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Abstract

With the growing interest in autonomous micro-UAVs, reinforcement learning has emerged
as a popular approach. Traditional autonomous navigation systems for UAVs that avoid obsta-
cles typically rely on GPS, external position systems, or cameras—devices with high hardware
requirements. However, during emergency rescue missions such as earthquakes or fires, these
systems may malfunction. To tackle these challenges while keeping costs low, this study in-
troduces a reinforcement learning approach that relies solely on basic optical flow and ranging
sensors. By carefully designing the observation space and reward mechanisms, and employ-
ing the Proximal Policy Optimization (PPO), a policy gradient method, we trained the UAV
to avoid obstacles and navigate through doors in the custom-built simulation environment.
The optimal policy obtained in the simulation environment is then deployed on the Crazyflie
platform in physical-world validation scenarios. The evaluation demonstrates that the model
achieves a 90% success rate in obstacle avoidance and door navigation within the simulation
environment. In sim-to-real transfer experiments, even in realistic situations where the model
has never been trained, it still achieves a 40% success rate in door navigation, validating the
feasibility of zero-shot transfer and demonstrating the model’s generalization capability and
robustness.
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1 Introduction

As technology continues to advance, the use of drones has become increasingly widespread
in modern society. Whether they are large aircraft or palm-sized quadcopters, and whether
used for aerial monitoring or autonomous navigation in rescue missions[1]. Due to effectively
reduce labor costs, unmanned aerial systems have become essential tools in our smart society.
Traditionally, drones have been manually controlled, yet as computing and AI have advanced,
turning flight control over to learned algorithms has become a crucial stride toward full au-
tonomy. Among the various machine learning approaches, deep reinforcement learning (DRL)
shows great potential in robotic and industrial applications, which is emerging as a promising
research direction[2].

In recent years, the application of small-scale drones in daily navigation and exploration
tasks has become a research hotspot, leading to numerous successful results[3]. However,
in extreme conditions such as natural disasters, earthquakes, or fires, where GPS signals or
external systems (e.g., Vicon-based localization)[4] may be unavailable, there remain significant
challenges for these small drones to complete fundamental indoor navigation and rescue tasks.
Micro-drones like the Crazyflie[5] offer notable advantages such as flexibility and portability,
but their limited size and payload capacity restrict their ability to carry advanced sensing or
positioning modules. Moreover, relying on high-end sensors greatly increases the deployment
cost. Therefore, it is of practical significance to explore how autonomous indoor navigation
and obstacle avoidance can be achieved using only basic onboard hardware, particularly to
bridge this capability shortfall in real-world scenarios.

The objective of this research is to investigate a system that enables a Crazyflie drone,
which is equipped only with its basic hardware (Flow Deck[6] and Multi-Ranger Deck[7]), to
perform indoor obstacle avoidance and door-passing tasks using a reinforcement learning-based
approach, without relying on external systems. On one hand, the study evaluates the feasibility
of deploying reinforcement learning algorithms on low-computation micro aerial vehicles; on
the other, it provides a low-cost and scalable solution for micro-drones with limited payloads
to perform patrol, exploration, or rescue missions in real-world environments.

To achieve these goals, this thesis proposes and implements a complete indoor navigation
framework for micro drones. This work employs the Proximal Policy Optimization (PPO)
algorithm [8], a method in reinforcement learning designed to restrict policy updates for stable
training and reliable convergence, which is well suited for onboard deployment on the Crazyflie
platform, and is trained in a simulation environment constructed by PyBullet[9]. The simulated
environment consists of a 10×10 meter square room containing four rectangular obstacles and
a 1.5-meter-wide door. A spherical agent is used to simulate the Crazyflie during training.
The model receives sensory observations such as obstacle distances from four directions and
local velocity data. The agent learns to avoid obstacles and identify the door by continuously
exploring the environment. The best-performing policy during training is saved as the baseline
model, which is later evaluated through both controlled experiments and sim-to-real[10][11]
transfer experiments. As the final step, the trained policy is run offboard on a PC and sends
control commands to the Crazyflie drone via Crazyradio 2.0[12]. The onboard sensors provide
real-time data to the model, which then outputs control actions for autonomous flight. This
allows us to assess the feasibility and generalization capability of the sim-to-real transfer.

This thesis is structured into seven chapters. Chapter 1 provides the introduction, moti-
vation of the project, and primary contributions of the study. Chapter 2 reviews related work
in reinforcement learning applications for UAVs. Chapter 3 outlines the methodology, covering
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how both the simulation and real-world systems were designed and implemented. Chapter 4
describes the experiments and provides an analysis of the results obtained from both simulated
and real-world evaluations. Chapter 5 offers a discussion of the observed challenges and failure
cases. Chapter 6 summarizes the main findings and conclusions. Chapter 7 presents possible
future directions for algorithmic improvements and experimental design.

2 Related Work

2.1 Vision-Based DRL for Autonomous Drone Flight

Indoor autonomous drone navigation increasingly leans on reinforcement learning techniques,
especially for vision-based obstacle avoidance. In 2017, Sadeghi and Levine proposed a method
called CAD2RL[13], which uses the Monte Carlo policy evaluation algorithm to train the
model using RGB images rendered from a simulated environment constructed by randomizing
CAD models. Finally, the model was tested on real UAVs without any real-world training,
verifying the success of simulation-to-reality generalization. Anwar et al. introduced NAVREN-
RL, a method for indoor drone navigation using end-to-end RL[14]. This technology uses the
onboard camera to capture images and employs Double DQN to train the model to navigate
autonomously while avoiding obstacles. Andreas Seel [15] proposed a reinforcement learning
architecture that uses cameras and LiDAR sensors to achieve indoor navigation without relying
on GPS. To evaluate the strategy, the group assembled a full-featured simulation suite with
different arenas for training and validation. In the work by Xie et al. (2023) [16], a quadcopter
equipped with an RGB-D camera was trained using the Soft Actor-Critic (SAC) algorithm [17],
enabling it to autonomously perceive and navigate through narrow, unknown, and inclined
environments. An RGB-D camera was employed to process visual data and infer the gap’s
location and orientation. The authors applied curriculum learning and domain randomization
to gradually guide policy training and enhance the drone’s robustness in real-world scenarios,
which also inspired the sim-to-real component of our experiments. In their 2023 work, Kalidas
et al. [18] explored the use of reinforcement learning to achieve visual navigation in drones,
enabling them to avoid both static and dynamic obstacles. Their study considered discrete and
continuous action spaces and compared three algorithms, DQN, SAC, and PPO, in a variety
of training and testing scenarios in the AirSim virtual environment. The results indicate that
the off-policy algorithms, SAC and DQN, outperform the on-policy PPO. However, the work
is restricted to simulation and does not address sim-to-real deployment.

2.2 PPO and Alternative Algorithms for UAVs

McGuire et al. proposed the method called minimalist Swarm Gradient Bug Algorithm (SGBA)[19]
that enables micro-robots with limited computing resources, such as Crazyflie, to navigate by
sensing obstacles in real time and avoiding them. They proposed the concept of ‘wall-following’
to avoid static obstacles. The drones communicate with each other and return to the starting
point based on the received signal strength indication (RSSI) at the home position. This paper
demonstrates that Crazyflie can rely on real-time sensors for obstacle avoidance. This finding
provides theoretical support for the possibility of our experiment relying on Multi-range deck
sensor to measure obstacle distances for obstacle detection. In addition to training with the
standard PPO algorithm, Molchanov et al.[20] applied domain randomization (DR) technol-
ogy, i.e., randomizing parameters during training to enhance policy robustness and adaptabil-
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ity, facilitating a smoother transfer from simulation to real-world deployment. In our research,
we similarly enhance policy generalization by randomizing the agent’s take-off position. A
PPO-based approach integrated with the Asymmetric Actor-Critic method was introduced by
Kangtong et al. [21], to train multiple drones to transport packages of unknown weight in-
doors. The paper uses a single camera for navigation and target localisation. They validated
the algorithm’s effectiveness through experiments conducted in the Gazebo simulation en-
vironment. Results indicated that the proposed approach outperformed alternative methods
in simulation; however, it was not validated through real-world experimentation. Of course,
beyond PPO, lightweight CNN-based deep-learning architectures have also achieved promis-
ing results in enabling autonomous obstacle avoidance for UAVs.[22]. This paper proposes a
CNN architecture called NanoFlowNet, which primarily improves the success rate of obstacle
avoidance using monocular vision through real-time optical flow calculation, thereby confirm-
ing the effectiveness of optical flow information for obstacle avoidance. Ali et al. established
a two-dimensional to three-dimensional simulation environment, where agents applied differ-
ent reinforcement learning algorithms to learn obstacle avoidance navigation policy, thereby
evaluating and comparing the performance of each algorithm[23]. They reported that DDPG
achieved superior results in obstacle avoidance, whereas PPO was prone to being trapped in
local optima and demanded a substantial amount of samples to reach convergence.

2.3 Research Advances in Sim-to-Real Policy Transfer

An on-policy reinforcement learning strategy was adopted by Hwangbo et al. [24] to enable
precise trajectory tracking in drone control tasks. After simulation training, it was transplanted
to the Hummingbird quadcopter for flight testing. The experimental results show that the neu-
ral network policy trained by reinforcement learning can effectively enable autonomous flight
of drones. The absence of real-world disturbances during training significantly constrains the
transfer of policies from simulation to reality. Numerous studies have explored deploying rein-
forcement learning strategies on UAVs without further fine-tuning in physical settings. Kang
et al. studied a deep reinforcement learning algorithm with mixed training [25], which not
only utilises visual features learned from images in a simulated environment but also incor-
porates real-world data into the training as a control subsystem. Experiments demonstrated
that even in real-world, when encountering complex environments never trained before, the
drone was able to fly successfully, and the collision-free flight distance was increased by four
times. Consequently, Loquercio et al. (2021) [26] incorporated realistic sensor noise, such as
missing depth cues, into the model training to achieve zero-shot transfer, thereby enabling the
policy to handle noise that exists in reality and enhancing its robustness. Their experimental
results demonstrated that even during high-speed flights performed without any fine-tuning,
the sim-to-real transition cut the failure rate by a factor of ten. A benchmark evaluation of
advanced learning-based drone control strategies was carried out by Kaufmann et al. [27].
They proposed a Collective Thrust and Bodyrates (CTBR) control strategy, which was trained
using the PPO algorithm. The research results demonstrated that the CTBR strategy ex-
hibits excellent transferability, responsive performance, and suitability for high-speed flight in
real-world scenarios. Additionally, Kaufmann et al. (2023) proposed the Swift system, which
defeated human pilots in a drone racing competition [28]. This system is also trained using
the PPO algorithm. For the sim-to-real component, the system injects non-parametric real-
world noise into training data, uses Gaussian processes to simulate drift in real-world flight,
and employs k-nearest-neighbour regression to refine simulated dynamics. These techniques
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enabled Swift to achieve a 60% win rate and set the fastest race time record. Joshi et al.[29]
constructed a random simulation environment using PyBullet, added different types of noise
for comparison, trained the agent to avoid obstacles using the PPO algorithm, and evaluated
the performance of policies under different noise conditions. In real-world tests, motion capture
markers were added to precisely locate the drone and control perturbations in the observed
data. The experiments demonstrated that adding a small amount of noise during training
can improve training performance, providing a reference for our own use of Gaussian noise in
training. Chen et al. (2015) introduced a reinforcement learning system named SimpleFlight
[30]. The method leverages the PPO algorithm as its core, incorporating rotation matrices and
time vectors as inputs in the Actor and Critic networks, encouraging smoother actions, and
increasing batch sizes during training to enhance the generalization capabilities of the policy.
The system uses the OptiTrack motion capture system on Crazyflie to capture position and
velocity data, enabling it to track arbitrary trajectories. This demonstrated that the algorithm
reduces trajectory error in the sim-to-real transfer phase by over 50% compared to baseline
reinforcement learning methods.

2.4 Study on Crazyflie

Due to its lightweight and portability, Crazyflie is an ideal platform for drone research. Dunkley
et al.(2014) used Crazyflie equipped with a micro PAL camera to achieve autonomous hov-
ering and flight through real-time positioning and SLAM systems [31]. This further demon-
strated that Crazyflie is very suitable for autonomous flight research as a miniature drone.
Preiss et al.(2017) developed Crazyswarm, a system architecture consisting of 49 micro quad-
copter(Crazyflie), enabling them to perform coordinated formation flight indoors and interact
with humans as dynamic obstacles [32]. This research demonstrates that Crazyflie is highly
suitable for academic research, performing exceptionally well in both obstacle avoidance and
cooperative flight. Duisterhof et al. [33] proposed using Deep Reinforcement Learning and
tinyRL to train the Crazyflie micro-robot to perform autonomous indoor flight and navigate
around obstacles to find information sources. They employed the DQN algorithm. Due to the
indoor light source and the custom light sensor equipped on the Crazyflie, the observation
space included not only basic ranging data but also two light intensity readings.

2.5 Research on UAV Flight Path Planning

Trajectory optimization for autonomous UAV flight has also been a popular area of research.
Since trajectory optimization often relies on Vicon motion capture systems, our experiments did
not involve trajectory optimization. However, t these studies still provide valuable insights to
help us understand potential flight control challenges during autonomous navigation. Mellinger
et al. demonstrated that quadrotor dynamic systems have differential flatness, which allows for
the generation of minimum snap trajectories.[4]. Their experiments have proven that drones
can complete pre-set trajectories even through narrow gaps or with steep pitch angles. Liu
et al.[34] also proposed a novel drone route planning framework. It first constructs a basic
path in a simulation environment using the Visibility Path Searching algorithm, and then opti-
mizes the motion trajectory based on the previously generated path using the PPO algorithm.
However, this study focuses more on the simulation aspect, and there is no further discus-
sion or verification of the subsequent real-world deployment. In reinforcement learning, beyond
enabling a single UAV to accomplish tasks, Coordination and cooperation between multiple
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drones have also become an important research direction. Jungwon Park et al.[35] primarily
discuss a trajectory planning algorithm suitable for multi-agent obstacle avoidance. The paper
first uses a grid-based method to calculate the initial trajectory, then combines aerodynam-
ics to optimize the trajectory. They formulate trajectory generation as a convex optimization
task, which helps to avoid possible impacts with surrounding objects. The quality and safety of
the trajectories were verified through simulations and real-world flight experiments. Similarly,
regarding multi-agent trajectory planning, Yunwoo Lee et al.[36] also introduced a DMVC-
Tracker online distributed trajectory planning algorithm to generate trajectories suitable for
multiple agents to avoid obstacles while maintaining appropriate safety distances. This method
was validated in static and dynamic obstacle environments using Crazyflie quadcopter drones
in both simulations and hardware experiments.

3 Methodology

3.1 Reinforcement Learning Background

As highlighted by Sutton and Barto [37], reinforcement learning has become a widely adopted
framework within the field of artificial intelligence. Agents learn to adapt their behavior by
engaging with the environment, relying on well-designed observations and feedback signals to
refine their decisions. Over time, agents learn to choose optimal actions that maximize cumu-
lative rewards[38]. Similarly to how students gradually master problem-solving skills through
feedback from teachers, agents rely on reward and punishment signals from the environment
to continually adjust their behavior, ultimately learning to make effective decisions in spe-
cific scenarios. A typical criterion for categorizing reinforcement learning approaches is the
use of an environment model. In model-based methods, the dynamics are either predefined
or learned, whereas model-free methods function without this information. That is, given a
state, the agent can take an action and the model can predict the environment’s response,
including the next state and the reward received. Dynamic Programming (DP) is a typical
model-based method[39], which derives the optimal policy by simulating state transitions and
reward processes. Rather than utilizing an internal model of environmental dynamics, model-
free approaches learn solely through interaction. In model-free learning, the agent derives
behavioral strategies solely from experience, without any reliance on a predefined model of the
environment. In highly dynamic or poorly modeled environments, methods that learn directly
from experience tend to demonstrate better adaptability. Nevertheless, these methods often
demand extensive experience collected through interactions before achieving stable learning
performance.

Policy-based reinforcement learning is a type of model-free method. In contrast to value-
based strategies—which determine the expected return of states or actions—policy-based
approaches learn a function π(a|s) that assigns probabilities to actions based on the current
state. These algorithms aim to directly optimize the policy to maximize long-term rewards. A
key strength of such methods lies in their effectiveness in managing continuous action spaces,
which makes them particularly suitable for complex scenarios requiring smooth action selection.

Apart from this classification, reinforcement learning can also distinguish between two types
of backup strategies: off-policy and on-policy[40]. In the off-policy method, the agent doesn’t
necessarily learn the policy that it’s currently following. Instead, it is able to acquire knowledge
from various policies and even from prior experiences. For example, using the Experience
Replay method, the agent stores previous experiences and then updates its policy by randomly
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sampling from these stored experiences. This helps the algorithm avoid getting stuck in local
optima. In contrast, algorithms that follow an on-policy strategy often refine their behavior
using data generated from their current decision-making process. This approach helps ensure
consistency and reduces variability across training, leading to a more stable training process.
Our work employs PPO—an on-policy method that updates using only data gathered by its
latest policy, ensuring steady improvement while maintaining exploration.

3.2 Overview of PPO Algorithm

3.2.1 Structure of the Actor-Critic Method

The actor-critic architecture integrates policy learning (actor) with value function approxi-
mation (critic), leveraging the benefits of both approaches [41]. By integrating these two
components, it achieves a trade-off between bias and variance, thereby promoting consistency
and robustness during training. Thus, the Actor learns a policy aimed at directing the agent
to maximize the cumulative rewards obtained through its interactions with the environment.
Updates network parameters via policy gradient methods, based on the value assessments
provided by the Critic, thus increasing the probability of taking actions that maximize value.
Meanwhile, the critic estimates how effective the current policy is by approximating its ex-
pected returns. For example, it may employ the advantage function An(st, at), commonly
expressed in Equation 1. The advantage function measures the relative quality of an action
against a reference baseline, thereby promoting choices with higher expected returns.

An(st, at) = Qn(st, at)− V (st) (1)

3.2.2 PPO Algorithm

Proximal Policy Optimization (PPO), developed by Schulman and collaborators in 2017[8], is
a reinforcement learning technique that operates without relying on an explicit environment
model and utilizes the most recent policy during training. As a policy gradient approach, PPO
focuses on maintaining both effective learning progress and robust training outcomes. PPO
also adopts the basic structure of the Actor-Critic framework, but it introduces a Clipping
mechanism on this basis. By limiting how much the policy can change in a single update,
it prevents the risk of adjustments being excessively large or too minor, thereby enhancing
the stability of training. As mentioned earlier, PPO also employs the advantage function,
which makes the policy update process more efficient. Moreover, PPO introduces the clipped
probability ratio ϵ, which can employ a clipping strategy that compares action probabilities
under new and old policies [8]:

rt =
πnew(at | st)
πold(at | st)

(2)

This formulation helps further control the range of policy updates. PPO seeks to improve
the policy through the optimization of a clipped surrogate objective function [8]:

LCLIP (θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ) · At)] (3)

In PPO, Generalized Advantage Estimation (GAE)[42] is often adopted to compute the
advantage values. This is because directly and precisely calculating Q(st, at) and V (st) can
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be quite challenging in reality. By integrating temporal-difference(TD) and Monte Carlo tech-
niques, GAE approximates the advantage function in a way that enhances stability and learning
efficiency. The estimation is defined as follows [42]:

At =
∞∑
l=0

(γλ)lδt+l (4)

where: - γ denotes the discount rate - The parameter λ adjusts the balance between boot-
strapped TD learning and Monte Carlo returns.

As a result, using this approach can reduce the issues of high variance and high bias, and
allows for balancing the mixture of the two by adjusting the λ parameter.

As shown in Equation 3, the most important improvement over the traditional actor-critic
framework is the introduction of the clipping function in PPO. The clipped function[8] is
defined as follows:

clip (rt(θ), 1− ϵ, 1 + ϵ) (5)

To maintain stable policy updates, PPO restricts the probability ratio rt(θ) within the interval
[1 − ϵ, 1 + ϵ] by applying clipping when it deviates beyond this range. Through this clipping
mechanism, the algorithm maintains relatively stable and improves the convergence of the
training process. Moreover, keeping an appropriate ratio of strategy exploration to exploitation
is essential for preventing local optima and policy collapse.

The explained pseudocode is shown as 1 outlines a general implementation of the PPO
method[8]. This algorithm has found broad application in reinforcement learning, especially
within robotic domains. The algorithm demonstrates excellent training stability and is capable
of converging within a relatively short period of time. As a result, it is especially well-suited
for autonomous learning and accomplishing complex tasks in continuous or high-dimensional
action spaces. In this project, we utilize PPO as the primary training algorithm (see Section
4 for training details) to develop a navigation policy for a quadrotor drone within a simulated
indoor environment, to eventually deploy the learned behaviors in real-world scenarios.

3.3 Implementation Details

To achieve the goal of enabling the Crazyflie drone to autonomously avoid obstacles and
successfully locate the exit, we have divided the overall design and development process into
two phases: The first phase involves the construction of a simulated environment and the
training of navigation policies, while the subsequent stage is deploying the trained model to
effectively guide the drone’s flight behavior in real-world scenarios. The development structure
is shown as Figure 1 below.

In the entire simulation environment, the agent has no knowledge of the locations of
obstacles or the door. It relies solely on two basic onboard sensors and learns to avoid obstacles
and locate and pass through the door by interacting with the environment through a designed
reward function. Due to the limited information available and the inherent difficulty of the
task, it was not possible to design an effective reward function from the outset. Therefore, we
adopted a curriculum learning approach[43]. Initially, we focused on constructing the simulation
environment and simulating the sensor inputs, allowing the agent to navigate freely in four
directions based on its observation and action spaces.

After integrating the PPO algorithm, we observed that the initial reward design—comprising
only a reward for passing through the door and a penalty for collisions—was insufficient. The
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Algorithm 1 The Proximal Policy Optimization (PPO)[8]

1: Initialize policy network πθ, value function Vϕ

2: Set clipping threshold ϵ, discount factor γ, GAE parameter λ
3: while not converged do
4: Collect trajectories {(st, at, rt, st+1)} using current policy πθ

5: for each timestep t do
6: δt ← rt + γVϕ(st+1)− Vϕ(st)
7: At ←

∑∞
l=0(γλ)

lδt+l

8: rt(θ)← πθ(at|st)
πθold

(at|st)
9: end for
10: for epoch = 1 to N do
11: Compute clipped surrogate objective:

LCLIP(θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ) · At)]

12: Update policy parameters θ via gradient ascent on LCLIP(θ)
13: Compute value function loss:

LV (ϕ) = Et

[
(Vϕ(st)−Rt)

2
]

14: Update value function parameters ϕ via gradient descent
15: end for
16: end while

agent would often crash into obstacles shortly after takeoff. To simplify the problem, we fixed
the drone’s hover height and removed the yaw angle from the action space, restricting move-
ment to the horizontal plane. We also set a fixed starting position in each episode.

At this stage, we introduced a basic distance-based reward scheme that encouraged move-
ment towards the door, penalized deviation from the door center, and discouraged lingering
near the doorway. Over time, the agent gradually learned to pass through the door, although
the success rate remained low. To further guide the agent, we added penalties for approaching
obstacles and rewards for forward progress. Initially, we designed an additional reward when
the agent’s distance to the door was closer than its previously best distance, but this proved
ineffective. We then modified the scheme to reward the agent whenever its current distance
to the door was shorter than in the previous step, and penalize it otherwise.

Throughout the experiments, we continued to fine-tune parameters and reward mecha-
nisms—for instance, by removing the penalty for lateral deviation and only rewarding proximity
to the door center, thereby encouraging exploration. Once the agent reliably achieved 100%
success in obstacle avoidance and door traversal from the fixed starting point, we extended the
training to include random initial positions using the same reward strategy and made further
adjustments accordingly.

During the real-world trials, the control loop was initially capped at 5 steps, and we printed
the Crazyflie’s proximity measurements in all four horizontal directions, along with the model’s
predicted actions, the velocity commands sent to the Crazyflie, and the inferred movement
direction. Through this process, we discovered an inconsistency between the coordinate systems
of the two systems. We then modified the control script accordingly to resolve this issue.
After confirming correctness, we gradually extended the control loop to 500 steps for full
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deployment. There are some screenshots showing the model inference and Crazyflie flight
information printed in the terminal during our real-world experiments. These screenshots are
included in the Appendix 272829.

Build simulation
environment

Train obstacle avoidance
and navigation policy (PPO)

Evaluate
success rate

Deploy trained model
to real Crazyflie

Test in physical
environment

Observe
real-world performance

Figure 1: Sim-to-real process for obstacle avoidance task with Crazyflie

3.3.1 Configuration of the Simulated Environment

Considering that reinforcement learning models typically require a large number of training
iterations, especially since real-world quadrotors are prone to collisions and hardware dam-
age. Therefore, it is essential to first build a simulation environment before conducting any
real-world flight tests. While several simulation platforms are available, and Bitcraze officially
recommends using Webots for Crazyflie simulations, given that PyBullet provides native com-
patibility with popular RL libraries such as Stable-Baselines3[44], making it easier to define
observation/action spaces, design reward functions, and integrate with algorithms like PPO.
This flexibility and ease of integration make PyBullet a more suitable choice for our learning-
based navigation task.

The agent was trained using a PyBullet-based simulation, which featured random initial
positions and a fixed door location. The room was designed as a 10-meter by 10-meter square,
with an open door width of 1.5 meters, to simulate a typical room environment. The height
of all four walls is uniformly set to 2 meters. A three-axis frame (x, y, z) is defined with
its origin at the room’s center: the x-axis spans the left–right direction, the y-axis spans
the forward–backward direction, and the z-axis is oriented vertically. The origin is defined as
(0, 0, 0). Around the origin, four obstacles are placed, each with a height equal to the wall
height, i.e., 2 meters. Their precise coordinates are listed in Table 1.

Object X (m) Y (m) Z (m)

Obstacle 1 −2.5 −3.0 2.0

Obstacle 2 3.0 −1.5 2.0

Obstacle 3 0.5 0.5 2.0

Obstacle 4 −1.0 2.5 2.0

Exit (Door Center) 0.0 5.0 1.0

Table 1: Coordinates of Obstacles and Exit in the Environment

To simulate the Crazyflie drone, we represent the agent as a spherical rigid body with a
radius of 0.2 meters and a mass of 0.5 kg. This proxy is equipped with basic collision and visual
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properties to facilitate position tracking and obstacle interaction during training. To mimic the
flight process of a real drone, the sphere starts from an initial height of z = 0 at each reset
and ascends to the designated hovering height—half the wall height, which is 1.0 meter during
environment initialization. Additionally, we capped the maximum horizontal velocity (x, y) of
the sphere at 1.5 m/s and updated its state at fixed time steps of 20 ms. The sphere executes
actions by translating its position and perceives the environment through simulated optical
flow and range sensors. During the simulation, it can detect obstacles in four directions, and it
learns navigation strategies based on this information. The simulation environment, as shown
in Figure 2, consists of four enclosing walls, a designated exit (door), four obstacles, as well
as an agent (blue ball).

(a) Top-down view of the simulated envi-
ronment, showing the Crazyflie agent’s fi-
nal position, obstacle layout, and the door
as the exit.

(b) Perspective view from inside the room
facing the exit, illustrating the navigation
challenge of passing through the door while
avoiding obstacles.

Figure 2: Two perspectives of the simulation environment: top-down view (left) and door-
facing view (right).

3.3.2 State-Action Representation

The experimental platform in the project is Crazyflie 2.1+ quadrotor[5]. Adjusting the position
and orientation of aerial robots is challenging due to their extensive motion flexibility. Quadro-
tors are typically modeled and controlled in a continuous action space to accurately capture
their dynamic behavior, which is crucial for real-world flight tasks.

Compared to discrete action spaces, the flight trajectory of a drone is more suitable for
continuous and complex control. Therefore, in our simulation environment, we adopt a con-
tinuous action space to better reflect the physical behavior under realistic conditions. In order
to replicate the perception abilities of the actual onboard hardware, the observation space is
designed with two primary components.

Optical flow velocities (vx, vy) are contained in the first part of the observation, simulating
the data provided by the FlowDeck on the Crazyflie. Here, vx measures motion horizontally
along x (left–right), while vy measures motion along y (forward–backward). To improve the
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feasibility of sim-to-real transfer, the values are perturbed using stochastic noise approximating
real sensor errors, with variability bounded by a limited deviation of 0.01.

The second part emulates Multi-Ranger readings by capturing proximity data toward the
front, rear, and both lateral sides. This is implemented using PyBullet’s rayTest function,
which simulates laser ranging with a maximum measurable distance of 4 meters. To replicate
realistic sensor behavior, noise with a small spread (std. dev. = 0.02) is introduced.

Actions are represented by a pair of continuous variables, each lying in the interval [−1, 1],
and the resulting output is multiplied by 1.5 meters per second. In our coordinate system,
motion toward the right corresponds to a positive x value, while positive y values represent
forward motion and negative values backward. All flights are constrained to a fixed altitude of
z = 1.0 meters, simulating the Crazyflie hovering at a constant height. Vertical movement is
not considered in this project.

3.3.3 Reward Function Design

Since the Crazyflie used in our experiments is only equipped with two basic sensors—the Flow
Deck and the Multi-Ranger Deck—it lacks any global positioning capability. As a result, the
agent cannot perceive its global coordinates or the actual distance to the door during decision-
making. To ensure alignment between simulated settings and actual hardware, the Euclidean
distance to the door, used during training, is only employed for internal reward calculation
and is not exposed to the agent. Instead, the agent relies solely on local sensor data for state
perception and action selection.

Therefore, the effectiveness of the reward structure directly impacts the agent’s ability to
learn. Different mechanisms can lead to significantly different learning outcomes. To encourage
the agent to effectively avoid obstacles and ultimately locate and pass through the door, this
study proposes a well-structured, progressive reward function that incorporates both reward
progress and reward shaping strategies[45], as shown in Table 2:

Reward Progress The reward signals are formulated to motivate the agent to advance
effectively toward the target:

• Terminal Reward: When the agent successfully passes through the door—satisfying
the condition that its x-position is within the door frame width and its y-position has
crossed the door threshold, it receives a one-time terminal reward of +5000.

• Stepwise Distance Reward: The agent evaluates how its distance to the door changes
by comparing the current and previous measurements at every time step. If the agent
moves closer to the door, a positive reward is given; otherwise, a penalty is applied. This
reinforces the agent’s movement in the correct direction.

Reward Shaping Additional rewards are introduced to guide the agent more effectively
and accelerate training convergence:

• Staged Distance Rewards: Multiple distance thresholds to the door are set. When
the agent reaches these thresholds, corresponding rewards are triggered, providing in-
cremental incentives and alleviating the sparse reward problem.
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• Forward Openness Reward: When the front sensor detects a distance greater than
0.5 meters, the path ahead is considered clear. A normalized distance-based reward is
then added:

reward += 1.0× front

self.max range
,

encouraging the agent to move forward more quickly.

• Center Alignment Reward: To encourage the agent to pass through the center of
the door, an additional reward is given based on proximity to the center line (x = 0).
Since the door is located at the center, relying solely on y-direction rewards might cause
the agent to collide with the door frame after obstacle avoidance. Therefore, when the
agent is near the door area, the closer it is to the center line, the higher the reward it
receives.

• Stagnation Penalty And Time Penalty: If the agent remains stationary or gets
stuck, a stagnation penalty is applied. Additionally, a small time penalty (e.g., −0.01) is
imposed at each time step to push the agent toward a prompt completion rather than
wasting time.

Obstacle Avoidance Logic Two types of strategies are designed to guide the agent in
learning to avoid obstacles and fly safely:

• Collision Penalty: By detecting whether the agent has contact points with obstacles
(contact points > 0), the agent immediately receives a −100 penalty, and done is set
to True to terminate the episode.

• Obstacle Avoidance Guidance:

– When any of the front, back, left, or right sensors returns a distance less than 0.3
meters, a penalty is applied.

– If the dangerous direction is the front (front sensor), after evaluating lateral dis-
tances, the side with more open space receives a positive reward, guiding the agent
to bypass the obstacle.

In summary, the reward function is carefully crafted to reflect the hardware limitations
and task objectives. It provides the agent with a structured and interpretable learning signal
to accomplish the obstacle avoidance and door-passing task even without global position
awareness.

3.4 Simulation-to-Reality Adaptation

Sim-to-real adaptation involves applying a policy trained in a simulated setting to real-world
scenarios. After the agent has successfully learned obstacle avoidance and door-crossing ca-
pabilities in simulation, we deploy the trained policy onto a Crazyflie 2.1+ platform[5], which
is equipped with Flow and Multi-Ranger decks[6][7] for velocity sensing and obstacle detec-
tion. During real-world flight, the drone utilizes this policy model to infer its next flight action
commands based on perceived sensor information.
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# Name Condition (trigger) Value in code

1 Door passed |x| < 0.8 · door half width ∧ y ≥
door y + 0.2

+5000 & episode done

2 Step progress ∆d = (prev− curr) toward door ±3.5 ·∆d

3 Distance mile-
stones

First time current dist < ti +threshold rewards[i]

4 Forward-open
bonus

y ≥ door y− 0.8 ∧ front > 0.5 m +1 · (front/max range)

5 Center align-
ment

4.5 < y ≤ 6.0 ∧ |x| < 0.8 ·
door half width

+10 ·
(
1− |x|

0.8w

)
6 Collision any ToF < 0.3 m −20 · (0.3− d)

7 Steering hint front < 0.3 m → choose clearer
side

+0.8 · (clearer/max)

8 Stagnation planar move < 0.01 m −10
9 Time step cost every step −0.01

Table 2: Reward Function Components and Implementation

3.4.1 Coordinate Alignment And Sensor Mapping

According to the coordinate system defined in the simulation environment, the x-axis repre-
sents movement along the horizontal plane, whereas the y-axis denotes motion in the forward
and backward directions. In the Crazyflie’s own frame of reference[5], the x-axis governs
forward–backward motion and the y-axis governs lateral motion, which creates a notable mis-
match with the simulation coordinate setup.

Therefore, during the actual deployment of the control script, it is necessary to transform
the actions predicted by the model by swapping the x and y values. This ensures that the
velocity commands sent to the Crazyflie align with its coordinate definitions. Rightward move-
ment in the simulation is defined by the positive x-axis and leftward by the negative x-axis. In
the Crazyflie’s frame, the positive y-axis is associated with flight to the left, while the negative
y-axis indicates rightward flight.

The coordinate mapping between simulation and real hardware can be intuitively under-
stood through the coordinate comparison diagram shown in Figure 3.

3.4.2 Inference and Control Pipeline

This section describes the process of deploying the trained Proximal Policy Optimization (PPO)
model onto a real-world quadrotor. The flowchart for the sim-to-real is shown:4. Initially, the
pre-trained model file (.zip) from the simulation environment is loaded using PPO.load()

and executed on a CPU. State observations are obtained from the Crazyflie’s Flow Deck
and Multi-Ranger Deck[6][7], including flow velocity and distance measurements from four
directions. We stack the observations into a 6-dimensional vector, which serves as the input
to the policy network.

The network outputs proportional velocity commands in two directions, denoted as vx
and vy. These values, originally within the range [−1, 1], are scaled by a maximum speed of
0.2m/s to linearly map them to actual velocity values, thereby determining the drone’s flight
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(a) For the simulation environment, the coor-
dinate system where the axes are oriented with
x running left–right and y running front–back.

(b) Coordinate system of the Crazyflie drone,
where the x as the longitudinal (fore–aft) axis
and y as the lateral (side-to-side) axis.

Figure 3: Coordinate system comparison between (a) the simulation environment and (b)
the Crazyflie drone body frame, demonstrating the axis transformation required for sim-
to-real deployment.

direction and speed. Given the mismatch between the coordinate frames of the simulator and
the physical drone, as previously discussed, the output actions from the model need to be
swapped accordingly. The velocity commands are then transmitted to the Crazyflie controller
at fixed intervals, with each action lasting 0.2 seconds. To minimize flight jitter during real-
world operation, a dead-zone threshold is applied. Action commands with magnitudes less than
0.05 are filtered out, and the remaining values are re-normalized to ensure smoother and more
stable flight behavior.

3.4.3 Zero-Shot Transfer

A notable disparity exists between simulation and real-world conditions, primarily because
simulations lack sensor noise, communication latency, and flight drift. To bridge this gap,
we employed domain randomization by introducing Gaussian noise to both the optical flow
and range sensor data during training. This simulates the uncertainties of the real world and
improves the generalization ability of the trained policy. Furthermore, as previously discussed,
we applied randomization to the drone’s initial takeoff position during training within the
simulated room. This initial state randomization increases the variability of flight trajectories,
further enhancing the reliability of transferring policies from simulation to actual operation.

To enable direct deployment from simulation, the PPO policy was applied in the physical
environment without further learning or parameter adjustment. Although the trained model
has acquired basic obstacle avoidance capabilities, issues such as sensor perception errors or
signal delays may occur in the real world, which may lead to occasional failures in obstacle
detection and avoidance.

To ensure flight safety and prevent collisions during real-world deployment, an emergency
obstacle avoidance mechanism is integrated into the system. When the distance to an obstacle
ahead is detected, the system automatically switches to an emergency avoidance mode. In this

17



Load Model
Import pre-trained PPO

Collect Sensor Data
6D observation vector

Policy Output
Calculate vx and vy

Coordinate Mapping
Swap vx and vy

Deadzone Filter
Remove jitters < 0.05

Control Execution
Send velocity every 0.2s

Figure 4: Sim-to-real PPO inference and control flow

mode, the system evaluates the available space to either side of the obstacle and guides the
drone to maneuver towards the more open direction, thereby reducing the risk of collision.

Additionally, to prevent potential command interference caused by residual data from pre-
vious experimental runs, a ”warm-start” mechanism is implemented. Before each takeoff, the
system clears any remaining data that may still reside in the command queue, ensuring the
accuracy and stability of flight control commands.

4 Experimental Analysis

4.1 Experiment Setup

4.1.1 Design of Simulation Parameters

The simulation was conducted using a custom environment based on PyBullet and wrapped
with OpenAI Gym[46]. The agent’s training employed the Proximal Policy Optimization (PPO)[8]
algorithm implemented in the Stable-Baselines3[44] framework [44]. A DummyVecEnv wrap-
per was used to create a vectorized environment compatible with Stable-Baselines3. We set
the environment seed to 42, which makes it possible to repeat the results. The PPO agent
was configured with the following main hyperparameters:

• Policy network: We adopt a Multi-Layer Perceptron (MlpPolicy)[47], a commonly used
feedforward architecture, to generate the action probability distribution.
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• Number of steps per rollout (n steps): 1024 means that the agent collects 1024 time
steps of experience and then performs another learning process.

• Batch size (batch size): 256 samples are randomly selected from the rollout data for
each gradient descent step during training.

• Learning rate (learning rate): 3× 10−4 is set. A higher value leads to faster updates
but may cause instability. In the experiment, the learning rate was increased to 4× 10−4

and 5× 10−4. However, this adjustment did not lead to better performance.

• Entropy coefficient (ent coef): 0.05 is a hyperparameter that balances how much the
agent tries new actions versus relying on what it has already learned. We experimented
with different values including 0.01, 0.03, and 0.05. The results showed that higher
values encouraged more exploration and generally led to better performance.

• Clipping range (clip range): A value of 0.4 was used to control the magnitude of policy
updates in PPO. We also experimented with a smaller value of 0.2, but it resulted in
poorer performance compared to 0.4.

• Discount factor (gamma): This parameter balances the weight of future versus immediate
rewards. Although 0.99 was used initially, a lower value of 0.95 provided better results.

• GAE lambda (gae lambda): 0.95 is used in GAE to compute the advantage function.

• Total training timesteps: 1,500,000 is the total steps the agent takes during the whole
training process. We also conducted control experiments with 1,000,000 and 2,000,000
timesteps.

An evaluation mechanism was also integrated into the training process. The same environment
was used for evaluation, and the agent was evaluated every 20,000 steps using 5 deterministic
episodes. The best-performing model was automatically saved using EvalCallback, enabling
reliable model selection for later testing and deployment.

Furthermore, to enhance the drone’s generalization ability across various real-world envi-
ronments in the future, the initial placement of the agent is randomized at the start of every
episode. Although this setting increases the complexity of training, it significantly improves
the robustness and adaptability of the learned policy across diverse scenarios.

4.1.2 Real-World Platform

Due to its compact design and flexibility, the Crazyflie 2.1+[5], a lightweight quadrotor small
enough to fit in the palm of a hand, has become popular in research applications. Measuring
92 × 92 × 29 mm, it is powered by an STM32F405 MCU. As we can see in Figure 5, we
equipped a flow deck underneath the Crazyflie to estimate relative velocity through optical
flow and provide the drone with a fixed hovering. On the top, we also equipped a multi-
ranger deck for detecting obstacles positioned ahead, behind, above, and on both sides of the
drone, using this range data to avoid obstacles, as shown in Figure 6. In our experiments, we
used an upgraded 350 mAh 30C battery, which increased the hover time from approximately
7 minutes to over 10 minutes without payload. Additionally, the upgraded 7×20 mm motors
paired with 51 mm propellers provided greater thrust, enabling the drone to carry extra sensors
and perform high-speed maneuvers more effectively. The whole framework of Crazyflie 2.1+
in our experiments is shown as Figure 7.
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Figure 5: The Flow Deck (optical flow
sensor) for Crazyflie

Figure 6: The Multi-Ranger Deck (range
sensor) for Crazyflie

Figure 7: The Crazyflie 2.1+ is equipped with a Flow Deck and Multi-Ranger Deck for
onboard sensing.

4.2 Training Performance in Simulation

Ten independent test episodes were conducted using the trained PPO agent in the simulated
Crazyflie environment. The agent was initialized at random positions within the room, and its
objective was to pass through the doorway without collisions. The trajectory, starting positions,
rewards curve, and success status were recorded.

4.2.1 Simulation with fixed starting position

Under the condition of a fixed takeoff position, the experimental environment was configured
with four obstacles to examine whether the agent could effectively avoid collisions and suc-
cessfully locate the exit to complete the door-passing task, while keeping all other parameters
unchanged.

To evaluate the agent’s performance in a deterministic scenario, we fixed the start position
at coordinates [0.0,−4.0, 1.0], which was visualized in Figure 8, located far from the door and
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behind multiple obstacles. The goal was to assess whether the trained policy could consistently
navigate the same complex path and successfully complete the door-passing task.

Figure 8: Simulation environment with
takeoff from the fixed starting point
[0.0,−4.0, 1.0]

Episode Starting Position Success

1 [0.0, -4.0, 1.0] Yes
2 [0.0, -4.0, 1.0] Yes
3 [0.0, -4.0, 1.0] Yes
4 [0.0, -4.0, 1.0] Yes
5 [0.0, -4.0, 1.0] Yes
6 [0.0, -4.0, 1.0] Yes
7 [0.0, -4.0, 1.0] Yes
8 [0.0, -4.0, 1.0] Yes
9 [0.0, -4.0, 1.0] Yes
10 [0.0, -4.0, 1.0] Yes

Success Rate 100%
Average Reward 5409.77

Table 3: Evaluation Results with Fixed
Starting Position

As shown in Table 3, the agent achieved a 100% success rate across 10 episodes, with
an average reward of 5386.09. These results demonstrate that the learned policy is highly
reliable and effective when starting from a fixed position, even in the presence of multiple
obstacles. This also reflects strong trajectory consistency and obstacle avoidance capability in
a fixed-path scenario.

The flight paths of the Crazyflie drone, starting from a fixed position in a room with
four obstacles, are illustrated in Figure 9. Each colored line represents a separate trial, and
the drone consistently navigates around the obstacles and successfully reaches the door area.
Despite slight variations, most trajectories follow a smooth and curved path, demonstrating
stable and repeatable behavior under the same initial conditions.

4.2.2 Circular Sampling Around Fixed Start Position

In real-world scenarios, even if the Crazyflie takes off from a predefined position, there is always
some drift around that point. To account for this, we conducted an experiment in which the
starting positions were sampled within a circular area centered around the fixed point. The
radius was set to 0.2 meters, reflecting the typical range of positional drift observed in practice.

As shown in the Figure 11, the small sphere represents the agent, whose initial position
remains at [0.0,−4.0, 1.0]. Taking this point as the center, we randomly sampled 10 positions
along a circular boundary with a radius of 0.2 meters to examine whether the agent could still
avoid obstacles and successfully pass through the doorway.

It can be observed from the Figure 10 that although the agent started from slightly different
initial positions across 10 trials, the final flight trajectories consistently overlapped, successfully
avoiding obstacles and passing through the doorway in all cases. The success rate was 100%
across all runs, which can be illustrated in Table 4. This indicates that minor initial drift does
not negatively impact the navigation outcome and offers solid support for the policy’s ability
to generalize during the transition from simulation to real-world deployment.
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Figure 9: The trajectories of the agent with
fixed starting positions in the presence of
obstacles. All ten trajectories overlapped
with each other.

Figure 10: Ten trajectories are randomly
selected from ten points centred on a fixed
point as the starting point. The flight tra-
jectories in the final stage also overlap.

Figure 11: Circular Sampling Around
[0.0,−4.0, 1.0] and the radius is 0.2 meters

Episode Starting Position Success

1 [-0.14, -3.86, 1.0] Yes
2 [-0.20, -4.03, 1.0] Yes
3 [0.15, -3.86, 1.0] Yes
4 [-0.19, -4.07, 1.0] Yes
5 [-0.16, -3.88, 1.0] Yes
6 [0.15, -3.87, 1.0] Yes
7 [-0.17, -3.89, 1.0] Yes
8 [0.20, -3.96, 1.0] Yes
9 [-0.12, -3.84, 1.0] Yes
10 [-0.07, -3.81, 1.0] Yes

Success Rate 100%
Average Reward 5409.26

Table 4: Circular Sampling Starting Posi-
tions and Success Rate

4.2.3 Simulation with 10 Random Starting Positions

In addition to fixed-position takeoff tests, we conducted ten trials with randomized starting
positions to evaluate real-world generalization. All other parameters remained unchanged, the
starting positions of the agent in each episode are shown in the Figure 12, where each blue dot
represents a takeoff point, and the corresponding flight trajectories are also plotted. As shown
in the Figure 13, 8 out of 10 trajectories successfully avoided obstacles and passed through
the doorway, resulting in a success rate of 80% (see the Table 5). The two failures were due
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to one starting position being too close to an obstacle, and the other involving a collision with
the doorframe just before exiting..

Figure 12: The same baseline model as in
the previous experiment, regarding the dis-
tribution of starting points randomized in
each of the ten episodes

Figure 13: The trajectories of ten episodes
corresponding to the randomized starting
positions in Figure 10

In response to this issue, we adjusted the success criterion in the reward function for passing
through the doorway, serving as a control experiment. Originally, the agent was rewarded as
long as it passed within the doorway’s full width; we revised this to require passage within
80% of the doorway width, effectively narrowing the valid corridor and increasing the difficulty.
The starting positions are illustrated in Figure 14 and the updated trajectory Figure 15, the
success rate improved to 90% (see Table 6). Trajectory 1 still failed due to a collision with the
doorframe.

The experimental results demonstrate that even with randomized starting positions, the
agent achieves a high success rate in the simulation environment, indicating strong generaliza-
tion capability of the trained policy and providing a solid foundation for subsequent sim-to-real
transfer. By tightening the reward function’s criteria for passing through the doorway, we in-
creased the task difficulty and observed an improvement in overall success rate. However,
occasional collisions with the doorframe remain unresolved and will be further analyzed in the
following sections.

4.2.4 Simulation with no obstacles

To perform a comparative analysis, we designed an additional experiment to evaluate how the
trained obstacle avoidance policy performs in a simulation environment without obstacles. In
this setup, all four obstacles were removed while keeping other parameters unchanged. The
agent was tested across 10 episodes, each starting from a randomized initial position, to see
if it could locate and exit through the doorway. As shown in the Figure 16 and Figure 17,

23



Figure 14: A new model trained after tight-
ening the door conditions was added, and
the distribution of 10 randomly generated
starting positions was tested for 10 episodes

Figure 15: The trajectories of ten episodes
in the new trained model corresponding to
the randomized starting positions in Figure
12

Episode Starting Position Success

1 [-1.00, 3.13, 1.0] No
2 [-3.55, -3.11, 1.0] Yes
3 [0.85, -3.12, 1.0] Yes
4 [-0.78, -3.62, 1.0] Yes
5 [-0.76, -2.51, 1.0] Yes
6 [-0.08, -2.37, 1.0] Yes
7 [-2.90, 0.04, 1.0] Yes
8 [0.90, -0.08, 1.0] No
9 [1.87, 1.45, 1.0] Yes
10 [0.14, 2.33, 1.0] Yes

Success Rate 80%
Average Reward 4301.93

Table 5: Results of 10 randomly generated
different starting positions in each flight
scenario in baseline model

Episode Starting Position Success

1 [-1.00, 3.13, 1.0] No
2 [0.95, -3.24, 1.0] Yes
3 [-2.44, -0.33, 1.0] Yes
4 [-3.55, 1.61, 1.0] Yes
5 [1.42, 2.02, 1.0] Yes
6 [-2.61, 1.71, 1.0] Yes
7 [-3.96, 3.39, 1.0] Yes
8 [-1.41, 1.09, 1.0] Yes
9 [0.93, -1.81, 1.0] Yes
10 [-3.68, 0.92, 1.0] Yes

Success Rate 90%
Average Reward 4801.49

Table 6: Results of 10 randomly generated
different starting positions in each flight
scenario in the new trained model

compared to the previous experiment with obstacles, the flight trajectories are noticeably more
direct and efficient, with fewer detours and turns. Notably, trajectory 5 passes through the
area where an obstacle used to be, demonstrating the strong generalization ability of policy.
This suggests that the policy is not overfitted to the specific obstacle configuration seen during
training, but rather adaptable to various map layouts.
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Figure 16: Random distribution of drone
take-off positions in an obstacle-free simu-
lated environment

Figure 17: Trajectory plot of random take-
off points for drones in an obstacle-free
simulated environment. The sixth trajec-
tory clearly shows that it crossed a position
where an obstacle was originally present.

The Table 7 shows that the success rate remains at 80%, consistent with the earlier results.
The two failures were again due to collisions with the doorframe, a recurring issue that had
already been observed in the experiments with obstacles.

4.2.5 Reward Curve Comparison over Timesteps

When using the PPO algorithm for training, a large number of training steps are usually re-
quired to achieve good learning results. A longer training duration allows the agent to progres-
sively refine its behavior in complex tasks and to better balance exploration and exploitation.
As a result, the model becomes more capable of generalizing to a broad range of environments.

To analyze the impact of training duration, we started with 1,000,000 timesteps and in-
creased the training length in increments of 500,000. The reward curves associated with the
three different training durations are shown in the Figure 181920, illustrating how the policy
evolves and converges over time. In the evaluation process, every 20,000 training steps, the
agent is evaluated over 5 episodes, and the mean reward across these episodes is computed.
As shown in the figure, PPO exhibits rapid learning in the early stages, with the reward quickly
improving from negative values to positive ones. The agent even begins to pass through the
doorway, receiving the final reward of 5000. During the mid-training phase, the reward con-
tinues to increase steadily and stabilizes in the positive range. However, in the later stages,
the training becomes less stable, and the model may start to overfit, resulting in less optimal
rewards. In fact, increasing the number of timesteps does not necessarily lead to better per-
formance. To avoid relying on probabilistic outcomes—since we cannot determine in advance
at which timestep the model will perform best—we choose to save the model with the highest

25



Episode Starting Position Success

1 [-1.00, 3.13, 1.0] No
2 [0.67, 2.76, 1.0] Yes
3 [-3.86, 3.22, 1.0] Yes
4 [-0.53, 3.48, 1.0] Yes
5 [-2.89, 3.37, 1.0] Yes
6 [0.37, -3.31, 1.0] Yes
7 [-0.82, -0.15, 1.0] Yes
8 [-0.85, 1.08, 1.0] Yes
9 [3.53, 0.42, 1.0] No
10 [0.46, 3.18, 1.0] Yes

Success Rate 80%

Average Reward 4261.40

Table 7: Evaluation results of 10 episodes without obstacle situations

average evaluation reward during training as the final best model. This model is then used for
experimental analysis and the subsequent sim-to-real transfer.

Figure 18: Mean reward curve of the PPO-trained agent over 1.0M training timesteps in
a simulated environment with four obstacles and randomly generated takeoff points.

4.3 Training Performance in Reality

After training in the simulation environment, we selected a model with an 80% success rate and
tested it by transferring it from simulation to reality. During the experiments, we utilized the
Crazyradio PA (Power Amplifier), a USB radio transceiver, to establish wireless communication
with the Crazyflie fitted with a Flow Deck for optical flow sensing and a Multi-Ranger Deck
for distance measurement. The Crazyflie continuously sends back motion data (optical flow)
and range measurements from four directions at 50 Hz. These sensor readings are received
by the control script on the PC, processed by the pre-trained PPO model to infer appropriate
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Figure 19: Mean reward curve of the PPO-trained agent over 1.5M training timesteps in
a simulated environment with four obstacles and randomly generated takeoff points.

velocity commands, which are then transmitted back to the Crazyflie through Crazyradio PA.
Table 8 summarizes the key configuration parameters applied in this process.

All real-world experiments were conducted in our apartment. The width of our room’s
door is 92 cm. Trash bins were used as obstacles, each measuring 23.5 cm in length, 16
cm in width, and 45.5 cm in height. For each trial, we marked a consistent takeoff point
using transparent tape. Although slight deviations may occur after the Crazyflie takes off, our
previous experiments have shown that a certain degree of drift is acceptable and does not
affect the overall performance. Throughout all experiments, it was essential to ensure that
the Crazyflie’s front was always facing the doorway. This is because, during training in the
simulation environment, the drone was consistently oriented in the same direction toward the
door.

In addition, as previously mentioned, we also incorporated an emergency obstacle avoidance
mechanism into the transfer script to prevent unexpected incidents such as communication
delays or sensor measurement errors. When the front distance becomes too small, the drone
determines the more open direction based on the left and right range measurements and
executes a lateral evasive maneuver accordingly.

4.3.1 Crazyflie without Obstacles

Firstly, to assess how effectively the sim-to-real transfer performed and to establish a corre-
sponding real-world baseline for the obstacle-free simulation, we first conducted a test in which
the Crazyflie flew in our apartment without any obstacles, as shown in Figure 21 and Figure
22. A total of five trials were conducted, all resulting in a 100% success rate of passing through
the doorway. In one of the trials, the Crazyflie collided slightly with the doorframe but still
managed to complete the task. Table 9 summarizes the results obtained from the five trials.

Therefore, experimental evidence indicates that the trained PPO model achieves successful
door-passing on the Crazyflie. Notably, the real-world environment differs significantly from the
simulated one, highlighting the model’s strong adaptability. This supports many existing studies
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Figure 20: Mean reward curve of the PPO-trained agent over 2.0M training timesteps in
a simulated environment with four obstacles and randomly generated takeoff points.

on zero-shot transfer using PPO. The high success rate further confirms the effectiveness of
our sim-to-real transfer.

4.3.2 Crazyflie with Obstacles

As the model’s training occurred in a simulated environment incorporating four obstacles
and randomized starting positions, we designed a new real-world experiment to evaluate its
performance under more complex conditions. Specifically, we introduced a trash bin as an
additional obstacle into the previously obstacle-free room, as shown in Figure 23 and Figure
24, and observed the Crazyflie’s ability to avoid the obstacle and pass through the door. The
experimental setup remained consistent with previous tests: we conducted five flight trials
using the same starting positions.Table 10 illustrates that the rate of successful door-passing
decreased to 40%., with collisions occurring in 4 out of 5 attempts—either with the trash
bin, the wall, or the doorframe. The average completion time increased to 36.6 seconds, and
the average number of steps rose to 243, compared to 28.8 seconds and 141.2 steps in the
obstacle-free scenario. It is evident that with the addition of obstacles, both the task duration
and trajectory length increased, making the flight process more complex.

It is worth noting that in these experiments, the Crazyflie was facing directly toward the
obstacle at takeoff, which increased the difficulty of navigation. In contrast, when the drone
was not aligned with the obstacle, the success rate improved significantly. Overall, despite
the added complexity and increased challenge, the trained model still demonstrated strong
generalization and adaptability.
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Parameter Value Description

URI ’radio://0/80/2M’ Communication address of Crazyflie, used to establish
the connection between the PC and the drone.

LOG FREQ HZ 50 Logging frequency of sensor data transmission.

DT 1/LOG FREQ HZ Minimum time interval for each control loop cycle (i.e.,
data read/send period), in seconds.

MAX SPEED 0.2 Maximum flight speed of the Crazyflie, in meters per
second.

HOVER Z 0.2 Default hovering altitude after takeoff, in meters.

DEADZONE 0.05 Velocity deadband threshold to filter out minimal mo-
tion commands and reduce jitter.

EMERGENCY SPEED 0.2 Speed applied when an emergency obstacle avoidance
maneuver is triggered, in meters per second.

EMERGENCY TIME DT Duration of each emergency avoidance action, aligned
with DT, in seconds.

ACTION DURATION 0.2 Duration for which each predicted action is main-
tained on the Crazyflie, in seconds.

SWAY THRESHOLD 0.3 Threshold for deciding which side to swerve toward
when an obstacle is detected in front, based on the
difference between left and right range measurements.

Table 8: Key parameters used in the sim2real script and their descriptions

Exp No. Obstacles Start Position Collision Pass Time (s) Steps

1 No Direct to the door No Yes 31 156
2 No Direct to the door No Yes 32 170
3 No Direct to the door Yes Yes 30 143
4 No Direct to the door No Yes 29 127
5 No Direct to the door No Yes 22 110

Table 9: Sim-to-Real Experiment Results (No Obstacles)

5 Discussion

5.1 Failure cases analysis

Initially, the success rate of the simulation experiment was only 40%. This occurred because
the original reward function determined progress rewards using the distance from the starting
point to the agent’s current location. Later, we modified it to compare the distance between
the agent and the center of the door at the current step versus the previous step. This
new approach encouraged the agent to make consistent progress toward the goal in every
step, resulting in a clearer objective and more directed behavior. As a result, the success rate
significantly improved to 80%.

In the previous experimental chapter, we noted that almost all simulation failures were due
to the agent colliding with the doorframe. The crash situation in the simulation environment is
shown in Figure 25. Similar collisions were also observed in the real-world experiments with the
Crazyflie. To further investigate the cause, we conducted an ablation study by testing different
reward designs, aiming to understand how each reward component affects the learned policy.
Despite modifying the reward function—such as tightening the condition for successful door
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Figure 21: Real-world experimental scene
with the Crazyflie. The environment con-
tains no deliberately placed obstacles (e.g.,
trash bins). The image is a frame captured
from the experiment video.

Figure 22: The Crazyflie successfully per-
formed autonomous flight through a door-
way. The image is captured from the exper-
iment video.

passage to discourage close proximity to the doorframe—the results remained consistent. As
shown in the previous chapter, these modifications did not reduce the occurrence of collisions
with the doorframe.

We therefore hypothesize that the root cause is not due to reward design flaws, but rather
the hardware limitations of the Crazyflie’s onboard sensors. Specifically, the drone obtains
range data along four predefined orientations — forward, rearward, leftward, and rightward.
When an object is positioned diagonally, for instance at roughly 45 degrees toward the front-
right (such as a door frame), the drone cannot perceive it and thus may inadvertently crash
into it. To test this hypothesis and rule out the possibility of poor reward design, we examined
one successful episode from the random-start experiments. As depicted in Figure 26, the
agent, after identifying the doorframe within its detection range, it performed a clear turning
maneuver and successfully passed through. This supports our conclusion: the agent is capable
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Exp No. Obstacles Start Position Collision Pass Time (s) Steps

1 Yes Direct to the Obs Yes No 49 364
2 Yes Direct to the Obs Yes Yes 25 134
3 Yes Direct to the Obs No Yes 69 433
4 Yes Direct to the Obs Yes No 14 99
5 Yes Direct to the Obs Yes No 26 185

Table 10: Sim-to-Real Experiment Results (With Obstacles)

of avoiding obstacles when they appear in the directions it can sense, but becomes vulnerable
when obstacles lie outside those detection zones.

5.2 Simulation-to-Real Challenge

In the sim-to-real transfer phase, the trained policy proved it could generalize to the real
world and repeatedly thread the doorway, yet its success rate with obstacles was noticeably
lower than in simulation. This discrepancy mainly stems from the fact that sensor data in the
simulation is idealized. Although we introduced Gaussian noise during training to mimic real-
world uncertainty, it remains insufficient to fully replicate the complexity of real environments.

In reality, the Crazyflie drone may experience various sources of error during flight, such as
drifting, communication delays, and especially instability in distance measurements. Through
multiple experiments, we observed that although the Crazyflie prints the distances to obstacles
in all four directions at each timestep, the sensor does not always reflect the actual obstacle
distance in real time. Often, one additional timestep is needed before the measurement becomes
accurate. This lag in perception introduces deviations in the observation data received by the
model, which can lead to suboptimal or incorrect action predictions.

Apart from sensor uncertainty, the structural differences between the real and simulated
environments also significantly impact transfer performance. The training was conducted in
a 10×10 meter square simulated room with only four cylindrical obstacles, whereas the real-
world experiments took place in a much more complex apartment environment. Although we
only introduced a trash bin as the primary obstacle, other elements like cabinets, walls, and
doorframes also served as unintended obstructions. The Crazyflie had to perceive and avoid all
of these while still identifying and flying through the doorway. However, this difference between
training and deployment environments aligns with the goal of our study: we ultimately aim for
our model to address the problems in reality, where environments are inherently unstructured
and unpredictable.

Interestingly, in some experiments, we observed that when approaching the door, the
Crazyflie would momentarily retreat after detecting an obstacle, but then re-approach and
successfully navigate around the trash bin to pass through the door. According to the sensor
data logs, when an obstacle is detected ahead, the drone tends to back off to a safer position.
However, since the training reward design encourages forward progression, the drone eventu-
ally resumes its forward path after avoiding the hazard. This behavior reflects an exploratory
pattern of “retreat and advance,” leading to task success. It also demonstrates that our model
retains a degree of robustness and adaptability in real-world deployment, despite being affected
by perception delays and increased environmental complexity.
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Figure 23: A trash bin was placed in the
room as an obstacle, and the Crazyflie was
positioned to take off directly facing it. The
image is a screenshot from the experiment
video.

Figure 24: The Crazyflie successfully per-
formed autonomous flight, avoiding the
obstacle and passing through the room’s
doorway. This image is a screenshot from
the experiment video.

6 Conclusion

Our experiments demonstrate that, in the simulation environment, our model can accom-
plish obstacle avoidance and door-passing tasks relying solely on the basic Flow Deck and
Multi-Ranger Deck of the Crazyflie, achieving a success rate of up to 90%. This confirms the
effectiveness of the PPO policy trained through reinforcement learning. In the sim-to-real ex-
periments, the results further validate that our model not only performs well in simulation but
is also capable of completing tasks even when deployed in real-world environments that differ
entirely from the training setup. This result validates that the proposed simulation-to-reality
approach can be successfully transferred and applied in practice. The study demonstrates
that, by employing the PPO algorithm within a reinforcement learning framework, a Crazyflie
equipped solely with basic distance sensors—without any external GPS or vision system—can
effectively perform obstacle avoidance and navigate through doorways. This reduces the differ-
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Figure 25: This is an example of a failed episode in the simulation experiment. The screen-
shot was taken while running the simulation in the graphical user interface of PyBullet.
The sphere represents our drone, which collided with the door frame during this episode

Figure 26: The image shows a trajectory from a simulation episode in which the drone
successfully detected the door frame, performed a turning maneuver to avoid obstacles,
and ultimately passed through the door

ence between the simulated setup and actual conditions, while also confirming the zero-shot
transferability of PPO. It also highlights the effectiveness of reinforcement learning for au-
tonomous drone navigation, which is an important research area for future intelligent systems.
This study shows that even with training conducted in a single simulated environment, the
model can still exhibit strong generalization capabilities when facing completely unknown real-
world scenarios. Furthermore, this work demonstrates that, even under hardware limitations or
restricted external resources, autonomous intelligent behaviors of small UAV systems can be
achieved through well-designed training strategies and transfer mechanisms. Such capability
provides strong support for future applications of small drones in complex or unknown real-
world scenarios, such as autonomous exploration or disaster response, significantly reducing
both labor and financial costs.
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7 Future Work

Due to time constraints, we only introduced randomized starting positions to enhance the gen-
eralization ability of the trained policy. However, introducing additional randomization—such
as varying the number and positions of obstacles—would likely further improve the sim-to-real
transferability. Our entire experiment actually tested a wide variety of reward function combi-
nations, gradually increasing the success rate from 40% to 80%. However, the process did not
specifically record the experimental data. In the future, we can add more ablation experiments
and then quantify the experimental results and compare them with the final version.

Moreover, in this study, we only tested the PPO algorithm. In future work, other reinforce-
ment learning strategies could be explored. For instance, Soft Actor-Critic (SAC), an off-policy
method with entropy regularization, allows for efficient experience reuse and typically achieves
faster convergence. Its suitability for continuous control tasks makes it a strong candidate for
onboard drone navigation. Similarly, Twin Delayed DDPG (TD3) is also well-suited for tasks
involving small aerial robots in continuous action spaces. By using a dual-Q network structure
and delayed policy updates, TD3 offers higher training stability, which is particularly beneficial
for real-world deployment. A comparative study of different policy architectures for onboard
execution would help identify the most robust and reliable approach.

Beyond single-agent control, future research could also extend to multi-agent reinforcement
learning. For example, coordinating two or more micro-drones for collaborative navigation,
obstacle avoidance, or exit-finding tasks opens the door to more complex behavior learning.
Under these circumstances, incorporating swarm-intelligence-based methods, for example the
Artificial Bee Colony (ABC) algorithm[48], could be a promising approach for decentralized
path planning, followed by Multi-Agent PPO (MAPPO) to learn cooperative behaviors along
those optimized trajectories. The combination of classical swarm intelligence methods and
deep reinforcement learning could provide a powerful framework for real-time cooperation in
dynamic environments.

Certainly, we can enhance the Crazyflie’s experimental and perception capabilities by adding
additional hardware modules. For instance, integrating the Loco Positioning System (LPS)
allows the drone to obtain indoor global position information, enabling more advanced tasks
such as global path planning and indoor SLAM. On the other hand, equipping the system with
visual cameras or other high-precision sensors can significantly improve its obstacle avoidance
and environmental awareness. However, while these upgrades can enhance performance, they
inevitably increase hardware costs and system complexity, and often require higher demands on
the physical environment. Therefore, practical applications require a careful balance between
performance, cost, and system design.
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Appendix Terminal Output of Real-World Crazyflie

Experiment

Figure 27: Terminal Log - Inference and Obstacle Avoidance
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Figure 28: Terminal Log - Inference and Obstacle Avoidance
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Figure 29: Terminal Log - After Send the Ctrl C command
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