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Abstract

The industrial revolution sparked the start of an increasing amount of air pollution in the
world. Research later showed the detrimental impact that pollutants can have on human
health. These developments sparked the start of a lot of research into this area, which can not
be done without the availability of data. Therefore, a significant amount of data has been
collected over the years, among which a dataset from the European Environment Agency
(EEA). This dataset keeps track of large amounts of time series data with regards to outdoor
European air quality.

Research has shown that it is possible to detect anomalies in indoor air quality by using
an LSTM-AE model. This ability can allow policy-makers to adopt measures in an attempt
to reduce harmful concentrations of air pollutants. Such data is however very different from
outdoor data due to its clear spikes in concentrations that are related to room occupancy. If
it would also be possible to efficiently detect anomalies in time series data for outdoor air
pollutant concentrations, it could give people better insight into the possible sources of these
pollutants. This could subsequently help policy-makers in the adoption of measures to reduce
the negative impact of harmful pollutant concentrations.

This thesis therefore aims to find whether it is possible to effectively detect anomalous
values in outdoor air quality data, with a focus on European data from the EEA dataset. An
attempt will also be made to find out which anomaly detection models are most suited for
such a problem and which will deliver the best results.

Due to the unlabeled nature of this dataset, a ground truth first needs to be established.
This has been done by artifically injecting anomalies into time series data from the dataset. A
selection of five different models, consisting from statistical, classical machine learning and
deep learning models, has subsequently been applied to these time series. With the creation of
a ground truth it has therefore become possible to evaluate these models based on confusion
matrices and their resulting performance metrics.

It was found that it was possible to detect anomalies quite effectively depending on the
specific pollutant. In the best case, almost three-quarters of the anomalies were detected. In
some cases however, depending on the characteristics of the data, none of the anomalies could
be detected. It was however found that some models have specific shortcomings when used in
anomaly detection on such data. Global forecasting models like a Recurrent Neural Network,
that made use of LSTM cells, generally achieved optimal results.
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1 Introduction

The industrial revolution, and the subsequent use of combustion engines, sparked the start of an
increasing amount of air pollution in the world. Realisation later set in that certain materials and
particles, now increasingly found in the air, could have a deteriorating effect on human health
[ ]. Pollutants like particulate matter (i.e. PMs5 and P M) have for example become primary
indicators of air pollution due to their prevalence in urban atmospheres and their effect on respira-
tory and cardiovascular issues | ]. The World Health Organisation mentioned in 2021 that
air pollution is a “silent killer” that produces the premature death of almost seven million people
each year | |. Reducing air pollution has thus subsequently become an important area for
research in an attempt to reduce its negative impact.

Among the research that has been done towards air pollutants and air quality in general, numerous
papers have focused on the forecasting of air quality. Méndez et al. | | have written a survey
about the use of machine learning algorithms in the forecasting of air quality. They remark, for
example, that air pollution forecasting is very useful in being able to inform people about the
pollution level, which allows policy-makers to adopt measures for reducing its impact. Machine
learning techniques have become the most common methods in the forecasting of air pollution.
Machine learning algorithms have both been used to predict Air Quality Indices (AQI) and the
concentration of specific pollutants. Besides machine learning methods, it is also possible to apply
classical regression-based algorithms, like ARIMA, on such data in order to obtain a forecast.

Forecasting methods can also be used to detect anomalies, data points/sequences in a time series
that would not be expected in normal situations | |. An example of an anomalous data point
in outdoor air quality could for example originate from heavier traffic than what would usually
be the case. In indoor air quality the presence of more people in a room might cause unexpected
spikes in C'O, concentrations | ]. If such anomalies can be detected it would give people
better insight into possible sources of pollutants. This knowledge might also increase peoples ability
to reduce air pollutant concentrations and thus improve their health.

Wei et al. | | have used an LSTM-AE model for anomaly detection on the earlier mentioned
indoor air quality data. This research has shown that anomalies can accurately be detected in
this type of data by using such models. The used indoor air quality data, however, shows clear
spikes in concentrations due to room occupancy. Where this research can thus be of help in
improving indoor air quality, its result do not necessarily translate to outdoor air quality where
such spikes might not occur. There is thus a gap in existing knowledge as it is not known whether
anomaly detection models can also be used to accurately detect anomalies in outdoor air quality data.

The goal of this thesis is therefore to find out whether it is possible to effectively detect anomalies
in time series data of outdoor air quality. If it this would prove to be possible, it could help people
take precautions against anomalously high concentrations of hazardous air pollutants. It could also
aid policy-makers in attempts to lower the frequency with which harmful concentration levels are
reached. To find out how effectively such anomalies can be detected, multiple anomaly detection
models should be tested. It is namely not guaranteed that a deep learning model that works well
on indoor air quality, also produces good results on outdoor air quality.



To find out whether anomalies can effectively be detected in outdoor air quality, multiple types
of anomaly detection models have to be applied on such data. These models will subsequently
be evaluated based on how many anomalies they can accurately detect. The models that will be
evaluated have been selected from a python library called Darts [ |. This library contains a
large amount of models ranging from statistical to deep learning models. Without data to apply
these anomaly detection models on, this research would not be possible. Therefore a dataset from
the European Environment Agency (EEA) has been selected that has been collecting data on air
pollutant concentrations in 41 different countries | |. This dataset consists of hourly measure-
ments of the concentration of all sorts of pollutants for many different measuring stations over a
10-year time period. From this dataset it is possible to extract different time series data for different
locations and pollutants on which it can also be attempted to apply anomaly detection/outlier
detection | |. This dataset is thus very suitable for use in research towards anomaly detection
on outdoor air quality.

By evaluating models from this Darts library on data from the EEA, this thesis will attempt to
fill gaps in the existing knowledge of anomaly detection on air quality data. This dataset contains
data that has been collected from locations in Europe. This thesis will therefore specifically focus
on anomaly detection on outdoor European air quality. Results from this thesis will hopefully allow
future steps toward improving air quality and reducing the negative impact that pollutants have
on human health.

1.1 Thesis overview

Chapter 1 gives an introduction of the subject. It will give background information about research
into air quality and its impact on human health. The importance of being able to accurately forecast
air pollutant concentrations is also explained here. An overview of the contents of this thesis is
subsequently also given. Chapter 2 discusses related work to this subject and explains technical
terms/concepts that will regularly be used in the remainder of the thesis. Finally, this chapter
also gives a problem statement and the resulting research questions. The method of this thesis is
subdivided into two main parts, namely exploratory data analysis and the actual anomaly detection.
In Chapter 3, exploratory data analysis is performed in order to find out what the EEA dataset
actually looks like and what data is the most useful for the application of anomaly detection. In
Chapter 4 it is explained how the selected models work and how they have been applied to the
dataset. Chapter 5 subsequently presents the results of applying the different anomaly detection
models on the selected data from the dataset. Chapter 6 discusses both the limitations of this
research and possible future research while the final chapter, Chapter 7, gives the final conclusion
of this thesis.



2 Preliminaries

This chapter introduces key technical terms and concepts used throughout this thesis and provides
an overview of related work. It also presents the problem statement and outlines the research
questions that the thesis aims to address.

2.1 Definitions

This section explains some technical terms/concepts that will often be mentioned in this thesis.

e Anomaly detection refers to the problem of finding patterns in data that do not conform
to expected behavior. These nonconforming patterns are often referred to as anomalies or
outliers | ].

e Univariate time series is a sequence of data points that are measured over time with each
data point only consisting of one variable. In the case that each data point has multiple
variables, the time series would be multivariate | ]

e Air Quality Indices (AQI) are systems often used by countries/organizations to give an
overall indication of the air quality [ ] (i.e. by presenting a single number from 1-10)
instead of an overview of all pollutant concentrations.

e Seasonality is the periodic recurrence of fluctuations | |. As an example, one might
think of a time series of daily average outdoor temperatures. Such a time series would show a
yearly seasonal pattern with high values in the summer and low values in the winter.

e Trend refers to when the mean p of a time-series is not constant, but increases or decreases
over time. A trend can both be linear or non-linear | ]

¢ Global forecasting models are models that can be trained on multiple time series like
deep learning models | ]-

e Local forecasting models are models that can be trained on a single target series only. In
the Darts library this tends to be simpler statistical models like ARIMA | ]-

2.2 Related work
2.2.1 Air quality

Air pollution is difficult to measure in a single number as there exist many different air pollu-
tants which all have a varying impact on human health in the short and long term. Cairncross
et al. | ] have thus proposed an index system based on the relative risk of increased daily
mortality, the amount of deaths that occur in a population in a 24-hour time period, associated
with short-term exposure to five common air pollutants. These air pollutants are sulphur dioxide
(SO,), particulate matter (PM), nitrogen oxides (NO,), carbon monoxide (CO) and ozone (O3).
Other air quality indices are often also based on these pollutants. These thus seem to be the most
relevant focus point for anomaly detection due to these pollutants being the ones most often used



for determining overall air quality.

Research by Dimitrou et al. | | uses the same dataset from the EEA to determine the most
important air quality stressors. They looked at the mentioned five pollutants, that are also used to
determine the European air quality index, at 14 different monitoring stations to determine their
contribution to the total increased risk of mortality. This research has shown that both C'O and
S0, had a relatively low contribution to this while the remaining three: O3, PM;q and NO5 turned
out to be important public health stressors. It is important to note that the contribution of O3
varied significantly depending on the location of the measurement stations as measuring stations at
locations with heavy traffic saw lower values.

2.2.2 Anomaly detection

Anomaly detection refers to the problem of finding patterns in data that do not conform to
expected behavior. Chandola et al. have done a general survey about anomaly detection techniques
[ ]. Schmidl et al. | | have taken a closer look at anomaly detection with regards to
time series specifically. They have presented an overview of different methods for both univariate
and multivariate time series and for unsupervised and supervised methods. This overview gives
a good starting point to explore methods that can be applied to the unlabeled dataset from the
EEA. The fact that this dataset is unlabeled also creates the need to find a way to evaluate the
performance of the anomaly detection methods. Campos et al. | | have done research on
possible ways to evaluate unsupervised anomaly detection methods. One method for evaluating
unsupervised anomaly detection methods is through injecting anomalies into an existing time series.
Keogh and Wu | | have done research into what are optimal practices regarding this technique.

As mentioned in Chapter 1, Wei et al. | | have previously done research into using an
LSTM-AE model to detect anomalies in a similar indoor air quality dataset. The steps taken here
could be useful in performing anomaly detection on outdoor air quality data as well. For the actual
applying of the anomaly detection techniques it would be a good option to make use of models that
are part of the Darts python library | ]. This library contains a combination of multiple
anomaly detection techniques which can be applied to the EEA dataset.

Braei and Wagner | ] indicate that all anomaly detection methods on time-series data can be
divided into the following three main categories.

e Statistical methods assume that the data is generated by a specific statistical model.
Examples of this are exponential smoothing | ] and ARIMA | .

e Classical machine learning methods generally consider the data generation process as
a black box and try to learn from the data only. The machine learning methods are based
on the implicit assumption that the underlying data generation process is not relevant as
long as the machine learning methods are able to produce accurate predictions. Examples of

machine learning models are support vector regression and K-nearest neighbours regression
(KNN) | ].

e Deep learning methods are models that make use of neural networks. Examples of models



that fall under this category are Recurrent Neural Networks (RNN) or Multiple Layer
Perceptrons (MLP) | ].

The boundary between statistical and machine learning approaches are vague however, which could
lead to situations where it is not immediately clear where a model should be placed.

It will also be important to determine the type of anomalies that will be focused on. Chandola et
al. [ | originally came up with a suggestion to divide anomalies for tabular data into three
different categories. Braei and Wagner | ] have subsequently given a similar division, but with
regards to anomalies in univariate time series. They categorize the anomalies in the following three
categories:

¢ Point anomalies are single data points that deviate significantly from the rest of the data.

e Collective anomalies are cases where individual points are not anomalous, but a sequence
of points are labeled as an anomaly.

e Contextual anomalies are data points that can be normal in a certain context, while
detected as an anomaly in a different context.

2.3 Problem statement

As mentioned in the previous section, research has already been done towards indoor C'O, levels
in classrooms | |. This research has shown that a deep-learning model can be used to
detect anomalies in time series of air pollutant concentrations. However, this indoor data contained
clear peaks in concentration levels due to classroom occupancy varying quite suddenly. As outdoor
air quality generally shows different patterns, this means that the results of this research do not
necessarily translate to such data and that this could thus be an interesting point of focus for new
research. Because the dataset of the EEA contains large amounts of air quality data for different
pollutants and regions, this dataset is a good starting point for such new research. The data from
this dataset similarly consists of univariate time series where the anomalies have not been labeled
previously. The fact that the dataset is unlabeled causes the need to apply either unsupervised
anomaly detection techniques or to find a method to label anomalies. The above information spawns
the following research question:

“How effective can anomalies be detected in univariate time series data of air pollution in Europe.”

If it is shown that anomalies can be detected in such time series data, it will also be of interest
to see which technique can most efficiently achieve this. Given that a univariate time series in
this situation is an ordered set T' = {7}, T, ..., T,,} of m real-valued, one-dimensional data points
with T; € R | |, anomaly detection models M = {M;y, My, ..., M,,} can be applied on a time
series T' to forecast the same value T,,.; with £ € N. By making a selection of different types
of models from the categories mentioned in Chapter 2.2.2 (Mrype = {Msiat, My, Mpr}), their
performance in anomaly detection can subsequently be compared. It has already been shown that
deep learning models, Mpy, can deliver promising results on indoor air quality, but this does not
necessarily translate to outdoor air quality data. Braei and Wagner | | have also shown that
classical machine learning methods, My, can deliver promising results on similar types of data.



This spawns the question which model would achieve the most promising results and whether M,
and Mpy can actually achieve significantly better results than statistical models, Mg;,;. This leads
to the second research question:

“Which anomaly detection methods achieve the best performance in detecting anomalies in
univariate time series data of air pollution in Europe?”



3 Exploratory data analysis

Before applying anomaly detection models to the EEA dataset, it is necessary to first explore
the data to understand its structure and characteristics. If we have more information about the
data, it can be determined which types of anomalies would be the most interesting point of focus
and what actually constitutes as an anomaly. A decision can then hopefully also be made on
what type of anomaly detection models would be likely to deliver the most promising results in
the detection of such anomalies. In this step multiple types of models should be compared, like
statistical and deep learning models. A method also needs to be found to evaluate these models
as the dataset lacks a ground truth, which increases the difficulty of evaluation. The data explo-
ration step should also be helpful in determining how such a ground truth can possibly be established.

3.1 Dataset

Table 1 shows characteristics of the EEA dataset. The dataset covers a large amount of measuring
stations across 41 countries. These measuring stations measure 350 different air pollutants. Since
the data from 2013 to 2023 has been verified, it is the most suitable for applying anomaly detection.
The metadata of the dataset also lists numerous characteristics of the measuring stations like
coordinates and altitude. Besides this, the area and type of each measurement station is also listed
as shown in Table 1. Apart from basic information about the measuring stations, little is initially
known about the actual data, such as the distribution of the measurements. The first step is thus
to find out what would be the most interesting segments of the dataset to actually apply anomaly
detection to.

Characteristic Value

Amount of countries 41

Amount of pollutants 350

Time period 2013-2023 (hourly measurements)
Amount of measuring stations 60124

Possible station areas Urban, Suburban, Rural

Possible station types Background, Industrial, Traffic

Table 1: An overview of relevant characteristics of the EEA dataset.

AQI’s are often used to give an indication of the overall air quality and its current possible impact
on human health. For most of these AQI’s, the pollutants that are taken into account are very
similar with only slight variations [ ]. The EEA also has its own Air Quality Index which
takes into account the following five pollutants: PMyy, PMs 5, SOy, O3 and NOs. As the research
by Dimitrou et al. | | has shown, PMy, O3 and NO, contribute the most to an increased
risk of mortality. For that reason the most logical step is to look into what the exact data for these
three pollutant looks like.



Due to the datasets large size it takes a very long time to process all the data. By using a represen-
tative selection of the dataset it should however be possible to get a good overview of the dataset.
To obtain such a selection, all the measuring stations of three different countries were selected. The
selected countries, France, Germany and Austria, were among the ones with the largest amount of
measuring stations. Both France and Germany also have a significant amount of measuring stations
for all possible areas and types. Austria has less measuring stations than the other two countries,
but the stations are often at higher altitudes which makes it possible to look at the effect that
altitude has on the concentration of different pollutants.

3.2 Exploring PM

The first pollutant of interest is P Mg of which the long-term health effects of exposure are associated
with shortening of life expectancy, increased rates of bronchitis and reduced lung function | ].
To generate the charts in Figure 1 the average measurements of every hour were taken for all
German measurement stations to get an insight into any possible patterns. It is evident that each
year begins with significantly higher values compared to the rest of the year. A likely explanation
would be that this is caused by fireworks on new year’s eve. Other, less extreme, points in the
charts also show sudden increases and decreases which indicates that it should be possible to detect
anomalies in this dataset. Figure 1d shows a histogram of all the hourly PM;, measurements from
2013-2023 that are within 2 standard deviations from the mean. This histogram indicates that the
data has the shape of a normal distribution that is skewed slightly to the left.

To examine the impact of various station attributes, histograms of PM;, values were plotted in
Figure 2 across different areas, altitudes, and station types. From these histograms it becomes clear
that all these attributes have an impact on the skewness of the distribution with especially high
altitudes seeing a significant decrease in concentrations. From these plots it becomes clear that the
attributes of the measuring stations should be taken into account when selecting a training set for
a deep learning model. When applying anomaly detection on data from a rural area, the model
should for example also be trained on data from rural areas to achieve optimal performance.
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Figure 1: Charts describing hourly PM;j, concentrations in Germany.

3.3 Exploring O3

Figure 3 shows the average concentrations of ozone (O3) as measured by the German stations in
the period from 2013 to 2023. From the line plot in Figure 3a it becomes clear that this time series
exhibits seasonality, with higher concentrations generally being measured in the summer months.
This seasonality also contributes to a distribution in Figure 3b that appears multimodal, with peaks
around both 0 and 70 pg/m?. Figure 4 shows the effect of different measuring station attributes.
It becomes evident that O3 concentrations are influenced by altitude, area, and station type in a
manner similar to PMjy. The main difference here is that the impact of the altitude was not as
extreme here. A higher altitude mostly resulted in an increasing mean and a decreasing variance.
This once again shows the importance of training a model on relevant data for a specific type of
measuring station.

What also becomes clear from line plots of the O3 concentrations at different measuring stations,
and what Figure 3 also shows, is that there is a lot more fluctuation in this data compared to
the PM;, data. This potentially increases the difficulty of detecting anomalous values as it is less
uncommon for a data point to significantly increase or decrease compared to its previous value.
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(a) Histograms of hourly PMjy concentrations for German measurement
stations on different altitudes. Note the different range of the x-axis.
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(b) Histograms of hourly PM;jy concentrations for German measurement
stations in different areas. Note the different range of the x-axis.
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Figure 2: Histograms describing P M, concentrations for measuring stations with different attributes
in Germany.
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Figure 3: Charts describing hourly O3 concentrations in Germany.

3.4 Exploring SO,

Figure 5 shows the average concentration of SOy in Germany from 2013 to 2023. These charts
seem to indicate that the data contains a significantly higher amount of measurements for certain
values. Quite a lot of data points had also been set to -9999 in the SO, time series which would
seem to indicate missing data. Even though the O3 and P M, time series also contain missing data
points, these do occur significantly less frequently. With so many data points seemingly containing
incorrect values, it might not be the most suitable to use for anomaly detection as these values
would have to be estimated, thus potentially creating non-existent anomalies or removing actual
anomalies. For a time series where an individual data point is missing, it would be possible to
take the average of the surrounding data points to fill in the gap. This would allow us to fill
the gaps with values that would appear non-anomalous, thus reducing the negative impact of
these missing points on the evaluation of the anomaly detection models. With subsequent data
points having no value, it becomes increasingly difficult to fill these gaps by taking the average
value of the surrounding data points. Due to this reason it will be very difficult to accurately eval-
uate anomaly detection models on SO, time series compared to the series of the other two pollutants.

An interesting observation from the average hourly SO, values is the clear declining trend over the
ten-year period. This declining trend differentiates SO, from the other two pollutants which did
not show a clear trend. Due to this property, SO, might be an interesting pollutant to focus on for
the evaluation of anomaly detection models as it might provide an insight into the effect that such
a trend has on their performance. SO, time series also show sudden spikes in values which suggests
that anomalous values occur quite frequently. These characteristics might lead to SOy being an
interesting air pollutant for anomaly detection in the case that the amount of missing data points
can be reduced.
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Figure 5: Charts describing hourly SO, concentrations in Germany.

3.5 Comparing countries

If measurements throughout different countries in Europe show different patterns, it would become
necessary to train models on data that is sampled from multiple countries. This would be needed
to be able to drawn an overall conclusion on how well the models perform on European outdoor air
quality. If data however turns out to be similar throughout Europe, it might be sufficient to only
use data from one country. Data exploration has shown that Germany has the largest amount of
measuring stations with a large diversity in station types and areas. These characteristics make
Germany the most likely country to deliver the most representative results in the situation that a
model should be trained on data from a single country. To be able to validate that Germany is
representative for European data in general, data from France and Austria was also analyzed as
these are also countries with a large amount of stations in multiple types of locations. Data from
these countries show similar distributions to the data that is collected in Germany for both O3 and
P My as shown in Figure 6. Note that the size of the dataset for different countries varies. This
results in some values occurring more frequently in some countries than others as seen in Figure 6.
Even though the values on the y-axis are different for each chart, the general distribution remains
similar for the different countries. For SO, the histograms once again seem to indicate that certain
values occur more frequently than might be expected which is possibly caused by missing values in
these time series. Therefore it is hard to judge whether the distributions of this pollutant show
similarities across countries.
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4 Anomaly detection

4.1 Data exploration results

From all the pollutants that are being measured by the measuring stations, PM;, and O3 have
shown to be the most interesting for anomaly detection due to not only their impact on human
health, but also the characteristics of these time series. The histogram of hourly PM, values tends
to follow a normal distribution that is slightly skewed to the left and its line plot does not show
any general trend with values staying around the mean. The line plot, however, also makes clear
that this data contains point anomalies as there are sudden increases and decreases in the data. A
global point outlier that should be detectable by the models can be observed on new years eve.
Within such an unlabeled dataset, new years eve would be the easiest to label as an anomaly as it
clearly has a higher value than any other data points. While PM;j, does not exhibit a clear seasonal
pattern, O3 clearly does. Because of the seasonality of this time series, it will be more interesting to
focus on contextual anomalies instead of global point outliers as a high value in the winter months
might not be a global outlier and vice versa.

The data exploration has also shown that the data from German measuring stations generally
follows a similar pattern to other countries. As Germany has measurement stations of all differ-
ent types and in all areas and altitudes, applying anomaly detection algorithms on data from
these stations will likely give representative results for European air quality in general. It will
also be interesting to compare model performance on data from different areas and station types
as these measuring station characteristics have shown to have a clear impact on the measured
concentrations. For these reasons the models will only be applied to data from Germany as
this would likely give a good overview of their general performance on European air quality data.
The impact of various measuring station characteristics on model performance will also be examined.

4.2 Model selection

Data exploration has lead to a selection of data that is most suitable for anomaly detection. However,
now that this step has been completed, a selection of anomaly detection models still needs to
be made. For the selection of these models a python library called Darts | ] will be used.
This library contains numerous models that can be used for anomaly detection on time series
data. The five selected models from the available library are listed in Table 2. The models in this
table have also been categorized according to a categorization as suggested by Braei and Wagner
[ |. They mention that generally, statistical approaches assume that the data is generated
by a specific statistical model while machine learning/deep learning methods consider the data
generation process as a black box and try to learn from the data only.

To obtain some sort of a baseline performance, the first model that will be used is Exponential
Smoothing | |. Due to its extensive documentation, this model is relatively simple to implement
and should give an impression whether it is possible to detect anomalies in the dataset. The model
in this library is a wrapper around the Holt-Winters’ Exponential Smoothing method as found in
the Statsmodels library | |. Holt-Winters’ Exponential Smoothing is also able to take trends

15



Model Category

Exponential Smoothing Statistical
ARIMA Statistical

Linear Regression Model Machine Learning
RNN Model Deep Learning

Regression Ensemble Model Deep Learning

Table 2: List of the used anomaly detection models.

and seasonality into account which possibly increases the accuracy compared to the more basic
version.

The second model that will be compared is the ARIMA | | model which is a more modern
statistical method compared to Exponential Smoothing. This model should hopefully be more
accurate on complex time series like the air quality data that is used here. Numerous hyperparam-
eters can be selected for the model including seasonal parameters which results in the seasonal
ARIMA (SARIMA) model. Due to this property, ARIMA could be a good option for applica-
tion on time series both with and without a clear seasonal component. ARIMA should thus be
able to give a good indication of how well anomalies can be detected by using only statistical models.

The third selected model is the Linear Regression Model. This is a model that uses linear re-
gression | | of some of the target series’ lags to forecast future values. The hyperparameters
of this model can also be set to make use of covariate series lags to improve the accuracy of
the forecasts. Covariates allow for the model to focus on specific data points that might contain
valuable information with regards to the prediction of future data points. This ability differ-
entiates this model from the first two statistical models for which no covariates could be set
in the hyperparameters. It will be interesting to observe whether this machine learning model
will lead to improved performance in anomaly detection compared to the previous statistical models.

The fourth model that will be used is the Recurrent Neural Network (RNN) Model that makes
use of long short-term memory (LSTM) cells | ]. The use of LSTM cells in RNN’s helps with
solving the vanishing gradient problem, making them capable of learning long-term dependencies
[ |. This model can also be applied without LSTM cells, but due to LSTM’s use on indoor air
quality time series and the successful results there, the decision was made to apply this RNN model
with such cells. Just like the Linear Regression Model, this model can make use of covariates. It is
also the first global forecasting model as it needs to be trained on similar time series in order to
accurately forecast a series.

The final selected model is the Regression Ensemble Model which uses a regression model for
ensembling individual models their predictions using the stacking technique | |. This model
thus uses a regression model to optimally combine the forecasts of multiple base models. The base
models can be set in the hyperparameters and in the case that all individual models can make use
of covariates, these can also be passed to these selected models. This model is selected to be able to
observe whether an ensemble model might perform better than standalone models like the previous
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four. The next paragraphs of this chapter will go into further detail about how these models will
be evaluated and how they have been implemented.

4.3 Model evaluation

This chapter describes the steps that need to be taken to be able to evaluate the performance of
the different models. To be able to compare them, two important steps need to be taken. Namely,
a ground truth of the dataset needs to be acquired and promising hyperparameter settings for the
models need to be found.

4.3.1 Establishing Ground Truth in Unlabeled Time Series

Due to the absence of ground-truth labels in the air quality dataset, a direct comparison between
the detected anomalies and true anomalies is not feasible. To be able to evaluate these five models,
a solution thus needs to be found if we want to determine which type of model performs better.
There are multiple possibilities to obtain a ground truth for an unlabeled time series like this one
however. One possibility is to manually label the existing data. Due to the dataset being very large
however, this would be very time consuming and thus not practical for this thesis. Better options
are to mark values that reach a certain threshold as anomalies, for example values that are above
certain health standards, or to inject synthetic anomalies into the time series.

This first option would likely make the application of anomaly detection models redundant as it
would already be clear in this case when a measurement is an anomaly, namely when the threshold
is reached. The second option, of injecting synthetic anomalies, thus looks like the better option
as this will show whether the models will be able to detect anomalies or not. Another possibility
might be to combine both options by evaluating the models on time series where all values are
below the threshold of a health standard, but where synthetic anomalies have been injected that
are above this threshold. This can potentially be achieved by replacing data points that are not
anomalous with a point that has a high value that is above this threshold.

4.3.2 Model Calibration and Hyperparameter Selection

Before anomalies can be detected, it should first be determined whether a model is accurately
forecasting a time series. If it is known that a model can forecast a non-anomalous time series with
complete accuracy, an anomalous data point can easily be detected. Only anomalous data points
would in such a situation have a value that is different than the forecasted value for the same data
point. In a real world situation however, it is very difficult to obtain a completely accurate forecast,
but an attempt does need to be made to obtain forecasts that are as accurate as possible. The less
accurate a forecast is, the more difficult it will be to determine whether a data point is anomalous
or if the forecasts is inaccurate instead. To determine the accuracy of forecasting models, the Mean
Squared Error (MSE) of forecasts on non-anomalous time series can be calculated | ]. A lower
MSE indicates that the values of the target series and the forecasted series are close to each other,
while high values indicate the opposite.
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To determine whether our models deliver accurate results, the models are thus first applied to a non-
anomalous time series. Once a forecast is obtained on this time series, the mean squared error (MSE)
is calculated by comparing the predicted values to the actual values from the target series. In the case
of PMjq air quality, the values measured at measuring point SPO.DE_DEHFE02}_PM1_dataGroupl
from 17/10/2019 to 16/3/2020 were used to evaluate the accuracy of the forecasts. This series was
selected as non-anomalous due to its low variance and lack of sudden spikes in values. In order to
find optimal hyperparameter values for each model, multiple configurations are tested on this series.
The set of values that yields the lowest MSE is then selected for use in anomaly detection and
comparison with the other models. The optimization of hyperparameters is a complicated research
area of itself (especially in an unsupervised learning) [ I il | and outside of
the scope of this thesis. Therefore the usage of MSE will most likely not produce optimal models,
however for this use case it should be sufficient as it does give an indication of how accurate the
forecasts are.

For O3 a non-anomalous time series also needs to be selected. Due to O3 data visibly having a higher
variance than P My it is challenging to determine what constitutes as non-anomalous. The decision
was made to use the values measured at measuring point SPO.DE_DEHFE028_03_dataGroupl as
this point is found in a rural area and is of the background type. Such measuring stations generally
see lower values and less sudden changes due to a lack of traffic and/or industry affecting the
measurements. The selected PM;, series was also chosen due to its measuring station being of
this type and area. For O3z, multiple measuring stations were explored from which a series was
chosen that looked to follow the most regular pattern without significant outliers. The selected
hyperparameters for PM;, series were also applied to O3 series to determine whether they also
provided accurate forecasts on a different pollutant.

4.3.3 Synthetic Anomaly Injection and Evaluation Framework

Once hyperparameters have been found that give accurate results in the forecasting of a non-
anomalous time series, the next step is to inject anomalies into the time series. Injecting anomalies
entails that values are inserted into a time series at a position where they normally would not be
expected. To be able to achieve accurate results it is important to inject realistic values as anomalies
[ | as the results would otherwise not represent real world situations. To test whether the
models can actually be used for the detection of anomalies, the first step is to select certain data
points at random from a time series with high average concentrations of pollutants. These randomly
selected data points are then placed at the corresponding position in the non-anomalous time
series. Every data point is subsequently assigned an anomaly score by using the below equation.
This equation calculates the squared error for a data point by squaring the difference between the
forecasted and actual value, to subsequently divide it by the average squared error of all data points
in the target series.

(T — @)

= N " ,
% Ej:l(xj — x;)?

Si

where the notation is as follows:

s;: Anomaly score at data point 1.
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Z;: Forecasted value at data point 1.

x;: Actual value at data point 7.

N: The amount of data points in the time series for which an anomaly score is calculated.
j: The current data point over which the sum is iterating.

By injecting anomalies from a time series with high average concentrations into a non-anomalous
time series like the one from SPO.DE_DEHFE024_PM1_dataGroupl, the resulting anomalies should
receive significantly higher anomaly scores than the non-anomalous sections. Because a ground truth
has been created by injecting these anomalies, a confusion matrix can now be used to evaluate a
models performance. To create such a confusion matrix a threshold needs to be set for the minimum
anomaly score for which a data point is classified as an anomaly. Setting this threshold too low
might result in false positives, while setting it too high might results in false negatives. Once a
sufficient threshold has been determined by attempting to optimize the amount of true positives
and false positives that models achieve, the confusion matrix can be used to calculate a selection
of evaluation metrics. After initially testing the models on extreme anomalies, such as injecting
data points from an urban measuring station into data from a rural station, they should also be
tested on more subtle, realistic, anomalies. By for example injecting data points from measuring
stations with a similar type and area it is possible to achieve more realistic anomalies and thus
more realistic results.

4.3.4 Evaluation Metrics

Once a confusion matrix has thus been obtained by comparing the ground truth to the detected
anomalies, the selected evaluation metrics need to be calculated. For the evaluation of the models,
the following three evaluation metrics have been chosen: precision, recall and F1-score. Precision
describes the amount of true positives compared to the total amount of positives. This metric will
show lower values when a lot of false positives are detected. False positives in this case are data
points that are not an injected anomaly, but are detected as one. The recall value indicates the
amount of true positives compared to the total amount of true positives and false negatives. In this
situation, the metric shows how many of the injected anomalies have actually been detected. The
F1-score is used to give an overall indication of a models performance by combining the precision
and recall scores. The combination of these evaluation metrics should give an impression of how
well these models are able to detect anomalies in such an air quality dataset. The formulas that are
shown below, show how the performance metrics are calculated using the values from the confusion
matrix.
Precision = True Positives/( True Positives + False Positives)

Recall = True Positives/( True Positives + False Negatives)
F1-score = 2 x True Positives/(2 * True Positives + False Positives + False Negatives)

Based on these metrics it might be possible to come to a conclusion on which type of model
performs optimally on European outdoor air quality data.

4.4 Model implementation

This section provides a detailed description of the five selected models. For each model, the
forecasting process for a given target series is explained, along with the hyperparameters that can
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be configured. The optimal hyperparameter settings for each model are also presented.

4.4.1 Exponential smoothing

The first anomaly detection method to implement is the Exponential Smoothing | ] forecasting
model from the Darts library. Exponential smoothing is a statistical method that assigns weights
to previous data points to be able to forecast future points, with more recent values being given
higher weights. As mentioned earlier, this model is a wrapper around the Holt-Winters’ Exponential
Smoothing method as found in the Statsmodel library | |. This model is able to take trends
and seasonality into account which improves the accuracy of the model on the air quality time
series compared to a model that does not have this ability. After testing multiple hyperparameter
configurations, the model that achieved the highest accuracy used the settings shown in Table
3. Formula 1 to 4, as shown below, are the ones used by Exponential Smoothing for a damped
additive trend and additive seasonality, as is the case with the selected hyperparameters.

Sp = Sio1+ ¢Ty1 + aey, (1)

T, = ¢Ti1 + arvyey, (2)

It = Itfp + (5(1 - a)et, (3)

Xi(m) = Sy + Z 0Ty + Lt—pim, (4)
i=1

where the notation is as follows:

a: Smoothing parameter for the level of the series.
~: Smoothing parameter for the trend.
0: Smoothing parameter for seasonal indices.
¢: Autoregressive or damping parameter.
S;: Smoothed level of the series, computed after X; is observed. Also the expected value of the
data at the end of period t in some models.
T;: Smoothed additive trend at the end of period t.
I;: Smoothed seasonal index at the end of period ¢.
X;: Observed value of the time series in period t.
e;: One-step-ahead forecast error. e, = X; — X,
m: Number of periods in the forecast lead-time.
p: Number of periods in the seasonal cycle.
X,(m): Forecast for m periods ahead from origin ¢.
With these settings the model has a sliding window of 168 data points (hours) which it uses to
predict the amount of data points of the forecast horizon. After every iteration the sliding window
moves ahead by 1 hour and performs the calculation again on the data points that are in the sliding
window. As one might notice, this means that most data points will find themselves in the forecast
horizon for multiple subsequent iterations in case of a forecast horizon that is larger than 1. As
only 1 value needs to remain for the final forecast, an average of these forecasted values is taken
after the sliding window has reached the end of the time series. Applying the model with these
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settings, on the non-anomalous P Mg validation series, results in an MSE of 1.66 which looks to be
the optimal result for this model and time series.

The O3 concentration time series exhibits distinct characteristics, most notably a clear yearly
seasonal pattern, which is not present in the PM;, series. There also appear to be more sudden
changes in values between subsequent data points. Due to this difference between both pollutants,

an MSE of 26.99 was achieved for O3 concentrations using the same hyperparameters as shown in
Table 3

Parameter Value
trend ADDITIVE
seasonal ADDITIVE
seasonal periods 24
damped True
window_size 168

forecast_horizon 1

Table 3: Selected hyperparameter configuration for applying the exponential smoothing model on a
PM;y and O3 time series.

4.4.2 ARIMA

ARIMA | |, AutoRegressive Integrated Moving Average, is a more modern statistical method.
With seasonal ARIMA (SARIMA) it is also possible to forecast time series with a seasonal component
as is for example the case in O3 air quality data. The ARIMA implementation in the Darts library
has four required parameters of which the optimal settings are shown in Table 4. The parameter p
sets the number of time lags of the autoregressive model (AR), d sets the order of differentiation
(I) and ¢ sets the size of the moving average window (MA). The main part of the ARIMA model
combines AR and MA polynomials into a complex polynomial | | using the following
equation:

p q
y=pt ) (0y1) + ) (O2) +ev,

i=1 i—1

where the notation is as follows:

The mean value of the time series data.

The number of autoregressive lags.

Autoregressive coefficients (AR).

The number of lags of the moving average process.

Moving average coefficients (M A).

The white noise of the time series data.

The number of differences calculated from: Ay, = vy — yi—1.

a0 Oa 9 ®
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In the case that the model is applied to a time series with a seasonal component, the hyperparameter
‘seasonal _order’ can also be set with once again the p, d and g hyperparameters. The length of the
seasonal component can also be indicated here, but was left out because it caused the maximum
likelihood optimization to fail for the PM;q time series data. For an optimal comparison between
the different models, the window size and forecast horizon have been set to the same value as this
has a clear influence on the accuracy of the forecasts. Using the below settings leads to an MSE of
1.43 on the non-anomalous P M, time series which is slightly lower than what could be achieved
by using exponential smoothing. With the same hyperparameter configuration, an MSE of 25.04
could be achieved when applying the model on O3 time series.

Parameter Value

P 12

d 1

q 0
seasonal (0,0,0,0)
window_size 168

forecast_horizon 1

Table 4: Selected hyperparameter configuration for applying the ARIMA model on PM;y and Os
time series.

4.4.3 Linear Regression Model

While the previous models are categorized as statistical models in Darts, the linear regression
model is classified under the regression models category. In the simplest case of linear regression,
the model allows for a linear relationship between the forecast variable y and a single predictor
variable x | |:

Y = Bo + Bz + &

Bo and (B; denote the intercept and slope of the line respectively in this equation. The above
equation can be extended by including more lagged values of the predictors. Table 5 shows the
selected hyperparameter configuration for this model for application on PM;, time series. The lags
parameter defines which past values are used to predict the next data point. This hyperparameter
can simply be set to include a certain amount of the most recent points or it can be set as a list of
covariates as is the case here. The fact that this model can make use of covariates also differentiates
it from the previous two models which did not have such an option. Data points from both 1 and 2
hours ago are now taken into account as well as values from exactly 1 and 2 days ago. By taking
values from exactly 1 and 2 days ago into account, it might be possible to capture any longer
patterns in the data that span over 1 or 2 days. Due to the large amount of possible settings for
this hyperparameter it is likely that there are more promising settings to be found, but the selected
setting performed quite well on the non-anomalous data. The size of the sliding window has once
again been set to 168 data points, one week, for a fair comparison with the first two models. The
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‘output_chunk_length’ has been set equal to the ‘forecast_horizon’ as only one data point is needed
per iteration as output in this case. The selected hyperparameter settings resulted in an MSE of
1.34 on the non-anomalous PM;, time series and thus resulted in a more accurate forecast than
the previous models. With this hyperparameter configuration, an MSE of 23.91 could be achieved
by applying the model on the non-anomalous O3 time series.

Parameter Value

lags [-1, -2, -24, -48]
output_chunk length 1

window_size 168
forecast_horizon 1

Table 5: Selected hyperparameter configuration for applying the linear regression model on PMy,
and O3 time series.

4.4.4 RNN Model

The Recurrent Neural Network model in the Darts library allows for the setting of three different
module types with the model parameter which can be set to use “RNN” | “LSTM” or “GRU”. Given
the promising results of LSTM-AE models in anomaly detection for indoor air quality | ],
and the ability of LSTM cells to capture long-term dependencies, the LSTM module type was
chosen for this study. An LSTM cell consists of three types of gates: an input gate, an output gate
and a forget gate, as shown in Figure 7. These gates enable the cell to retain information over
arbitrary time intervals | ].

The main purpose of the forget gate is to decide which bits of the cell state are useful given both the
previous hidden state and new input data | ]. The forget gate makes use of the following
equation:

fo = o(ws[Hi1, Xi] + by). (5)

The input gate is needed to protect the memory contents stored in a unit from perturbation by
irrelevant inputs. It checks whether new information should be kept in the cell state and what new
information should be added. The following three equations are used by this gate to determine this:

ét = tanh(wc[Ht,l, Xt] -+ bc), (6)
1 = U(Wi[Ht—bXt] + bi)a (7)
C; :ftQthl‘i‘Z-t@ét- (8)

The output gate on the other hand is used to protect other units from perturbation by currently
irrelevant memory contents that are stored in its own cell. The following equations are used in this
step:
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Figure 7: llustration of an LSTM cell, adapted from: Zhang et al. [Z1.1.523]

or = o(We[Hi—1, X¢] + bs),
Ht =0;©® tanh(Ct),

where the notation for the above equations is as follows:

fi: The result from the forget gate.
i;: The result from the input gate.
o¢: The result from the output gate.
o: The activation function.
tanh: The tanh activation function that is used.
w,: Weights of the gate.
b,: Bias of the gate.
H,_{: Concatenation of the hidden state.
X;: Current input.
C;: Amount of new information.

This model has a large amount of hyperparameters that can be set. The optimal settings that
were found resulted in an MSE of 1.27 on the non-anomalous PM;, time series and an MSE of
28.77 on the non-anomalous O3 series. Once again, the large amount of hyperparameters makes it
likely that there are settings to be found that deliver better performance. The used settings can be
found in Table 6. For a fair comparison with the previous models the ‘input_chunk_length’ is set
to the same value as the window size for the previous models, namely 168. The training set for
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the model consists of all time series in the dataset that span the same time frame as the target
series. Only the data that has been collected from measuring stations with the same type and area
have been used for training due to the impact that these characteristics have on the data. The data
exploration in Section 3 clearly shows that the characteristics of these measuring stations have a
significant impact on the shape of the data. Due to some types and areas being more prevalent, the
size of the training set changes depending on the type and area of the target series. This difference
in training set size can have a potential impact on the performance of model.

Parameter Value

model LSTM
input_chunk_length 168
training length 336

n_epochs 20

hidden_dim 50

n_rnn_layers 3

dropout 0.2

random_state 13

add_encoders ‘cyclic’: ‘future’: [‘dayofweek’, ‘month’, ‘hour’]
retrain 3

last_points_only True

forecast_horizon 1

Table 6: Selected hyperparameter configuration for applying the RNN model on PM;y and O3 time
series.

4.4.5 Regression Ensemble Model

The regression ensemble model employs a regression algorithm to combine the forecasts of individual
models using the stacking technique | |. The selected hyperparameter configuration shown in
Table 7 resulted in an MSE of 1.91 on the non-anomalous P M, time series which is larger than all
the other models. An MSE of 31.00 was achieved on the non-anomalous O3 time series. Two models
have been selected for this ensemble model, one RNN model with default cells and the RNN model
with LSTM cells as described in Chapter 4.4.4. A Random Forest Regressor is subsequently applied
to ensemble these two individual models. A random forest | | fits multiple decision trees on
various subsamples of the dataset and uses averaging to improve the predictive accuracy and control
over-fitting [ ]. Using this regression model, it is possible to improve the accuracy of an
individual model such as the RNN model that used LSTM cells. The hyperparameter configuration
for the individual LSTM model is identical to the one shown in Table 6, with only the model
hyperparameter changed to ‘RNN’ for the standard RNN model. The training set for both models
is identical to that used for the individual RNN model in Chapter 4.4.4. It therefore consists of
identical time frames that have been collected from measuring stations that share the same area
and type as the measuring station of the target series.
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Parameter Value

forecasting model [model rnn 1stm, model _rnn]

regression_train n points 84

regression_model RandomForestRegressor (n_estimators=100,
random state=42)

train_forecasting models false

train_using historical_forecasts True

forecast_horizon 1

Table 7: Selected hyperparameter configuration for applying the ensemble model on PM;j, and Os
time series.
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5 Results

This chapter will show the results that have been obtained by applying all the models to time series
that have been selected from the dataset. The chapter has been divided into three different sections.
The first two sections cover the results on PM;y and O3 data while the final section provides a
general overview of the results. Both Sections 5.1 and 5.2 are split into five different subsections.
The first subsection shows a selection of time series that will be used to evaluate the performance
of the models. The remaining subsections will show the actual results that have been achieved by
applying the models to these selected series.

At first a look will be taken at the performance of these models on unrealistic anomalies, anomalies
that are not likely to occur in natural situations. It would be expected that such anomalies are
the easiest to detect due to them being characterised by more extreme values. After applying the
models on such unrealistic anomalies, they also need to be applied to realistic anomalies to get
an impression of their performance in realistic situations. The final two subsections will look at
the impact of the station area and type characteristics of the measuring stations. This is done by
applying the models to data from different measuring stations with realistically injected anomalies.
In this way, it is possible to study the influence of station area and type on the models’ ability to
detect realistically occurring anomalies.

5.1 Results for PM

Table 8 shows which specific time series have been selected for the evaluation of the models. As
can be seen from this table, a selection has been made so that performance can be compared on
different types and areas of measuring stations. Beyond comparing performance across different
types of measuring stations, the models were also evaluated on various types of injected anomalies.
The first step for example injects anomalies by selecting random data points that are above the
health standard of 50ug/m?, from a measuring station of the traffic type in an urban area. As this
measuring station sees higher concentrations on average than one of the background type in a rural
area, these high values can be randomly injected into this time series. To evaluate the impact of
different types and areas, anomalies are injected from a measuring station with the same type and
area as to have anomalous values that are as realistic as possible. Table 9 shows the measuring
stations that were used to inject anomalies. The injected values were selected from the same time
frame as the target series. In the subsequent paragraphs the time series will be referred to by the
index that is mentioned in the tables, instead of the full sampling point ID.
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Index Sampling point ID Area Type Timeframe

#1 SPO.DE_DEHE024 _PM1 _dataGroupl Rural Background 17/10/2019 - 16/3/2020
#2 SPO.DE_DEBB021_PM1_dataGroupl Urban Background 17/10/2019 - 16/3/2020
#3  SPO.DE_DEBB054_PM1_dataGroupl Urban Traffic 17/10/2019 - 16/3/2020

#4  SPO.DE_DEMVO031_PM1 _dataGroupl Urban Industrial 17/10/2019 - 16/3/2020
#5  SPO.DE_DEBB048_PM1_dataGroupl Suburban Background 17/10/2019 - 16/3/2020

Table 8: Time series used for evaluation. Anomalies are injected into these series.

Index Sampling point ID Area Type

#6 SPO.DE_DEMV004_PM1_dataGroupl Rural Background
#7  SPO.DE_DEBB064_PM1_dataGroupl Urban Background
#8  SPO.DE_DEBB110_PM1_dataGroupl Suburban Background
#9 SPO.DE_DEHH015_PM1 _dataGroupl Urban Industrial
#11  SPO.DE_DEBE061_PM1_dataGroupl Urban Traffic

Table 9: Time series used for evaluation. Anomalies are selected from these series and injected into
a different one.

5.1.1 Injecting unrealistic anomalies

Table 10 shows the results from injecting values from time series #11 into #1. Only values that were
above the health standard of 50ug/m? were injected as these high values should be clear to detect
by the models. In total, 19 different values were injected from series #11 into #1. Figure 8 shows
one of the injected anomalies that was given an anomaly score larger than 15 by all five models.
These data points, with an anomaly score above 15, are marked as anomalous by the models and
subsequently compared to the ground truth. If a data point does not receive an anomaly score that
is higher than 15, the point will be marked as normal by a model.

Model TP FN FP TN Precision Recall F1-Score
Exponential Smoothing 18 1 14 3446 0.562 0.947 0.706
ARIMA 19 0 35 3425 0.352 1.000 0.521
Linear Regression model 11 8 14 3446 0.440 0.579 0.500
RNN model 19 0 9 3451 0.679 1.000 0.809
Regression Ensemble model 19 0 8 3452 0.704 1.000 0.826

Table 10: The resulting confusion matrices of injecting 19 anomalies from time series #11 (urban
area, traffic type) into #1 (rural area, background type) with a threshold of 50.

Due to anomalies being undefined in our original time series, it is likely that the models will
result in a relatively large number of false positives. As it is not possible to determine whether the
“non-anomalous” time series actually does not contain any anomalies before the injection of actual
anomalies, it is possible that some of the false positives could actually be classified as anomalies.
An attempt was made to select a time series, for time series #1, with as few as possible visible
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Anomaly scores for all models with series 11 injected into 1 with a threshold of 50

—— Actual
100- —— Exponential Smoothing
---- ['Exponential Smoothing'] score
ARIMA
['ARIMA'] score
—— Regression Model
---- ['Regression Model'] score
—— RNN Regression Ensemble Model
--=- ['RNN Regression Ensemble Model'] score
—— Recurrent Neural Network
---- ['Recurrent Neural Network'] score

80 -

60 -

Value

Nov-01 06:00 12:00 18:00 Nov-02 06:00 12:00 18:00

Figure 8: Zoomed in chart of the forecasts and anomaly scores of the injected anomalies from series
#11 into series #1. In this chart only one anomaly is visible.

anomalies, but this unfortunately does not guarantee that there are none in the series. Therefore,
the recall value gives a better indication of the models performance than precision as this does not
take the false positives into account.

The results in Table 10 generally show relatively high recall scores for all the models. Only the
linear regression model stands out here with a significantly lower recall score, while still having
quite a large amount of false positives. ARIMA does detect all the injected anomalies, but this
comes at the caveat of a significantly larger amount of false positives compared to the other four
models. Overall, the regression ensemble model has performed the best on such injected unrealistic
anomalies with similar scores for the RNN model.

Figure 8 presents the forecasts generated by all models, along with the corresponding anomaly
scores assigned to each data point. From this plot it becomes clear why ARIMA has a larger amount
of positives. Unlike the RNN, this model is not a global forecasting model. This results in ARIMA
taking the anomalous data point into account for the forecasting of future data points. This results
in high anomaly scores for data points that should actually be non-anomalous.

5.1.2 Injecting realistic anomalies

As noted by Keogh et al. | | it is important to inject anomalies that could realistically occur
within the time series to ensure accurate evaluation of the models. The most effective approach in
this case is to inject values that are randomly selected from data collected at a measuring station
of similar type and location. Injecting random values from series #6 into #1 without applying
any threshold value, as was described in section 5.1.1, would approach realistic anomalies most
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accurately.

Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 7 12 14 3446 0.333 0.368 0.350
ARIMA 7 12 20 3440 0.259 0.368 0.304
Linear Regression model 7 12 16 3444 0.304 0.368 0.333
7
7

RNN model 12 22 3438 0.241 0.368 0.292
Regression Ensemble model 12 18 3442 0.280 0.368 0.318

Table 11: The resulting confusion matrices and performance metrics of injecting 19 anomalies from
time series #6 into #1 (rural area) without a threshold.

The performance metrics of all five models on realistic anomalies are shown in Table 11. As most of
the values in both series #1 and #6 will now be more similar, it is likely that fewer of the injected
anomalies will actually be detected. As a result, all performance metrics are lower for all models
compared to when unrealistic anomalies were injected. All the models generally have a similar
performance with the only differences being in the amount of false positives. As earlier determined,
the amount of false positives does not necessarily give any information about model performance
due to possible anomalies in the original time series.

5.1.3 Impact of station area on model performance

As shown in Chapter 3, the area in which a measuring station is located has a significant impact
on the distribution of the data that is collected there. For example, a measuring station located in
an urban area is more likely to register high concentrations than one that is located in a rural area.
Table 11, Table 12 and Table 13 show the results for all five models on time series with realistically
injected anomalies from time series with the same area and type. They respectively show the results
for data from rural, urban, and suburban areas. To ensure the injected anomalies are as realistic as
possible, the altitude of the selected measuring stations was also matched as closely as the available
data allowed.

Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 2 16 12 3450 0.143 0.111 0.125

ARIMA 0 18 10 3452 0.000 0.000 0.000

Linear Regression 0 18 4 3458 0.000 0.000 0.000

RNN Model 5 13 17 3445 0.227 0.278 0.250
4

Regression Ensemble 14 16 3446 0.200 0.222 0.211

Table 12: The resulting confusion matrices and performance metrics of injecting 18 anomalies from
time series #7 into #2 (urban area and background type) without a threshold.

As seen in Table 11, the models all performed relatively similar on data from rural areas. This is how-
ever not the case for data from both suburban (Table 13) and urban (Table 12) areas. In urban areas,
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Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 0 18 10 3452 0.000 0.000 0.000
ARIMA 0 18 9 3453 0.000 0.000 0.000
Linear Regression 0 18 4 3458 0.000 0.000 0.000
)
1

RNN Model 13 26 3436 0.161 0.278 0.204
Regression Ensemble 17 15 3447 0.062 0.056 0.059

Table 13: The resulting confusion matrices and performance metrics of injecting 18 anomalies from
time series #8 into #5 (suburban area) without a threshold.

both the RNN and regression ensemble model give the best results with only one anomalous data
point not being detected by the ensemble model compared to the RNN model. The statistical and
machine learning models perform significantly worse here than the two deep learning models. Only
exponential smoothing manages to detect any of the injected anomalies. It is also noticeable that the
amount of false positives increases together with the amount of true positives. This might suggest
that some models generally award higher anomaly scores for data points and thus show better results.

In suburban areas, the RNN model once again shows the most promising results, with only the
regression ensemble model also being able to detect any of the injected anomalies as well. This data
shows similar patterns as the results for urban areas, with the amount of true positives once again
seeming related to the amount of true negatives. Notably, the number of false positives remains
similar for the regression ensemble model, despite a reduction in true positives within the suburban
data.

5.1.4 Impact of station type on model performance

Just like the area of a measuring station, its type also influences the distribution of the data. For
that reason the models have also been applied on time series from all different station types with
other variables of the stations being kept similar.

Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 0 19 10 3451 0.000 0.000 0.000
ARIMA 0 19 9 3452 0.000 0.000 0.000
Linear Regression 0 19 9 3452 0.000 0.000 0.000
3
0

RNN Model 16 26 3435 0.103 0.158 0.125
Regression Ensemble 19 12 3449 0.000 0.000 0.000

Table 14: The resulting confusion matrices and performance metrics of injecting 19 anomalies from
time series #11 into #3 (traffic type) without a threshold.

Table 14 shows that for data from stations of the traffic type, only the RNN model was able to detect
some of the injected anomalies. Similar to what was the case in the comparison of different areas,
the amount of true positives seem to correlate with the amount of false positives. As discussed in
Chapter 5.1.3, Table 12 did show better results for data from measuring stations of the background
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Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 4 16 19 3441 0.174 0.200 0.186
ARIMA 4 16 25 3435 0.138 0.200 0.163
Linear Regression 5) 15 22 3438 0.185 0.250 0.213
5
1

RNN Model 15 22 3438 0.185 0.250 0.213
Regression Ensemble 19 32 3428 0.030 0.050 0.038

Table 15: The resulting confusion matrices and performance metrics of injecting 20 anomalies from
time series #9 into #4 (industrial type) without a threshold.

type, with three of the models detecting more of the injected anomalies. However, both the ARIMA
and linear regression model remained at 0 true positives. The results for the industrial station type,
as shown in Table 15, generally show better results. All the models are able to at least detect some
of the injected anomalies here, with only the regression ensemble model not being able to detect
four or more. The linear regression and RNN model perform the best here with exactly the same
performance metrics. Both statistical models also perform similarly with the only differences being
in the amount of false positives which are slightly higher for ARIMA. Most notable here are the
results for the regression ensemble model as this model was only able to detect a single injected
anomaly, even though this model did have the largest amount of false positives. Figure 9 shows a
forecast of the regression ensemble model on a time series where 20 anomalies have been injected
into series #4 from time series #9. This figure shows multiple spikes in the forecasted values where
such spikes do not occur in the original target series. This causes a large amount of false positives
compared to the other models.
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Figure 9: Chart of a forecast by the regression ensemble model on a time series where 20 anomalies
have been injected from time series #9 into #4.

5.2 Results for O3

To compare the models performance on time series data for O3 concentrations, a similar type
of evaluation was done. Table 16 shows the time series which anomalies have been injected into
while Table 17 shows the time series from which anomalies were selected. Just as was the case for
the evaluation of the models on PM;, time series, the models are first compared on unrealistic
anomalies. However, since O3 has a seasonal component, selecting values above a certain threshold
based on health standards would likely make anomalies harder to detect depending on the season.
Therefore, the selected anomalies were selected purely at random and without a threshold for this
first comparison of the models. The same evaluation metrics based on the confusion matrices were
used again for this evaluation on O3 concentrations.

Index Sampling point ID Area Type Timeframe
#12  SPO.DE_DEHE028_0O3_dataGroupl Rural Background 17/10/2019 - 16/3/2020
#13  SPO.DE_.DEBB007-O3_dataGroupl  Suburban Background 17/10/2019 - 16/3/2020
#14  SPO.DE_DEBBO021_03_dataGroupl  Urban Background 17/10/2019 - 16/3/2020
#15 SPO.DE_.DENW021_03_dataGroupl Urban Industrial 17/10/2019 - 16/3/2020
#16  SPO.DE_DEBE065_03_dataGroupl  Urban Traffic 17/10/2019 - 16/3/2020

Table 16: Time series used for evaluation. Anomalies are injected in these series.
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Index Sampling point ID Area Type

#17 SPO.DE_DEHE042_0O3_dataGroupl Rural Background
#18  SPO.DE_DEBBO055_.03_dataGroupl  Suburban Background
#19  SPO.DE_DEBB064-0O3_dataGroupl  Urban Background
#20 SPO.DE_DENWO034_03_dataGroupl Urban Industrial
#21  SPO.DE_DERP023_03_dataGroupl Urban Traffic

Table 17: Time series used for evaluation. Anomalies are selected from these series and injected
into a different one.

5.2.1 Injecting unrealistic anomalies

By injecting anomalies from time series #21 into #12, values from a series with higher average
values will be injected into one with lower average values. In contrast to how these anomalies
were injected for the evaluation of the models on PMj, time series, no threshold based on health
standards is now taken into account due to Oj its seasonality. This seasonality would cause the
threshold value to be less anomalous for certain seasons. By selecting values purely at random from
series #21, unrealistic anomalous values could be higher or lower than expected instead of only
larger than the expected value. The confusion matrices that result from these unrealistic anomaly
injections are shown in Table 18.

Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 8 12 17 3443 0.320 0.400 0.356
ARIMA 8 12 16 3444 0.333 0.400 0.364
Linear Regression model 9 11 20 3440 0.310 0.450 0.367
9
8

RNN model 11 14 3446 0.391 0.450 0.419
Regression Ensemble model 12 16 3444 0.333 0.400 0.364

Table 18: The resulting confusion matrices of injecting 20 anomalies from time series #21 into #12
without a threshold.

This table shows that the models perform relatively similar on these unrealistic anomalies. In
contrast to the unrealistic anomalies for PMq series, the linear regression model does not perform
significantly worse than the other four models here. Overall, the models do perform a lot worse
than with the unrealistic PM;, anomalies which can possibly be explained by the lack of threshold
value.

5.2.2 Injecting realistic anomalies

To get an accurate depiction of how the models perform on more realistic data, random data points
were selected from series with a similar area and type and injected into the same series that was
used for injecting unrealistic anomalies, namely series #12. The results that all models achieved on
a time series where 20 data points from series #17 where injected into series #12 are shown in
Table 19.
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Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 14 6 22 3438 0.389 0.700 0.500
ARIMA 14 6 24 3436 0.368 0.700 0.483
Linear Regression model 14 6 25 3435 0.359 0.700 0.475
RNN model 14 6 16 3444 0.467 0.700 0.560
Regression Ensemble model 14 6 12 3448 0.538 0.700 0.609

Table 19: The resulting confusion matrices of injecting 20 anomalies from time series #17 into #12
(rural area) without a threshold.

There is a clear difference in model accuracy between realistic and unrealistic anomalies for both
the PMjy and O3 time series, but in opposite directions: unrealistic anomalies are easier to detect
in PM,, data, whereas realistic anomalies are detected more accurately in O3 data. All models
perform quite well here with all of them detecting 14 of the 20 injected anomalies. The only
difference is found in the amount of false positives which are clearly lower for the deep learning
models compared to the other three models.

The fact that the models detected more of the realistic anomalies is an unexpected result. However,
some of the characteristics of O3 data might explain this result, as time series for this pollutant
show significantly more variance in subsequent data points. This characteristic creates a larger
window of possible values that might not be marked as anomalous. There also seems to be a larger
difference between time series from similarly classified measuring stations compared to those for
P M, time series. Combined with the lack of a threshold for unrealistic anomalies due to Oj its
seasonality, these characteristics increase the difficulty of injecting unrealistic anomalies. This is
thus also likely to be the reason for the unexpected result where realistic anomalies were more
accurately detected by all the models.

5.2.3 Impact of station area on model performance

Chapter 3 has shown that the area of measuring stations has a significant impact on the distribution
of the collected data. This is not only the case for PM;, data, but also for O3 data. For that
reason the models should also be evaluated on O3 data from different areas and types of measuring
stations. Table 20 and Table 21 show the results for time series from suburban areas and urban
areas respectively with the station type being held consistent as to have realistic anomalies injected.
Table 20 shows that all models perform similarly on suburban data, just as they did on rural data.
However, less of the injected anomalies are detected here than what was the case for the rural data.
Exponential smoothing achieves the highest recall and F1-score here, but the deep learning models
still have fewer false positives as was also the case when applying the models on the rural data.
Table 21 shows the results for urban areas. Once again, the results are relatively consistent across
all models, with only the exponential smoothing model scoring slightly lower on most metrics.
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Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 9 10 19 3442 0.321 0.474 0.383
ARIMA 8 11 27 3434 0.229 0.421 0.296
Linear Regression model 8 11 23 3438 0.258 0.421 0.320
8
8

RNN model 11 18 3443 0.308 0.421 0.356
Regression Ensemble model 11 15 3446 0.348 0.421 0.381

Table 20: The resulting confusion matrices of injecting 19 anomalies from time series #18 into #13
(suburban area) without a threshold.

Model TP FN FP TN Precision Recall F1-Score
Exponential Smoothing 7 12 20 3441 0.259 0.368 0.304
ARIMA 10 9 22 3439 0.312 0.526 0.392
Linear Regression model 10 9 22 3439 0.258 0.421 0.320
RNN model 11 8 24 3437 0.314 0.579 0.407

Regression Ensemble model 9 10 14 3447 0.391 0.474 0.429

Table 21: The resulting confusion matrices of injecting 19 anomalies from time series #19 into #14
(urban area with background type) without a threshold.

5.2.4 Impact of station type on model performance

The type of measuring station also affects the data distribution, just as the station its area does.
Therefore the models once again need to be applied to data from different types of measuring
stations with other characteristics kept similar. Table 21, Table 22 and Table 23 all show the results
for the models on a specific type of measuring station in urban areas.

Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 6 12 16 3446 0.273 0.333 0.300
ARIMA 7 11 17 3445 0.292 0.389 0.333
Linear Regression model 6 1219 3443 0.240 0.333 0.279
7
6

RNN model 11 16 3446 0.240 0.333 0.279
Regression Ensemble model 12 15 3447 0.286 0.333 0.308

Table 22: The resulting confusion matrices of injecting 19 anomalies from time series #20 into #15
(industrial type) without a threshold.

Table 21 shows that the models perform relatively similar on data from the background type with
only exponential smoothing achieving slightly lower scores on most metrics. Overall, the scores on
data from the industrial measuring stations are slightly lower than for the background type. Once
again the models show very similar results in Table 22 even though they are thus slightly worse.
Table 23 presents the results for data collected from traffic-type measuring stations. These results
show more differences between the models with exponential smoothing scoring the highest on all
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Model TP FN FP TN Precision Recall F1-Score

Exponential Smoothing 10 7 11 3452 0.476 0.588 0.526
ARIMA 8 9 21 3442 0.276 0.471 0.348
Linear Regression model 9 8 19 3444 0.321 0.529 0.400
RNN model 6 11 15 3448 0.286 0.353 0.316
Regression Ensemble model 7 10 11 3452 0.389 0.412 0.400

Table 23: The resulting confusion matrices of injecting 19 anomalies from time series #21 into #16
(traffic type) without a threshold.

three performance metrics. On average, the deep learning models score lower here than models
from the other two categories.

5.3 Overview of results

The previous results show that no single model clearly performs better across all types of data.
There has been some amount of fluctuation in the results regarding the pollutant and the type and
area of the measuring stations on which the models were applied. Table 24 shows the average of
the previously gathered results. From this table it becomes clear that the RNN model generally
generates the highest scores in the used performance metrics. This model namely achieved the
highest scores for all three of these metrics, even though the amount of false positives that this
model registered were not the lowest. In general the regression ensemble model also achieved quite
similar scores to the RNN model. It however performed quite poorly on PM;, data from measuring
stations in urban areas that are from the traffic or industrial type. This causes the average results
to appear relatively poor for this model while it does detect relatively few false positives compared
to the other models. The only model that is categorized as a machine learning model in this thesis
achieved the worst results on average. This linear regression model scored quite poorly overall,
especially on unrealistic anomalies in PM, data.

Model TP FN FP TN Precision Recall F1-Score
Exponential Smoothing 7.08 11.75 15.33 3445.66 0.271 0.374 0.311
ARIMA 7.08 11.75 19.58 3441.42 0.213 0.373 0.267
Linear Regression model 6.58 12.25 16.42 3444.58 0.223 0.338 0.267
RNN model 8.25 10.58 18.75 3442.25 0.300 0.431 0.353

Regression Ensemble model 7.00 11.83 15.33 3445.67 0.297 0.370 0.329

Table 24: Table containing the average values for all previously given results.
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5.4 Answering research questions

Now that all results have been collected and that an overview of the results has been created,
an attempt can be made to answer the research questions. This section will try to answer both
research questions regarding the effectiveness with which anomalies can be detected in our data
and regarding which models can achieve the best results.

5.4.1 First research question

“How effective can anomalies be detected in univariate time series data of air pollution in Furope.”

The results do not seem to indicate a clear yes or no answer to this first research question. The
models also appeared to perform similarly regardless of the area and type of the measuring station
from which the data was collected. For realistic anomalies, which are the most interesting type of
anomalies given the research question, the models do not seem to be able to detect them very well.
With some types of data even resulting in none of the injected anomalies being detected by some
models in the case of PM;, data.

For O3 data, the models seemed to be able to detect around half of the injected anomalies regardless
of whether they were realistic or unrealistic. With all models being able to detect 14 out of the
20 realistically injected anomalies in time series from a rural area with a background type, an
argument can be made that the models were quite effective at detecting anomalies in such data.

A valid answer to the research question would thus likely be that it is indeed possible to detect
anomalies effectively in univariate time series data of air pollution in Europe. This answer does
however come with the caveat that this is not the case for all such air pollution data. This thesis
has shown that several models generally failed to effectively detect realistic anomalies in P M
data. Effective detection across all tested anomaly types was observed only in the case of Os
concentration data. Even then, the term ‘effectively’ is debatable, as the proportion of correctly
detected anomalies ranged from approximately half to three-quarters of the total.

5.4.2 Second research question

“Which anomaly detection methods achieve the best performance in detecting anomalies in
univariate time series data of air pollution in Furope.”

For PM, air quality data, one model clearly outperformed the others: the RNN model. It con-
sistently detected at least three of the injected anomalies, whereas the other models occasionally
failed to detect any. Especially from the data shown in Table 13 it becomes clear that the RNN
model significantly outperforms the other models on data from stations of the background type in
suburban areas. On average, this larger amount of true positives also results in more false positives
due to generally higher anomaly scores being awarded to data points. This larger amount of false
positives however does not necessarily mean that de model is not performing well. As mentioned
earlier, the lack of a ground truth can mean that there are anomalous data points present in the
time series before any are injected. The registered amount of false positives is thus not necessarily
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correct due to the lack of a definition for an anomaly.

The models generally performed better on O3 data with smaller differences in the results between
the different models. Depending on both the location of the measuring station and the type of
anomalies that were injected, different models achieved the best results. Due to this it is difficult to
determine which models achieve the best results on such data.

The average performance of the models across all individual results have been discussed in Chap-
ter 5.3. These average results indicate that the RNN model generally detected the highest number
of anomalies, suggesting it is the most effective at detecting anomalies in univariate air pollution
time series data in Europe. However, due to the differences in results between the two pollutants,
this conclusion may not be generalizable to other, similar pollutants. It was however noticeable in
the plots of the anomaly scores that the RNN model generally awarded higher anomaly scores to
anomalous points, which might indicate that it does indeed give the best overall performance. Some
of the other models like the regression ensemble model and the ARIMA model showed abnormal
behaviour for certain time series. They respectively showed sudden spikes in their forecasts and
kept forecasting future data points based on past anomalous points. This last remark shows the
disadvantage of local forecasting models like the selected statistical and machine learning models
that were selected. Their results seem to be more heavily impacted by having anomalous data
points present in their sliding windows. Due to the deep learning models having been trained on a
large dataset, their forecasted values do not seem to be impacted as much by such anomalous data
points in their sliding window. For this reason, a likely answer to this second research question is
that global forecasting models generally achieve the best results, like the selected deep learning
models.
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6 Discussion

This Chapter is divided into two sections. The first section discusses some of the limitations that
had to be dealt with in this thesis while the second section discusses suggestions for future research
in relation to this topic.

6.1 Limitations

This thesis has shown how different anomaly detection models perform on univariate time series
data of European outdoor air quality. Although the results from section 5 show that the accuracy of
these models vary based on measuring station characteristics and the method with which anomalies
are injected, it generally seems to be possible to detect anomalies with a certain level of accuracy.
There are however some important limitations regarding the method used in this thesis which
might be of interest for possible future research.

As discussed previously in section 4.3, finding optimal hyperparameter configurations for a model
is a complicated research area of itself. Due to limitations to the hardware that was used to run
the selected models, it was not possible to test the models with a larger variety of hyperparameter
configurations. Due to this reason, the models were eventually used with the same hyperparameter
setting regardless of the type of time series they were applied to. If more computational power
would be available for such research, it might be possible to find better performing hyperparameter
configurations for individual time series.

Due to the same hardware limitations, it was also not possible to apply the anomaly detection
models to longer time series segments. Due to the large amount of data that was used to train
the models, adding short segments to the final time series already causes a significant increase in
the time that is needed for training. For this reason the series that could be used were limited to
a maximum length of around five months. To be able to obtain more accurate results this could
thus be a point of focus for future research. As applying the selected models to longer or more
diverse time series might give a better indication of the actual performance on outdoor air quality
in Europe. Due to this limitation with regards to the length of the time series, it was relatively
difficult to capture the seasonal component of the O3 pollutant. If a longer time series could be
used, the effect of the seasonality on model performance could be evaluated better.

Another limitation is found in the dataset itself. In Chapter 3 it was determined that SO, was
an interesting pollutant to focus on due to its concentrations following a declining trend over
the past 10 years. This property set it a part of the other pollutants that were discussed in this
thesis. However, due to significant amounts of missing data, it was not possible to accurately apply
anomaly detection models on this data. If a dataset could be created for SO concentrations where
there are significantly less missing data points, it would give an indication of how time series with
a trend effect the performance of anomaly detection models.

The lack of a ground truth also remains an important limitation to this research as this makes it

difficult to evaluate the models on the amount of false positives that they detect. Even though
an attempt was made to select non-anomalous time series to inject anomalies into, the lack of
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a definition of an anomaly | | creates difficulties. This creates the possibility that false
positives could actually be true positives depending on what an actual definition of an anomaly
would look like in such data. This limitation thus limits the extent to which the models can be
evaluated. In any possible future research, a focus should be put on improving this limitation for
this reason. For example, with enough resources it could be possible to use a manually labeled
dataset which would allow for more accurate results.

6.2 Future research

The mentioned limitations also bring suggestions for possible future research where the impact
of these limitations could potentially be reduced. Besides these suggestions for future research, it
might also be of interest to focus on more pollutants and on different regions. It is not guaranteed
that the results presented in Chapter 5 will generalize to data from outside Europe or to other
types of pollutants. The fact that SO, data had a significant amount of missing data points would
make this one of the most interesting directions for future research. Since the concentrations of the
other pollutants do not exhibit a clear trend, further research is needed to determine whether this
characteristic affects the performance of the selected models. Another question that remains af-
ter the gathered results is whether the results on European data translate to data from other regions.

There is a lot of metadata available for the EEA dataset, including information about the different
measuring stations. The characteristics of the measuring stations can be used to select training
sets for the models with a selection of these characteristics. This thesis has looked into the impact
of some of these characteristics on the performance of these models. There are however more
remaining characteristics which might also be of interest. One possibility for future research is
also to take a closer look at the performance of anomaly detection models on contextual anoma-
lies | 11 ]. It could be possible to train a model on a certain selection of measuring
stations and subsequently inject anomalies from this training set into a target series which has
a different value for one of the characteristics. With this method it would be possibly to inject
contextual anomalies which are more subtle than the unrealistically injected anomalies as seen
in Chapter 5.1.1, but likely easier to detect than the realistic anomalies as described in Chapter 5.1.2.

A final suggestion for future research would be to apply more anomaly detection models on the
EEA dataset. By applying more than the five selected models it might be possible to find models
that provide better results. It might also be interesting to select more models from the machine
learning category as only one was selected for use in this thesis.
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7 Conclusion

This thesis has shown varying results in the detection of anomalies in European air quality data.
The best results were achieved on unrealistic anomalies that were injected into PM;y data as some
models managed to detect all anomalies with relatively few false positives. Applying the models
on anomalies that were realistically injected into PM;, data, however, showed quite poor results
overall. Applying the models to data that was specifically gathered from measuring stations with
certain characteristics generally also showed quite poor performance. With most models failing to
detect a single anomaly in data from traffic type measuring stations in urban areas, it appears that
the area and type of the measuring stations had a slight impact on model performance. However,
overall performance on realistic anomalies remained quite poor.

The models performed significantly better on time series for O3 concentrations. In contrast to what
was the case for the PM;q data, the models gave better results on realistically injected anomalies
instead of unrealistic anomalies. On average, about half of the injected anomalies were correctly
detected by the models. This did result in a slightly higher amount of false positives, but not by a
large amount compared to the results for PMjy. The models also appeared to perform similarly
regardless of the area and type of the measuring station from which the data was collected.

This thesis has attempted to find an answer to two research questions. The first one asked how
effective anomalies can be detected in univariate time series data of European air pollution. This
thesis was not able to give a clear yes or no answer to this question based on the gathered results.
However, a valid answer to this question would likely be that it is indeed possible to detect anomalies
effectively in univariate time series data of air pollution in Europe. This would come with the
caveat that this is not the case for all such air pollution data as this thesis noticed that the models
generally performed better on O3 data than on PM;, data. It also remains debatable whether
the term ’effectively’ can be used in this answer as the proportion of correctly detected anomalies
ranged from approximately half to three-quarters of the total in O3 data.

The second research question asked which anomaly detection methods would achieve the best
results in detecting anomalies in univariate time series data of air pollution in Europe. The results
have indicated that of the five selected models, the Recurrent Neural Network model was able to
generally detect the highest number of anomalies. It was also found that local forecasting models
seemed to be more heavily impacted by having anomalous data points in their sliding windows. For
this reason, a likely answer to this research question was that global forecasting models, like the
two selected deep learning models, generally achieve better results than local forecasting models.

While Wei at al. | | have shown that anomalies can be detected in indoor air quality
by using an LSTM-AE model, this thesis was arguably not able to determine whether anomalies
could accurately be detected in outdoor European air quality depending on the pollutant. Even
though anomaly detection methods could be useful for policy-makers in lowering pollutant levels in
air quality, more research would clearly be needed to determine which types of models can most
effectively achieve this for each individual pollutant.
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