are presented in the
background in transparent undertones.

is measured during Mirror Mode gameplay of each participant. The metrics of
each model are taken over a total of 10 rounds. Five rounds are against its cor-
responding experimental participant, and five against one control participant.
This way, each agent model is tested twice. The performance is based on eight
in-game metrics. The total measured score over the 10 rounds is divided by two,
to calculate the average performance of the agent for each participant the agent
competed against. The metrics taken contain the total number of defeated oppo-
nents after five rounds is measured and shown in Figure 12a, and the number of
fallen units over a total of five rounds is presented in Figure 12b. The total num-
ber of times an attack or movement is applied are given in Figures 12c and 12d.
Additionally, attacks that had advantage, disadvantage, or effect, were tracked
and are shown in Figures 13a, 13b, and 13c respectively. In order to evaluate
the imitation quality of the agents, participant performance is measured as well
of each participant during the five rounds of Standard Mode gameplay. Agent
performance is compared with that of the participants they competed against
to assess how well agents imitate. Each metric can compared between the par-
ticipants from the experimental group, the participants from the control group,
and the agents. The results are presented in Figures 12 and 13. High similarity
between the agent and experimental metrics, together with low similarity to the
control-group metrics, indicates strong imitation quality. Similar metric values

Mirror Mode: Your Biggest Enemy Is Yourself 27

between the control and agent bar indicate that it cannot be assured that the
agent imitates the player presented by the experimental bar.

The results indicate that Mirror Mode models struggle to imitate offensive
behavior. The agents rarely perform attacks and fail to replicate effective and
advantage attacks, compared to their corresponding participants. However, Fig-
ure 12d shows that the agents closely resemble the movement patterns from the
experimental players they were trained on. In particular, agents trained on P01,
P02, and P10 demonstrate a strong alignment with their player behavior. In con-

(a) Number of defeated units in the op-
posing team. Results show no similarity
between player and agent behavior in re-
gards of kill count.

(b) Total number of fallen units in the cor-
responding team. The results show some
similarity between player and agent be-
havior in respect to death rate.

(c) Number of attacks performed dur-
ing gameplay, by the corresponding team.
The results show very different attacking
behavior between players and agents.

(d) Total number of movements made by
the corresponding team. The results indi-
cate some similarity in movement behav-
ior between player and agent.

Fig. 12: Comparison of agent and participant performance across in-game met-
rics. Agent bar shows the performance of the enemy agents in Mirror Mode that
were trained on demonstrations from participants in the experimental group.
Agent performance was averaged over ten gameplays: five vs. experimental and
five vs. control participants. In total six models were trained, one for each par-
ticipant from the experimental group with N = 6. The experimental bar shows
the performance of the corresponding participant whose demonstrations were
used to train the agent. The control bar shows the performance of the con-
trol group participant who competed against the agent. High similarity between
agent and experimental metrics, along with low similarity to control metrics,
indicates strong imitation quality. Metrics where agent and control values are
similar suggest weaker evidence of imitation.

28 Y.E. Smid

(a) Number of advantage attacks made
by player or agent of measured team.
There is no similarity present in regards
of advantage attacks between player and
agents.

(b) Reported disadvantage attacks by
player or agent of measured team. Exper-
imental participants and agents perform
disadvantage attacks more frequently,
suggesting possible similarity.

(c) Number of effective attacks made by
player or agent in measured team. There
is no similarity present in regards of effec-
tive attack behavior.

(d) Number of rounds won by each player,
over five a total of five rounds. Partici-
pants in experimental group show lower
win rate, as well do the agents.

Fig. 13: Comparison of agent and participant performance across in-game met-
rics. Similar to Figure 12, the agent bars represent Mirror Mode agents trained
on demonstrations from experimental-group participants (N = 6, one model per
participant). The experimental bars show the performance of the correspond-
ing participant whose gameplay was used to train the agent. The control bars
show the performance of the control group participants who competed against
the agents. High similarity between agent and experimental metrics, combined
with low similarity to control metrics, indicates strong imitation quality. Metrics
where agent and control values are similar suggest weaker imitation.

trast, P04, and P06 use fewer movement actions, while P07 shows considerably
more movements than its participant.

When comparing the death rate in Figure 12b from the Mirror agents to
the participants, it is noticeable that the Mirror agents show a higher death
rate, than most participants. However, in most models the death rate closely
matches that of the experimental participant it was trained on. Suggesting that
agent’s skill level is adapted to that of the corresponding player. Notably, the
death rates for P06 and P07, are higher than the rates from their participants.
Similarly, the kill rates for P06, P07, and P10 are substantially lower than those
of their corresponding participants.

Mirror Mode: Your Biggest Enemy Is Yourself 29

It can be noted that the Mirror agents generally show low similarity to the
control participants, supporting the idea that they are primarily imitate the
strategies of the experimental group players. However, Figures 13c and 13d
indicate lower similarity with the experimental participants for these metrics,
highlighting less accurate imitation in offensive tactics.

These observations suggest that while Mirror agents effectively replicate
movement behavior from the experimental players, they lack behind in imitating
offensive strategies. Nonetheless, the alignment in death rates with the original
players indicates a degree of skill-level adaption in the trained models.

Questionnaire The participants’ replies to the questionnaires from the Stan-
dard Mode and Mirror Mode are compared to each other to find an influence on
the player’s game experience. Analysis of the two survey results revealed several
insights. Overall, participants reported a shift in gameplay strategy, moving from
defensive to more offensive tactics transitioning from Standard Mode to Mirror
Mode.

Player’s satisfaction was measured using a 1–5 rating scale across nine ques-
tions. Participants rated each question for both Standard Mode and Mirror
Mode. For each question, the difference in ratings was calculated across all partic-
ipants, separately for the experimental and control groups. The mean difference
in score across all participants in both groups is computed and presented in Fig-
ure 14. Error bars represent the standard error of the mean (SEM), providing
an indication of the precision of the estimated group means.

Enemy tactics were rated less challenging in Mirror Mode than in Standard
Mode in both groups. Predictability and variety of enemy behavior was rated
slightly less for Mirror Mode for the experimental group, but not for the control
group. However, in Mirror Mode the adaption of the enemy tactics to the player’s
tactics scored much higher compared to Standard. The mean score difference in-
creased by more than one point, with relatively small error bars indicating higher
confidence that the group mean is close to the observed value. Therefore, there
is a more noticeable adaptability of enemy strategies in the experimental group,
where the enemy was actually adapted to their own tactics. The experimental
group also felt more motivated to adjust their tactics in Mirror Mode.

Interestingly, the Control group found the enemy tactics less predictable and
more varied compared to the experience of Experimental participants. Only mi-
nor differences were observed in player’s motivation to continue playing, their
sense of rewarding gameplay, and their perception of enemy’s behavior being
interesting.

Some questions show relatively large SEM values, indicating uncertainty in
the mean score differences. In particular, player performance and rewarding
gameplay show a high SEM value, suggesting these scores may not be accu-
rately represent the underlying sample group. The larger error bars may partly
reflect the small number of participants in each group.

Furthermore, participants’ description of the enemy behavior differences of
the two modes particularly also indicate the perception of the difference in of-

30 Y.E. Smid

fensive and defensive play style of the enemies, as shown in Table 4. Participants
in the experimental group noticed the mirroring behavior from the enemies in
Mirror Mode, imitating their defensive behavior from the Standard game, such
as P10 who is staying back, P06 who is less protective towards the magic unit,
and P01 who is more likely to retreat. Only a few in the control group recognized
their own strategies in the enemy tactics in Mirror Mode, such as P05 and P12,
than in the control group.

From the provided scale rating questions, satisfaction scores are calculated as
the mean of all ratings for each participant in both Standard Mode and Mirror
Mode. The computed satisfaction scores for each participant are presented in
Figure 15. Overall, most participants gave a higher satisfaction score to Mirror
Mode than to Standard Mode, indicating a positive influence on their game expe-
rience by Mirror Mode. However, for each participant both satisfaction scores are
high, and only small differences are noticed. The standard deviations are gener-
ally similar across the two modes, indicating comparable variability in responses
overall and similar range of satisfaction. However, variability differs notably be-
tween participants. Participant P04 is particularly noteworthy, showing a very
high standard deviation in Standard Mode but zero deviation in Mirror Mode,
highlighting the increase in satisfaction for Mirror Mode.

Fig. 14: Mean score differences per question type between Standard Mode and
Mirror Mode for the experimental group (green) and control group (yellow).
Error bars represent SEM. The y-axis lists question themes The x-axis shows
the difference in mean score, with differences calculated as MirrorMode −
StandardMode. Higher values indicate greater satisfaction in Mirror Mode,
while smaller SEM reflects greater confidence. Results suggest increased satis-
faction in enemy adaptability and player adjustability, but a decline in perceived
challenge.

Mirror Mode: Your Biggest Enemy Is Yourself 31

ID Group Response
P05 B I noticed that the enemy behaviour changed with respect to my performance,

and it was harder than before.
P03 B I feel like the enemy backed off more often in the 2nd mode. And also that

they attacked one of my people that I brought forward more often, so I could
adjust my strategy better.

P02 A The enemy behavior was more unpredictable which kept it very interesting
P08 B It was smarter, less greedy and taking steps more carefully. It would sometimes

retreat or do surprise attacks which was unexpected.
P09 B Enemies would walk further away from you making you chase. Enemies did

not always go on the offensive like it seemed in the first round.
P11 B Honestly i thought they were way more defensive rather than just attacking

every time they could:)
P10 A The enemy was staying back more, as I did.
P06 A Second mode used the same units as me. Also, the magic unit was not protected

as well which is a habit I have.
P01 A It mirrored my strategy. So it kept escaping rather than attacking.
P04 A Played more safe and felt really dynamic given the game state
P07 A The biggest difference was that the enemy decided to reposition a lot more and

play more defensive, which made it a lot more challenging to attack effectively.
P12 B They run away more. Used the strategy I used in the first 5 rounds but less

smart executed
Table 4: Experimental (white) and control (grey) group participants replies to
the question “What differences did you notice in the enemy behavior from the
Second Mode compared to the First Mode?". First Mode corresponds to the
Standard Mode, and Second Mode to the Mirror Mode. Participants especially
noticed the change from offense to defense. P01, P06, P10 remarked the enemy’s
behavior mirroring the player’s tactics.

32 Y.E. Smid

Fig. 15: Satisfaction scores for each participant in Standard Mode (blue) and Mir-
ror Mode (red). Satisfaction score equals the mean rating across all questions in
the survey, with error bars indicating standard deviation. Overall, satisfaction is
slightly higher for Mirror Mode, with most participants showing similar standard
deviations for both modes. Notably, P02 and P06 reported lower satisfaction in
Mirror Mode. These results suggest that, for most participants, Mirror Mode
provided a higher level of satisfaction compared to Standard Mode.

Total satisfaction scores for each mode and participant are provided in Table
6 in the Appendix. Comparisons of overall satisfaction between the two modes
show no significant differences. A two-tailed paired t-test with α = 0.05 resulted
in p = 0.2566 for the experimental group and p = 0.1144 for the control group.
Moreover, there was also no significant difference found in score difference be-
tween the two groups, as the statistical test gave a value of p = 0.9153. A
summary of the computed t-test results are presented in Table 5.

It is noticeable that P06 rates the Mirror Mode lower than other participants
in the experimental group, making P06 an outlier. Computing the statistical t-
test without P06 still shows no significant difference among the experimental
group, resulting in p = 0.0794.

Therefore, the overall game satisfaction of players did not seem to differ
significantly.

Comparison p-value Significance
Experimental group: Standard vs Mirror Mode 0.2566 Not significant
Control group: Standard vs Mirror Mode 0.1144 Not significant
Experimental vs Control groups 0.9153 Not significant

Table 5: Results of statistical paired t-test with α = 0.05, of satisfaction scores
between modes and groups. No significant differences were observed.

Mirror Mode: Your Biggest Enemy Is Yourself 33

7 Discussion

Statistics have shown a reduction in the popularity of strategy video games [34],
potentially being caused by the repetitive and predictable behavior from NPC
enemies [5][18]. Prior studies have found advanced techniques to incorporate AI
with video games, making it more enjoyable for players [2]. Building on this,
this study introduced a new game mode in strategy video games called Mirror
Mode, where the enemy agents are trained on the playing behavior of players so
the agents mimic their strategy.

7.1 Reflection on Experimental Results

The experimental results demonstrate promising indications of imitation in Mir-
ror Mode, particularly in the replication of defensive behaviors such as unit
retreating and hesitant attacks. Despite the shown effectiveness of the trained
models, further improvement is necessary for the agents to fully mimic a player’s
overall strategic approach. Offensive tactics proved more challenging to replicate,
with agents frequently holding back to initiate attacks or failing to exploit advan-
tageous or effective actions. A likely explanation lies in the greater complexity
of the decision space for executing valid attacks compared to performing simple
movement actions. Successful attacks require the agent to first identify an ap-
propriate target within range, then position itself on a tile from which the attack
can be performed. This involves at least two additional decision steps, whereas
a basic movement requires only the selection of a single tile within the agent’s
movement range. This difference makes the probability of selecting a valid move-
ment action higher than that of selecting a valid attack, which may account for
the observed performance gap.

The lack in offensive replication could also partially be caused by the difficulty
of the standard enemy AI. While both the player as well as the agents struggled
to defeat the standard AI, it is difficult to identify if difficulty had a beneficial im-
pact on the results. During Standard Mode, players showed a higher death rate,
and rated the enemy AI as more challenging. The Mirror Mode agents displayed
similar struggles when facing standard AI opponents. This suggests a potential
domino effect, where players who performed suboptimally in demonstrations, in-
advertently transferred those struggles to their agents. Consequently, the agents
inherited and reproduced similar results during training and their final model.

Despite the model performance, participants rated Mirror Mode satisfaction
generally higher than Standard Mode. However, the difference in satisfaction
scores between the two modes was not statistically significant within either the
experimental or control group. Likewise, no significant differences were observed
between the groups themselves. Two factors have had a possible influence on the
satisfaction scores, and the differences between the two modes. In some cases,
lower satisfaction with Mirror Mode appeared to be caused by the less challeng-
ing enemy behavior compared to Standard Mode. Furthermore, all participants
were already familiar with strategy games, and most reportedly enjoying the

34 Y.E. Smid

standard games. As a result, baseline satisfaction with Standard Mode was al-
ready high, leaving limited room for improvement in measured enjoyment. In
addition, Mirror Mode frequently repeated defensive actions, which made its be-
havior more predictable over time and consequently reduced both challenge and
engagement.

7.2 Limitations

In this study, the agents for Mirror Mode were trained for a total of 1 million
steps due to the limited time frame available. This training duration may have
been insufficient for agents to effectively learn and adapt offensive strategies,
leading to a limited execution of valid offensive behaviors and a less realistic
replication of a player’s strategies. The training process progressed at a rate of
approximately one hour per 100,000 steps, resulting in considerable computa-
tional demands. With a longer time frame, however, it would be feasible to extend
training beyond 24 hours, potentially enabling more comprehensive learning and
improved imitation behavior.

Additionally, the model configuration used for training Mirror Mode agents
requires refinements. While the GAIL loss metric provides a general indication
of imitation performance, it does not directly measure the quality of imitation
within actual gameplay. This creates a gap between training evaluation and in-
game behavior, limiting the model imitation expectations through model fine-
tuning evaluations.

Moreover, the reward system needs to be explored better to improve the im-
itation quality. The current reward system rewards agents for winning the game
and defeating enemies, while penalizing them for losing or being killed. This de-
sign primarily emphasizes overall game performance and survival rather than to
closely imitate player demonstrations. Consequently, achieving an appropriate
balance between exploration and imitation was necessary during model config-
uration. A potentially more effective approach could involve rewarding agents
for executing actions that closely match those in the original player demonstra-
tions. This would require the option to retrieve exact state-action pairs from
the recorded demonstrations, which still needs to be explored within the Unity
ML-Agents toolkit. Once possible, this could provide an interesting method for
mimicking agent behavior.

Finally, certain limitations in the game mechanics may have unintentionally
increased the game difficulty. In the original version of the strategy game,units
have access to special skills, abilities, and assists that enhance their statistics
and overall power, making victories easier to achieve while also requiring more
strategical thinking.

7.3 Future Work

Future research should address the aforementioned limitations to improve both
the effectiveness and engagement of Mirror Mode. Exploring alternative con-
figurations for training the Mirror Mode agents could lead to better imitating

Mirror Mode: Your Biggest Enemy Is Yourself 35

behavior of offensive behavior and overall strategies. Parameters such as hidden
units and batch size, can be further tested and finetuned, to find a more optimal
model.

Moreover, in future research, a more detailed in-game evaluation can be used
to assess imitation quality from a player’s perspective. Generating multiple can-
didate models based on promising performance metrics and testing them in ac-
tual gameplay could provide a clearer understanding of how training outcomes
translate into in-game behavior. This evaluation should focus on strategic imi-
tation, similar to the approach used in this study, but expanded to include more
detailed player assessments of imitation quality.

Refinements to the reward system are also necessary. In particular, providing
explicit rewards for replication actions from recorded demonstrations. This could
be a beneficial approach to a stronger imitation performance. Ultimately, finding
a more suitable Mirror Mode model and reward system could produce agents
that are not only more effective but also more engaging in gameplay, possibly
increasing participant’s satisfaction.

Furthermore, future work could consider incorporating more advanced game
elements, such as special skills, abilities, and assists. This could help balance
gameplay difficulty, and potentially increase player’s satisfaction scores.

Finally, an ideal implementation of Mirror Mode would last over an extended
period of player gameplays, allowing the model to continuously integrate new
demonstrations and adjusts to new player strategies that involve counter strate-
gies developed against their own behavior. This long-term adaption would re-
peatedly adjust strategies, encouraging players to think more strategically while
reducing predictable gameplay patterns and repetitive actions. To support this,
future user experiments should be conducted over longer durations, using mul-
tiple models that are progressively updated across several gameplay sessions. In
order to achieve this, it would be beneficial tointegrate Mirror Mode in a mobile
version of the game, enabling participants to play on their own devices. This
would require a faster and more flexible training service, potentially supported
by cloud-based services, to provide the necessary connections and computational
resources for mobile compatibility.

8 Conclusion

This research introduces a new gameplay mode called Mirror Mode, for turn-
based strategy games. It is found that RL and IL techniques from the Unity
ML-Agent package provided by Juliani et al. [16] show big potentials for teach-
ing agents to copy player strategy behavior, as after only 200k steps the agents
showed learning progression. However, an optimal configuration needs to be ap-
plied for the best imitation behavior, as it is difficult to maintain a balance in
imitation and exploration.

Player tests were conducted to evaluate the Mirror Mode model configuration
found in the first set of experiments. The tests provided great insights in regards
of player satisfaction and agent imitation abilities. A significant paired t-test

36 Y.E. Smid

showed no significant change in satisfaction score when going from Standard
Mode to Mirror Mode for the experimental group as well as the control group
in the player tests. Moreover, there was no significant difference between the
two groups. Therefore, the null hypothesis that the introduction of Mirror Mode
has no impact on the player’s satisfaction, cannot be rejected. However, for
most participants the satisfaction score was higher in Mirror Mode compared
to Standard Mode. The game challenge was rated easier for Mirror Mode, but
overall players enjoyed it better because of the less predictable behavior.

Additional metrics taken from the participant’s gameplay indicate a good
imitation in defensive behavior rather than offensive tactics. Participants recog-
nized their own retreating tactics, and laid back approach, in the Mirror Mode
enemies. Recorded game metrics compare the participant playing behavior to the
agent behavior from their Mirrored model. These results confirm the imitation
capability of the defensive behavior from the participants.

In addressing the question “How will a player’s game experience be influenced
when NPCs imitate their strategy in a turn-based strategy game? ”, this study
therefore shows that no significant difference in satisfaction between Mirror Mode
and Standard Mode can be found. Concluding that no confirmation can be done
about any significant influence on game experience. However, overall participants
enjoyed Mirror Mode better due to the less predictable enemy behavior and their
recognized defensive strategies, but making them easier to defeat.

The first half of the study focused on providing a model for Mirror Mode.
Leading to an answer to the question: “To what extent can RL and IL be applied
to teach NPCs a player’s strategy in a turn-based strategy game? ” It can be con-
cluded that IL has strong potentials in teaching enemy agents a player’s strategy,
with the proper configurations to maintain the imitation-exploration trade-off.
RL is more adaptable in finding its own strategy, and less suitable for copying
player’s strategies. Therefore, IL is more preferable for the specific purpose of
teaching NPC’s a player’s strategy, with PPO and extrinsic rewards added for a
good agent performance. Lastly the hypothesis The game experience of a player
will be positively influenced after the enemy AI has imitated their strategy, as the
player will be more engaged and more satisfied with the game. can thus not be
confirmed. However, survey results indicate an impact on experience in regards
of noticeably different enemy behavior adapted to the player’s performance, and
an overall increase in satisfaction.

Whether Mirror Mode can increase the popularity in strategy games remains
to be discussed, but this study takes the first strategic step toward that direction.

Mirror Mode: Your Biggest Enemy Is Yourself 37

Acknowledgement

First of all, this project wouldn’t have been possible without Code Monkey’s
YouTube tutorials [7], which were a huge help along the way. Also, a minor
thanks to the Fandom Community and Fire Emblem Heroes Wiki for providing
a public space for UI and character sprites of the Fire Emblem games [12].

Additionally, I want to thank my supervisors, Professor P. van der Putten
and Professor A. Plaat, for their guidance and advice, which really helped me
stay on track and focus on my goals.

And of course, I’m very grateful to my 12 participants for taking part in
my research and for their positive and enthusiastic attitude. Their participation
really helped me to achieve my goal.

References

1. M. Alonso Jr.: ML-Agents Installation (2024), https://github.com/
Unity-Technologies/ml-agents/blob/release_22_docs/docs/Installation.md,
(most recently accessed on June 2025)

2. Akram, A., Tehseen, R., Saqib, S., Nazir, F., Awan, M., Jr, I.: Advanced AI Me-
chanics in Unity 3D for Immersive Gameplay. A Study on Finite State Machines
& Artificial Intelligence. International Journal of Innovations in Science and Tech-
nology 6, 2004–2023 (12 2024)

3. Amato, C., Shani, G.: High-level reinforcement learning in strategy games (01
2010). https://doi.org/10.1145/1838206.1838217

4. Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., Mor-
datch, I.: Emergent Tool Use From Multi-Agent Autocurricula (2020), https:
//arxiv.org/abs/1909.07528

5. Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Boredom, engagement and
anxiety as indicators for adaptation to difficulty in games. In: Proceedings of the
12th International Conference on Entertainment and Media in the Ubiquitous Era.
p. 13–17. MindTrek ’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1457199.1457203, https://doi.org/10.1145/
1457199.1457203

6. Chang, SC., C.Y..H.J.: Determining Satisfaction from Gameplay by Discussing
Flow States Related to Relaxation and Excitement (03 2020). https://doi.org/
https://doi.org/10.1007/s40869-020-00113-5

7. Code Monkey: How to use Machine Learning AI in Unity! (ML-Agents) (2020),
https://unitycodemonkey.com/video.php?v=zPFU30tbyKs

8. Csikszentmihalyi, M.: Beyond Boredom and Anxiety. Jossey-Bass Publishers
(1975), https://books.google.nl/books?id=afdGAAAAMAAJ

9. Fan, X.: The application of reinforcement learning in video games (2023).
https://doi.org/10.2991/978-94-6463-300-9_21, https://doi.org/10.2991/
978-94-6463-300-9_21

10. Fandom: List of heroes (2025), https://feheroes.fandom.com/wiki/List_of_Heroes
11. Fire Emblem Heroes (FEH) Walkthrough Team: How Does Enemy AI Work?

(2021), https://game8.co/games/fire-emblem-heroes/archives/324532
12. Fire Emblem Heroes Wiki: Game assets collection (2025), https://feheroes.fandom.

com/wiki/Game_assets_collection#UI_Sprite_sheets

https://github.com/Unity-Technologies/ml-agents/blob/release_22_docs/docs/Installation.md
https://github.com/Unity-Technologies/ml-agents/blob/release_22_docs/docs/Installation.md
https://doi.org/10.1145/1838206.1838217
https://doi.org/10.1145/1838206.1838217
https://arxiv.org/abs/1909.07528
https://arxiv.org/abs/1909.07528
https://doi.org/10.1145/1457199.1457203
https://doi.org/10.1145/1457199.1457203
https://doi.org/10.1145/1457199.1457203
https://doi.org/10.1145/1457199.1457203
https://doi.org/https://doi.org/10.1007/s40869-020-00113-5
https://doi.org/https://doi.org/10.1007/s40869-020-00113-5
https://doi.org/https://doi.org/10.1007/s40869-020-00113-5
https://doi.org/https://doi.org/10.1007/s40869-020-00113-5
https://unitycodemonkey.com/video.php?v=zPFU30tbyKs
https://books.google.nl/books?id=afdGAAAAMAAJ
https://doi.org/10.2991/978-94-6463-300-9_21
https://doi.org/10.2991/978-94-6463-300-9_21
https://doi.org/10.2991/978-94-6463-300-9_21
https://doi.org/10.2991/978-94-6463-300-9_21
https://feheroes.fandom.com/wiki/List_of_Heroes
https://game8.co/games/fire-emblem-heroes/archives/324532
https://feheroes.fandom.com/wiki/Game_assets_collection#UI_Sprite_sheets
https://feheroes.fandom.com/wiki/Game_assets_collection#UI_Sprite_sheets

38 Y.E. Smid

13. Gharbi, H., Fennan, A., Lotfi, E.: REPLICATING VIDEO GAME PLAYERS’ BE-
HAVIOR THROUGH DEEP REINFORCEMENT LEARNING ALGORITHMS.
Journal of Theoretical and Applied Information Technology 102, 5735 (08 2024)

14. Ho, J., Ermon, S.: Generative Adversarial Imitation Learning (06 2016). https:
//doi.org/10.48550/arXiv.1606.03476

15. Huang, R.: The Impact of Flow State and Immersion in Video Games. Commu-
nications in Humanities Research 5, 43–48 (09 2023). https://doi.org/10.54254/
2753-7064/5/20230028

16. Juliani, A., Berges, V.P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao,
Y., Henry, H., Mattar, M., Lange, D.: Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627 (2020), https://arxiv.org/pdf/1809.02627.
pdf

17. Lee, M.S., Heeter, C.: What do you mean by believable characters?: The effect of
character rating and hostility on the perception of character believability. Jour-
nal of Gaming & Virtual Worlds 4(1), 81–97 (2012). https://doi.org/https:
//doi.org/10.1386/jgvw.4.1.81_1, https://intellectdiscover.com/content/journals/
10.1386/jgvw.4.1.81_1

18. Lemaitre, J., Lourdeaux, D., Chopinaud, C.: Towards a Resource-based Model of
Strategy to Help Designing Opponent AI in RTS Games (01 2015). https://doi.
org/10.5220/0005254402100215

19. Manaloto, N.: How naughty dog made enemies smarter in
the last of us 2 (2020), https://www.ungeek.ph/2020/06/
how-naughty-dog-made-enemies-smarter-in-the-last-of-us-2/

20. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing Atari with Deep Reinforcement Learning (2013), https:
//arxiv.org/abs/1312.5602

21. NotMike95: Chapter 6: Part 3 "Blunt Princess" | Fire Emblem Heroes [31] |
NotMike95 (2017), https://www.youtube.com/watch?v=sPyXdv7vDXs, youTube
video

22. OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson,
C., Pachocki, J., Petrov, M., de Oliveira Pinto, H.P., Raiman, J., Salimans, T.,
Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., Zhang, S.:
Dota 2 with Large Scale Deep Reinforcement Learning (2019), https://arxiv.org/
abs/1912.06680

23. Pagulayan, R., Keeker, K., Wixon, D., Romero, R., Fuller, T.: User-Centered
Design in Games. Human-Computer Interact. Handb pp. 883–906 (01 2003).
https://doi.org/10.1201/b11963-39

24. Ross, S., Bagnell, D.: Efficient Reductions for Imitation Learning (13–15 May
2010), https://proceedings.mlr.press/v9/ross10a.html

25. Ross, S., Gordon, G.J., Bagnell, J.A.: A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning (2011), https://arxiv.org/
abs/1011.0686

26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms (2017), https://arxiv.org/abs/1707.06347

27. Smid, Y.: Masterthesis (2025), https://github.com/YannaSmid/MasterThesis
28. Sánchez-Ruiz, A., Stephen, R., Héctor, L.U., Noz-Avila, M., Díaz Agudo, B.: Game

AI for a Turn-based Strategy Game with Plan Adaptation and Ontology-based
retrieval (07 2008)

29. The Game Awards: Winners (12 2020), https://thegameawards.com/rewind/
year-2020

https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.54254/2753-7064/5/20230028
https://doi.org/10.54254/2753-7064/5/20230028
https://doi.org/10.54254/2753-7064/5/20230028
https://doi.org/10.54254/2753-7064/5/20230028
https://arxiv.org/pdf/1809.02627.pdf
https://arxiv.org/pdf/1809.02627.pdf
https://doi.org/https://doi.org/10.1386/jgvw.4.1.81_1
https://doi.org/https://doi.org/10.1386/jgvw.4.1.81_1
https://doi.org/https://doi.org/10.1386/jgvw.4.1.81_1
https://doi.org/https://doi.org/10.1386/jgvw.4.1.81_1
https://intellectdiscover.com/content/journals/10.1386/jgvw.4.1.81_1
https://intellectdiscover.com/content/journals/10.1386/jgvw.4.1.81_1
https://doi.org/10.5220/0005254402100215
https://doi.org/10.5220/0005254402100215
https://doi.org/10.5220/0005254402100215
https://doi.org/10.5220/0005254402100215
https://www.ungeek.ph/2020/06/how-naughty-dog-made-enemies-smarter-in-the-last-of-us-2/
https://www.ungeek.ph/2020/06/how-naughty-dog-made-enemies-smarter-in-the-last-of-us-2/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://www.youtube.com/watch?v=sPyXdv7vDXs
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://doi.org/10.1201/b11963-39
https://doi.org/10.1201/b11963-39
https://proceedings.mlr.press/v9/ross10a.html
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1707.06347
https://github.com/YannaSmid/MasterThesis
https://thegameawards.com/rewind/year-2020
https://thegameawards.com/rewind/year-2020

Mirror Mode: Your Biggest Enemy Is Yourself 39

30. Unity Technologies: Reward signals (2020), https://github.com/
Unity-Technologies/ml-agents/blob/0.15.0/docs/Reward-Signals.md

31. Unity Technologies: Unity ML-Agents Toolkit (2022), https://unity-technologies.
github.io/ml-agents/Training-Configuration-File/#gail-intrinsic-reward

32. Unity Technologies: ML-Agents Overview (2024), https://docs.unity3d.com/
Packages/com.unity.ml-agents@3.0/manual/index.html

33. Weng, L.: From GAN to WGAN (2019), arXiv:1904.08994
34. Yee, N.: Gamers have become less interested in strategic thinking and planning

(05 2024), https://quanticfoundry.com/2024/05/21/strategy-decline/
35. Zare, M., Kebria, P.M., Khosravi, A., Nahavandi, S.: A Survey of Imitation Learn-

ing: Algorithms, Recent Developments, and Challenges (2023), https://arxiv.org/
abs/2309.02473

https://github.com/Unity-Technologies/ml-agents/blob/0.15.0/docs/Reward-Signals.md
https://github.com/Unity-Technologies/ml-agents/blob/0.15.0/docs/Reward-Signals.md
https://unity-technologies.github.io/ml-agents/Training-Configuration-File/#gail-intrinsic-reward
https://unity-technologies.github.io/ml-agents/Training-Configuration-File/#gail-intrinsic-reward
https://docs.unity3d.com/Packages/com.unity.ml-agents@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.ml-agents@3.0/manual/index.html
arXiv:1904.08994
https://quanticfoundry.com/2024/05/21/strategy-decline/
https://arxiv.org/abs/2309.02473
https://arxiv.org/abs/2309.02473

40 Y.E. Smid

A Appendix

A.1 Game Environment Setup

In Unity, a new 2D game environment needs to be created. The game environ-
ment was built through the following steps:

1. Setup a simple 2D game environment in Unity project editor version
2023.2.13f1.

2. The ML-Agent toolkit v3.0.0 package is installed in the Unity editor [32]
developed by A. Juliani et al. [16]. The backend implementation for the ML
algorithms are implemented by A. Juliani et al., and are accessible through
the ML-Agent package.

A.2 Virtual Environment

Creating a virtual environment in the Unity project directory can either be
done in via Conda, or the local Command Prompt on Windows. This study
used Command Prompt.

1. Navigate to the Unity project directory in Command Prompt.
2. Create a venv folder by running the following command python -m venv venv.
3. Activate the environment with: venv \ scripts \ activate.
4. Ensure that Python version 3.10.11 is installed and active within the

virtual environment.
5. Upgrade pip through python -m pip install –upgrade pip.
6. Install the ML-Agents toolkit with pip install mlagents.
7. Install PyTorch version 2.2.1 using pip3 install torch==2.2.1.

The mlagents-learn commands can now be used effectively to communi-
cate with the Unity environment. To check if the ML-Agents toolkit is installed
correctly, the following command can be ran: mlagents-learn –help.

Mirror Mode: Your Biggest Enemy Is Yourself 41

A.3 Configuration File

behav ior s :
MirrorMode :

t r a i n e r_type : ppo
hyperparameters :

batch_s i z e : 256
bu f f e r_s i z e : 2048
l e a rn i ng_ra t e : 0 .0003
beta : 0 .001
ep s i l o n : 0 . 2
lambd : 0 .95
num_epoch : 3
l e a rn i ng_ra t e_schedu le : l i n e a r

network_s e t t i n g s :
normal ize : f a l s e
hidden_un i t s : 256
num_l ay e r s : 2
v i s_encode_type : s imple

reward_s i g n a l s :
e x t r i n s i c :

s t r ength : 0 . 5
gamma: 0 .99

g a i l :
gamma: 0 .9
s t r ength : 1 . 0
network_s e t t i n g s :

normal ize : t rue
hidden_un i t s : 128
num_l ay e r s : 2
v i s_encode_type : s imple
memory : nu l l
goa l_cond i t i on ing_type : hyper
d e t e rm i n i s t i c : f a l s e

l e a rn i ng_ra t e : 0 .0001
encoding_s i z e : nu l l
use_ac t i on s : t rue
use_v a i l : f a l s e
demo_path : [. . .]

i n i t_path : nu l l
keep_checkpo int s : 5
even_checkpo int s : f a l s e
max_st ep s : 1000000
time_hor izon : 64
summary_f r e q : 2000
threaded : f a l s e

42 Y.E. Smid

s e l f_play : nu l l
b ehav io ra l_c l on ing :

demo_path : [. . .]
s t ep s : 900000
s t r ength : 0 . 4
samples_per_update : 10
num_epoch : nu l l
batch_s i z e : 512

A.4 Participant Experience and Skills Information

Fig. 16: Experience and skill level of each participant, rated by the participants
themselves.

Mirror Mode: Your Biggest Enemy Is Yourself 43

A.5 Total Satisfaction Scores Standard Mode and Mirror Mode

ID Group Standard Mode Mirror Mode Score Difference
P01 A 30 33 3
P02 A 40 39 -1
P03 B 33 39 6
P04 A 33 45 12
P05 B 43 44 1
P06 A 36 30 -6
P07 A 32 40 8
P08 B 38 41 3
P09 B 28 37 9
P10 A 33 37 4
P11 B 33 33 0
P12 B 39 38 -1

Table 6: Total satisfaction scores for each participant per mode. Satisfaction
scores slightly higher for Mirror Mode. P02 and P06 reported lower satisfaction
in Mirror Mode. The results suggest that, for most participants, Mirror Mode
gave a higher level of satisfaction compared to Standard Mode.

