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Abstract

This paper explores the creative capabilities of current large language models (LLMs) by
generating amigurumi crochet patterns based on image prompts. Amigurumi are small stuffed
creatures fabricated using a hook and yarn. By integrating OpenAI’s image generation model
DALL-E 3 and language models GPT-4o and o1, a pipeline is created that starts off by
generating an image of a crochet project, which is used to then derive corresponding crochet
instructions. The study focuses on three main questions: how to evaluate the quality of
AI-generated patterns without physical artifacts, whether LLMs exhibit an understanding of
underlying crochet logic, and to what extent AI can generate original designs. A systematic
scoring method was developed to compare features extracted from generated patterns to those
in the source images, analyzing both structural components and color accuracy. Additionally,
qualitative experiments assess originality and logical adaptability through fictional creatures
and targeted pattern modifications. The results indicate that both models are indeed capable
of generating plausible crochet patterns adhering to most specifications from the source images.
The suggested crochet pattern generation pipeline was found to be overall successful.
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1 Introduction

There is a strong historical link between textile crafts, e.g., crocheting or knitting, and programming.
A notable example is the Jacquard loom, introduced in 1801, which used punched cards to control
the weaving of complex patterns. This mechanical innovation directly influenced Charles Babbage’s
design of the Analytical Engine. The Analytical Engine is widely regarded as the primary design
leading to the evolution of modern-day computers [Lan19]. Ada Lovelace, often considered the first
computer programmer, famously drew a parallel between fabric arts and computational processes,
noting that “the Analytical Engine weaves algebraical patterns just as the Jacquard-loom weaves
flowers and leaves” [Lan19].

Building on this observation, this research further investigates the link between fabric arts and
programming by tasking AI models with generating crochet amigurumi patterns. Crochet instruc-
tions are occasionally compared to computer programming languages due to their highly organized
structure [Khe23][The19][ÇBG17].

Crocheting is a needlework craft using a hook and yarn. Similar to knitting, crocheting con-
sists of a series of simple steps of turning the yarn around the hook, creating different types of knots,
called crochet stitches. Using crocheting methods, it is possible to manufacture intricate fabrics
and designs. Stitches can be linked in various places, allowing the creation of not only simple 2D
fabrics but also complex 3D structures [SLRH21]. Due to this added complexity, crocheting, unlike
knitting, cannot easily be automated [EPIBC22]. Although crocheting cannot be fully automated
to this day, crochet patterns generally possess a strict structure consisting of the nature and number
of stitches added for each row and where they are attached (see figure 1) [SLRH21].

Figure 1: Excerpt of written crochet pattern instructions with their structure.

This computational structure of crochet patterns is similar to that of computer code [ÇBG17].
However, crochet patterns remain less strictly syntactically structured than code, as they do not
have set rules, which means that patterns can differ between different writers. In the crocheting
community, people generally agreed on basic naming conventions of specific stitches and their
abbreviations, and summarizing the steps in a pattern as rows that need to be crocheted (see table
1). This enables relative consistency across patterns despite the lack of a formal syntax.
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Abbreviation Meaning
MR magic ring
ch chain stitch
sc single crochet
inc increase (2 sc in the same stitch)
dec decrease (combine 2 sc into one)
sl st slip stitch

Table 1: Crochet Abbreviations

The general method applied in amigurumi crocheting is single crochets, which are considered the
basic crochet stitches utilized to create a compact fabric by crocheting in rows on top of one another.
Single crochets consist of a root, a stem, and a head (see figure 2). The root of a stitch is the head
of a stitch from the previous round, giving the fabric a pre-defined, general connected structure.
Increases are used to widen the fabric by adding additional stitches in a row, which is achieved by
adding two single crochets into the single stitch of the previous row. Decreases, on the other hand,
serve to shorten the row. This is done by combining two stitches, so they only have one head.

Figure 2: Structure of crochet increase and decrease [ÇBG17]

1.1 Evolution of LLMs

Large Language Models (LLMs) such as ChatGPT or Claude are rapidly gaining popularity as more
and more people report using them for everyday tasks such as writing emails, summarizing long
documents, or drafting reports. LLMs are a form of Artificial Intelligence constructed using deep
neural networks that have been trained on a wide range of diverse data, including internet content,
books, and scientific papers. Although their original design focused on predicting the next word in
a sequence, modern LLMs can now perform a wide range of tasks. Beyond basic text generation,
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they are now capable of supporting complex tasks in various fields. These fields include math-
ematics, medicine, and software development. However, their outputs still require human monitoring.

Especially in the domain of computer programming, LLMs have demonstrated remarkable ef-
ficacy. They are able to detect errors, adapt existing code snippets, and even generate fully
functional code across various programming languages, including Python, Java, and C++. While
standard LLMs already perform well on many programming tasks, recent advancements have
revealed a new variation of AI models called “reasoning models”. These are models that undergo a
number of additional training sessions. Usually, reinforcement learning techniques guide the model
to first decompose complex problems into sub-tasks and to solve them sequentially. One such model
is OpenAI’s o1 model, which applies reasoning steps using a so-called “chain of thought” technique
[Ope24]. This method involves defining intermediate steps within a problem and using iterative
feedback to fix errors and explore alternative problem-solving strategies when initial approaches
lead to invalid results. Additionally, the model is taught to apply logical reasoning, including tech-
niques such as deduction and induction, to draw conclusions. This added complexity significantly
improves the model’s capacity to generate logical and contextually plausible answers to difficult
questions. Despite the additional reasoning step, LLMs remain a large “black box” procedure
as the results generally lack transparency and explainability. AI is known to sometimes halluci-
nate information, leading to the relevant question: Does AI truly understand the output it generates?

LLMs can be considered as general pattern machines [MXF+23]. They are able to solve logic
puzzles and learn new code syntax after being prompted with a few examples. No task-specific
fine-tuning or additional training is required. During their initial learning process, LLMs adopt
various types of patterns from their training texts, enabling them to easily recognize linguistic
patterns in the prompt, which can then be applied to solve new problems. Although AI is highly
adaptable and can generate relatively plausible responses to various prompts, its black box nature
leaves the remaining question of whether LLMs understand the underlying logic of their responses
or whether they are simply applying patterns they learned from the training data or provided
prompt.

1.2 Defining creativity

Definitions of creativity vary across different domains. This research adopts the definition provided
by Margaret A. Boden, who defines creativity as the ability to create new, surprising, and valuable
ideas [WHL24][Bod09]. Here, novelty is separated into p-creativity and h-creativity. P-creativity
refers to ideas that are new to either the AI itself or to the person applying it. H-creativity, on the
other hand, denotes historically novel ideas, i.e., ideas that have never been documented before
[Bod09]. In the context of this research, which analyzes the creative potential of AI-generated
crochet patterns, creativity is defined as H-creativity. A pattern is considered creative depending on
its originality, where original patterns are defined as patterns that do not already exist, making them
historically new. It is important to note that patterns combining pre-existing general components in
new ways, e.g, applying existing pattern snippets for specific components, are also considered original.

There is an element of surprise in the sense that the AI does not necessarily produce an anatomically
accurate representation of the animal from the prompt. The AI uses creative freedom to modify,
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add, or omit components if this leads to a more aesthetically pleasing result.

The value of a result can be defined in multiple forms depending on domain-specific criteria
[Bod09]. In the area of generated amigurumi patterns, value mainly refers to their functionality (i.e.,
whether it produces a structurally sound object), construction quality (i.e., clarity, coherence, and
technical feasibility), and visual plausibility (i.e., whether the resulting figure is both recognizable
and complete).

Overall, this research considered a pattern “creative” if it is historically new (i.e., original), to
some degree unexpected (i.e, surprising) and adheres to the generally accepted standards of crochet
patterns, thus enabling a person with some experience in the domain to realize the amigurumi
figure using the pattern (i.e., valuable).

1.3 Thesis overview

The conducted research explores the generative capabilities of Large Language Models (LLMS)
such as OpenAI’s GPT-4o and o1 in the field of automated generation of crochet amigurumi
patterns. The pattern generation pipeline begins with DALL-E-3, an independent image generation
model, that first produces an image of a desired crochet amigurumi based on a short text prompt
specifying the amigurumi creature. This created image is then fed into the pattern generation
models with the task of producing detailed crochet instructions matching the depicted amigurumi.
The study focuses on three objectives: investigating methods for systematic evaluation of crochet
patterns, analyzing AI’s understanding of the underlying structural logic of crochet, and testing
the originality of generated patterns.

The project is structured into different sections. Section 2 discusses related work in the area.
Here, the existing current research in the field of automated crochet pattern generation and broader,
more general research areas about creativity emerging from LLMs is presented. The methodology
is then outlined in section 3, explaining all steps made in the experiments, including the initial
collection and creation of data, processing steps, and techniques for extracting information from
the generated patterns.

A challenge addressed in this research is the evaluation of pattern quality without relying on
manual production of physical crochet artifacts. Sections 3, 4.1 and 4.2 explore alternative evalua-
tion techniques by experimenting with methods such as visualizing the resulting amigurumi with
2D and 3D representations using an LLM or extracting feature information from the generated
pattern instruction to apply score calculation, comparing the features to the source image. These
steps aim to provide a scalable and automated method for evaluating pattern quality.

Beyond technical accuracy, i.e., how well a crochet pattern resembles the image it is based on,
the thesis also considers how the models perform with respect to creativity and adaptability. In
section 4.3, experiments are conducted to explore the ability of the pipeline to produce original
patterns, mainly considering the final pattern creation process rather than DALL-E 3’s ability to
create unique amigurumi images. In these experiments, the AI models are tasked with generating
crochet instructions for imaginary creatures or animals defying general underlying logic (e.g., a dog
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with only three legs). For these cases, no real-world reference patterns exist, forcing the models to
create original instructions. These examples are then examined in detail by performing a qualitative
analysis on the created patterns. Section 4.4 explores the models’ capabilities to adapt existing
patterns. The extent to which a pattern can be altered (adaptability) is tested by tasking the LLM
models with modifying specific components within a previously generated pattern and analyzing
the changes in terms of plausibility and clarity.

Overall, this is an explorative study that aims to provide a starting point to the widely unexplored
research area of AI-generated crochet patterns, laying the groundwork for deeper investigation.
Ultimately, this could contribute to the development of feedback-driven systems where patterns are
iteratively refined with automated feedback about the quality of a pattern.

2 Related Work

The existing body of research on AI-generated crochet patterns remains relatively small. Some
research has been conducted to analyze and understand the formal structure of crochet patterns,
studying the similarities to computer code and exploring potential automation strategies. A critical
initial step in automating the creation of crochet patterns involves analyzing the structural compo-
nents of these patterns. Numerous parallels have been drawn between fabric creation techniques,
such as knitting and crocheting, and computer programming. It has been suggested that such
textile techniques can be conceptualized as a form of applied, physical coding, wherein the yarn
functions as “programmable material” [The19]. Both crocheting and programming rely on sequential
execution of a series of commands or stitches whereby each step contributes and influences the
final result [Khe23]. Moreover, both domains are sensitive to errors, which can significantly affect
their outputs. In programming, syntactic or logical errors can prevent the code from running as
intended and distort the final output. Analogously, in crocheting, the omission or addition of
stitches can substantially alter the shape of the final product. Another similarity is the influence
of tools chosen for a project, while in programming, the choice of programming language impacts
the execution speed and system compatibility, in crocheting, the choice of the hook size and
yarn properties, such as e.g., thickness, affect the size and density of the resulting fabric. These
observations underscore the idea that knitting and crocheting are not merely handicrafts but can
also be understood in a broader sense as mathematical systems [Khe23][The19]. Despite the shared
characteristics of computer code and textile creation techniques, a major challenge lies in translating
patterns to code due to the lack of a standardized syntax, especially in crocheting. Crochet patterns
frequently combine structured stitch instructions, following a general convention, with natural
language elements that describe the color schemes and placement of specific components. Elisabetta
Matsumoto, an applied mathematician and physicist, proposed the development of a “knit theory”
comprising a full alphabet of stitches and a formal grammar defining how stitches can be assem-
bled to influence geometric outcomes. Although this framework was mainly proposed for knitting,
it would be useful to also define such a systematic documentation for crocheting instructions [The19].

There have been several recent research efforts that have successfully formalized crochet lan-
guage, among others, the work of Çapunaman, Ö.B. et. al. [ÇBG17] and Edelstein, M. et. al.
[EPIBC22]. On the basis of this, it was possible to automate crochet pattern creation for many
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three-dimensional forms. A key principle of these studies is that they identify crocheting as a
computable rule-based system in which stitch geometry is influenced by a combination of variables
such as crochet hook size, yarn thickness, and the individual tension exerted by the maker during
fabrication [ÇBG17]. Through data collection and analysis of how specific stitch combinations affect
surface shaping, researchers have derived formalized rules that serve as a basis for a computational
model. Typically, these pattern-creation strategies rely on a digital three-dimensional model of the
intended object, which is provided as input. This 3D model is then segmented into discrete regions,
which need to be crocheted individually according to surface geometry. It is then translated into a
crochet graph mapping a network of stitches across the model’s surface, informed by prior analysis
of curvature effects associated with particular stitch combinations. The resulting crochet graph
serves as the blueprint for extracting row-wise written crochet instructions [ÇBG17][EPIBC22].
Additionally, to enhance the readability and usability of the output, frequently repeating sequences
of stitches are automatically detected and grouped [EPIBC22]. This computational pattern gener-
ation approach has demonstrated reliability in creating patterns for a wide range of geometries,
including both fully enclosed forms, such as amigurumi, and more abstract formed open-surfaced
shapes. Some methodologies further support customization options through the incorporation of an
additional input, by taking stitch swatches from the user, which are used to estimate yarn tension
and its impact on the crochet project [ÇBG17]. However, certain limitations persist with these
strategies. One notable constraint is the reliance on a join-as-you-go construction method, which
greatly restricts pattern complexity and creative flexibility [EPIBC22]. This limitation is partic-
ularly pronounced in the area of amigurumi design, where human-written patterns often involve
separately crocheted components that are later assembled by sewing the individual parts together.
Such modular construction introduces variability and complexity that are difficult to formalize as
strict computational rules. In response to this challenge, this study explores an alternative method
of pattern generation using AI, which is generally less constrained by structural definitions and
syntax.

Large Language Models (LLMs) have demonstrated promising results in various creative fields,
including visual arts, music, literature, and animation [WHL24]. In these areas, AI has emerged
as a powerful tool bridging creativity and technology [EY24]. In recent years, AI’s capabilities
in image and video generation have advanced significantly, enabling the creation of realistic and
plausible visual outputs from text-based prompts. Similarly, AI has also shown promise in music
composition by generating new pieces or by inspiring artists through the creation of unique sound
combinations [WHL24]. There are different ways to integrate AI into creative workflows, most of
which include co-creative approaches. Co-creativity refers to a system in which humans and AI
collaborate in an interactive loop, enabling real-time adaptive assistance [EY24]. In such settings,
AI can play a supportive role by generating new ideas, thereby extending a person’s creative capac-
ities, functioning similarly to a creative partner that encourages unexpected and new outcomes
[WHL24]. Alternatively, AI can serve as a creative tool to test different artistic approaches. This
facilitates creative exploration and experimentation, particularly in digital art, where AI enables
rapid prototyping and testing of design variations. The overall goal of co-creative processes is to
augment human creativity, rather than replace it, by expanding the creative possibilities [EY24].
However, research on co-creativity so far has mainly focused on digital art forms, while application
in real-world creative crafts has received relatively little attention. This is likely largely the case due
to the practical challenges of testing in these areas. This gap highlights an opportunity to investigate
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how AI performs in material-based domains, like crocheting, to investigate the functionality of AI
in physical creative practices.

One particularly interesting area that has previously heavily depended on human creativity and
capabilities is the development of three-dimensional models. An example of this is the Generative
Design in Minecraft Competition (GDMC) which focuses on AI’s 3D building capabilities by tasking
it to construct creative and adaptive settlements within Minecraft, a well-known computer game
featuring a 3D world composed of various blocks [SGC+20]. It targets the broader research goal of
computational creativity by analyzing AI’s creative capabilities in open-ended environments with
minimal guidelines and restrictions.

LLMs have previously been described as “general pattern machines” due to their ability to extract
and apply diverse patterns from their training data and prompt-based inputs [MXF+23]. Without
additional fine-tuning, LLMs can identify abstract patterns from a few in-context examples and
apply them to novel tasks. Research has shown that LLMs can successfully solve abstract reasoning
tasks such as various puzzles by recognizing and extracting patterns across language-based and
non-linguistic domains, including symbol-based tasks like crochet pattern generation [MXF+23].
These results suggest that a core component of AI creativity is its ability to internalize and reapply
abstract patterns across domains. The application and extrapolation of general patterns appear
to be fundamental components of generating creative outputs. This aligns closely with human
artistic creation processes in which prior experiences subconsciously influence creative results
[Bod09][Run25]. This similarity implies that the pattern-based reasoning may also promote AI’s
ability to generate creative outputs, for example, in areas such as creating crochet instructions.
Even without task-specific training, the LLMs demonstrate the ability to formulate coherent crochet
instructions by applying general concepts on how to create crochet patterns from their training
data. This capability reflects a form of adaptive, open-ended reasoning that bears resemblance to
human creative processes [Run25].

In addition to the aforementioned research, a notable project was conducted by Wu, Y. et. al.
[Wu24][KW24] that explored the training of different AI models to generate crochet instructions
from an input image of a crochet product. This work focused on fine-tuning LLMs, specifically
Gemini and LLaMA models, using a collected dataset derived from publicly available online crochet
resources. The final dataset consisted of over 3700 data points, each comprising images of the
finished product, a list of required materials, product dimensions, crochet stitch abbreviations, and
corresponding step-by-step pattern instructions. Through fine-tuning with this data, the models
were trained to generate complete and comprehensive crochet instructions of the crochet object
provided in the prompt image by the user. However, a major challenge mentioned in this project
was the lack of a simple and efficient evaluation method for generated crochet patterns. Thus far,
evaluation methods to determine the quality and correctness of a pattern either rely on a detailed
manual analysis of the textual instructions or they rely on the creation of a physical crochet artifact
for visual comparison to the reference image. The lack of automated or scalable crochet pattern
evaluation frameworks greatly restricts the reliability of the models and raises concerns about the
potential for overfitting.
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3 Methodology

3.1 Deciding on a pattern generation process

The first step of this project consisted of prompt engineering. The goal was to determine a pat-
tern generation pipeline that returns complete patterns and enables detailed evaluation. When
generating patterns using AI, there are different possible approaches with each their own advantages:

1. Giving a minimal prompt such as “Create a crochet pattern for an amigurumi bee”

• Advantage is that it gives the AI creative freedom

• Disadvantage is that it is more difficult to evaluate since the outcome can be very
unpredictable

• Disadvantage is that it does not give much insight into AI’s pattern understanding

2. Giving a detailed text prompt such as “Create a crochet pattern for an amigurumi bee
containing a main body, legs, antennae, ...”

• Advantage is that it is easy to evaluate

• Disadvantage is that it is more time-consuming and produces less varied patterns

• Disadvantage is that the pattern creation process is less intuitive and doesn’t resemble
the way humans tend to create a pattern

3. Giving a crochet image as a prompt with the task of creating a pattern for it

• Advantage is that it is easy to evaluate

• Advantage is that the pattern creation process is more intuitive and similar to the way
a human might approach the problem

• Advantage is the versatility (can easily be extended to also include other types of crochet
i.e., non-amigurumi crochet projects)

• Disadvantage is that the final result is dependent on the models’ image processing
capabilities

• Disadvantage is that this method only allows for the replication of existing crochet
projects

4. Giving the AI a minimal prompt to generate an image first and then the corresponding
amigurumi pattern from it, such as “Create an image of a crocheted amigurumi bee and use
this image to create the corresponding crochet pattern”

• Advantage is that it is easy to evaluate

• Advantage is that the pattern creation process is more intuitive and similar to the way
a human might approach the problem

• Advantage is that novel amigurumi projects can also be created
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• Disadvantage is that the final result is dependent on the models’ image processing
capabilities

• Disadvantage is that it can lead to crochet patterns that cannot be physically implemented
(e.g., incongruencies, logical faults)

Generate crochet image Generate crochet pattern Extract features Calculate score

Figure 3: Pattern generation pipeline

Of these various pattern generation pipelines, the final method was selected for this research. This
approach encourages broad variation in the resulting patterns and facilitates a detailed quantitative
evaluation of the generated patterns by allowing direct comparison with the source image. The
complete pipeline is depicted in Figure 3.

Difficulty Amigurumi

Easy
Cat
Mouse
Bee

Medium
Jellyfish
Clownfish
Narwhal

Hard
Skunk
Gecko
Hermit Crab

Table 2: Amigurumi animals grouped by difficulty level

The amigurumi selected for the following experiments comprise three easy, three medium and three
difficult crochet amigurumi animals. The difficulty was determined by two criteria: the geometric
complexity of the finished shape and how commonly a pattern for the animal can be found. The
pattern availability was established by comparing the number of publicly accessible patterns on
Yarnspiration, an open-source website for various crochet patterns. Table 2 shows the final selection
of nine amigurumi animals that will be analysed in this paper, representing a balanced selection
across varying levels of complexity and prevalence.

3.2 AI models

The models investigated in this paper are OpenAI’s GPT-4o (i.e., model key: “gpt-4o”) and o1 (i.e.,
model key: “o1”). These models were specifically selected for their ability to process multimodal
input, including both text-based prompts and images. This is essential for the pattern generation
process as the models must process a previously generated image of a specific amigurumi in order to
create corresponding crochet instructions. Śınce the applied evaluation strategies still require occa-
sional manual adjustments to extracted features, this study focuses on comparing the performance
of widely used LLMs developed by OpenAI rather than conducting a broad analysis across various
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AI models. The central aim is to investigate the understanding and generative capabilities of AI
systems when creating amigurumi crochet patterns. For this, the performance of a standard LLM,
GPT-4o, is compared to a reasoning model such as o1. At the time of the experiments, GPT-4o and
o1 were the state-of-the-art models available through OpenAI’s Python API. GPT-4o was chosen
due to its versatility and overall high intelligence, allowing it to complete tasks in various domains
[Ope24]. O1 was selected specifically for its enhanced reasoning capabilities. As a reasoning model,
o1 was trained to decompose complex problems into sub-tasks and to solve them sequentially using
an internal chain-of-thought, which contributes to more consistent outputs [Ope24]. These added
features are reported to greatly improve the model’s computer code generation capabilities.

For the initial image generation, OpenAI’s latest image generation at the time, DALL-E 3, was used.
DALL-E 3 (i.e., model key: “dall-e-3”) is an LLM specifically developed for image generation tasks
based on a text prompt. Its use is especially useful as the image generation model is independent
of the pattern generation models, allowing for a clearer analysis of the model’s pattern generation
capabilities without confounding effects.

3.3 Feature extraction

In order to support a systematic evaluation of generated patterns, features are extracted from
both the reference images and the corresponding pattern texts. These features are represented as a
Python dictionary in which the keys denote distinct body parts or components. The matching values
are two-element lists, out of which the first element records the count of the specific component,
and the second element comprises a list containing the colors of that component (see Figure 4)

Figure 4: Feature extraction example

The feature extraction is carried out by prompting the OpenAI model o1 to identify and extract
the corresponding components, their colors, and count from the images and the generated patterns
(and eventually the 2-dimensional visualization). The extracted information is saved in a separate
file following the structure as previously described. The model is instructed to specify the colors
as single-word descriptors (e.g. “green”) and to avoid prefixes within the color term (e.g. “pale
green”). Additionally, for certain stylistic or textural features such as stripes, dots, scales or a
fluffy appearance, no count is provided since a definite count is usually difficult to define for these
categories. Instead of a count, these attributes are given boolean values to reflect their presence or
absence in the pattern or image. The same boolean representation is applied to embroidery-style
details such as whiskers or blush on the cheeks, as these elements are also typically not quantified
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consistently.

The instructions were designed to enhance the reliability and consistency of automated feature
extraction. The prompt was iteratively refined over multiple trials to ensure adherence to the
specified format while maintaining as much detail as possible. Although this approach proves
effective for feature extraction from the predominantly text-based crochet patterns, its application
to image-based feature extraction is less accurate. Due to the ambiguity in interpreting visual items
and extracting the corresponding features, manual human correction was still occasionally required
to avoid mistakes and increase comparability.

The following guidelines were applied during the manual extraction and verification of features to
ensure consistency and accuracy across pattern text, source images, and 2D visualizations:

General Feature Extraction Guidelines:

• Visual patterns (e.g., stripes or dots) are assigned a Boolean value instead of a count to
indicate their presence or absence.

• Embroidered details (e.g., whiskers, scales, feathers, or blush) are also represented as Boolean
values.

• Only single-word color descriptors are used.

• If two shades of a single basic color appear in the pattern (e.g., “light green” and “dark
green”), the darker shade is manually labeled with the prefix “dark”.

• If a body part appears multiple times but differs significantly in shape or construction, it is
listed as a separate component (e.g., “front legs” and “back legs”).

1. Image-Based Feature Extraction

• Component counts are manually adjusted based on symmetrical assumptions. For
example, if one leg is visible due to image perspective, it is assumed that a symmetrical
counterpart exists, and the count is revised accordingly.

• No features are added unless their inclusion is symmetrically justified.

2. Pattern-Based Feature Extraction

• If eyes are mentioned in the pattern, they are assumed to be two and black by default,
based on the common use of so-called ”safety eyes”, unless otherwise specified.

• Color names are standardized to match the corresponding visual features in the source
image when they refer to equivalent shades (e.g., “cream,” “off-white,” or “light beige”
may be changed to “white”). However, mismatches across color families (e.g., “dark
blue” vs. “dark green”) are not corrected.

• Body part names are manually revised to match the terminology used in the source
image when alternative expressions are found in the pattern.
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• If a single component label (e.g., “legs”) is used in the pattern to refer to parts that
differ in shape in the image (e.g., “front legs” vs. “back legs”), the component name
may be manually edited (e.g., to “back legs”) to ensure one consistent match during
score calculation.

3. 2D Visualization-Based Feature Extraction

• Color descriptors are adapted to match the color labels used for the source image when
equivalent or synonymous names are used.

• A limitation of this method is that plausible visualizations may omit components for
clarity or style, resulting in penalization due to mismatches in component counts.

These rules were established to balance accuracy with consistency across different inputs, improving
the overall reliability of the feature-based evaluation process.

Establishing clear and consistent rules for feature extraction can prove challenging since there
are various approaches to address uncertainties. Multiple strategies were considered to address
these ambiguities, each offering distinct advantages and disadvantages. The current rule set was
selected based on experimentation with the aim of accurately capturing relevant information in the
extracted features across a diverse set of animals and patterns.

One possible refinement for future work would involve limiting the colors to a defined range
of simple colors during the image generation process. This could potentially reduce the need for
manual adaptation of the color labels in the feature lists. However, no adequate solution could
be found for resolving the discrepancies in the terminology used to describe body parts. Limiting
the vocabulary in the pattern generation process would restrict the pattern generation and is
difficult to implement due to the high variability in anatomical features across different amigurumi.
Additionally, explicitly specifying body parts in the prompt could introduce an unwarranted bias
into the model and hinder its generative flexibility.

To further improve the reliability of automated feature extraction and reduce the likelihood
of errors, several additional preprocessing steps were implemented. As a first step, Boolean values
that are formatted incorrectly (e.g., lowercase ”true”) are converted into valid Python syntax.
Additionally, all the text is converted to lowercase and lemmatization is applied to normalize plural
terms to their singular forms (e.g, “eyes” is changed to “eye”). This prevents mismatches during
score computation. Together, these preprocessing steps contribute to a more robust and consistent
evaluation framework.

3.4 Score calculation

Multiple approaches are employed to assess the quality of a generated crochet pattern. This includes
both qualitative and quantitative analyses. The qualitative evaluation involves a detailed exami-
nation of selected patterns, focusing on their structural plausibility and creating corresponding
real crochet amigurumi for visual inspection. Another approach to evaluate the patterns will be to
generate simplified 2-dimensional and 3-dimensional representations of the resulting amigurumi as
a possible alternative to manual crocheting.
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The final quantitative analysis to systematically evaluate crochet patterns is conducted by imple-
menting an automatic scoring system based on the previously extracted features. It is designed to
assess how closely the features from the generated pattern match those of the original reference
image the pattern was based on. A pattern is considered high quality if the extracted features align
closely with those from the source image.

The score calculation is divided into two distinct score metrics: the component score (body
parts score) and the color score. The component score measures the presence and frequency of body
parts in the pattern in comparison to those from the reference image. In order to penalise wrong
body parts and reward correct body parts, it applies Jaccard similarity, an evaluation metric often
used in tasks relating to text analysis, such as plagiarism detection systems, where it calculates
the similarity between texts. The component score consists of two subcomponents: the Jaccard
similarity comparing the body parts from the extracted features of the pattern to those of the
source image, and a count measure of how many correct components, contained in both the image
and the pattern, also have the correct count (see equation 1). This approach emphasises correctness
over the magnitude of count discrepancies.
Parameters:

• pcomp = set of body-parts from the pattern

• icomp = set of body-parts from the source image

• C = set of matching body-parts with correct count (e.g., four legs)

• M = pcomp ∩ icomp = set of matching body part names (irrespective of color and count)

• pcoli = set of colors of the ith body-part in the pattern

• icoli = set of colors of the ith body-part in the image

The Component Score is defined as:

ComponentScore =
1

2


|pcomp ∩ icomp|
|pcomp ∪ icomp|︸ ︷︷ ︸

Jaccard similarity
of components

+
|C|
|M |︸︷︷︸

Count accuracy
among matched parts

 (1)

The color score is calculated similarly to the first part of the component score by applying the
Jaccard similarity to the color sets of each correctly identified body part. For each component
present in both the image and the pattern, the similarity of color sets is assessed, penalising the
use of incorrect colors and omissions. The final color score is obtained by calculating the average of
all these Jaccard scores (see equation 2).
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ColorScore =

∑|M |
i=1 Jaccard(pcoli, icoli)

|M |

=

∑|M |
i=1

|pcoli∩icoli|
|pcoli∪icoli|

|M |
(2)

After calculating both the component and color score for each pattern, a total score combining the
two scores can be derived (see equation 3).

FinalScore =
1

2
(ComponentScore + ColorScore) (3)

4 Experiments

4.1 Data Collection of AI-generated crochet patterns

4.1.1 Collected Data and Results

The generated dataset consists of the previously mentioned nine animal amigurumi (bee, mouse,
cat, narwhal, jellyfish, clownfish, gecko, skunk, hermit crab), each varying in difficulty. For each
animal, two separate source images were created to account for the variability in possible design
interpretations in amigurumi. These source images were then individually provided as prompts for
the models, which are tasked with generating matching pattern instructions for the amigurumi
depicted in the image. Based on the pattern instructions, scores evaluating their quality were
calculated, including the component score, color score, and the resulting total score (see Figure 5).

Figure 5: Averaged scores over both pattern iterations

The barplot (see figure 5) illustrates the average pattern scores across the different animals. When
analyzing the figure, it can be observed that for most animals, the scores for o1 and GPT-4o are
closely aligned. One exception is the color score, where notable discrepancies are present for certain
animals, demonstrating larger differences between the averages of the two models. After closer
examination of the affected patterns, it was revealed that in some instances, patterns failed to
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specify the main color clearly, resulting in many body parts either missing a color label or being
assigned inaccurate ones, which is the cause of unexpectedly low color scores. While both models
show similar performance in terms of pattern evaluation scores, o1 demonstrates a tendency to
perform slightly better than the GPT-4o model across all score types. This is particularly evident
in the boxplot (see Figure 6) depicting the distribution and median of the models for the body
parts score, color score, and total score. Across all three scores, o1 consistently outperforms the
GPT-4o model with slightly higher medians and tighter interquartile ranges, only containing a few
outliers with low scores. The same trend is reflected in the average score values, where o1 performs
better in both body parts and color accuracy (see Table 3).

Figure 6: Boxplot showing the score distribution depending on the model

Body parts score avg Color score avg

GPT-4o

easy 0.92 0.62
medium 0.91 0.88
hard 0.8 0.74
total 0.88 0.75

O1

easy 0.96 0.82
medium 0.86 0.97
hard 0.9 0.72
total 0.91 0.84

Table 3: Average scores grouped by model and difficulty

Additional differences between the models can be observed when performing a qualitative analysis
on the patterns. One major observation when alayzing the patterns is that the instructions generated
by GPT-4o often began with phrases such as e.g., ”I’m unable to provide a detailed crochet pattern
directly from an image. However, I can guide you on how to create an amigurumi bee pattern based
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on typical techniques and layouts.”. Even though this would indicate that the model simply returns
generic patterns matching the animal term, it does not appear to be the case (see section 4.3.1).
Based on the color and body-part scores, the model appears to be able to process the amigurumi
provided in the image and successfully extract basic information such as components and their
colors. Another qualitative difference between patterns generated by o1 versus those created by
GPT-4o is the ability to include multiple colors within one row. This is a method often applied in
amigurumi crocheting (e.g., when adding a belly patch). While o1 was able to create instructions
including color switches within a single row, GPT-4o appears to only perform color switches after
having completed an entire row, which can have a crucial influence on the outcome. Figure 7 shows
an example of a physical crochet implementation for both models in comparison to the generated
source image. In this case, both models lack some components from the amigurumi in the source
image. However, the amigurumi constructed according to the pattern of o1 (see Figure 7c) appears
to be of slightly higher quality, e.g., a top fin was included, and the stripe thickness closely matches
the source image.

(a) Generated source image (b) Physical crochet version GPT-4o (c) Physical crochet version o1

Figure 7: Example of the real-world crochet artifacts for the clownfish

When considering the influence of pattern difficulty on the pattern generation capabilities, Figure 5
shows no clear trend. The scores evaluating pattern quality do not appear to be strongly affected
by the determined difficulty of an amigurumi animal. However, upon further investigation, there is
a subtle downward tendency for both body part score and color score averages for patterns marked
as high difficulty (see Figure 8). Interestingly, there were some unexpected results where the highest
color score averages occur for patterns of medium difficulty, which contrasts with an expected
linear relationship between difficulty and performance. A likely explanation for this outcome is
the categorization into easy, medium, and hard, which was primarily based on the complexity of
the body parts. Factors such as color complexity or the number of distinct colors were not taken
into consideration. This may reduce the reliability of the line graphs representing color scores
when comparing scores across different difficulty levels. Overall, the data appears to be heavily
influenced by the variability of pattern generation outcomes and the occasional outliers, both of
which complicate efforts to form a proper conclusion about a possible correlation between pattern
difficulty and pattern quality. A larger dataset would be required to explore this question further. In
particular, establishing strict boundaries for difficulty classification would help reduce subjectivity
and improve the reliability of a future correlation analyses.
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Figure 8: Line plot of score averages across animal difficulty

Figure 9 displays a few examples of generated crochet amigurumi images alongside their corre-
sponding physical crochet implementations, which were created based on the pattern instructions
produced by GPT-4o. The examples feature amigurumi animals categorized as medium or hard in
terms of difficulty. The resulting crochet pieces demonstrate that GPT-4o is capable of generating
basic crochet instructions that lead to promising and largely recognizable outcomes. While the
crochet amigurumi exhibit a strong resemblance to the source images, there are some notable
discrepancies. For example, the gecko (see Figure 9b), where the physical version lacks certain
anatomical features such as toes and fingers that are clearly depicted in the source image. Fur-
thermore, in this example, the head was simplified as a single color in the crochet version and
lacks a mouth, making it somewhat different from the original. Overall, these deviations suggest
that GPT-4o may have limitations in its ability to capture finer details in the source images and
create corresponding complex crochet instructions. GPT-4o shows great capabilities in generating
crochet instructions for basic components (e.g., arms and legs), while struggling with more intricate
components (e.g., toes or tail fins).
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Generated Source Image
Physical crochet based on GPT-4o

pattern

(a) Comparison jellyfish

(b) Comparison gecko

(c) Comparison narwhal

Figure 9: Examples of source images and physical crochet amigurumi based on GPT-4o patterns
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4.1.2 Significance Test Model score averages

To determine whether the previously established difference between the pattern generation per-
formance of GPT-4o and o1 is significant, a significance test for the three different score metrics
will be performed. Two-sided Wilcoxon signed-rank tests on paired data are conducted, which are
known to be appropriate for smaller datasets that do not follow a specific distribution pattern.
This test was chosen since, as shown by the Q-Q plots (see Figure 10), the paired data points do
not follow a normal distribution, making the use of an ordinary t-test inadequate. The Wilcoxon
signed-rank tests are performed with the Null-Hypothesis that there is no significant difference
between the scores for patterns generated by GPT-4o versus the patterns generated by o1. The
applied significance level is alpha = 0.05, meaning that if the resulting p-values are below 0.05,
the null hypothesis is rejected and the alternative hypothesis, i.e., that there is indeed a difference
in pattern quality scores for the different AI models, is adopted. The statistical tests reveal that
the differences in color score, body-parts score, and total score between GPT-4o and o1 are not
significant, therefore confirming the null hypothesis that no significant difference could be found in
pattern quality across models (see Table 4).

Figure 10: Q-Q plots for the score differences between GPT-4o and o1 to determine normal
distribution

color score diff body part score diff total diff

W 30.0 31.0 34.0
p-Value 0.2787 0.1771 0.1398
significance not significant not significant not significant

Table 4: Wilcoxon signed-rank test with paired samples for o1 and GPT-4o (alpha<0.05)

4.2 Visualization

Since it is difficult to automate the construction of crochet amigurumi due to the lack of crochet
machines capable of handling projects with such high complexity, it would prove useful to develop
methods to visualize the structure and appearance of amigurumi resulting from a given pattern. In
this research, two visualization strategies are applied: two-dimensional representations produced
with Python Matplotlib and three-dimensional models created by generating Blender scripts. In
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both cases, the o1 model was supplied with a raw, previously generated crochet pattern without any
additional context and was instructed to return executable Python code that produces corresponding
2D and 3D visualizations.

4.2.1 2D Visualization

The 2D visualizations were generated by instructing OpenAI’s o3-mini model to generate Python
code utilizing Matplotlib to create a 2D sketch of the amigurumi based solely on the pattern. The
reliability and accuracy of these visualizations were assessed using the same scoring techniques
as for the pattern evaluation. Both a body parts score and a color score are calculated and then
combined into a final total score. In this case, to derive the scores, the features of the pattern
and the 2D representation are compared. High scores indicate that the visualization accurately
represents the amigurumi from the pattern, as it largely contains the same body parts and colors.
But this does not necessarily mean that the visualized amigurumi is in every way similar to the
amigurumi in the source image that was used to create the pattern.

Generally, this automatic scoring provides a useful quantitative measure of whether the rep-
resentation is reliable. However, qualitative inspection of the generated 2D visualizations revealed
recurring errors in component geometry and composition (e.g., incorrect shapes used for body parts
or body parts not correctly attached to the main body), which were not captured by the score metric.
For this reason, systematic qualitative analysis is conducted on sample patterns and visualizations
selected from the data to verify the accuracy of the composition of the 2D visualization. It might also
help indicate whether bad compositions in the 2D sketch highlight unclear instructions in the pattern.

Furthermore, the distribution of color scores reveals a number of notable outliers with substantially
lower values, as shown in Figure 11. Detailed examination of these cases reveals that the differences
occur when the color of multiple body parts is not explicitly stated within the pattern text. In
these instances, the 2D visualization model appears to automatically default to the main color
referenced elsewhere in the pattern. This difference in color labels results in a low color score, despite
showing a deeper understanding of the pattern structure. Such a limitation underscores the sensitiv-
ity of the scoring metric and highlights the challenge of evaluating patterns in an automated manner.

The results of the quantitative evaluation for the 2D visualizations show that the majority of
sketches have total scores ranging between 0.8 and 0.95. Both sub-scores, the body-parts score and
the color score, fall within a comparably high range (see Figure 11). These results suggest that,
according to the applied scoring metric, the visualizations generally offer a fitting representation of
the original generated crochet patterns. However, visual inspection of certain examples reveals a
notable difference between the scores and the perceived quality of the output. In particular, some
visualizations do not appear recognizable as a representation of the intended animal (e.g., the
hermit crab depiction in Figure 12).
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Figure 11: Feature extraction example

The selected sample image (see Figure 12b) is an example of a 2D visualization with relatively high
scores of: body-parts score = 0.88 and color score = 1. However, despite those high scores, the
animal is barely recognizable in the 2D sketch. One possible explanation could be that the pattern
it was based on was of poor quality, and it fails to adequately represent the amigurumi of the source
image (see Figure 12a). To check this assumption, I took a look at the pattern score evaluations,
which are: body-parts score = 0.88 and color score = 1. Both scores are high, suggesting that
the visualization is a good representation of the pattern, even though this does not seem to be
the case when intuitively inspecting the 2D sketch. An aspect that makes the representation of
the hermit crab hard to interpret by a human is the inaccurate use of shapes in the sketch. This
particular example consists exclusively of circular body parts. After inspecting the pattern, many
of the components, such as the head, body, and legs, are indeed relatively spherical. However, some
body parts, such as the large claw, should have a slightly different shape resembling more closely
that of the source image.

(a) Generated image
(b) 2D visualization

Figure 12: Example of 2D visualization of hermit crab

Figure 13 presents an example of high-quality 2D visualizations, both in scores and in human
perception. Both bee visualizations closely resemble the source image on which their patterns were
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based. This may suggest that they are derived from patterns that accurately crochet the amigurumi
from the prompt. An analysis of their quantitative visualization reliability scores supports this
assumption: for the GPT-4o-generated visualization, the body-parts score is 0.94 and the color
score is 0.89, while the o1-generated visualization achieves a perfect score of 1 for both metrics.
Despite its higher component and color accuracy, the o1 model exhibits a slightly less accurate
spatial composition in the 2D sketch, specifically concerning the placement of the antennae. To
investigate whether this discrepancy results from ambiguities in the pattern instruction, the relevant
sections of both patterns were examined. Contrary to expectation, the GPT-4o pattern provided a
less specific instruction: “Attach the antennae to the top of the head.”, whereas the o1 pattern
includes additional spatial detail: “Sew each antenna onto the top of the head (about 2–3 rounds
from the center, spaced evenly apart)”. This example highlights that errors in spatial composition
of visualizations do not necessarily indicate inconsistencies or a lack of specificity in the underlying
pattern. In fact, in this case, the more detailed pattern produced by o1 appears to have introduced
complexity that negatively impacted the model’s visualization capabilities, even though for a human
reader, the added complexity improves the pattern. The complete set of visualizations generated
from both models can be found in the appendix 29 for further comparison and analysis.

Figure 13: 2D visualisation of a Bee pattern example

Figure 14: 2D visualisation of a Clownfish pattern example

While the 2D visualizations serve as a valuable tool for approximating the appearance of amigurumi
based on generated pattern instructions, they exhibit certain limitations that undermine their
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reliability as a sole means for evaluation. Due to these shortcomings, such as inaccuracies in spatial
arrangement or shape representation, the original score-based evaluation framework to assess
patterns still remains a crucial component for the evaluation of pattern quality in a more systematic
and objective manner.

4.2.2 3D Visualization

A challenge in the visualization of 3-dimensional objects within a 2-dimensional space framework
is the limitation in perspective. In 2D visualization, not all components of the object are simul-
taneously visible. This constraint is particularly pronounced in the case of amigurumi figures,
where the spatial arrangement of limbs is essential to accurately depict the amigurumi from the
source pattern. The 2D visualizations generated by the AI model o1 contained several sketches
where the perspective handling was inaccurate. For example, in the second clownfish illustration in
Figure 14, the model created a side view of the fish but wrongly included both eyes and side fins on
the same visible side. Such mistakes strongly reduce the anatomical plausibility of the representation.

To address these limitations, an alternative visualization approach was considered, which is the
generation of complete 3D models based on the crochet patterns. This was achieved by prompting
an AI model to generate Python scripts for Blender that construct full-color 3D amigurumi repre-
sentations. The resulting code can then be copied into the Blender environment, where it can be
rendered in the 3D environment. While some of the resulting models demonstrated impressive 3D
visualization capabilities (e.g., Figure 15), numerous issues were also encountered. In several cases,
the placement of body parts proved problematic where components were either not connected to
the main body or overlapping due to all parts being placed at the origin point, resulting in them
being hidden in the main body. For example, in Figure 16, due to the unpredictable quality of
these renderings, a quantitative scoring system was not applied to the 3D outputs. Specifically, the
discrepancy between the features described in the generated code and those that were actually
visible in the rendered model made such scoring unreliable.
A complete collection of all generated 3D visualizations is provided in the appendix 30.

Figure 15: Example of 3D visualization jellyfish. Original image on the left and GPT-4o model on
the right.
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Figure 16: Example of 3D visualization hermit creab. Original image on the left and o1 model on
the right

Despite the obvious shortcomings of the current 3D visualizations, there exist recent advancements
in AI which offer promising solutions. One such advancement is the Model Context Protocol (MCP).
MCP is a framework designed to enable LLMs to interact directly with external virtual environments,
including 3D modelling interfaces such as Blender [Pap25]. By being able to meaningfully interact
with the 3D modelling tools, the LLM can go through a structured iterative workflow, performing
exchanges with the working environment, allowing the model to receive visual or semantic feedback
and refine its outputs accordingly. Such a feedback loop would greatly enhance the robustness
of the 3D models by avoiding syntactic errors. Additionally, improving the overall geometric
coherence through iterative refinement. However, current implementations of MCP for Blender are
not compatible with OpenAI models. Therefore, this approach was not included in the present
study.

4.2.3 Other visualization considerations

Additional visualization approaches initially considered included making use of image generation
tools to visualize crochet patterns. An evaluation process that can compare these visualizations
to the originally generated reference images would be ideal. However, preliminary experiments
revealed that the standard OpenAI image generation model (DALL-E-3) does not base its image
output on the provided crochet pattern. Instead, it appeared to produce generic representations of
the target crochet animal because the produced representations evidently lacked structural fidelity
to the provided pattern. This limitation is likely attributable to the nature of the current image
generation models offered by OpenAI, which are not inherently designed to perform logical pattern
analyses but are primarily trained on image synthesis tasks and do not incorporate the structured
reasoning capabilities typical of ordinary language-based models.

Another potential visualization method is the use of existing crochet rendering tools such as
CrochetPARADE [Tas25]. Such tools provide visual representations based on formal crochet code.
CrochetPARADE enables the visualization of various crochet items by creating 3D network struc-
tures consisting of simplified stitch geometries. While theoretically promising, this approach proved
difficult to implement with the chosen LLMs and the task of visualizing generated amigurumi
patterns. A primary limitation lies in its strict pattern syntax. Conventional patterns are usually
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written as a combination of standard crochet abbreviations and natural language. Thus, to visualize
the generated amigurumi patterns, it is first required to translate them into the syntax used by
CrochetPARADE. Efforts to adapt the outputs produced by the OpenAI model to meet these
syntactic constraints frequently result in errors or nonsensical 3D renderings. Moreover, amigurumi
crafting typically involves the construction of figures through the assembly of multiple compo-
nents by sewing them together. This method of assembly is supported by CrochetPARADE by
specifying the exact attachment point and rotation values for individual components. However,
this proved infeasible with the selected AI models, which especially demonstrated difficulty in
connecting components. The mentioned difficulties significantly limit the practicality of the cur-
rent crochet rendering software for visualizing the generated amigurumi patterns within this project.

A general challenge that all visualization methods face is that many amigurumi designs employ
creative shaping techniques, such as folding components to form new shapes. Such manipulations
cannot be represented within current crochet rendering software, as they apply rules inspired by
physics, defining the volume and surface area to render crochet objects in their stuffed form. While
simpler visualization techniques, such as automatic 2D sketches and 3D models, would potentially
be capable of representing components in the accurate shape (e.g., after folding a component), in
practice, this was only possible if the resulting shape was well described within the pattern.

4.3 Exploring the originality of AI in Amigurumi pattern design

Although both LLMs show impressive capabilities in generating crochet patterns, this does not
imply that the patterns are necessarily original. It remains possible that their outputs rely on
memorized examples from their training data. This is especially likely for cases where they are
prompted with a common animal name. In those cases, the models might simply reproduce generic
patterns instead of generating original patterns tailored to a specific input image. To investigate
this possibility, two experiments were designed. The first experiment evaluates the models’ reliance
on generic patterns by swapping the source images for the first and second examples of each animal
during the pattern accuracy assessment. If the model generates generic patterns based solely on
the animal type rather than the specific visual characteristics of the input image, there should be
no substantial difference in scoring when the pattern is compared to a different amigurumi version
of the same animal. The second experiment tests the models’ ability to generate original patterns
when provided with tasks lacking existing reference patterns. This is achieved by prompting the
models with source images of non-existent or infrequently found amigurumi creatures. Such patterns
are unlikely to be present in the models’ training data. Therefore, the quality and accuracy of the
generated outputs in this context provide insight into the models’ ability to create new, coherent
crochet patterns based on unfamiliar visual input.

4.3.1 Mismatch image experiment

To assess whether the generated patterns are genuinely derived from the provided source images
or merely represent generic templates for a given animal, this experiment introduces a mismatch
condition during the evaluation process. The original source image of a pattern is replaced with
another amigurumi image of the same animal to compare the features between this new image
and the existing pattern. The original, correctly paired data points are referred to as ‘matched’,
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whereas the altered ones are classified as ‘mismatched’. The resulting scores for both matched and
mismatched data pairs are presented in the boxplots in Figure 17. Across all score metrics for both
models, GPT-4o and o1, a clear pattern emerges. Both the mean and median scores are consistently
higher for matched data compared to mismatched counterparts. This trend is particularly evident in
the color scores, which exhibit a substantial drop in performance under the mismatched condition.
This indicates that the patterns are indeed generated based on the originally provided source
images, as the colors can vary greatly across the images generated for the same animal (see Figure
29), possibly resulting in low color scores in mismatched cases.

Figure 17: Boxplot of score distributions depending on model and comparison image. Green triangles
depict the means, and the green lines the median.

To determine whether the observed differences between matched and mismatched scores are
statistically significant, two-sided Wilcoxon signed-rank tests were conducted, appropriate for
paired data that does not follow a normal distribution, as verified by the Q-Q plots (see Figures 18
and 19). The Wilcoxon signed-rank tests are performed with the Null-Hypothesis that there is
no significant difference between the scores for matched pairs versus the scores for mismatched
pairs, and the significance level of alpha = 0.05, meaning that if the resulting p-values are below
0.05, the null hypothesis is rejected concluding that there is indeed a significant difference between
the matched and mismatched scores. The statistical analysis reveals that for both models, the
differences in color score, body-parts score, and total score between matched and mismatched
pairs are all statistically significant (see Tables 5 and 6). These findings strongly indicate that the
AI-generated patterns are not generic approximations but are instead meaningfully adapted to the
specific characteristics of the source image.
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Figure 18: Q-Q plots for the score differences to check for normal distribution for GPT-4o data

Figure 19: Q-Q plots for the score differences to check for normal distribution for o1 data

color score diff body part score diff total diff

W 1.0 26.5 6.0
p-Value 0.0003 0.0102 0.0005
significance significant significant significant

Table 5: Wilcoxon signed rank test with paired samples for matched and mismatched images for
GPT-4o with significant p-value alpha<0.5

color score diff body part score diff total diff

W 3.0 1.0 0.0
p-Value 0.0003 0.0003 0.0002
significance significant significant significant

Table 6: Wilcoxon signed rank test with paired samples for matched and mismatched images for o1
with significant p-value alpha<0.5

4.3.2 Mythical creatures experiment

This experiment evaluates the capability of LLMs to generate original and plausible crochet pat-
terns when provided with source images of unconventional or non-existent amigurumi designs. The
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dataset for this test comprises four unique cases, including: a three-legged dog (see Figure 21),
two fictional mythical creatures invented by the image generation model DALL-E 3 (see Fig-
ures 22 and 23), and an amigurumi representation of the coronavirus (see Figure 24). By using
such atypical examples, the experiment seeks to assess whether the pattern generation process
can produce coherent and realistic crochet instructions in the absence of corresponding training data.

The originality of the generated patterns is determined by two distinct aspects. First, the generative
image model DALL-E 3 plays a key role in conceptual creativity as it is responsible for producing
plausible amigurumi-style images based on textual prompts. Second, the pattern generation model
(e.g., GPT-4o or o1) is responsible for interpreting the visual features of the generated image and
translating them into crochet pattern instructions. This translation process becomes particularly
challenging when there is no previous crochet pattern data on the depicted amigurumi in the source
image, requiring the model to extrapolate instructions with a high degree of novelty.

Evaluation of the creative capacity of DALL-E 3 for this task yielded mixed results. In sev-
eral instances, particularly with the invented mythical creatures, the model demonstrated strong
generative capabilities, even including illustrative sketches in the background to support the design
concept (see Figure 22). However, in cases requiring a deviation from standard anatomical features,
such as the three-legged dog, the model failed to adhere to the prompt, generating an image of a
standard four-legged dog instead (see Figure 20). This suggests a limitation in the model’s ability
to override deeply embedded priors derived from its training data.

Figure 20: Amigurumi dog with only three legs generated by DALL-E-3

To further test the robustness of the pattern generation pipeline, an alternative image of a three-
legged dog was produced using the newly released image generation capabilities of GPT-4o (i.e, GPT
Image 1), which was occasionally able to meet the visual requirements. However, the subsequent
pattern generation yielded inaccurate results. Both GPT-4o and o1 models produced patterns
that included instructions for four legs. This outcome suggests limitations in the originality of
the generated patterns. Notably, during the automatic feature extraction process, the image was
incorrectly identified as depicting four legs, despite the presence of only three legs. This finding
indicates that the source of the error may not lie solely in the pattern generation stage but may
instead originate from inaccurate image-to-text processing, which supplies misleading component
data to the pattern generation model.
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Figure 21: Three-legged dog

When analyzing the AI-generated patterns for the first mythical creature (see Figure 22, there
are several notable anomalies, particularly in the output produced by the GPT-4o model. At first
glance, the pattern appears plausible, containing mainly the correct colors and body parts and
hence receiving relatively high scores. However, a more in-depth examination of the patterns reveals
a number of structural inconsistencies. For instance, the instructions for the horns create hollow
cylinders that remain open on both ends and are not filled with stuffing, which deviates strongly
from how a human would construct crochet horns. Furthermore, there is a mismatch in stitches in
the final rows of the body and the tail, with the body having twice as many stitches, making a
smooth connection of the body parts problematic. Additional issues include the complete omission of
ears in the patterns and the oversimplification of the wing structure, lacking the originally depicted
individual feathers. Similarly, the tail lacks the scale detaining which was depicted in the source
image. Unfortunately, many of these inaccuracies, most notably the structural flaws in the horns,
are not captured by the 2D representation, aside from the missing anatomical features (e.g., the ears).

In contrast, the pattern instruction generated by the o1 model demonstrates greater structural
coherence. The pattern included logical details such as a suggestion to add a wire within the horns
to preserve their curled shape. Unlike the GPT-4o pattern, the horns in this version are constructed
as hollow cones, which are then lightly stuffed, resulting in a more accurate shape. The wings
in the o1 pattern are constructed out of multiple feather segments of various sizes. However, the
instructions for scaling these feathers lack clarity, as the pattern mentions that the size should be
adapted but does not provide a specific method for modifying the base instructions. Additionally,
the o1 pattern applies a popular crochet technique by recommending the use of eyelash yarn, which
is known to create a more “fluffy” appearance, for the chest tuft. Overall, the comparative analysis
of the two patterns suggests that the o1 pattern is more accurate to the original amigurumi. This
also reflects in the observed pattern scores, where both the color and body parts scores are higher
for the o1 pattern (see table 7). Nevertheless, the 2D visual representation of the o1 pattern does
not exhibit a corresponding increase in quality.
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Figure 22: First mythical creature

For the second mythical creature, the patterns of both models appear generally plausible, with
each containing most components and their corresponding shapes (see Figure 23). The pattern
produced by GPT-4o includes most of the body parts shown in the original source image, which
is also reflected in its high body parts score of 0.95 (see Table 7). The color score, on the other
hand, is considerably lower. This is consistent with qualitative observations made on the pattern,
for instance, the wrong shade of green being used for the ears or the use of brown for the hooves
rather than the grayish-purple shown in the image. Surprisingly, for this creature, the model paid
attention to details by including instructions for a fluffy mane, where it suggests attaching faux fur
to achieve the desired appearance. One feature missing in the pattern instructions of GPT-4o is the
spiral antenna at the top of the creature’s head. Its absence may be attributable to the features’
glowing appearance, which does not resemble realistic crochet.

In comparison, although the o1 model produced a pattern with a higher total score than GPT-4o
(with an identical body-parts score) (see Table 7), it also contained some notable inaccuracies. Most
prominently, the pattern included instructions for a dark green muzzle, which is not present in
the source image. Nonetheless, there are, however, also some features from the original amigurumi
which were mentioned by the o1 model but omitted in the GPT-4o pattern. Examples of this
are the leaf detail at the end of the tail and the spiral antenna, for both of which the o1 pattern
provides plausible instructions. Additionally, the pattern also suggests two options to add the fluffy
mane detail by either using faux fur or by crocheting small teardrop-shaped pieces, which are then
layered to create a leafy appearance. Overall, both models provide promising patterns for this
unknown creature.

Figure 23: Second mythical creature
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In the case of the coronavirus amigurumi, both GPT-4o and o1 generate plausible crochet patterns
consisting of a spherical main body and spikes, which are attached in the crocheting process (see
Figure 24). While both models provide instructions for creating individual spikes, the resulting
spike shapes are likely to diverge from the reference image. Specifically, the spikes produced by
the GPT-4o model are of a more ellipsoid shape, lacking the distinct stem evident in the source
image. In contrast, the o1 pattern instructions include detailed steps to create the spikes, including
a spherical shape at the top, followed by a narrow stem connecting the spike to the main body.
However, during the actual crocheting process, the intended spherical component is not large enough
to be visible, and hence, a shape closely resembling a rounded cone is created. Additionally, the
pattern instructions from o1 include detailed instructions regarding the spatial arrangement of the
spikes, mentioning general attachment points on the main body and the recommended distances
between the spikes. Although the o1 pattern appears to be of higher quality in terms of component
shapes and detailed descriptions, it received a lower score for the body parts evaluation metric (see
table 7). Upon further inspection, this lower score is attributable to the inclusion of embroidered
details in the pattern (e.g., a mouth and eyebrows) which were not present in the source image.

Figure 24: Coronavirus amigurumi

Model Amigurumi Body Parts Score Color Score Total Score
GPT-4o Mythical Creature 1 0.77 0.65 0.71

Mythical Creature 2 0.95 0.31 0.63
Coronavirus 0.83 1.00 0.92
Three-legged Dog 0.88 0.88 0.88

O1 Mythical Creature 1 0.89 0.91 0.90
Mythical Creature 2 0.95 0.72 0.84
Coronavirus 0.63 1.00 0.82
Three-legged Dog 0.84 0.81 0.82

Table 7: Comparison of Scores for Unconventional Amigurumi by Model

4.4 Testing AI’s ability to adapt existing patterns

One approach to evaluating the extent to which LLMs comprehend the underlying logic of crochet
patterns involves tasking the model with modifying specific components of an existing pattern. If a
model possesses a functional understanding of crochet structure, it should be capable of adjusting
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row and stitch counts in a coherent manner. In this study, both the standard GPT-4o model and
the reasoning-enhanced models o1 were assessed on their ability to modify the size, length, and
shape of components within amigurumi crochet patterns.

In a representative experiment, each model was provided with a full crochet pattern and in-
structed to enlarge the head of the amigurumi (i.e., the first gecko pattern generated by GPT-4o)
(see Figure 25). Results indicate that both models successfully identified the relevant section of the
pattern and modified it appropriately (see Figure 26). Specifically, the models introduced one or
two additional rows of stitch increases, thereby expanding the total stitch count and circumference
of the corresponding rows. To preserve the spherical shape of the head, the models symmetrically
extend the pattern with corresponding decreased rows. Moreover, the models incorporated extra
rounds of single crochet stitches in the middle, without which the resulting head would have taken
a disc-like shape (oblate spheroid). Finally, the models adjusted the placement and spacing of the
safety eyes to correspond to the increased dimensions, thereby maintaining relative positioning on
the face.

Figure 25: Snipped of original pattern for the gecko head
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Figure 26: Generated gecko head pattern modified by gpt-4o (left) and o1 (right)

Another experiment to evaluate LLMs’ pattern modification capabilities involves modifying the
length of body parts rather than their overall size. This type of transformation required a different
crochet strategy, primarily through the addition of single crochet rows rather than increases in
stitch count. Figure 28 presents the results of an experiment in which the models were provided
with an amigurumi pattern and tasked with generating instructions for longer arms. In the original
sample pattern, the arms and legs were described jointly, as they shared identical shapes (see
Figure 27). To perform the modification successfully, the language models had to restructure the
instruction, separating the arm and leg components into distinct sections.

The GPT-4o model approached this by explicitly stating that it would extend the arm length by
creating a modified version of the leg instructions. It accurately identified a suitable insertion point
for additional rows, at the upper arm, without significantly altering the shape. Furthermore, it
offered flexibility by suggesting variable row counts depending on the desired arm length. Similarly,
the o1 model restructured the pattern by independently defining the legs and arms. For the arm
instructions, it added two additional rows by default and also included guidance on how further
extensions could be achieved by adding additional rows. Both models demonstrate an impressive
ability to reason about structural length modification within crochet patterns.
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Figure 27: Snipped of original pattern for the gecko arms/legs

Figure 28: Generated gecko arms pattern modified by gpt-4o (left) and o1 (right)

5 Conclusions

5.1 Results

The purpose of this study was to investigate the generative capabilities of LLMs in the context
of amigurumi crochet pattern design. Through a multi-step pipeline involving image generation,
pattern creation, and automated evaluation, it was possible to assess how well OpenAI’s GPT-4o and
o1 models translate generated crochet images into structured, human-readable crochet instructions.
The results of the performed experiments testing originality suggest that both models perform
reasonably well in creating patterns accurately based on the provided input, including their vital
components and their corresponding colors. The conducted experiments indicate that the pattern
generation procedure does not rely solely on memorized generic patterns but can generate original
and specialized patterns directly linked to the source image. The pattern adaptability tests show
that both GPT-4o and o1 can make context-aware modifications since both models were able to
accurately adapt patterns according to specified requirements.
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In practice, the models did not always show perfect understanding of the underlying crochet
logic following patterns. Occasionally, instructions would include incorrect stitch counts in a row or
wrongly completed color switches, making the pattern less plausible to human readers and distorting
the final product. This indicates that although the AI-based crochet instruction generation process
appears relatively effective, its reliability and quality can still be improved. Furthermore, the investi-
gation on possible visualization techniques concluded that 2D representations are generally effective
in depicting the presence and color of amigurumi components derived from the pattern. However,
the 2D visualizations demonstrated limitations in their ability to accurately depict the shape and
placement of the individual components, especially in the case of more complex amigurumi figures.
The 3D visualizations proved largely unreliable, primarily due to a high rate of rendering errors and
structural inaccuracies. Overall, the study shows promising results in crochet pattern generation
using LLMs, which might further improve with future advancements in the field of AI.

5.2 Limitations

There are some limitations to this work which were previously addressed in this research, reducing
the overall scalability of the project. One significant limitation is the reliance on accurate feature
extraction for scoring. Due to the high variability and complex nature of patterns, it is challenging
to construct an automatic, reliable feature extraction method. Consequently, feature extraction
still occasionally requires manual corrections and human supervision. The scoring metric, while
being systematic, does not fully capture pattern quality, as it fails to evaluate the composition and
accuracy of created shapes in the instructions. Moreover, the small dataset size and subjective
difficulty labels limit the extent to which the findings can be generalized, particularly when analyzing
the correlation between AI’s performance and the corresponding difficulty levels of the amigurumi.
A further limitation, particularly in the process of analyzing the effect of reasoning models on
pattern generation, is that it is not possible to access the reasoning process performed during
the generation of a response in the OpenAI API. A large limitation in the current creation of 3D
representations is the lack of a Model Context Protocol (MCP) enabling LLMs to interact directly
with the Blender environment. Through such an MPC the AI would be able to access the 3D
environment and interatively adapt its generated model, which could greatly improve the resulting
3D amigurumi models.

5.3 Future work

There are many options for future work to extend and refine the findings from this research. For
example, OpenAI’s recently introduced image generation model is now integrated into GPT-4o
(GPT Image 1), allowing it to use greater information resources (i.e., the versatile capabilities
emerging from GPT-4o’s training) to analyze a prompt and generate a coherent image. This provides
opportunities to apply this new image generation to visualize the resulting amigurumi, additionally
simplifying comparison to the source image. By directly comparing these renderings to the source
image, one could create a feedback loop that iteratively improves the pattern based on the generated
representation, leading to a self-improving pattern creation pipeline. These adaptations might
allow for a largely automated pattern evaluation framework, enabling the expansion of the dataset
and repetition of experiments and significance tests, thus further strengthening the reliability of
the observed results. Furthermore, these new capabilities would enable larger-scale experiments
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than were feasible in this study. Specifically, it would pave the way for a wide array of automated
“adaptation experiments”, adapting various aspects of patterns across many animals. This would
allow for an extensive analysis of AI’s logic comprehension abilities in the area of crochet patterns.

Another potential extension of the current work would be to integrate a co-creative interface
into the existing pattern generation pipeline. While full automation remains challenging, incorpo-
rating a human-AI collaboration framework could support amigurumi designers in their creative
process. This enables the use of AI as a tool in crochet to create plausible pattern instructions.
The interactive loop allows designers to iteratively refine specific pattern components by providing
targeted feedback or modification instructions to the AI.

Further useful expansions of the existing work might involve evaluating the crochet pattern
generation pipeline using a broader range of existing popular LLMs, such as Gemini, Claude, or
DeepSeek. This would allow a systematic comparison of different models’ creative capabilities and
their ability to produce more abstract program-like structures like crochet instructions.

An additional direction for future research would be to assess the performance of fine-tuned
LLMs, trained on existing crochet data in comparison to general-purpose models. Such a compari-
son could offer insights into the trade-offs between broad linguistic competence and domain-adapted
precision in creative tasks. As an extension of this research, it might also be interesting to investigate
whether AI models can be fine-tuned to produce valid and plausible pattern instructions that can
be visualized by crochet rendering software such as CrochetPARADE. To investigate this, it would
first be essential to collect an extensive database of amigurumi patterns written in the formal syntax
required by the software to train the model on. If successful, this approach could enable an efficient
and detailed visualization process, which might easily be extended into a co-creative amigurumi
designing environment. Furthermore, the methodology could be generalized to accommodate other
crochet forms beyond amigurumi, thereby broadening its applicability within computational craft
design.
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6 Appendix

The complete code can be found in this Github repository: https://github.com/catsmey/ai_
amigurumi_crochet_thesis

Task System prompt Prompt Model
Key

Source image
generation

- ”Create an image of a simple cro-
chet {animal}. The image has to
look like an amigurumi that can
be crocheted in real life.”

dall-e-3

Generate pat-
tern

”You are a knowledgeable cro-
chet pattern amigurumi genera-
tor. You analyze a given crochet
amigurumi image and write a
detailed crochet pattern on how
to make it. You can always pro-
vide a pattern by converting
the image into a text descrip-
tion and then creating a fitting
pattern for it.”

”Analyze the amigurumi image in
detail and generate a complete,
row-by-row crochet pattern. In-
clude stitch counts, exact place-
ment of color changes, points in
the patterns where a component
needs to be filled with stuffing,
and detailed connection points for
all parts. Ensure that the pattern
follows standard crochet notation
(sc, inc, dec, etc.). Provide a ma-
terials list and finishing instruc-
tions.” + <Source Image >

gpt-4o
or o1
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Task System prompt Prompt Model
Key

2D visu-
alization
generation

”You are a Python code gen-
erator. When a pattern is pro-
vided, you will generate Python
code using Matplotlib to cre-
ate a 2D image of the amigu-
rumi described in the pattern.
The image should contain all
components, with borders to
ensure visibility, and should be
saved as a PNG in the pro-
vided directory. Mention and
clarify the code by adding com-
ments mentioning all the in-
dividual components. Your re-
sponse should only include the
Python code, without any addi-
tional text, comments, or expla-
nation. The pattern should be
processed as described, and if
no pattern is provided, return
an empty 2D representation.”

”Pattern: {pattern}. *end pat-
tern*. Use Python, Matplotlib,
and math to generate code to cre-
ate a 2d image of the resulting
amigurumi created by this crochet
pattern. Include all components
and connect them as mentioned in
the pattern. Make sure to include
a small border around each compo-
nent to make sure they don’t dis-
appear in the background if they
have the same color. Save the fi-
nal image as a png in the exist-
ing directory (no need to import
os) ’{file location}’. Don’t include
any text in your response so it
can be run immediately! Only give
code in your response. Don’t say
“‘python at the beginning. If no pat-
tern was given, return an empty
2d representation.”

o3-mini

3D visu-
alization
generation

- ”Use python blender to generate
code to create a 3d model of the re-
sulting amigurumi created by this
crochet pattern. Including colors.
Don’t include any text in your re-
sponse so it can be run immedi-
ately! Only give code in your re-
sponse. Don’t say “‘python at the
beginning of your response. Pat-
tern: {pattern}”

o3-mini

Mythical
creature
source image
generation

- ”Invent a mythical creature and
generate an image of a crochet
amigurumi of that creature. The
image has to look like an amigu-
rumi that can be crocheted in real
life.”

dall-e-3

Adapt exist-
ing pattern

- ”Adapt the crochet pattern to:
{adaptation component}. Here is
the original pattern: {pattern}”

gpt-4o
or o1
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Task System prompt Prompt Model
Key

Feature ex-
traction from
image

”You are a Python code gen-
erator. Given a crochet amigu-
rumi image, identify and list all
the body parts and features of
the amigurumi. Return a dic-
tionary with the body part as
the key, and a list containing: 1.
The number of times this body
part appears in the pattern (if
specified). For components like
stripes, dots, fluffy texture or
features like whiskers, or blush
on the cheeks, return a True
(correct python format) value
if they are mentioned. 2. A list
of colors associated with that
body part. Colors in the dictio-
nary must be: A single basic
color name (e.g., ’red’, ’blue’,
’green’). No other descriptor
prefixes are allowed. Do not in-
clude additional adjectives or
complex descriptions. Only use
lowercase letters for the whole
dictionary. Provide only the dic-
tionary without any additional
text or explanations. Also don’t
write “‘python.”

<Image> o1
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Task System prompt Prompt Model
Key

Feature ex-
traction from
pattern

”You are a Python code gener-
ator. Given a crochet pattern,
identify and list all the body
parts and features mentioned
in the pattern. Return a dic-
tionary with the body part as
the key, and a list containing: 1.
The number of times this body
part appears in the pattern (if
specified). For components like
stripes, dots, fluffy texture or
features like whiskers, or blush
on the cheeks, return a True
value if they are mentioned.
If no pattern is given, return
an empty dictionary. 2. A list
of colors associated with that
body part. Colors in the dictio-
nary must be: A single basic
color name (e.g., ’red’, ’blue’,
’green’). No other descriptor
prefixes are allowed. Do not in-
clude additional adjectives or
complex descriptions. Only use
lowercase letters for the whole
dictionary. Provide only the dic-
tionary without any additional
text or explanations. Also don’t
write “‘python.”

Pattern: <Pattern> o1
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Task System prompt Prompt Model
Key

Feature
extraction
from 2D
visualization

”You are a Python code gen-
erator. Given a code for a 2d
image, identify and list all the
body parts and features men-
tioned in the pattern. Return a
dictionary with the body part
as the key, and a list contain-
ing: 1. The number of times this
body part appears (if specified).
For components like stripes,
dots, fluffy texture or features
like whiskers, or blush on the
cheeks, return a True value if
they are mentioned. If no code
is given, return an empty dictio-
nary. 2. A list of colors associ-
ated with that body part. Col-
ors in the dictionary must be:
A single basic color name (e.g.,
’red’, ’blue’, ’green’). Do not in-
clude additional adjectives or
complex descriptions. Only use
lowercase letters for the whole
dictionary. Provide only the dic-
tionary without any additional
text or explanations. Also don’t
write “‘python.”

2d representation code: <mat-
plotlib code>

o1

42



Figure 29: Overview of the 2D visualizations of the generated patterns

43



Figure 30: Overview of the 3D visualizations of the generated patterns
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